

Exploiting feature representations through similarity learning and ranking aggregation for person re-identification

Julio C. S. Jacques Junior^{1,2} Xavier Baró^{2,3} Sergio Escalera^{1,2}

¹Department of Mathematics and Informatics - University of Barcelona, Spain ²Computer Vision Center - Universitat Autònoma de Barcelona, Spain ³Faculty of Computer Science, Multimedia and Telecommunication - Universitat Oberta de Catalunya, Spain

Introduction

- The goal of **person re-identification** models is to <u>retrieve</u> the correct match, given a source image of a particular individual, from a large database.
 - Captured from different cameras, views and time intervals.

camera A

Introduction

This task still presents main open challenges. •

camera A

camera B

Illumination,

pose variations

camera settings, occlusions

strong visual similarity, etc

- **Feature representation:** construct robust and discriminative features in order to describe the appearance of the same individual across different camera views [5],[9],[10],[11].
- **Distance metric learning:** to learn a metric in the image feature space that keep features coming from same class closer, while features from different classes farther apart [7],[12].

Different strategies

- **Domain adaptation:** to address the view-specific feature distortion problem (*transfer learning*) [24].
- **Convolutional Neural Networks (CNN):** provide a powerful and adaptive tool without excessive usage of hand-crafted features [4],[9],[11],[14],[25].

Concatenation of hand-crafted features sometimes would be more distinctive and reliable (Wu et al. [9]).

[9] S. Wu, Y. C. Chen, X. Li, A. C. Wu, J. J. You, and W. S. Zheng, "An enhanced deep feature representation for person re-identification," in IEEE Winter Conf. on Applications of Computer Vision (WACV), 2016.

Proposed Model

- Exploit **different feature representations** through the combination of *new and complementary features* within the framework proposed by Chen et al.[5], followed by a ranking aggregation strategy.
 - Enforces **similarity learning metric** (built on the recently proposed *polynomial feature map* [7])
 - With spatial constraints.

[5] D. Chen, Z. Yuan, B. Chen, and N. Zheng, "Similarity learning with spatial constraints for person re-identification," in CVPR, 2016.

[7] D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang, "Similarity learning on an explicit polynomial kernel feature map for person re-identification," in CVPR, 2015.

Proposed Model

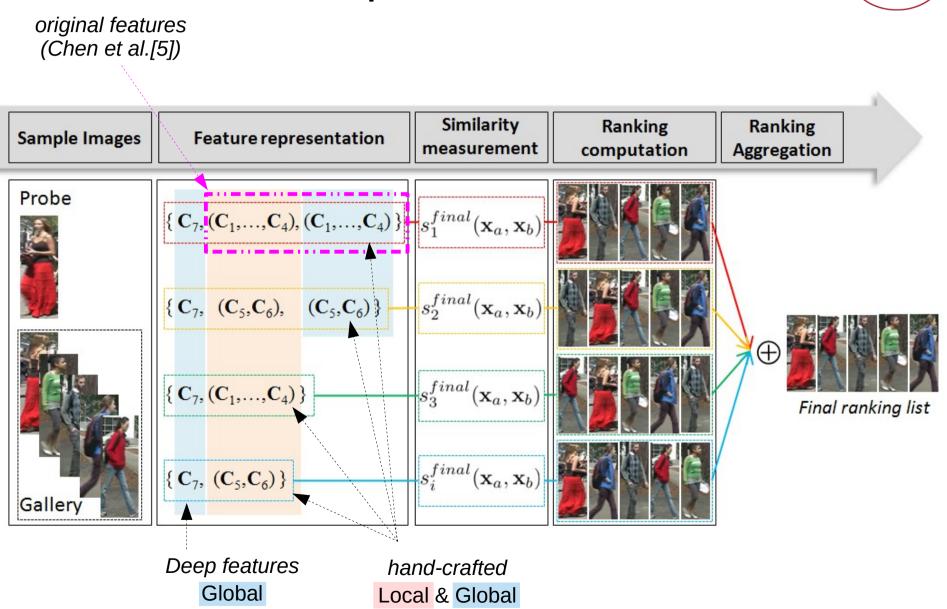
- Exploit **different feature representations** through the combination of *new and complementary features* within the framework proposed by Chen et al.[5], followed by a ranking aggregation strategy.
 - Enforces **similarity learning metric** (built on the recently proposed *polynomial feature map* [7])
 - With spatial constraints.
- We **advanced the state-of-the-art** on *VIPeR* and *PRID450s* datasets (by 8.89% and 6.9%, respectively) and obtained competitive results on CUHK01 database.

[5] D. Chen, Z. Yuan, B. Chen, and N. Zheng, "Similarity learning with spatial constraints for person re-identification," in CVPR, 2016.

[7] D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang, "Similarity learning on an explicit polynomial kernel feature map for person re-identification," in CVPR, 2015.

PBA

Proposed Model



Polynomial Feature Map

• In order to <u>measure the similarity between image descriptors</u> $\mathbf{x}_a, \mathbf{x}_b \in \mathbb{R}^{d \times 1}$, we learn the **similarity function** as:

$$f(\mathbf{x}_a, \mathbf{x}_b) = \langle \phi(\mathbf{x}_a, \mathbf{x}_b), \mathbf{W} \rangle_F,$$

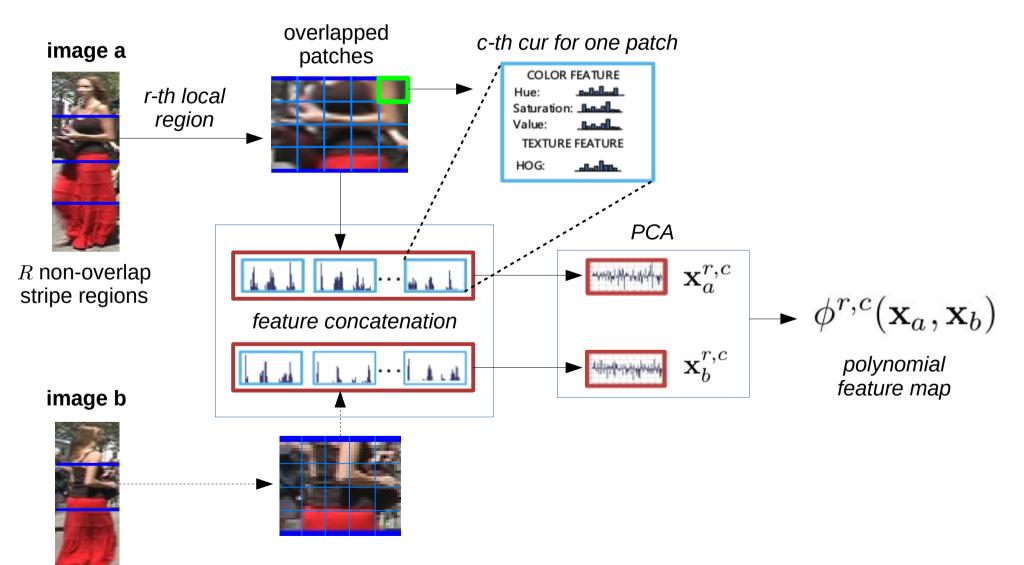
where $\langle \cdot, \cdot
angle_F$ is the *Frobenius* inner product.

$$f(\mathbf{x}_a, \mathbf{x}_b) = \langle \phi_M(\mathbf{x}_a, \mathbf{x}_b), \mathbf{W}_M \rangle_F + \langle \phi_B(\mathbf{x}_a, \mathbf{x}_b), \mathbf{W}_B \rangle_F$$

 $\begin{aligned} (\mathbf{x}_a - \mathbf{x}_b)^\top \mathbf{W}_M (\mathbf{x}_a - \mathbf{x}_b) & \mathbf{x}_a^\top \mathbf{W}_B \mathbf{x}_b + \mathbf{x}_b^\top \mathbf{W}_B \mathbf{x}_a \\ & \text{Mahalanobis distance} & \text{Bilinear similarity} \end{aligned}$

Feature map dimension is reduced by means of PCA for \mathbf{x}_a and \mathbf{x}_b before its generation.

Spatially Constrained Similarity Function



(illustration adapted from [5])

Local similarity integration

 In order to combine multiple visual cues <u>within a local region</u>, the following linear similarity function is employed :

$$s^{r}(\mathbf{x}_{a},\mathbf{x}_{b}) = \sum_{c=1}^{C} \langle \phi^{r,c}(\mathbf{x}_{a},\mathbf{x}_{b}), \mathbf{W}^{r,c} \rangle_{F},$$

where $\mathbf{W}^{r,c} = [\mathbf{W}_{M}^{r,c}, \mathbf{W}_{B}^{r,c}]$ and $\mathbf{W}_{M}^{r,c}, \mathbf{W}_{B}^{r,c}$ correspond to $\phi_{M}^{r,c}(\mathbf{x}_{a}, \mathbf{x}_{b})$ and $\phi_{B}^{r,c}(\mathbf{x}_{a}, \mathbf{x}_{b})$, respectively.

• *Local similarity* are **integrated** as follows:

$$s^{local}(\mathbf{x}_a, \mathbf{x}_b) = \sum_{r=1}^R s^r(\mathbf{x}_a, \mathbf{x}_b)$$

Global-Local collaboration

• To describe the matching of **large patterns**, the polynomial feature map is also used for the whole image

$$s^{global}(\mathbf{x}_a, \mathbf{x}_b) = \sum_{c=1}^C \langle \phi^{G,c}(\mathbf{x}_a, \mathbf{x}_b), \mathbf{W}^{G,c} \rangle_F,$$

where $\mathbf{W}^{G,c} = [\mathbf{W}_{M}^{G,c}, \mathbf{W}_{B}^{G,c}]$ and $\mathbf{W}_{M}^{G,c}, \mathbf{W}_{B}^{G,c}$ correspond to $\phi_{M}^{G,c}(\mathbf{x}_{a}, \mathbf{x}_{b})$ and $\phi_{B}^{G,c}(\mathbf{x}_{a}, \mathbf{x}_{b})$, respectively.

 Finally, local and global similarity functions are combined and the <u>overall similarity score</u> is given by:

$$s(\mathbf{x}_a, \mathbf{x}_b) = s^{local}(\mathbf{x}_a, \mathbf{x}_b) + \gamma s^{global}(\mathbf{x}_a, \mathbf{x}_b),$$

where $\gamma=1.1$

Visual Cues

- Chen et al.[5] proposed to use four visual cues, <u>extracted for</u> <u>each patch/region</u>:
 - Joint ¹ (8x8x8) and concatenated ² (48 bin) histograms: HSV and LAB
 - HOG and SILTP (Scale Invariant Local Ternary Pattern)

$$- C_{1} = HSV_{1}/HOG$$

$$- C_{2} = HSV_{2}/SILTP$$

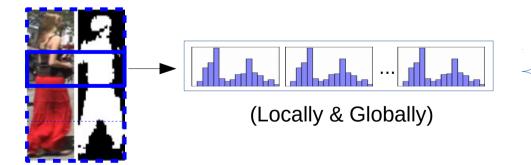
$$- C_{3} = LAB_{1}/SILTP$$

$$- C_{4} = LAB_{2}/HOG$$

- PCA is applied to reduce dimensionality (*d*=120)
- Normalized

Complementary features

- We propose to include *new and complementary features* within the similarity function presented in [5]
 - **SCNCD [6]:** indicates the probability of a color being assigned to several nearest color names.
 - Extracted from RGB, normalized rgb, $l_1l_2l_3$, and HSV, and fused.
 - Context information: image-foreground feature representation [6], based on a Deep Decompositional Network (DDN) [21].



Color & Texture integration

 $C_{5} = SCNCD/HOG$ $C_{c} = SCNCD/SILTP$

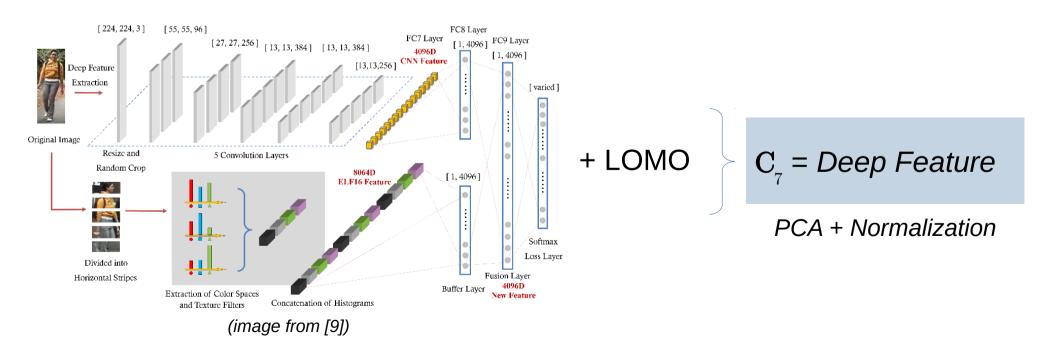
PCA + Normalization

[6] Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi, and S. Z. Li, "Salient color names for person re-identification," in ECCV, 2014. [21] P. Luo, X. Wang, and X. Tang, "Pedestrian parsing via

deep decom-positional network," in ICCV, 2013.

Complementary features

- **Deep Features:** *Feature Fusion Net* (Wu et al. [9]).
 - CNN and hand-crafted features are combined to produce an image description from the last convolutional layer.
 - Finally, *Deep feat* + *LOMO (Local Maximal Ocurrence)* demonstrated to have **higher discriminative power** (31056D feature vector).



[9] S. Wu, Y. C. Chen, X. Li, A. C. Wu, J. J. You, and W. S. Zheng, "An enhanced deep feature representation for person re-identification," in IEEE Winter Conf. on Applications of Computer Vision (WACV), 2016.

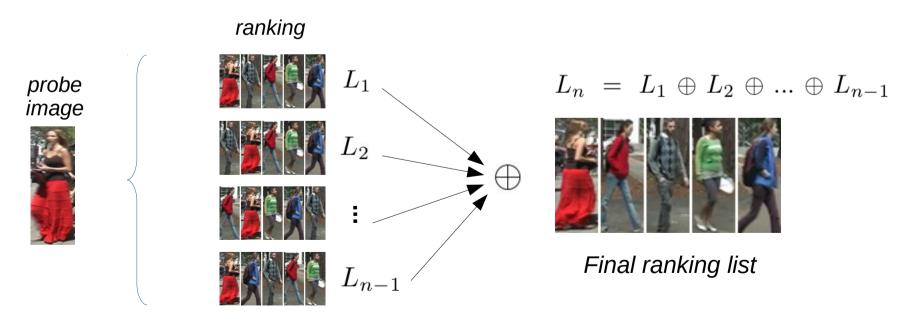
Integration strategy

• We compute **4 similarity measures** using different descriptors, in order to obtain **complementary ranking lists**.

Features	Туре	Local	Global	
baseline	F ₀	\mathbf{C}_{1} to \mathbf{C}_{4}	\mathbf{C}_1 to \mathbf{C}_4	
baseline + deep feat.	\mathbf{F}_{1}	\mathbf{C}_{1} to \mathbf{C}_{4}	\mathbf{C}_1 to \mathbf{C}_4 , \mathbf{C}_7	
SCNCD + context + deep feat.	F_2	$\mathbf{C}_{5}^{}, \mathbf{C}_{6}^{},$	$\mathbf{C}_{\!_5},\mathbf{C}_{\!_6},\mathbf{C}_{\!_7}$	$> s_i^{final}(\mathbf{x}_a,\mathbf{x}_b),$
simplified version of ${\rm F}_{_1}$	F_3	\mathbf{C}_{1} to \mathbf{C}_{4}	\mathbf{C}_{7}	
simplified version of ${\rm F}_{_2}$	F_4	$\mathbf{C}_{5}^{}, \mathbf{C}_{6}^{},$	\mathbf{C}_{7}	$i \in \{1, 2, 3, 4\}$

Ranking aggregation

- Different ranking lists are generated and combined, using the Stuart ranking aggregation [23].
 - It is a probabilistic method based on order statistics.
 - Our goal is to improve accuracy by exploiting different feature representations that may complement each other.



[23] J. M. Stuart, E. Segal, D. Koller, and S. K. Kim, "A gene-coexpression network for global discovery of conserved genetic modules," Science, 2003.

Experimental results

- **Three case studies**, on three broadly employed public datasets: VIPeR, PRID450s and CUHK01.
 - State-of-the-art comparison
 - Influence of context information within SCNCD
 - Accuracy performance obtained by each complementary feat.
- Using a well known evaluation protocol (single shot scenario)
 - 50% training and 50% testing, without overlap on person identities
 - Camera A → probe set and Camera B → gallery set.
 - Each probe image is matched against every gallery set image and the rank of correct match obtained
 - Average of *Cumulative Matching Characteristic* (CMC) curves across 10 partition is reported.

Case 1: State-of-the-art comparison

Rank	1	5	10	20]	
	VIPeR					
Our	58.77	86.39	93.48	97.82]	
SCSP [5]	53.54	82.59	91.49	96.65] ◄—	baseline
Deep+LOMO [9]	51.06	81.01	91.39	96.90] ◄—	FFN (deep feat.)
TCP [4]	47.80	74.70	84.80	91.10	1	
CMC [13]	45.90	77.50	88.90	95.80]	
Mirror [10]	42.97	75.82	87.28	94.84]	
LSSCDL [24]	42.66	-	84.27	91.93]	
FT-JSTL+DGD[11]	38.60	-	-	-]	
CBRA [16] ⁷	31.20	60.80	74.30	85.90]	

]				
Our	71.56	90.58	94.40	96.98	
Deep+LOMO [9]	66.62	86.84	92.84	96.89	FFN (deep feat.)
LSSCDL [24]	60.49	-	88.58	93.60	
Mirror [10]	55.42	79.29	87.82	93.87	
CBRA [16] ⁷	26.40	57.10	71.00	83.20]

New features demonstrated to **complement each other**, being very powerful.

Case 1: State-of-the-art comparison

Rank	1	5	10	20	
	СИНК01				
FT-JSTL+DGD[11]	66.60	-	-	-	
LSSCDL [24]	65.97	pprox 88.0	pprox 92.0	≈ 96.0	
Our	59.63	83.66	89.71	94.39	
Deep+LOMO [9]	55.51	78.40	83.68	92.59	
3TCP [4] ⁸	53.70	84.30	91.00	96.30	
CMC [13]	53.40	76.40	84.40	90.50	
Mirror [10]	40.40	64.63	75.34	84.08	

- Xiao et al. [11] was designed to learn features from multiple domains, and very large training sets were adopted (CUHK03)
- Zhang et al. [24] it learns a classifier specifically for each person (this model characteristic can benefit when large training sets are employed)

	VIPeR	PRID450s	CUHK01
Images	1264	900	3884
Individuals (ID)	632	450	971
Images per ID (per view)	1	1	2

[11] T. Xiao, H. Li, W. Ouyang, and X. Wang, "Learning deep feature representations with domain guided dropout for person re-identification," in CVPR, 2016.

[24] Y. Zhang, B. Li, H. Lu, A. Irie, and X. Ruan, "Sample-specific svm learning for person re-identification," in CVPR, 2016.

Case 1: State-of-the-art comparison

Rank	1	5	10	20	
	CUHK01				
FT-JSTL+DGD[11]	66.60	-	-	-	
LSSCDL [24]	65.97	pprox 88.0	pprox 92.0	≈ 96.0	
Our	59.63	83.66	89.71	94.39	
Deep+LOMO [9]	55.51	78.40	83.68	92.59	
3TCP [4] ⁸	53.70	84.30	91.00	96.30	
CMC [13]	53.40	76.40	84.40	90.50	
Mirror [10]	40.40	64.63	75.34	84.08	

- Xiao et al. [11] was designed to learn features from multiple domains, and very large training sets were adopted (CUHK03)
- Zhang et al. [24] it learns a classifier specifically for each person (this model characteristic can benefit when large training sets are employed)

	VIPeR	PRID450s	CUHK01
Images	1264	900	3884
Individuals (ID)	632	450	971
Images per ID (per view)	1	1	2

[11] T. Xiao, H. Li, W. Ouyang, and X. Wang, "Learning deep feature representations with domain guided dropout for person re-identification," in CVPR, 2016.

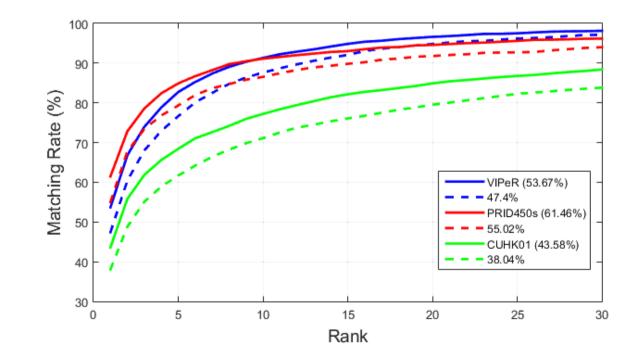
[24] Y. Zhang, B. Li, H. Lu, A. Irie, and X. Ruan, "Sample-specific svm learning for person re-identification," in CVPR, 2016.

[Rank	1	
[VI	PeR
ſ	Our	58.77	86
	LSSCDL [24]	42.66	
	FT-JSTL+DGD[11]	38.60	

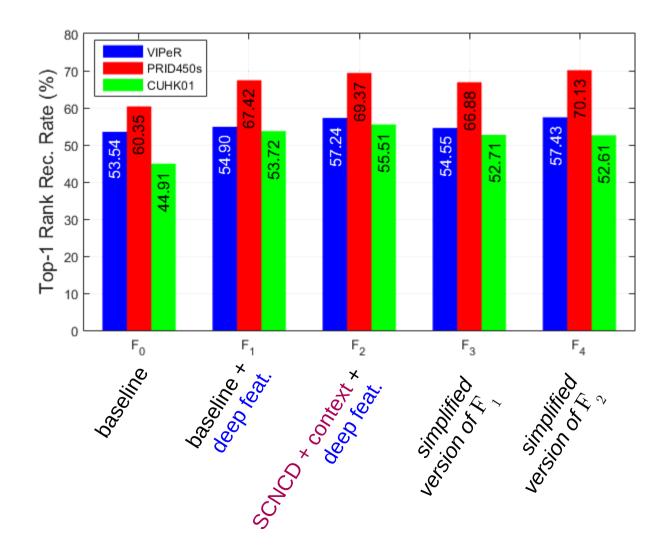
	Rank	1	5
		PRII	0450s
	Our	71.56	90.:
	Deep+LOMO [9]	66.62	86.
►	LSSCDL [24]	60.49	-
i	1 A* E101	55 40	70

Case 2: Context information

- Used just C_5 and C_6 , with (solid line) and without context information
- It **improved the overall accuracy** on three evaluated datasets
- Different from Yang et al. [6], we evaluated SCNCD using different color models, a more powerful strategy (DDN) [21] and different similarity function (Polynomial feat. map) [7].



Case 3: Complementary features



- All complementary features **outperformed** the baseline
- Simplifications still have strong discriminative power and require less computation resources.
- The benefit of deep feature can be seen when we compare F_0 with F_1
- F₂ obtained best overall accuracy.

Despite extraction procedures, it is more compact than ${\rm F}_{_1}$

- We exploited **different feature representations**, combined with a ranking aggregation strategy to advance re-id.
 - The proposed new features demonstrated to complement each other, being very powerful when combined with a ranking aggregation strategy.
- We show that **hand-crafted and deep features fusion** can improve re-identification performance especially in domains where there is a reduced amount of available data.

Exploiting feature representations through similarity learning and ranking aggregation for person re-identification

Julio C. S. Jacques Junior ^{1,2} juliojj@gmail.com

> Xavier Baró^{2,3} Sergio Escalera^{1,2}

¹Department of Mathematics and Informatics - University of Barcelona, Spain ²Computer Vision Center - Universitat Autònoma de Barcelona, Spain ³Faculty of Computer Science, Multimedia and Telecommunication - Universitat Oberta de Catalunya, Spain

Computational cost *

Task	Time (in seconds)
Extract contextual information (per image)	0.146
SCNCD feature extraction (per image)	0.131
Deep feature extraction per image (provided in [9]) **	1.0
Baseline feature extraction (per image)	0.069
Feat. Representation (per image) \rightarrow Build $\boldsymbol{C}_{\!_1}$ to $\boldsymbol{C}_{\!_4}$	5.348
Feat. Representation (per image) \rightarrow Build $\boldsymbol{C}_{\!_{5}}$ and $\boldsymbol{C}_{\!_{6}}$	0.063
Apply PCA on $\mathbf{C}_{_7}$ (per image)	0.063
Learning stage (single run on the whole VIPeR dataset) Test stage (each probe image on VIPeR)	$ \begin{array}{c cccc} F_1 = 239.7 & & Test = 0.014 \\ F_2 = 125.8 & & Test = 0.007 \\ F_3 = 194.2 & & Test = 0.011 \\ F_4 = 102.8 & & Test = 0.006 \end{array} $
Ranking aggregation (per image)	0.1473

*Adapted MATLAB implementation from [5], using a 2.30Hz Intel Core i7 CPU and 8Gb of memory.