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Universitat Politècnica de Catalunya (UPC)
Jordi Girona Salgado 1-3
08034 Barcelona, Spain

Email: cecilio.angulo@upc.edu

Sergio Escalera
Computer Vision Center, UAB
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Abstract—The emergence of robot applications for non-
technical users implies designing new ways of interaction between
robotic platforms and users. The main goal of this work is
the development of a gestural interface to interact with robots
in a similar way as humans do, allowing the user to provide
information of the task with non-verbal communication. The
gesture recognition application has been implemented using the
Microsoft’s KinectTM v2 sensor. Hence, a real-time algorithm
based on skeletal features is described to deal with both, static
gestures and dynamic ones, being the latter recognized using a
weighted Dynamic Time Warping method. The gesture recog-
nition application has been implemented in a multi-robot case.
A NAO humanoid robot is in charge of interacting with the
users and respond to the visual signals they produce. Moreover,
a wheeled Wifibot robot carries both the sensor and the NAO
robot, easing navigation when necessary. A broad set of user tests
have been carried out demonstrating that the system is, indeed, a
natural approach to human robot interaction, with a fast response
and easy to use, showing high gesture recognition rates.

I. INTRODUCTION

Robotic systems are able to autonomously navigate, walk,
talk, understand spoken language, detect objects, people, ob-
stacles. Moreover, reasoning methodologies have also been
applied, allowing robots to design plans to achieve their
objectives. Once robots are able to fulfil thousands of useful
tasks, they also need to communicate with human beings.
Many Human Robot Interaction (HRI) techniques focus on
spoken dialogues, often restricted and constrained to simple
questions – response or vocal orders. However, most of the
human communication is performed by non-verbal channels
[1], [2]. For instance, humans tend to use deictic gestures
in order to refer to an object which is nearby, rather than
performing a verbal description of it.

This work is concerned in natural interaction with a robot
by means of gestures. We focus in the recognition of dynamic
gestures such as a wave, and in static gestures like the pointing
gesture. It has been implemented in a multi-robot system with
an Aldebaran’s NAO robot and a Wifibot robot, as well as a
KinectTM 2 sensor is used to get the data related to the human
gestures. The Wifibot is in charge of the long term navigation
and the transportation of the KinectTM sensor, and the NAO
robot, which is seated on the Wifibot, is used to perform the
verbal and gestural interaction from the robotics side, being
able to go down the wheeled robot to finish a task by standing.

The task has been evaluated with 24 users from different
backgrounds and age groups, showing that the system performs

well in terms of time and accuracy, as well as it is a natural
way of interaction with the robot.

The rest of the paper is organized as follows: related work
is reviewed in Section II. Section III introduces the hardware
and software resources available to perform the interaction.
Next, it is explained how are they included in the system
in Section IV. Section V highlights the main theory behind
the gesture recognition methods and Section VI explains how
are they used to interact with the user. The obtained results
from offline experiments and the user evaluation are shown in
Section VII, meanwhile Section VIII concludes the work and
give some insights about future improvements.

II. RELATED WORK

Human Robot Interaction for social robotics is an active
research field from many different points of view: from making
humans understand the robot states through verbal and non
verbal communication to doing it the other way around,
making the robot understand humans.

Focusing in the gesture recognition part, a real time ges-
ture recognition method using Artificial Neural Networks is
introduced in [3]. The recognition is performed in both hands,
using a hand independent representation which is obtained
from salient motion features extracted from depth data. The
gestures are represented as a sequence of such motion patterns.
Then, Self Organising Maps (SOM) are used to cluster the
motion data. Experiments on HRI data to operate a robot with
gestures showed good performance with high recognition rates.
Dynamic Time Warping (DTW) approaches, as the one used
in this work, are also widely used for gesture recognition
purposes. A gesture recognition method developed in [4] is
applied on data coming from accelerometers and gyroscopes
in real time; the method is applied to RGB and depth data
using a probability approach in [5], and [6], [7] applies DTW
in weighted skeletal features obtained from a depth sensor.

As for explicit applications to HRI, a low cost RGB-D
sensor was used in [8] to perform dynamic gesture recognition
by skeleton tracking. The recognition method uses a Finite
State Machine which encodes the temporal signature of the
gesture. Another KinectTM application to gesture recognition
with Hidden Markov Models (HMMs) and skeletal data is
presented in [9], in which the user performs gestures to
control the robot and it responds with either voice or a
message in the display. Deep Neural Networks have also been
used to recognise gestures, as performed in [10], aiming to



recognise gestures in real time with minimal preprocessing
in RGB images. High accuracy was obtained with on line
performance, where the robot provides speech feedback. User
defined gestures can be added in a semi supervised way to
the system from [11], which contributes a non-parametric
stochastic segmentation algorithm, the Change Point Model.
This procedure does not need to be supplied with the gesture’s
starting and ending points, making the user able to define
its own gestures to control a robot and thus being highly
customisable without the need of explicit user learning or
adaptation. Applied to elderly people caring, a KinectTM based
approach to recognise calling gestures is proposed in [12].
This approach uses a skeleton based recognition system to
detect when the user is standing up, and an octree one when
the skeleton is not properly tracked. Erroneous skeletons are
filtered by face detection in order to determine whether the
data is actually a person or a false positive. An application
to object handling to the user is implemented and tested with
different elder users.

Deictic and pointing gestures are also widely studied.
Pointing gesture recognition and direction estimation is per-
formed in [13] by means of a cascade of HMMs and a particle
filter to recognise the gesture in stereo images to which hand
and face tracking is applied to capture the pointing direction.
A similar HMM approach is used in [14] to recognise pointing
gestures. A ROS-based robot is used in [15] to detect pointing
gestures by means of a Haarlet-based hand gesture recogni-
tion system, extract the pointing direction and translate it to
movement goals in a map. A tracking system is presented in
[16] which recognises the pointing gesture so that a person can
tell the robot where is another person who wants to interact
with it. Finger segmentation is performed to compute the
angle to which the robot has to turn its head. A research
about how people refer to objects in the world is carried
out in [17]. This deictic interaction comes from both speech
and gesture channels. Spatial information from objects is
extracted in form of features such as distance to the hand or its
direction relative to the object. A K-SVD algorithm is trained
to perform the classification. The pointed location on a wall is
obtained in the system of [18], which uses geometry analysis
to identify shoulders and elbows to understand gestures and
obtain the direction. Some constraints in the study include
high illumination environments and user wearing half sleeves
to better segment him. In [19], pointing gestures are used to
refer to objects by means of a time-of-flight camera to get
depth information. They use the line between the person’s
eyes and their hand as the pointing direction. Knowledge about
possible object locations is exploited in [20] in order to discern
between which object might be pointed, using the Dempster-
Shafer theory of evidence to join information from the head
pose and the pointing hand’s orientation.

III. RESOURCES

Several resources have been used for this work, both
hardware and software. The hardware ones include:

• A Microsoft’s KinectTM version 2 sensor (see Fig-
ure 1a). Released in July 2014, it provides an infrared
sensor, a depth one and a high definition RGB camera
along with a microphone array. Some improvements
with respect to its previous version include better

(a) Microsoft’s KinectTM v2 sen-
sor.

(b) Aldebaran’s NAO robot.

Fig. 1: KinectTM sensor and NAO robot.

(a) Initial Wifibot robot. (b) Wifibot adaptation. (c) Wifibot carrying the
KinectTM and the NAO.

Fig. 2: Wifibot robot and its modifications.

colour and depth image quality. The SDK also in-
cludes software for tracking up to six people at the
same time and body information of 24 joints.

• A middle size humanoid robot, Aldebaran’s NAO
version 3.2, which is shown in Figure 1b.

• A wheeled robotic platform, the Wifibot lab v3 from
Nexter Robotics, is used to carry the KinectTM sensor
and the NAO robot. Some adaptations were added
in order to carry the vision sensor, a laptop to get
the information from the KinectTM and the humanoid.
The platform is shown in Figure 2, with the original
version, the modified one and the modified version
with the NAO seating on it.

The software resources include:

• The KinectTM for Windows SDK version 2.0 to get
KinectTM body tracking information.

• The Point Cloud Library (PCL) to handle and process
the depth data.



Fig. 3: System architecture.

• The Robot Operating System (ROS) to program the
robots.

IV. SYSTEM OVERVIEW

The implemented system gathers all the resources and con-
nects them to conform the application. The system architecture
is displayed in Figure 3.

The user interacts with the system by using gestures.
For the experiment, two gestures have been considered: the
wave gesture (‘salute’) and point at one. When the salute is
performed, the robot is expected to wave back at the user. In
case the gesture performed is to point at some object, the robot
should navigate to the object location – provided that the user
has pointed at an object and neither to an empty space nor a
non-ground position – and make clear that it has recognized
which object the user was selecting. In case of ambiguity about
the selected object, the robot will ask the user some questions
related to the size or position of the detected objects, so the
user can clarify, using spoken language, which object was the
desired one.

V. GESTURE RECOGNITION

This section focuses on the methodology used in order to
perform gesture recognition. Given the high time constraints
of the system, the recognition must be done in real time. A
system in which the user performs the gesture and sees the
reaction of its gesture after a long time is not much robust nor
reliable, and would give raise to a non pleasant and confusing
interaction. To achieve a natural, human-like interaction, the
system must be able to understand human-like gestures taking
roughly the same time that would take to another human. In
the proposed solution, the robot reaction to a user gesture can
be seen just after its execution has been finished.

(a) Skeletal wave gesture and
used features.

(b) Skeletal pointing gesture
and used features.

Fig. 4: Examples of skeletal features.

Two types of gesture are described in the system: the static
and the dynamic gestures.

• A static gesture is defined by a static position without
any movement of the user in neither the whole nor a
limb of their body. The pointing gesture belongs to
this category.

• In contrast, a dynamic gesture is defined by the
movement the user performs with a part of the body
as, for instance, the right arm. The wave gesture is an
example.

A. Skeletal features for gesture recognition

The gesture recognition has been performed by extracting
body tracking information from the KinectTM v2 sensor. Using
the KinectTM for Windows SDK v2.0, skeletal information can
be extracted from the depth images of the sensor [21]. The
method consists of a Ranfom Forest classification at voxel level
of body limbs and a skeletal design obtained from body limbs
segmentation.

In the gesture recognition approach that is defined in this
work, a different feature space representation is defined for
each gesture. There is no need that all the gestures are defined
by the same parameters or set of features, given that some
gesture may be better characterised by using some specific
information of a limb. The following paragraphs describe
the features used for each gesture. Note that as the skeletal
information is obtained in real world coordinates, all the used
features are scale and body orientation invariant. Such proper-
ties avoid the need of feature preprocessing and normalisation,
speeding up the process.

1) Wave gesture’s features: The wave gesture is performed
by moving the forearm near and far, while keeping the upper
arm in an horizontal position with the floor. Figure 4a illus-
trates the gesture. To characterise it, only two features are used:

• θ1 Euclidean distance between the Neck joint and the
Hand joint.

• θ2 Angle in the Elbow joint, which is the angle be-
tween the vector from the Elbow joint to the Shoulder,
and the vector from the Elbow to the Hand joints.



2) Point At gesture’s features: The Point At gesture is a
static gesture, so no movement is involved. The gesture is
defined by the elongated arm position of the user. The features
for this gesture are:

• θ1 Distance between the Hand and the Hip joints (both
of the same body part).

• θ2 Angle in the Elbow joint, as in the wave gesture.

• θ3 Position of the Hand joint.

A skeletal representation of the gesture and its features is
shown in Figure 4b.

B. Dynamic time warping gesture recognition

The main gesture recognition method used in this work
is the Dynamic Time Warping (DTW), and it is applied
to dynamic gesture recognition. This algorithm is generally
employed as a template matching method to measure the
similarity or the cost of alignment between two temporal
sequences which may differ in speed or length, finding an
alignment warping path.

The method, originally described in [22], is also widely
used to recognise gestures by detecting input sequences which
are similar enough to a given reference gesture. Once detected,
the whole gesture can be segmented from the input sequence
by getting its warping path. Many examples of application
can be found in the literature. For instance, [5] proposes a
probability based DTW to recognise gestures in video streams
with colour and depth information. They use a Bag-of-Visual-
and-Depth-Words (BoVDW) representation for the gesture
information. Their approach uses the DTW to perform the
segmentation of an idle gesture which is performed between
gestures. Once they have the input sequence segmented, a
BoVDW classification is performed by using a k-Nearest
Neighbours classifier. The authors of [7] propose a robust
recognition based on feature preprocessing and weighting,
using as features the whole body skeleton (joint values). They
use weights for the different joints and gestures to improve
the discriminant capabilities of the DTW. It is a similar
approach as the one in [6], from which this work is mainly
based on, where the authors propose a begin-end gesture
recognition system with DTW. They also use skeletal joints
information as the input features to the algorithm, and weight
those features (each joint) depending on its participation in a
particular gesture (for instance, legs are not much important
in a handshaking gesture). These weights are obtained by a
training algorithm based on the ground truth of the gestures.

The method which we propose is based on the contribution
of [6], however it presents some differences. First, our features
are not the whole skeleton but some metrics extracted from
the joints of interest. Hence, the position of the non related
limbs are not taken into account, avoiding the noise they
would generate (as in the handshaking example). Secondly,
we do not need the actual segmentation of the gesture in a
begin-ends manner, because knowing which gesture has the
user performed is enough. Furthermore, different number of
features are allowed for each gesture by the framework, along
with a weighting on those features to add discriminant power
in case of some metrics being more important, or for numerical
scaling purposes (to set them to have equal importance).

The DTW algorithm works as follows: be the gesture refer-
ence model a sequence R = {r1, . . . , rm} and the current input
sequence S = {s1, . . . , s∞}. An alignment matrix Mm×n,
where n is the length of the temporal window from the input
sequence S, is derived in which Mi,j contains the distance
between ri and sj . The input sequence S has infinite length
as the system keeps getting feature frames and processing them
until a gesture has been recognized. The distance metric which
has been used to compute the alignment cost between two
feature vectors is a weighted L1 distance, being it defined as

d1(r, s) =

k∑
i=1

αi|ri − si| , (1)

where αi are the positive weights associated with the i-th
feature, and k is the number of features of the gesture (k = 2
in the case of the wave gesture).

A warping path is defined as a set of neighbouring matrix
elements which define a mapping between the reference model
R and the current sequence S. More formally, a warping path
W = {w1, . . . , wT } can be defined, being T the length of the
path, and each element wt corresponding to a matrix position
M [wt] = Mi,j . The objective warping path is the one which
minimizes the warping cost,

DTW (R,S) = min

 1

T

√√√√ T∑
t=1

M [wt]

 . (2)

Note that, even though the warping path computation has been
implemented in the system for testing purposes, it is not used
while the online gesture recognition is being performed.

The recurrence which the dynamic programming algorithm
computes to get the alignment cost is

Mi,j = d1(ri, sj) +min
{
Mi−1,j ,Mi−1,j−1,Mi,j−1

}
. (3)

To perform the detection of the ending of a known gesture
in an input sequence S, a segment of it which is similar enough
to a model gesture should be found. Given that a perfect match
is almost impossible, a test sequence is considered similar
enough to a model sequence if the following condition is
satisfied,

Mm,k < µ, k ∈ [1, . . . ,∞], (4)

where µ is a cost threshold associated with the gesture.
The algorithm runs in a thread which is in charge of the
corresponding gesture, being all the gestures processed in a
parallel way, and keep running until one of the threads finds
a gesture in the input sequence. Once this happens, all the
gesture recognition threads stop their execution to return the
recognition result.

The different parameters of the algorithm, such as the
αi and µ of each gesture, have been experimentally chosen
with a parameter selection method based on different example
sequences which have been manually labeled. Before this
parameter selection, some tests were performed to observe the
value of the different features while performing the gestures,
obtaining from them a set of feasible parameter values for
the α and µ parameters. After this, the parameter selection
method consisted on using the recorded sequences, which were
performed by different users, to get the values from the set



which maximised the performance in terms of overlap. Such
performance was computed by testing each sequence as if it
was a real input sequence, using the DTW with the current
parameters and checking the obtained performance, keeping
those parameters that got better results.

C. Static gesture recognition

Given that the static gesture recognition does not require
from temporal warping but just its spatial configuration, the
DTW has not been used to recognise the pointing gesture. The
proposed solution to this problem was to adapt the recognition
and make a method to handle static gestures. The method is
simple: it checks whether the input frames features are above
some recognition thresholds during a certain number of frames.
Another constraint is that a characteristic joint of the limbs
which feature the gestures’ movement is also within a given
threshold.

More specifically, the method checks that the distance
between hand and hip (θ1) and the elbow angle (θ2) are greater
than certain threshold values (θ1 > T1, θ2 > T2) and the
hand position (θ3) is hold still during the given number of
frames for the gesture (around 20 frames). Consequently, the
parameters involved in the static gesture recognition are the
feature thresholds, the minimum number of frames the gesture
has to be performed and a reference to the limb position such
as the hand. Those parameters are obtained in a similar way
as the one used for the dynamic gestures.

D. Joint static and dynamic gesture recognition

A single multi-threaded algorithm takes care of both static
and dynamic gestures by distributing the gestures in different
threads, and stopping them in case a thread recognises a
gesture. It also handles the possible situation of multiple
gesture detections in the same frames. In case this happens,
the gesture with less cost is the final recognized one.

E. Pointed point extraction and object segmentation

Provided that the recognized gesture is the pointing one,
some post processing is needed in order to obtain gesture-
related information. For instance, the pointed location needs
to be extracted, and the objects near this position need also to
be detected.

Just three elements are needed to obtain the pointing
position: the ground plane description (such as a vector which
is orthogonal to it), a point from the ground plane and the
pointing direction. With this, a simple geometric line-plane
intersection can be computed to obtain the desired point.
The floor plane is obtained by means of the PCL’s plane
segmentation algorithm, described in [23]. The depth image
from the KinectTM is represented as a Point Cloud and the
segmentation algorithm is applied to find the plane which
corresponds to the floor, by comparing it with a direction
vector which is stored by the system (or user intervention is
required in the opposite case, in which the user has to select
three points of the ground).

Then, the line equation of the pointing direction is obtained
in order to be able to get the intersection with the plane. Such
line is extracted from the skeletal data, using the mean of the

Fig. 5: Detecting objects around the pointed point.

joint’s position during ten contiguous frames from the middle-
end of the gesture to make sure the correct direction is obtained
and overcome possible tracking errors. The pointed direction
is the one from the elbow to the hand joints. Tests performed
by using the Hand to HandTip joints direction to get the actual
finger pointing direction did not improve the results but rather
produced more deviated locations, due to skeleton estimation
inaccuracies. A last verification is performed in order to check
that the pointing was directed to the ground. The method does
not need that the pointed direction is inside the sensor’s field
of view, and it could also be used with other planar surfaces
such as tables or shelves in case the sensor was installed in a
height enough to see them.

Once the pointed point has been located, the next step is to
detect which objects are around this location. As the aim is to
make the robot know which is the object the user is referring
to, there is not much need in recognising the objects but just
detecting them, knowing there are objects there. Therefore,
object recognition has not been used even though the system
could be extended to handle it and actually recognise the
objects and tell them by their name. The objects are detected
by extracting a sphere of the point cloud and applying a
clustering algorithm to it in order to isolate the objects in
different clusters. An Euclidean cluster extraction method is
used for this purpose [23]. Figure 5 shows an example of the
result of this methods in the system’s GUI.

VI. MOBILE ROBOTICS INTERACTION

The computer vision methods explained are used by the
robotics system in order to perform the interaction with the
human user. Previously to this interaction, some skills were
added to the robots. Firstly, a simple PID controller [24] to
control the heading direction of the Wifibot was implemented
in order to approach the pointed location, assuming free path to
the place. Secondly, a movement for the NAO was developed
in order to make it go down the Wifibot to finish the task
walking towards the object. Finally, smaller behaviours were
implemented in the form of a hierarchical Finite State Machine
(FSM) to control all the application flow.



One special sub FSM is the one that takes care of the
object disambiguation. In case that the pointed object is not
clear, that is, the distances between the pointed point and each
detected object are similar. Provided this situation takes place,
the robot starts a disambiguation interaction process with the
user by means of an oral dialogue. If the detected objects are
of different size, the robot asks simple questions like if the
desired object is the biggest one. In case of the user’s answer
being negative, it asks about if it is the smallest one in case
there are more than two objects, or it knows it is the remaining
one in case of two objects. Similarly, the robot asks if it is
the left-most one and performs the same procedure when the
object’s size is not discriminative enough.

Furthermore, the speech utterances performed by the robot
are different each time, choosing them at random from a pool
of sentences. With this, the interaction feels less repetitive,
more natural and less boring.

VII. RESULTS

The proposed methods have been evaluated both in offline
tests and experiments carried out with volunteer users.

The overlap (also known as Jaccard Index), defined as

J(A,B) =
|A ∩B|
|A ∪B|

, (5)

has been used to assess the offline performance of the gesture
recognition methodology. A labelled set of seven sequences in
which three different users perform gestures has been used for
this purposes. Those sequences contain a total of 2082 gesture
frames and 61 gestures, 27 of them being static gestures and
the other 34 dynamic gestures. Notice that the reference model
sequences used for the DTW were specifically recorded for it
and are not part of this set.

To obtain a general measure of the performance of the
algorithm on the recorded skeletal sequences, a LOOCV
strategy has been used. Hence, one sequence is left out from
the threshold selection method and the other ones are used to
compute the better thresholds to recognise the gestures they
include.

After the parameters were computed, the test sequence was
evaluated to obtain its overlap measure in unseen data. This
procedure is repeated for each one of the sequences, obtaining
the performance measures both for the static gestures and the
dynamic ones. Those measures were averaged for the seven
sequences, obtaining a general Jaccard Index of each type of
gesture, and the average of the mean overlap of both categories
gives the final gesture recognition performance value of the
system. The results, shown in Table I, where each fold is a test
sequence, and the results of the parameter selection with all the
sequences but the fold sequence are in the left columns, while
the right ones show the performance on the fold sequence with
the parameters obtained with the rest of the data. The “Global”
row shows the results of the parameter selection when all the
sequences are used to compute the parameters, and the test
sequence columns show the mean of the above rows.

As it can be seen in Table I, the mean Jaccard Index
in unseen sequences is about 0.49, segmenting most of the
gestures but being not accurate at begin-end frame level

Fig. 6: User evaluation tests environment.

spotting, which is not a critical point for gesture recognition
since most of the gestures are recognized even with this gap.
Dynamic gestures are better segmented than the static ones,
even though more data could improve these results.

For the user evaluation tests, 24 volunteers used the system
and provided their feedback. Each user performed three tries
of the task: one in which only one object was placed in the
robot area, another one with two of them and a final one with
one of the two objects replaced. Those who desired it could
make more tests. The objects which were used were two milk
bottles and an empty cookie box. The order of the tries was
changed between users to avoid any bias in the results due
to user fatigue. The objects used in each of the test was also
varied, being some tests performed with the two bottles and
others with a bottle and the box. Figure 6 shows the tests set-up
and environment. There were no restrictions about the order of
the gestures to be performed, but users tended to begin with a
wave gesture to then point at an object. Also, the objects were
usually placed by the test controller, but those who asked were
allowed to place the objects by themselves.

At the end of the test, users filled a questionnaire about
the experience. This survey included demographic questions,
obtaining a varied set of age groups and backgrounds, as seen
in Figure 7, but being most of them male users. The answers
to the interaction questions were positive. Almost all the users
got the behaviour they expected from the robotic system. The
answer to the wave gesture was considered fast, meanwhile
the pointing one could be faster and some users thought they
had to point for too much time. Moreover, the robot clearly
showed which was the referred object, with a hand gesture.
Also, the disambiguation part proved to be successful.

About the naturalness of the interaction, Figure 8 proves
it was agreed to be natural, intuitive and easy to perform.
Observed externally, the users showed a good learning curve,
adapting their gestures to possible deviations of the pointing
direction, pointing to the objects base rather than on top.

VIII. CONCLUSIONS AND FUTURE WORK

A real-time gesture based HRI system has been proposed
and implemented in this work using the Microsoft’s KinectTM

v2 sensor. Two types of gestures have been recognized, the
static gestures and the dynamic ones, and a gesture of each
type has been included in the system. Features obtained from
skeletal information have been used in the algorithm and



TABLE I: Gesture recognition performance evaluation results.

Parameter selection Test sequence

Fold Static
gestures

Dynamic
gestures Mean Static

gestures
Dynamic
gestures Mean

0 0.703642 0.552158 0.627611 0.349593 0.636364 0.49298
1 0.641827 0.658219 0.650023 0.711538 0.000000 0.35577
2 0.713837 0.557703 0.635430 0.279476 0.603093 0.44128
3 0.71538 0.625359 0.670370 0.172078 0.186992 0.17954
4 0.640198 0.554127 0.597163 0.721311 0.624549 0.67293
5 0.667304 0.528129 0.597720 0.543605 0.77037 0.65699
6 0.595776 0.541330 0.568550 -a 0.620818 0.62082

Global 0.653063 0.564187 0.608625 0.462930 0.491744 0.48862
a Sequence 6 does not contain any static gesture.

defined per gesture in a problem dependent way. Moreover, the
system allows easy addition of new gestures with its specified
features. An implementation of a feature weighted Dynamic
Time Warping algorithm has been applied to the dynamic
gesture recognition.

A middle size humanoid robot, Aldebaran’s NAO, has been
used to interact with the user via both speech and gestures,
and a wheeled platform, Nexter Robotics’ Wifibot robot, is
employed to ease NAO’s navigation and sensor movement.
NAO is able to ride Wifibot and to go down of it once they have

approached a given goal. Both robots work in an independent
way, and they are able to collaborate with each other in order
to fulfil a task which right now includes, but it is not limited
to, finding an object which has been referred by the user with
a pointing gesture, with a speech based disambiguation using
spatial or dimensional characteristics. Some extensions to this
task could be adding more types of interactions or using the
Wifibot to see the elements from other points of view.

Furthermore, a series of tests with a varied set of users
have been carried out, resulting in a good experience for them.

(a) Age groups. (b) User’s academic background.

Fig. 7: Demographic data of the users.

(a) Wave gesture naturalness. (b) Pointing gesture naturalness.

Fig. 8: Users response to the naturalness of the gestures.



Most of the users thought the gestures were a natural way of
interacting with the robot, and the response the robot had was
the expected one and fast enough. This means that the system
is easy to be used for human beings with minor indications on
how to perform the gestures and, thus, the initial objectives of
this project are considered as successfully accomplished.

The proposed system can be applied in household envi-
ronments. Make robots bring something they pointed could be
useful for elderly people or those with mobility difficulties.
Many other gestures could be added in order to improve this
interaction that rather than teleoperating the robot, intends to
be a source of information to ease robotic task fulfilment,
everything made in a natural, non forced way.

As future work some enhancement of the pointing at
location estimation could be done, as the elbow-hand direction
tends to point to further places, and also humans tend to point
above the object. This is not a problem for us to distinguish
the object, but it is a handicap for a robotic system. Some
solutions to this issue may be the use of a learning method
in order to adapt the gesture to the user, be it a general user
or user specific, or a fixed factor could be applied to solve
the major deviations. Also, other cues could be employed to
improve the estimation of the pointing direction, such as the
use of the gaze trajectory in other to adapt the arm one, as
humans tend to look to the place they are pointing at.
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