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“Human-like intelligence requires human-like interactions with the world.”
– Rodney Brooks



Abstract

The emergence of robot applications and its growing availability to non-
technical users implies the development of new ways of interaction between
this kind of electronic devices and users. Human Robot Interaction (HRI) is
a research area about the study of the dynamics involved in the interaction
between humans and robots. It involves several knowledge fields such as
natural language processing, computer vision, machine learning, electronics
and even social sciences like psychology and human communication. HRI
aims at the creation of natural interfaces between human and robots which
are intuitive and easy to use without previous knowledge or training.

The main goal of this Master Thesis is the development of a gestural in-
terface to interact with robots in a similar way as humans do, allowing the
user to communicate information beyond linguistic description of the task
(non-verbal communication). In order to fulfill this objective, the gesture
recognition application has been implemented using the Microsoft’s Kinect
v2 sensor. Hence, a real-time algorithm is described to deal with two kinds of
gestures which are described; the static gestures and the dynamic ones, be-
ing the latter recognized using a weighted Dynamic Time Warping method.
Skeletal features are used to define both kinds of gestural sequences, having
each gesture its own set of specific features.

The Kinect based gesture recognition application has been implemented in a
multi-robot case. So, a NAO humanoid robot is in charge to interact with the
users and respond to the visual signals they produce. Moreover, a wheeled
Wifibot robot carries both the sensor and the NAO robot, easing navigation
when necessary. The system is currently able to recognize two gestures, one
of each kind (static and dynamic). The dynamic gesture consists in a wave
movement which the user salutes the robot; meanwhile the static one is a
pointing to an object gesture. When performed, the robot looks for objects
near the location which has been pointed, and tries to detect which is the
object that the user was referring to, asking him or her about it, if needed.
When the object requested by the user is recognized, the robot goes down
the wheeled platform, approaches to it and shows it to the user.

A broad set of user tests have been carried out demonstrating that the sys-
tem is, indeed, a natural approach to human robot interaction, with a fast
response and easy to use, showing high gesture recognition rates. Possi-
ble applications of this kind of systems to household environments are also
discussed.

i



Resum (Catalan)

L’emergent nombre d’aplicacions relacionades amb la robòtica i la seva crei-
xent disponibilitat per part d’usuaris no tècnics implica el desenvolupament
de noves formes d’interacció entre aquests tipus de dispositius i els usuaris.
La Interacció Persona Robot (IPR) és una àrea de recerca que estudia les
dinàmiques involucrades en la interacció entre humans i robots, i que inclou
diferents àrees de coneixement tals com el processament del llenguatge na-
tural, la visió per computador, l’aprenentatge automàtic, l’electrònica i fins
i tot ciències socials com la psicologia i la comunicació humana. L’IPR té
com a objectiu la creació d’interfícies naturals entre persones i robots, que
siguin intuïtives i fàcils d’usar sense cap coneixement o entrenament previs.

El principal objectiu d’aquest Treball Final de Màster és el desenvolupament
d’una interfície gestual per tal d’interactuar amb robots d’una forma similar
a la que empren els humans, permetent a l’usuari comunicar informació més
enllà d’una descripció verbal de la tasca.

Per tal d’acomplir aquest objectiu, l’aplicació de reconeixement de gestos
s’ha implementat utilitzant el sensor Microsoft Kinect v2. Per consegüent,
s’ha descrit un algorisme en temps real que tracta amb dos tipus de gestos
diferents: els gestos estàtics i els dinàmics, i un mètode de Dynamic Time
Warping ponderat s’ha emprat per reconèixer els gestos dinàmics. Ambdós
tipus de gestos s’han definit mitjançant característiques esquelètiques, on
cada gest en té el seu propi conjunt.

L’aplicació de reconeixement de gestos basada en Kinect s’ha implementat en
un cas multi-robot. Un robot humanoide NAO és l’encarregat d’interactuar
amb els usuaris i respondre als estímuls visuals que produeixen. A més, un
robot amb rodes Wifibot transporta tant el sensor com el NAO, facilitant-ne
així la navegació. El sistema és capaç de reconèixer un gest de cada tipus.
El gest dinàmic consisteix en una salutació amb el braç, i l’estàtic rau en
senyalar a un objecte. Quan és realitzat, el robot cerca objectes a prop de
la zona senyalada i intenta detectar quin era l’objecte que l’usuari indicava,
preguntant-li al respecte si és cal. Un cop es reconeix quin era l’objecte
referenciat, el robot baixa de la plataforma i s’hi acosta per mostrar-lo.

Diverses proves d’usuari s’han dut a terme, demostrant que el sistema és una
aproximació natural a la interacció persona robot, amb una ràpida respos-
ta i facilitat d’ús, amb altes taxes de reconeixement. Possibles aplicacions
d’aquests tipus de sistemes en entorns domèstics són també comentades.
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Resumen (Spanish)

El emergente número de aplicaciones robóticas i su creciente disponibilidad
por parte de usuarios no técnicos implica el desarrollo de nuevas formas de
interacción entre estos tipos de dispositivos y los usuarios. La Interacción
Persona Robot (IPR) es un área de investigación relacionada con el estudio
de las dinámicas involucradas en la interacción entre personas y robots. Inclu-
ye áreas de conocimiento diversas tales cómo el procesamiento del lenguaje
natural, la visión por computador, el aprendizaje automático, la electróni-
ca e incluso ciencias sociales como la psicología o la comunicación humana.
La IPR pretende crear interfaces naturales entre robots i personas que sean
intuitivas y fáciles de usar sin previo conocimiento o entrenamiento.

El principal objetivo de este Trabajo Final de Máster es el desarrollo de una
interfaz gestual para interactuar con robots de una forma similar a la que
utilizan los humanos, permitiendo al usuario comunicar información más allá
de las descripciones verbales.

Para cumplir este objetivo, un sensor Microsoft Kinect v2 se ha utilizado para
implementar la aplicación de reconocimiento de gestos. Por consiguiente, se
describe un algoritmo en tiempo real para tratar dos tipos de gestos: los
estáticos y los dinámicos, y un método de Dynamic Time Warping ponderado
se utiliza para reconocer los gestos dinámicos. Ambos tipos de gestos se han
definido por medio de características esqueléticas, de las cuales cada gesto
tiene su propio conjunto.

La aplicación de reconocimiento de gestos basada en Kinect se ha imple-
mentado en un caso multi-robot. Un robot humanoide NAO se encarga de
interactuar con los usuarios y responder a los estímulos visuales que produ-
cen. Además, un robot con ruedas Wifibot transporta tanto el sensor como el
NAO, facilitando así su navegación. El sistema es capaz de reconocer un gesto
de cada tipo. El gesto dinámico consiste en un saludo con el brazo, mien-
tras que el estático radica en señalar un objeto. Cuando éste es realizado, el
robot busca objetos en la zona apuntada e intenta detectar a cuál se refería
el usuario, preguntándole si hace falta. Cuando el objeto es reconocido, el
robot baja de la plataforma, se acerca a él y lo muestra al usuario.

Varias pruebas de usuario se han llevado a cabo, demostrando que el sistema
es una aproximación natural a la interacción persona robot, con una rápida
respuesta y fácil uso, con altas tasas de reconocimiento. Posibles aplicaciones
de estos tipos de sistemas en entornos domésticos son también comentadas.
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1 Introduction

Robots are here and they have come to stay [14]. Research in robotic sys-
tems began many years ago, and there is a long way to go. Scientists have
made robots able to navigate in di�erent kinds of environments, walk, talk
and also understand spoken language. Sensing capabilities have been also
included in order to achieve the previous tasks and sense the environment
that surrounds them to detect objects, persons and obstacles. Moreover,
reasoning methodologies have also been applied, allowing robots to design
plans to achieve their objectives. We have even created robots to human
resemblance, so they are called humanoid robots.

Now that robots are able to complete thousands of interesting tasks for us, it
is time to make them understand humans as well as communicate with. This
is the main aim of Human Robot Interaction (HRI), to design interfaces and
situtations to better operate and interact with robots. Speech and textual
interfaces are widely used in this �eld, but as many psychologists claim,
approximately more than the 60% of human communication is performed
through non-verbal cues [7, 6]. So, humans tend to interact with themselves
via gestures as an important element of communication. We usually wave to
our acquaintances, or point at an object to refer to them instead of describing
all the scene. In many cases, gestures are more e�cient to be performed and
be understood, hence it is really interesting to include these abilities into
robotics systems, and specially humanoid robots. Many research groups are
currently working in gestural interfaces for robots. A major objective is that
they should be natural and intuitive for people. Hence, they can be used with
minor training, just as they would do with another human being. Moreover,
such gesture recognition and understanding skills must be run in real time,
as large processing time is resulting in users frustration as they do not know
what is really happening.

This work introduces a gesture based Human Robot Interaction system which
allows the user to communicate with a robot using nonverbal cues. Those
can be a dynamic movement such as a wave with the arm or a static position
to, for instance, point at an object on the scene. Two robots are involved in
the system, who cooperate in order to ful�ll a visual order from the user, such
as pointing to an object in the ground to make the robot fetch it. Then, the
robotic system's response to this visual stimulus would be to drive together
to the pointed location to see clearly which object was referred, asking to the
user if there is not a clear decision. Once disambiguated, one robot separates
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CHAPTER 1. INTRODUCTION 2

from the other in order to �nish the task of getting the object.

The dissertation begins with a review of related work in Chapter 2. Hardware
and software tools used in the system are explained in Chapter 3. The im-
plemented methods are detailed in Chapter 4. Next, Chapter 5 discusses the
results of the developed algorithms in o�-line experiments, as well as when
considering a set of user tests. Finally, Chapter 6 concludes the work and
gives some insights on possible improvements and extensions of the proposed
system.

1.1 Motivation

Imagine the case of an elder or a person with mobility di�culties in his home,
sitting on the sofa, when the remote controller falls to the ground and picking
it up could suppose a big e�ort to the person, or might even be impossible to
do by themselves. But, a robot could be there in order to help them and pick
the object from the ground to reach it to them, as depicted in Figure 1.1.
Nevertheless, specifying which object is the one to pick in a verbal channel
may be hard, specially if there is more than one object near. So, an ideal
way of communicating the object to the robot could be pointing at it, just
as we would to to tell the same information to another human. Solving this
problem of making robots able to understand people using non-verbal cues
is the main motivation of this Master Thesis.

�

Figure 1.1: Ideal case of gesture interaction in a household environment.



CHAPTER 1. INTRODUCTION 3

To do so, a middle size humanoid robot (Aldebaran's NAO) is used as the
principal robotic communicative agent. However, as the Kinect 2 sensor
which is used to perform the gesture recognition is too big to be worn by the
NAO, a problem emerged in order to move the sensor with the robot. This
issue was solved by taking inspiration of the DARPA robotics challenge1,
which includes an experiment in which a robot must drive a car towards
some goal; then exit it to �nish its task by foot. In a similar way, a wheeled
robot was added to the system in order to carry the sensor as well as the
little humanoid, which has also to exit it in order to �nish his task walking.

Furthermore, our wheeled robot is autonomous, which involves some cooper-
ation and collaboration between robots to achieve the common goal. Instead
of creating a single robotics system which can be in charge of everything,
joining di�erent smaller systems which are specialized in ful�lling a single
task can make it easier and improve its e�ciency and achievement rate.

1.2 Goals

The goals that have been �xed to be accomplished in this project are to build
a robotics system which iseasy to use for a common human being. The user
would interact with the system using gestures, which should benatural for
them to perform, and intuitive . Moreover, a fast response of the robot is
needed in order to give feedback to the user and notify him that the gesture
has been understood, so it must be areal time system.

In order to achieve the previous objectives, some sub goals need to be also
accomplished. The Kinect based gesture recognition algorithm must be able
to deal with both static and dynamic gesturesand the user pointing location
has to beaccurately estimated.

Moreover, both robots have towork together in order to approach a given lo-
cation, and also todisambiguatethe pointed object in case of doubt. Finally,
the NAO has to clearly show which was the referred object.

Several topics have been considered to complete these goals, including: ob-
ject segmentation, 3D scene analysis, human detection and behaviour anal-
ysis, and robotics.

1 theroboticschallenge.org



2 State of the art

Several contributions related to this Master Thesis can be found in the lit-
erature. Human Robot Interaction (HRI) is an active research �eld from
many di�erent points of view: from making humans understand the robot
states through verbal and non verbal communication to doing it the other
way around, making the robot understand humans. As this work is focused
on interaction based on gestures, this section will present a review of the
available work in this �eld.

To begin with, some general gesture recognition methods will be brie�y com-
mented. In [19], an algorithm for semantic motion retrieval in large data sets
is proposed. To achieve it, gesture classi�cation is performed by a method
called Bag-Of-Motion-Features, which extracts wavelet spatio-temporal fea-
tures and expresses them in frequency domain, transforming them into a
Bag-Of-Words representation for e�cient computation. A real time gesture
recognition method using arti�cial neural networks is presented in [26]. The
recognition is performed in both hands, using a hand independent represen-
tation which is obtained from salient motion features extracted from depth
data. The gestures are represented as a sequence of such motion patterns.
Then, Self Organizing Maps (SOM) are used to cluster the motion data in
an unsupervised manner. Experiments on HRI data to operate a robot with
gestures showed good performance with high recognition rates. Dynamic
Time Warping approaches, as the one used in this work, are also widely used
in gesture recognition. A gesture recognition method developed in [5] is ap-
plied on data coming from accelerometers and gyroscopes in real time; [16]
applies the method to RGB and depth data using a probability approach,
and [33, 2] apply DTW in weighted skeletal features obtained from a depth
sensor.

Many publications focus on HRI applications of gesture recognition. One of
the �rst works in this topic can be found in [45], in which both, person and
arm tracking in color images was performed. Two recognition methods were
compared, one template-based approach and an arti�cial neural network,
both combined with a Viterbi algorithm. An approach to moving gesture's
recognition is presented in [18], where a Kinect sensor is used to recognize
gestures while the robot is moving. The method tracks the face of the per-
son in order to perform background subtraction and then joint positions are
estimated by means of a Voronoi diagram. A generated motion context is
used to train a Multi-Layer Perceptron (MLP) classi�er in order to recognize

4



CHAPTER 2. STATE OF THE ART 5

similar gestures to the ones proposed here. A low cost RGB-D sensor is used
in [32] to perform dynamic gesture recognition by skeleton tracking. The
recognition method uses a Finite State Machine which encode the temporal
signature of the gesture. An adaptive method was developed in [15] for iden-
tifying the person which is performing the gestures. The goal was to learn
from gestures and therefore adapt the system to the speci�c person, being
the same gesture performed by two di�erent persons understood in di�er-
ent ways, even having the opposite meaning. Another Kinect application to
gesture recognition with HMM (Hidden Markov Models) and skeletal data
is presented in [11], in which the user performs gestures to control the robot
and it responds with voice or a message in the display. Deep neural networks
have also been used to recognize gestures, as done in [3], aiming to recog-
nize gestures in real time with minimal preprocessing in RGB images. They
show high classi�cation rates working online, the application being a robot
that gives speech feedback. User de�ned gestures can be added in a semi
supervised way to the system from [4], which contributes a non-parametric
stochastic segmentation algorithm, the Change Point Model. This proce-
dure does not need to be supplied with the gesture's starting and ending
points, making the user able to create its own gestures to control a robot
and thus being highly customizable without the need of explicit user learning
or adaptation.

Elderly assistance is another interesting �eld in which service robotics is ap-
plied, and gesture interaction may be really useful in such case. A Kinect
based approach to recognize calling gestures is proposed in [47]. This ap-
proach use a skeleton based recognition system to detect when the user is
standing up, and an octree one when the skeleton is not properly tracked. Er-
roneous skeletons are �ltered by face detection in order to determine whether
the data is actually a person or a false positive. An application to object
handling to the user is implemented and tested with di�erent elder users.

Besides, some contributions are only concerned with hand gestures. The
hand gesture recognition system introduced in [40] performs gesture classi-
�cation in each arm independently, using two arti�cial neural networks, as
well as HMMs, to perform arm tracking. Their trajectories are used as the
input to the classi�er. Another hand gesture decomposition application to
HRI is proposed in [43], in which a color segmentation algorithm is used to
�nd skin regions and a cascade of Adaboost classi�ers is used for the hand
posture. The method was validated in a museum robot guide. An RGB-D
camera is used in [46] for hand gesture recognition. Human segmentation is
performed by background subtraction and hand tracking is then calculated
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from both color and depth information. Some static gestures are employed
to indicate the start and end of the gesture to the system, such as opening
and closing the hand. The trajectory followed in the meantime is then used
to recognize the gesture by applying an HMM, as it was similarly done in
[17]. A tour-guide robot able to understand gestures and speech feedback
is introduced in [1], which tracks the user using depth information and per-
forms the recognition with a Finite State Machine gesture modeling. Hand
tracking approaches such as the one in [30] as well as the related work being
developed in Microsoft Research with a Kinect v2 sensor [38], which shows
impressive results, may imply a great improvement in the recognition of hand
gestures, with applications to sign language recognition � which is another
application of gesture recognition systems �.

Cooperation tasks is another research topic, as in the case of the current
work, when the user cooperates with the robot to achieve a given task, for
instance approaching the desired object. The system proposed in [13] detects
a person with a color camera to recognize the face and laser range �nders
to �nd his legs. Then, the person perform gestures to make the robot guide
him or to carry a load together. The method uses invariant Hu moments
to describe the gestures and a probability based approach is used to classify
them. Conversely, there are publications like [34] which make the study in
the reverse way: how can robots make humans cooperate with them when
the robots are those executing a gesture. It is also related to this work, as our
robot performs some gestures that the human has to interpret, and posterior
gestures of the human could be a result of the robots one. A similar study is
conducted in [24], in which they evaluate the e�ect of the robot utterances
when they are accompanied by gestures such as the robot looking to the
person when he speaks or pointing in the direction of an object.

Spatial and directional gestures are widely used by humans to refer to ele-
ments that surround them. For instance, this work implements a `pointing
at' gesture to refer to an object on the ground. Such gestures, also known as
deictic gestures, have been broadly studied. Pointing gesture recognition and
direction estimation is performed in [27] by means of a cascade of HMMs and
a particle �lter to recognize the gesture in stereo images to which hand and
face tracking is applied to capture the pointing direction. A similar HMM
approach is used in [23] to recognize pointing gestures. A ROS-based robot
is used in [44] to detect pointing gestures by means of a Haarlet-based hand
gesture recognition system, extract the pointing direction and translate it
to movement goals in a map. A tracking system is presented in [20] which
recognizes the pointing gesture so that a person can tell the robot where is
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another person who wants to interact with it. Finger segmentation is per-
formed to compute the angle to which the robot has to turn its head. A
research about how people refer to objects in the world is carried out in [21].
This deictic interaction comes from both speech and gesture channels. Spa-
tial information from objects is extracted in form of features such as distance
to the hand or its direction relative to the object. A K-SVD algorithm is
trained to perform the classi�cation. Human Augmented Mapping is stud-
ied in Elin Anna Topp's Ph.D. Thesis [42], in which human concepts are
integrated to the robot map. Such concepts are obtained from user inputs
such as pointing to a place or showing an object. The pointed location on a
wall is obtained in the system of [31], which uses geometry analysis to iden-
tify shoulders and elbows to understand gestures and obtain the direction.
Some constraints in the study include high illumination environments and
user wearing half sleeves to better segment him.

Pointing gestures are used to refer to objects in [8] using a time-of-�ight
camera to get depth information. They use the line between the person's
eyes and their hand as the pointing direction. Knowledge about possible
object locations is exploited in [28] in order to discern between which object
might be pointed, using the Dempster�Shafer theory of evidence to join
information from the head pose and the pointing hand's orientation.

But deictic gestures can also be applied the other way around, as when our
NAO robot points to an object it has found. Studies on making robots refer
to objects via gestures have also been performed, such as the one presented
in [41], in which realistic, cluttered environments containing many visually
salient targets are considered. A similar study is carried out in [37]: six
deictic gestures are implemented in a NAO robot to evaluate their com-
municative e�ectiveness. Involved gestures include pointing, touching and
exhibiting objects.

Moreover, gesture based interaction has also been used in multi-robot envi-
ronments. A human-swarm interaction scenario based on hand gestures is
considered in [22]. A novel incremental machine learning approach is also
proposed. This method allows the robot swarm learn and recognize the
gestures in a distributed and decentralized manner.

Furthermore, there also exist applications in which the NAO robot drives.
Naocar, shown in Figure 2.1, was �rst made by students of theÉcole Informa-
tique Epitech and then sold by RobotsLab1, an educational robots provider

1robotslab.com
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based in San Francisco. In it, the robot is the one who drives the vehicle
rather than the vehicle working on its own, as in the case of the present
work.

Figure 2.1: Naocar, NAO robot driving a BMW Z4 car from RobotsLab.



3 Resources

Several resources have been used for this work, both hardware and software.
The hardware ones include the robots, two laptops and a RGB-depth sen-
sor. The software ones are frameworks, libraries and utilities which ease the
programming of the hardware components.

3.1 Microsoft's Kinect v2

In order to perform the gesture recognition, a RGB-depth sensor has been
used. The chosen one is the version two of the Kinect sensor, which is man-
ufactured and sold by Microsoft. The Kinect is a widely known sensor, and
was introduced in 2010 for the Xbox 360 game console, being available to
Windows users in 2012. Since then, several applications have been imple-
mented with it, many of them in the robotics area.

The second version of the sensor was released in late 2013 and was included
with the Xbox One console as a single bundle. A public Windows beta ver-
sion was released in July 2014, being the �nal public release in late September
2014. It includes an infrared sensor, a depth one and a high de�nition RGB
camera along with a microphone array. The sensor is shown in Figure 3.1.

Figure 3.1: Microsoft Kinect v2 sensor for Windows.

Furthermore, it incorporates several improvements with respect to the pre-
vious version. First of all, it has better resolution for both the color (1080p)
and the depth cameras, and can obtain depth information from up to eight
metres, while the previous one only reached about four and a half metres.
It also has a wider �eld of view (60 degrees vertical and 70 horizontal) and
works over USB 3.0, which implies a better bandwidth to transmit (extra)

9
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data. But not only the hardware's power and precision were improved, also
the software and its SDK. For instance, the new version is able to track
up to six people at the same time, while the old version could track only
two of them. Also, the new SDK gives skeletal information with twenty-�ve
joints of each person, while the old sensor only provided twenty of them.
Figure 3.2 displays the body joints that the Kinect 2 provides. Face analy-
sis capabilities have been improved in this second version too, enabling the
application to create a mesh of more than one thousand points for a more
accurate representation of a person's face. Given that the sensor requires a
powerful computer and the SDK works only in Windows 8 and 8.1, an extra
laptop was needed to process the incoming data. C++ is the programming
language which has been used with the SDK.

Figure 3.2: Skeleton joint positions relative to the human body in the
Kinect 2. Extracted from the Kinect for Windows SDK 2.0 documentation.

3.2 Robots

The robot platforms perform the most important part of this work, and are
the main component to perform the interaction with the user. Two robots
have been employed: a humanoid robot, Aldebaran's NAO, and a wheeled
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platform which helps the movement of the NAO and brings the sensors and
part of the computing power, the Wi�bot platform.

3.2.1 NAO

NAO is a humanoid robot created and developed in the French company
Aldebaran Robotics1. Its development began in 2005, and it later replaced
Sony's Aibo dog robot as the o�cial robotic platform for the Robocup 2 Soc-
cer League in 2010. Its cute and human-like appearance makes the NAO a
very friendly robot and, thus, a great candidate for a Human Robot Inter-
action task.

The version of the robot which is used in this work is a v3.2, the red NAO
from the UPC ESAII department, which is named Naomi. A size diagram
and a picture of the robot are shown in Figure 3.3. This NAO version
was released in 2009 and was the second generation in the robot evolution.
Even though there were no impediments to perform its work, the robot's age
and limited computing capabilities arouse some issues which needed to be
handled.

Figure 3.3: NAO robot dimensions, extracted from Aldebaran's documen-
tation (left). ESAII department's robot Naomi used in this work (right).

1aldebaran.com
2 International robot competition with many di�erent league modalities, robocup.org.
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The robot includes a complete set of useful hardware elements: networking
capabilities such as WiFi and Ethernet, speakers, LEDs in the eyes and
ears (which increment its expressiveness), infrared emitters, sonars, tactile
sensors, two cameras, force sensing resistors, gyroscopes, accelerometers and
a 45 minutes life battery. It has an AMD Geode processor at 550 MHz and
runs the NaoQi operating system (a Linux based one). A hardware diagram
of the robot is shown in Figure 3.4.

Figure 3.4: NAO robot hardware diagram. Extracted from Aldebaran's
NAO Software 1.14.5 documentation.

The software included with the robot is the NaoQi API and the Choregraphe
framework, which allow to program the robot easily. The NaoQi software
includes basic utilities such as joint control, a walking algorithm, speech ca-
pabilities (text-to-speech and speech recognition), along with some computer
vision algorithms to perform face tracking.
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3.2.2 Wi�bot

The platform selected to carry the Kinect sensor and the NAO was a Wi�bot
robot, more concretely the Wi�bot lab v3, from Nexter Robotics3. It consists
on a wheeled platform with an integrated WiFi access point and an on board
computer with an Intel Atom processor. It has currently an Ubuntu 12.04
Operating System installed. Its four 12 volt wheel motors make it suitable
to support all the extra weight. It also has two sonar sensors available, even
though they are not used in the present work. Figure 3.5 shows the used
Wi�bot platform.

Figure 3.5: Wi�bot lab v3.

Some modi�cations were needed in order to attach the Kinect sensor to it
and carry the NAO, without losing the visual �eld of the camera. First of
all, some strategies were developed in order to carry the NAO and making
it able to go down of the platform. The �nal design had the robot sat on
the platform itself, with its legs hanging. Some hand supports were added
to avoid it fall down forward, and the sitting area was covered by a rubber
sheet in order to increase adherence. Then, an elevated surface was added
on the back part and attached with two bars, having the Kinect on top and
over NAO's head. This construction allowed some extra space to place the
Kinect's laptop. Finally, to ensure the safety of the robot and the laptop,
the bars were wrapped with plastic foam, avoiding any possible bump. In
Figure 3.6 a picture of the �nal Wi�bot version is shown along with another
one with the NAO on top of it.

3wi�bot.com
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