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Abstract

In this paper, we present:

O Asurvey on current deep learning methodologies for action and gesture
recognition in image sequences,

O A taxonomy that summarizes important aspects of deep learning for
approaching both tasks with particular interest on how they treat the
temporal dimension of data,

O The details of the proposed architectures, fusion strategies, main
datasets, and competitions,

_ Motivation

The interest in action and gesture recognition has grown considerably in the
last years. Recent deep learning outperformed “non-deep” state-of-the-art
methods. However, some questions remain opened:

O How to deal with temporal information. We investigated works that go
beyond averaging class score predictions on individual frames for video
prediction.

0 How to be train deep models with small datasets.

O Whether deep-learning approaches rely only on deep models or in
combination with hand-crafted features.

O Which are the most successful approaches to anticipate future trends
and research directions.

Datasets and challenges

Action datasets
Year Dataset Problem | Body Parts | Modality | No.classes Performance
2008 UCEF Sports AC, STL F RGB 10 95.80%,
0.789@0.5 mAP
2009 Hollywood 2 AC E U, L RGB 12 78.50 mAP
2010 Highfive AC, STL EU RGB 4 69.40 mAP [7], 0.466 IoU
2010 | Olympic Sports AC F RGB 16 96.60% Acc [6]
2011 HMDB51 AC E U, L RGB 51 73.60% Acc
2012 | MPII Cooking AC, TL EF, U RGB 65 72.40 mAP, -
2012 UCF101 AC,TL E UL RGB 101 94.20% Acc [13],
46.77@0.2 mAP (split 1)
2014 | Sports 1-Million AC F U, L RGB 487 73.10% Acc
71.60 mAP [8],
2014 THUMOS-14 AC, TL E U, L RGB 101, 20 *
0.190@0.5 mAP [11]
2015 | THUMOS-15 | AC,TL | E U, L RGB | 101,20 * 80.80 mAP [6],
0.183@0.5 mAP
2015 ActivityNet AC, TL E U, L RGB 200 93.23 ’
0.594@0.5 mAP
Gesture datasets
Year Dataset Problem | Body Parts Modality No.classes Performance
2011 Chalearn Gesture GC E U RGB, D 15 -
2012 MSR-Gesture3D GC F, H RGB, D 12 98.50% Acc
2014 Chal.earn (Track 3) GC, TL U RGB, D, S 20 98.20 Acc, 0.870 IoU
2015 | VIVA Hand Gesture GC H RGB 19 77.50% Acc
2016 Chal.earn c':onGD TL U RGB, D 249 0.315 IoU
Chal.earn isoGD GC 67.19% Acc
Challenges
Challenge Year Dataset Task Event °®
e Te ROSE
2013 Montalbano G - "
ChaLearn | 2014 | uPBA 8K+ A | Eccv T
Montalbano G
2015 HuPBA 8K+ A CVPR
2016 | 1soGD, conGD G ICPR ‘ %
HAL 2012 LIRIS A ICPR 1
Opportunity | 2011 Opportunity A -
ROSE 2016 NTU RGB+D A ACCV
2013 UCF101 A ICCV -
THUMOS | 2014 | THUMOS-14 | A | ECCV PPORTUNITY
2015 | THUMOS-15 A | CVPR \'4
VIVA 2015 VIVA G CVPR i
VIRAT 2012 VIRAT DB A CVPR

Architectures

We categorize the different CNN-based approaches based on how they handle the
temporal dimension of videos:

0 3D convolutions which are able to learn local spatiotemporal features by extending the
connectivity of convolutional neurons across multiple adjacent frames [1].

O Motion hand-crafted features (e.g. dense optical flow frames) being directly input a
second cue along with the color one [2,4,7].

O Sequential models (e.g. CNN+RNN) that model the evolution of responses got from a
frame-level classifier [12].

Output frame-level predictions
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O Multiple data cues (color, motion, depth, etc).

The most common strategies can be categorized into:

O Early fusion: stacking the information as different input
channels [1].

O Late fusion: combining class predictions [4]. Input frame

O Slow fusion: progressively fusing by convolution and pooling. Slow fusion

On temporal modeling:

L The most input naive way to deal with temporal dimension is to average frame-level class
score predictions (not covered in this version of the paper).

L 3D convolutions can model discriminative — more local — spatiotemporal features [1].

U Sequential models (e.g. LSTM) better handle longer-range temporal relations.

O It has proven useful to sacrifice spatial resolution in favor of extending the temporal
connectivity in the network’s input (i.e., larger clips) [3].

On training with small datasets:

L Motion (e.g. optical flow) and skeleton features are easier to model (and not overfit) than
appearance [18].

0 When using 2D CNNs, image datasets (e.g. ImageNet) are often used to pre-train
weights of the appearance (namely spatial) stream [18].

L 3D CNNs can be initialized using 2D weights [14].

U Multi-task learning has proven useful to jointly train on several datasets (loss function
combining several soft-max layers’ outputs) [18].

On the exploitation of hand-crafted features in hybrid approaches:

U Video class predictions from hand-crafted approaches are combined with the ones from
the deep model [7].

O In particular, iDTs can be used to pool deep features from CNN convolutional maps [2,7].

0 Taking advantage of human body spatial constraints [16] or interaction among subjects
[17].

On future trends and research directions:
L Towards more complex end-to-end trained models [12].

O Efficient recognition and detection of actions in more complex longer sequences [11,12].
O Early detection [15].

U C F_ 10 1 reS u I tS P Input video Trajectory exlmclio ijecl«?ry po‘oling—> Fisher vector
Ref. | Year Features Architecture Score P4 e
[2] 2015 CNN, IDT 2 CNN + iDT pooling 93.78%
[3] 2016 | Opt. Flow, 3D CNN, IDT LTC-CNN 92.7% HOG HOF _MBH
[4] 2016 conv5, 3D pool VGG-16, VGG-M, 3D CNN | 92.5%
[5] 2016 CNN Siamese VGG-16 92.4% ' B
[6] 2016 CNN fc7 2 CNNs (spatial + temporal) | 92.2% A
[7] 2015 CNN, HOg/HOf/Mbh 2-stream CNN 91.5% Input video ~ —> Con\'olulin Layer —> Pooling Layer —> - —> Prediction
THUMOS’14 results [7]
Ref. | Year Features Architecture Score e
[8] 2015 H/H/M, IDT, FV+PCA+GMM. 8-layer CNN 71.6%
[9] 2016 CNN 2 CNNs (spatial + temporal) 61.5%
[10] | 2015 | ImageNet CNN, word2vec GMM CNN 56.3%
[11] | 2016 CNN fc6, fc7, fc8 3D CNN, Segment-CNN 19% mAP
[12] | 2016 CNN fc7 VGG-16, 3-layer LSTM 17.1% mAP
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