GESTURE BASED HUMAN MULTI-ROBOT INTERACTION

Gerard Canal, Cecilio Angulo, and Sergio Escalera
Introduction

• Nowadays robots are able to perform many useful tasks.
• Most of the human communication is non-verbal.
• HRI research on a gesture-based interaction system.
Motivation

• Elderly or handicapped person case.
Outline

• Goals
• Resources
• System overview
• Gesture Recognition
• HRI methods
• Results: Gesture recognition performance
• Results: User evaluation
• Conclusions
• Future work
Goals

• Design of a system easy to use and intuitive.

• Real time, therefore, fast response.

• Static and dynamic gestures recognition.

• Accuracy in pointing at the location.

• Allowing the robot to respond in an intuitive manner.

• Solving ambiguous situations.
Goals

• Design of a system *easy* to use and *intuitive*.
• *Real time*, therefore, *fast* response.

• *Static* and *dynamic* gestures recognition.
• *Accuracy* in pointing at the location.
• Allowing the robot to respond in an *intuitive* manner.
• Solving *ambiguous* situations.
Goals – System set up

Allowing the robot to respond in an intuitive manner.

- Vision sensor too large to be carried by the robot.
- DARPA Grand Challenge idea of a driving humanoid.
Hardware resources

- Microsoft Kinect version 2.
 - Windows 8.1 driver and USB 3.0.

- NAO.
 - CPU Geode.
 - NoaQi OS.

- Wifibot.
 - Intel Atom.
 - Ubuntu 12.04.

- Two laptops:
 - Intel i5
 - Intel Core 2 duo
Hardware resources modifications
Software resources

• ROS: Robot Operating System.
 • To program the robots.
 • SMACH to implement the Finite State Machines in Python.
 • Indigo Igloo version in Ubuntu 14.04.

• Kinect for Windows SDK 2.0.
 • C++ mode.

• PCL: Point Cloud Library.
 •Implemented in C++.
System overview
System overview

Approach to pointing location

Goal reached

Segments objects

Approaches to object

Points object

Wave gesture

Waves back

Point At gesture

Gesture based Human Multi-Robot Interaction

Gerard Canal Camprodon
Gesture Recognition

• Two types of gestures:
 • Static
 • Dynamic

• One gesture of each type:
 • Wave
 • Point at

• Described by means of skeletal features [1].

Skeletal features

• Wave gesture:
 • θ_1: Neck – Hand distance
 • θ_2: Elbow angle

• Point at gesture:
 • θ_1: Hand – Hip distance
 • θ_2: Elbow angle
 • θ_3: Hand 3D position
Gesture recognition: Dynamic Time Warping

- Using a weighted L1 distance measure: \(d_1(r, s) = \sum_{i=1}^{k} \alpha_i |r_i - s_i| \)

\[
M_{i,j} = d_1(r_i, s_j) + \min\{M_{i-1,j}, M_{i-1,j-1}, M_{i,j-1}\}
\]

- A gesture is recognized when the input sequence is close enough to the model: \(M_{m,k} < \mu, k \in [1, \ldots, \infty] \).
Static gesture recognition

• Check that features are within some thresholds and the involved limb is not moving during a certain number of frames.

 \[\theta_1 > T1, \theta_2 > T2 \]

• Dynamic and Static recognition performed in a multi-threaded joint way.
Gesture recognition:
Pointing gesture related methods

- Ground plane detection by RANSAC model fitting [2].
- Pointed point extraction using skeletal joints information.
- Object segmentation by Euclidean Cluster Extraction [3].

HRI methods: Object disambiguation

- Extra information may be needed in case of doubt.
- Solve it by means of a small spoken dialogue.
- Use of simple questions about object’s features like size and position.
HRI methods: Interaction techniques

- The robot performs human-like gestures.
- Non-repetitive verbalization of its actions to enhance understanding.
Results: Recognition performance.

Jaccard index

- Performance measured on a labeled set:
 - 61 gesture samples, 27 static and 34 dynamic
 - 2082 gesture frames

- Overlap / Jaccard index as performance metric.

- LOOCV test mean Jaccard Index:
 - Static gestures: 0.46
 - Dynamic gestures: 0.49
 - Mean: 0.49
Results: User experience evaluation

- Testing environment.
Results: User experience evaluation.

Users survey

- 24 users tested the system
Results: User experience evaluation. Users survey

Wave gesture naturalness

Point At gesture naturalness

Number of users

Natural | Unnatural | Hard to perform

Natural | Unnatural | Hard to perform
Demonstration
Conclusions

- Potential utility in household environments.
- Natural gestures as said by the test users.
- Easy to interact with the system and able to fulfill a task successfully in most of the cases.
- Working in near real time (~20 FPS), with correct response times.
- Generic and scalable framework.
Future improvements

- Enhancement of the pointing location estimation:
 - Solve user pointing imprecisions by learning from them.
 - Use of other cues such as gaze direction.
 - Hand pose estimation.

- More precise navigation (no free path assumption, scene understanding).

- Affective and cognitive interaction.
THANK YOU.

No robot was harmed in the making of this paper.