Outline

1. Introduction and Goals
 - Introduction
 - Goals

2. How it has been approached
 - Problems
 - Common approaches
 - Proposed approach
 - Datasets

3. Outcome

4. Conclusions
Outline

1. Introduction and Goals
 - Introduction
 - Goals

2. How it has been approached
 - Problems
 - Common approaches
 - Proposed approach
 - Datasets

3. Outcome

4. Conclusions
Uses of Face Recognition

Face Recognition has drawn plenty of *attention*

It has potential for multiple applications:

- Biometrical verification
- Search for a person through cameras
- Automatically tagging friends
- Finding similar people
- ...

So, what is actually Face Recognition?
Face Recognition in fiction

How has fiction pictured face recognition?

[Images of fictional face recognition interfaces and technologies]
Actual Face Recognition

How does Face Recognition actually work?

- Eigenfaces
- Active Appearance Models
- Support Vector Machines
- Bayesian models
- Convolutional Neural Networks
- ...

Figure: Example of a CNN
Goal of this master thesis

Developing a *face recognition* system so that:

- Keeps a DB of known users
- Given a new picture, determines the closest match
- Capable of on-line learning
- Usable in *uncontrolled* environments
- Reasonably fast
Outline

1 Introduction and Goals
 - Introduction
 - Goals

2 How it has been approached
 - Problems
 - Common approaches
 - Proposed approach
 - Datasets

3 Outcome

4 Conclusions
Face Recognition Problems

Many factors to take into account:
Face Recognition Problems

Many factors to take into account:

- Light conditions
Face Recognition Problems

Many factors to take into account:

- Light conditions
- Expression
Face Recognition Problems

Many factors to take into account:

- Light conditions
- Expression
- Face orientation
Face Recognition Problems

Many factors to take into account:
- Light conditions
- Expression
- Face orientation
- Age
- ...

Intra-class variability

Figure: Intra-class variability
Face Recognition Problems

Many factors to take into account:
- Light conditions
- Expression
- Face orientation
- Age
- ...

It can be summarized as *Intra-class variability*

Figure: Intra-class variability
Face Recognition Problems

Inter-class similarity is also an issue:

Figure: Inter-class similarity
Common Face Recognition approach

Problems of raw images:

- Excessive noise
- Large dimensionality
- Variability is too high

Solution?

Convert input image into a reduced space

Feature extraction

Manually crafted
Automatically found
Common Face Recognition approach

Problems of raw images:
- Excessive *noise*
Common Face Recognition approach

Problems of raw images:
- Excessive noise
- Large dimensionality
Common Face Recognition approach

Problems of raw images:
- Excessive *noise*
- Large *dimensionality*
- *Variability* is too high

Solution?
- Convert input image into a reduced space
- Feature extraction
 - Manually crafted
 - Automatically found
Common Face Recognition approach

Problems of raw images:

- Excessive *noise*
- Large *dimensionality*
- *Variability* is too high
- **Solution?**
Common Face Recognition approach

Problems of raw images:
- Excessive *noise*
- Large *dimensionality*
- *Variability* is too high
- **Solution?**

Convert input image into a reduced space
Common Face Recognition approach

Problems of raw images:
- Excessive noise
- Large dimensionality
- Variability is too high
- **Solution?**

Convert input image into a reduced space

Feature extraction
- Manually crafted
- Automatically found
Common approaches

Eigenfaces

- Reduces faces into more compact representations
- Uses PCA to produce those
- Set of $eigenvectors$ from the $covariance$ $matrix$
- Comparison by linear combination of $eigenfaces$

Figure: Set of eigenfaces
Common approaches
Active Appearance Models

- Fits a pre-defined face shape into the image
- Iteratively improves initial estimation
- Allows finding sets of relevant points

Figure: Active Appearance Models fitting a face shape
Common approaches
Support Vector Machines

- Successful classifier in many problems
- Finds the hyperplane separating two problems
- Can be used to determine if two images belong to same person

Figure: Application of Support Vector Machines
Common approaches
Bayesian models

- Models each facial feature as $x = \mu + \epsilon$
- It corresponds to inter-class and intra-class variability
- Based on the full joint distribution of face image pairs

$$r(x_1, x_2) = \log \frac{P(x_1, x_2|H_I)}{P(x_1, x_2|H_E)}$$
Common approaches
Convolutional Neural Network

- It is a type of *Artificial Neural Network*
- Works by finding increasingly *abstract* features
- Takes into account spatial relation
- High requirements in time and data
- Currently providing *state of art* results in many CV problems

Figure: Convolutional Neural Network
The proposed approach consists of 4 steps:

1. Locating the main face in the image
2. Frontalizing the found face
3. Extracting features using a CNN
4. Performing comparison with stored ones
The proposed approach consists of 4 steps:

Step 1: Locating the main face in the image
Proposed approach

The proposed approach consists of 4 steps:

Step 1: *Locating* the main face in the image

Step 2: *Frontalizing* the found face
The proposed approach consists of 4 steps:

Step 1: *Locating* the main face in the image

Step 2: *Frontalizing* the found face

Step 3: Extracting features using a *CNN*
Proposed approach

The proposed approach consists of 4 steps:

- **Step 1:** *Locating* the main face in the image
- **Step 2:** *Frontalizing* the found face
- **Step 3:** Extracting features using a *CNN*
- **Step 4:** Performing *comparison* with stored ones
Step 1: Locate the face

Goal: Look for the *bounding box* of the most likely face

![Figure: Locating the face](image)

Benefit: Prevent erroneously located faces in next step
Step 1: Locate the face

Procedure:
- Using a region based Convolutional Neural Networks (Faster RCNN [RHGS15])
- Set of possible face locations is produced
- Most promising face is kept: $\textit{distance to center} + \textit{confidence}$

![Figure: Selecting most likely face](image-url)
Step 2: Frontalize the face

Goal: Frontalize the face so that it is looking at the camera

![Figure: Frontalizing the found face](image)

Benefits: Eliminate background noise + Equally placed faces
Step 2: Frontalize the face

Procedure:

1. Locate a set of 46 fiducial points
2. Consider the same points in a 3D pre-defined model
3. Generate a projection matrix to map from 2D input to the 3D reference
4. (Apply vertical similarity to fill in empty spots) ← Discarded

Figure: Frontalization process [HHPE15]
Step 2: Frontalize the face

Not working perfectly:

Figure: Examples of successful and unsuccessful frontalizations
Step 3: Extract relevant features

Goal: Automatically extract a set of relevant features from the face

Benefits: More efficient comparison + Reduction in variability
Step 3: Extract relevant features

Goal: Automatically extract a set of relevant features from the face

Benefits: More efficient comparison + Reduction in variability

Procedure:
- A CNN has been used to process each image
- Each image is compressed into a reduced representation
- A feature vector of 4096 features is generated
- Based on Facebook’s *DeepFace* method [TYRW14]

Figure: CNN architecture used
Step 4: Compare them

Goal: Perform the comparison with DB to look for a match

Procedure:

1. Given a generated feature vector g
2. Iterates over all people in the DB
3. Each person has N relevant feature vectors $F = f_1, f_2, ... f_N$
4. Distance comparison is performed between g and each $f_i \in F$
5. Various selection measures considered: minimum, mean, etc.
Datasets used

Three datasets considered:

- *Casia dataset*: 495,000 pictures / 10,500 people
- *CACD dataset*: 160,000 pictures / 2,000 people
- *FaceScrub*: 100,000 pictures / 500 people
- Training: 500,000 pictures / 9,351 people
- Testing: 100,000 pictures / 1,671 people

Additionally, to use as a benchmark:

- *Labeled Faces in the Wild*: 13,000 pictures / 5,700 people
Datasets used

Generated datasets

From training dataset, we generated two extra:

Augmented:
Using data augmentation
Randomly modifying light intensity
Other data augmentations made not much sense − rotation, scaling, etc.

1M instances

Grayscale:
Convert previous dataset to grayscale
Aims to make the problem easier for CNN
Both training and testing sets converted
CNN modified accordingly
Datasets used
Generated datasets

From training dataset, we generated two extra:

- **Augmented:**
 - Using data augmentation
 - Randomly modifying light intensity
 - Other data augmentations made not much sense — rotation, scaling, etc.
 - 1M instances
Datasets used

Generated datasets

From training dataset, we generated two extra:

- **Augmented:**
 - Using data augmentation
 - Randomly modifying light intensity
 - Other data augmentations made not much sense — rotation, scaling, etc.
 - 1M instances

- **Grayscale:**
 - Convert previous dataset to grayscale
 - Aims to make the problem easier for CNN
 - Both training and testing sets converted
 - CNN modified accordingly
Outline

1 Introduction and Goals
 • Introduction
 • Goals

2 How it has been approached
 • Problems
 • Common approaches
 • Proposed approach
 • Datasets

3 Outcome

4 Conclusions
How to evaluate their performance?

Face Recognition systems can be evaluated according to:

- *Face Verification*
- *Face Recognition*
How to evaluate their performance?

Face Recognition systems can be evaluated according to:

- *Face Verification*
- *Face Recognition*

Both intrinsically related…
How to evaluate their performance?

Face Recognition systems can be evaluated according to:

- *Face Verification*
- *Face Recognition*

Both intrinsically related...
... but differently evaluated
Goal: Determining whether two pictures belong to the same person:
- Needed on most *Face Recognition* systems
- Performance not directly related with *Face Recognition* step
- Commonly used as benchmark to compare methods
- The *Labeled Faces in the Wild* dataset has been used
- 2000 training pairs / 1000 test pairs
- Allowed for hyperparameter tuning
Face Verification

Examples

Figure: Example on test pairs
Face Verification

Procedure

Comparison performed using *Euclidean* and *Taxicab* distances

Weighted variations considered but discarded due to bad results

Training consists in:

1. Obtain distance between all train pairs
2. Find the optimal threshold placement to separate classes
Comparison performed using *Euclidean* and *Taxicab* distances
Weighted variations considered but discarded due to bad results

Training consists in:

1. Obtain distance between all train pairs
2. Find the optimal threshold placement to separate classes

Figure: Example best case scenario

Figure: Example more difficult scenario
Table: Results state of art methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>0.896</td>
</tr>
<tr>
<td>Joint Bayesian</td>
<td>0.9242</td>
</tr>
<tr>
<td>Tom-vs-Pete</td>
<td>0.9330</td>
</tr>
<tr>
<td>High-dim LBP</td>
<td>0.9517</td>
</tr>
<tr>
<td>TL Joint Bayesian</td>
<td>0.9633</td>
</tr>
<tr>
<td>FaceNet</td>
<td>0.9963</td>
</tr>
<tr>
<td>DeepFace</td>
<td>0.9735</td>
</tr>
<tr>
<td>Human performance</td>
<td>0.9753</td>
</tr>
</tbody>
</table>

Reasons
- Too few training data
- Further need for parameter tuning
- Improve distance metric
Results

Figure: Accuracy according to dataset

Figure: Accuracy according to distance
Goal: Determining *who* the person is:

- Select among a set of people in a DB
- Person-wise comparison \Rightarrow Face Verification
- Closest match is selected
- Need to determine if there is a match at all
- Seemingly more difficult than Face Verification...
- ... empirical results prove it may not be so
Face Recognition
Procedure

Reminder:

- comparing feature vector f with all people in DB
- Each person has N feature vectors $F = f_1, f_2, \ldots f_N$

Comparison strategies:
Reminder:
- comparing feature vector f with all people in DB
- Each person has N feature vectors $F = f_1, f_2, ... f_N$

Comparison strategies:
1. Distance to closest feature vector in F
Reminder:

- comparing feature vector f with all people in DB
- Each person has N feature vectors $F = f_1, f_2, ... f_N$

Comparison strategies:

1. Distance to closest feature vector in F
2. Mean distance to all $f_i \in F$
Reminder:

- comparing feature vector f with all people in DB
- Each person has N feature vectors $F = f_1, f_2, \ldots f_N$

Comparison strategies:

1. Distance to closest feature vector in F
2. Mean distance to all $f_i \in F$
3. Product of 1 and 2
Reminder:

- comparing feature vector f with all people in DB
- Each person has N feature vectors $F = f_1, f_2, ..., f_N$

Comparison strategies:

1. Distance to closest feature vector in F
2. Mean distance to all $f_i \in F$
3. Product of 1 and 2
4. Product of distance to furthest feature vector in f and 3
Reminder:

- comparing feature vector f with all people in DB
- Each person has N feature vectors $F = f_1, f_2, ... f_N$

Comparison strategies:

1. Distance to closest feature vector in F
2. Mean distance to all $f_i \in F$
3. Product of 1 and 2
4. Product of distance to furthest feature vector in f and 3

The smallest distance is chosen as a match
Each new feature vector f may be kept into the system:
Face Recognition
Keeping Procedure

Each new feature vector f may be kept into the system:
1. If less than T_1 feature vectors stored, keep it
Each new feature vector f may be kept into the system:

1. If less than T_1 feature vectors stored, keep it
2. If distance M between f and mean of F less than T_2, discard it
Each new feature vector \(f \) may be kept into the system:

1. If less than \(T_1 \) feature vectors stored, keep it
2. If distance \(M \) between \(f \) and mean of \(F \) less than \(T_2 \), discard it
3. If \(M \) higher than \(T_3 \), discard it (extreme outlier)
Each new feature vector f may be kept into the system:

1. If less than T_1 feature vectors stored, keep it
2. If distance M between f and mean of F less than T_2, discard it
3. If M higher than T_3, discard it (extreme outlier)
4. Select the feature vectors - F_O - far from mean (outliers)
Each new feature vector f may be kept into the system:

1. If less than T_1 feature vectors stored, keep it
2. If distance \mathcal{M} between f and mean of F less than T_2, discard it
3. If \mathcal{M} higher than T_3, discard it (extreme outlier)
4. Select the feature vectors - F_O - far from mean (outliers)
5. Face Verification between f and all $f_i \in F_O$
Face Recognition
Keeping Procedure

Each new feature vector f may be kept into the system:

1. If less than T_1 feature vectors stored, keep it
2. If distance \mathcal{M} between f and mean of F less than T_2, discard it
3. If \mathcal{M} higher than T_3, discard it (extreme outlier)
4. Select the feature vectors - F_O - far from mean (outliers)
5. Face Verification between f and all $f_i \in F_O$
6. If less than half matches, keep it (rare enough case)
Each new feature vector f may be kept into the system:

1. If less than T_1 feature vectors stored, keep it
2. If distance M between f and mean of F less than T_2, discard it
3. If M higher than T_3, discard it (extreme outlier)
4. Select the feature vectors - F_O - far from mean (outliers)
5. Face Verification between f and all $f_i \in F_O$
6. If less than half matches, keep it (rare enough case)
7. If more than T_4 feature vector stored, discard closest to mean
Each new feature vector f may be kept into the system:

1. If less than T_1 feature vectors stored, keep it
2. If distance \mathcal{M} between f and mean of F less than T_2, discard it
3. If \mathcal{M} higher than T_3, discard it (extreme outlier)
4. Select the feature vectors - F_O - far from mean (outliers)
5. Face Verification between f and all $f_i \in F_O$
6. If less than half matches, keep it (rare enough case)
7. If more than T_4 feature vector stored, discard closest to mean

T_1, T_2, T_3 and T_4 are hyperparameters
Self-generated dataset, from training dataset:

- 100 people (50 females / 50 males)
- 30 training images each
- 50 training images each
- Manually cleaned
Face Recognition

Results

Figure: Accuracy according to number kept images

Figure: Accuracy according to comparison strategy
Face Recognition

Results

Figure: Accuracy according to number kept images

![Accuracy vs Number of Images](image1)

Figure: Accuracy according to comparison strategy

![Accuracy vs Comparison Strategy](image2)

A 95% of accuracy was reached
1. Introduction and Goals
 - Introduction
 - Goals

2. How it has been approached
 - Problems
 - Common approaches
 - Proposed approach
 - Datasets

3. Outcome

4. Conclusions
To conclude...

- We have developed a functional Face Recognition System using CNNs
- Works in uncontrolled environment, capable of on-line learning
- Compared with state of art methods, it underperforms in Face Verification
- Quality results achieved in Face Recognition
- Exhaustive tests performed – reliable results
Future work lines:

- Improve CNN performance:
 - More data
 - Better parameter tuning

- Test more comparison metrics:
 - Further try thresholding strategies
 - Different weights

- Enhance matching capabilities:
 - Use more complex strategies — apart from min, mean, etc.
 - Modify on-line learning mechanism

- Consider other alternatives for feature extraction:
 - Other existing approaches
 - Develop one on our own

Questions?

Any Question?
Thank you for your attention!