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Introduction

● The goal of person re-identification models is to retrieve the 
correct match, given a source image of a particular individual, 
from a large database.

– Captured from different cameras, views and time intervals.

input

best 
match

camera A camera B
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Introduction

● This task still presents main open challenges.

camera A

Illumination,
pose variations

camera settings,
occlusions

strong visual 
similarity, etc

camera B



4

Different strategies

● Feature representation: construct robust and discriminative 
features in order to describe the appearance of the same 
individual across different camera views [5],[9],[10],[11].

● Distance metric learning: to learn a metric in the image feature 
space that keep features coming from same class closer, while 
features from different classes farther apart [7],[12].
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Different strategies

● Domain adaptation: to address the view-specific feature 
distortion problem (transfer learning) [24].

● Convolutional Neural Networks (CNN): provide a powerful 
and adaptive tool without excessive usage of hand-crafted 
features [4],[9],[11],[14],[25].

Concatenation of hand-crafted features sometimes would be more 
distinctive and reliable (Wu et al. [9]).

[9] S. Wu, Y. C. Chen, X. Li, A. C. Wu, J. J. You, and W. S. Zheng, “An 
enhanced deep feature representation for person re-identification,” in 
IEEE Winter Conf. on Applications of Computer Vision (WACV), 2016.
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Proposed Model

● Exploit different feature representations through the 
combination of new and complementary features within the 
framework proposed by Chen et al.[5], followed by a ranking 
aggregation strategy.

– Enforces similarity learning metric (built on the recently 
proposed polynomial feature map [7]) 

– With spatial constraints.

[5] D. Chen, Z. Yuan, B. Chen, and N. Zheng, “Similarity learning with spatial constraints for 
person re-identification,” in CVPR, 2016.

[7] D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang, “Similarity learning on an explicit 
polynomial kernel feature map for person re-identification,” in CVPR, 2015.
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Proposed Model

● Exploit different feature representations through the 
combination of new and complementary features within the 
framework proposed by Chen et al.[5], followed by a ranking 
aggregation strategy.

– Enforces similarity learning metric (built on the recently 
proposed polynomial feature map [7]) 

– With spatial constraints.

● We advanced the state-of-the-art on VIPeR and PRID450s 
datasets (by 8.89% and 6.9%, respectively) and obtained 
competitive results on CUHK01 database.

[5] D. Chen, Z. Yuan, B. Chen, and N. Zheng, “Similarity learning with spatial constraints for 
person re-identification,” in CVPR, 2016.

[7] D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang, “Similarity learning on an explicit 
polynomial kernel feature map for person re-identification,” in CVPR, 2015.
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Proposed Model

hand-crafted
Local & Global

Deep features
Global

original features 
(Chen et al.[5])
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Polynomial
Feature Map

● In order to measure the similarity between image descriptors      
                     , we learn the similarity function as:

where                 is the Frobenius inner product.

Mahalanobis distance Bilinear similarity

Feature map dimension is reduced by means of PCA for     and     before its generation.
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Spatially Constrained
Similarity Function

image a

R non-overlap 
stripe regions

overlapped 
patches

c-th cur for one patch

image b

r-th local
region

feature concatenation

PCA

polynomial 
feature map

(illustration adapted from [5])
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Local similarity 
integration

● In order to combine multiple visual cues within a local region, 
the following linear similarity function is employed :

where      and        correspond to

and                        , respectively.

● Local similarity are integrated as follows:
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Global-Local
collaboration

● To describe the matching of large patterns, the polynomial 
feature map is also used for the whole image

where    ,    and    correspond to

and                        , respectively.

● Finally, local and global similarity functions are combined and 
the overall similarity score is given by:

where
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Visual Cues

● Chen et al.[5] proposed to use four visual cues, extracted for 
each patch/region:

– Joint 1 (8x8x8) and concatenated 2 (48 bin) histograms: HSV and LAB 

– HOG and SILTP (Scale Invariant Local Ternary Pattern)

● PCA is applied to reduce dimensionality (d=120)
● Normalized

– C
1
 = HSV

1
/HOG

– C
2
 = HSV

2
/SILTP

– C
3
 = LAB

1
/SILTP

– C
4
 = LAB

2
/HOG
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Complementary features

● We propose to include new and complementary features within 
the similarity function presented in [5]

– SCNCD [6]: indicates the probability of a color being assigned to 
several nearest color names. 

● Extracted from RGB, normalized rgb, l1l2l3, and HSV, and fused.

– Context information: image-foreground feature representation [6], 
based on a Deep Decompositional Network (DDN) [21].

PCA + Normalization

(Locally & Globally)

... C
5
 = SCNCD/HOG

C
6
 = SCNCD/SILTP

Color & Texture integration

[6] Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi, and S. Z. Li, “Salient 
color names for person re-identification,” in ECCV, 2014.

[21] P. Luo, X. Wang, and X. Tang, “Pedestrian parsing via 
deep decom-positional network,” in ICCV, 2013.
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Complementary features

– Deep Features: Feature Fusion Net (Wu et al. [9]).
● CNN and hand-crafted features are combined to produce an image 

description from the last convolutional layer.

● Finally, Deep feat + LOMO (Local Maximal Ocurrence) demonstrated to 
have higher discriminative power (31056D feature vector). 

(image from [9])

PCA + Normalization

+ LOMO C
7
 = Deep Feature

[9] S. Wu, Y. C. Chen, X. Li, A. C. Wu, J. J. You, and W. S. Zheng, “An enhanced deep feature representation 
for person re-identification,” in IEEE Winter Conf. on Applications of Computer Vision (WACV), 2016.
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Integration strategy

● We compute 4 similarity measures using different descriptors, 
in order to obtain complementary ranking lists.

Features Type Local Global

baseline F
0 

C
1 
to C

4
C

1 
to C

4

baseline + deep feat. F
1

C
1 
to C

4
C

1 
to C

4
, C

7

SCNCD + context + deep feat. F
2

C
5
, C

6
, C

5
, C

6
, C

7

simplified version of F
1

F
3

C
1 
to C

4
C

7

simplified version of F
2

F
4

C
5
, C

6
, C

7

,
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Ranking aggregation

● Different ranking lists are generated and combined, using the 
Stuart ranking aggregation [23].

– It is a probabilistic method based on order statistics.

– Our goal is to improve accuracy by exploiting different feature 
representations that may complement each other.

ranking

...

Final ranking list

probe
image

[23] J. M. Stuart, E. Segal, D. Koller, and S. K. Kim, “A gene-coexpression network for global 
discovery of conserved genetic modules,” Science, 2003.
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Experimental results

● Three case studies, on three broadly employed public datasets: 
VIPeR, PRID450s and CUHK01.

– State-of-the-art comparison

– Influence of context information within SCNCD

– Accuracy performance obtained by each complementary feat.

● Using a well known evaluation protocol (single shot scenario)

– 50% training and 50% testing, without overlap on person identities

– Camera A → probe set and Camera B → gallery set.

– Each probe image is matched against every gallery set image and the 
rank of correct match obtained

– Average of Cumulative Matching Characteristic (CMC) curves across 
10 partition is reported.
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Case 1:
State-of-the-art comparison

baseline
FFN (deep feat.)

FFN (deep feat.)

New features demonstrated to complement each other, being very powerful.
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Case 1:
State-of-the-art comparison

● Xiao et al. [11] was 
designed to learn features 
from multiple domains, and 
very large training sets 
were adopted (CUHK03)

● Zhang et al. [24] it learns a 
classifier specifically for each 
person (this model 
characteristic can benefit 
when large training sets 
are employed)

[11] T. Xiao, H. Li, W. Ouyang, and X. Wang, “Learning deep 
feature representations with domain guided dropout for person 
re-identification,” in CVPR, 2016.

[24] Y. Zhang, B. Li, H. Lu, A. Irie, and X. Ruan, “Sample-specific 
svm learning for person re-identification,” in CVPR, 2016.
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Case 2:
Context information

● Used just C5 and C6 ,with (solid line) and without context information

● It improved the overall accuracy on three evaluated datasets

● Different from Yang et al. [6], we evaluated SCNCD using 
different color models, a more powerful strategy (DDN) [21] and 
different similarity function (Polynomial feat. map) [7].
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Case 3:
Complementary features
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● All complementary 
features outperformed 
the baseline

● Simplifications still have 
strong discriminative 
power and require less 
computation resources.

● The benefit of deep 
feature can be seen when 
we compare F

0 
with F

1
 

● F
2
 obtained best overall 

accuracy. 

Despite extraction 
procedures, it is more 
compact than F

1
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Conclusions

● We exploited different feature representations, combined 
with a ranking aggregation strategy to advance re-id.

– The proposed new features demonstrated to complement 
each other, being very powerful when combined with a 
ranking aggregation strategy.

● We show that hand-crafted and deep features fusion can 
improve re-identification performance especially in domains 
where there is a reduced amount of available data.
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Computational cost *

Task Time (in seconds)

Extract contextual information (per image) 0.146

SCNCD feature extraction (per image) 0.131

Deep feature extraction per image (provided in [9]) ** 1.0

Baseline feature extraction (per image) 0.069

Feat. Representation (per image) → Build C
1
 to C

4
5.348

Feat. Representation (per image) → Build C
5
 and C

6
0.063

Apply PCA on C
7
 (per image) 0.063

Learning stage (single run on the whole VIPeR dataset)

Test stage (each probe image on VIPeR)

F
1
 = 239.7          |        Test = 0.014

F
2
 = 125.8          |        Test = 0.007

F
3
 = 194.2          |        Test = 0.011

F
4
 = 102.8          |        Test = 0.006

Ranking aggregation (per image) 0.1473

* Adapted MATLAB implementation from [5], using a 2.30Hz Intel Core i7 CPU and 8Gb of memory.
** Using a 2.00Hz Xeon CPU with 16 cores.
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