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Abstract
Eye gaze is an important non-verbal cue in human-human and human-machine interactions.

In this master thesis, we explore optical flow as a new feature of temporal information added to
face and eyes to perform 3D gaze estimation from remote cameras in a mid-distance scenario. We
propose new models that combine face, optical flow from the face between the last two frames,
eyes, and face landmarks as individual streams in a CNN to estimate gaze using the last two
images. We also develop a recurrent model that exploits the dynamic nature of gaze by feeding
the learned features of all the frames in a sequence to a many-to-one recurrent module that
predicts the 3D gaze vector of the last frame. Our experiments show that, with the addition
of the temporal information of optical flow, static models can perform just as well as recurring
models, while maintaining lower complexity and faster inference than recurrent ones.

keywords: python, deep, machine, learning, optical flow, recurrent, lstm, gru, eyediap, dataset,
eye, gaze, prediction, keras, ablation, median, filter
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1 Introduction

It has been shown that gaze is an essential component in non-verbal communication reflecting all
kinds of information about what a human being thinks or feels, both in conversations with other
people, and when we are interacting with a machine [17, 10]. This is why the research community
is focusing on being able to obtain the gaze vector using only conventional hardware that you
can easily find as an RGB camera on a mobile phone and in realistic conditions (different angles,
lighting conditions, image quality, person variability) without the need for calibration or setting
up a dedicated environment for it.

This master thesis focus on the regression of gaze vectors in mid-distance scenario for human-
human and human-computer interaction purposes. We want to exploit visual information to de-
fine non-invasive technology able to regress accurate gaze vectors without the need for hardware-
specific eye trackers. In particular, we are interested in exploiting the spatio-temporal nature of
eye dynamics to improve the Deep regression results of gaze estimation.

Previous work in the field just explored the appearance nature of eyes and regressing the
vectors that better approximate the appearance information from still images. [22] Given the
natural movement of the eyes, in 2018, Palmero et al. published a work showing that recurrent
models can further exploit gaze information of consecutive frames and further improve gaze
regression. Here we are interested in modeling another kind of motion pattern from eyes to see
up to which degree spatio-temporal information can be exploited to further boost the performance
of gaze regression.

In particular, we focus on the analysis of optical flow, since it defines the local movement of
consecutive images regions, defining a compact representation of motion. Optical flow has shown
to be a powerful representation in action and gesture recognition in the computer vision com-
munity [6], contrary to 3DCNNs, that capture spatio-temporal information by increasing largely
the number of parameters and are prone to overfitting [26]. Optical flow images, instead, provide
a compact representation where standard 2D kernels can directly learn motion information. so,
our goals are:

• To provide additional motion image representation based on optical flow to classic eye and
face appearance image regions.

• To analyze the effect of optical flow representation, enhancing recognition performance in
image sequences of gaze regression.

• To further combine the findings with other classical temporal exploitation techniques, such
as temporal post-processing and recurrent architectures.
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2 Related work

Methods to estimate gaze are categorized as model-based or appearance-based.
Model-based approaches require high-resolution images or calibration specific parameters to

estimate personal eye parameters. [19, 27, 28, 31, 32]. On the other hand, appearance-based
models can be used in low-resolution images or a mid-distance scenario, as these methods learn
a direct mapping from intensity images or extracted eye features to gaze directions. [2, 18, 25]

The two main issues the researchers have to face are appearance variations and head pose
variations. In the work of Fischer et al. [7], they consider the issue of reliable gaze estimation
in natural environments. So large camera-to-subject distances and high head pose and eye gaze
angle variations are expected. They recorded a dataset with videos of varied gaze and head
images in a natural environment with a motion capture system and eye-tracking glasses. The
eye-tracking glasses are a problem because that makes the appearance of the faces in the videos
not clean. To be able to estimate the gaze in persons without the eye-tracker, they inpaint this
area using a Generative adversarial network (GANs) [9] to try to recreate the original face image.
They also present a new real-time algorithm involving appearance-based deep convolutional
neural networks that they try in several datasets included their own. We decided not to select
this dataset because the regenerated images by the GAN has artifacts.

2.1 Dynamic gaze estimation

Kellnhofer et al. [13] creates a dataset with 238 subjects with the objective to be able to estimate
the gaze in indoor and outdoor environments. They intend to make a temporal model able to
estimate the gaze of the people even when they are not looking towards the camera.

Wang et al. [29] propose to exploit the dynamics of eye movement. Studies show that there
are several common types of eye movement, regardless of content and topics, such as fixation,
saccade, and smooth pursuits. Therefore, adding generic dynamics of eye movement will improve
generalization capabilities. In particular, they propose a probabilistic graphical model named
Dynamic Gaze Transition Network (DGTN), to capture the dynamics of the underlying eye
movement. Wich is used to refining the predictions already done by other static methods. They
also develop a new dataset to estimate screen targets.

Finally, we analyze the work of Palmero et al. [22]. They propose to use a multi-modal recur-
rent convolutional neural network (CNN). They combine face, eyes region, and face landmarks
as individual streams in a CNN to estimate gaze in still images from remote cameras. Also, they
propose a many-to-one recurrent network that predicts the 3D gaze vector of the last frame,
achieving a significant improvement of 14.6% over state of the art on the EYEDIAP dataset (see
Section 3), further improved by 4% when the temporal modality is included. We decided to use
their work as a baseline and add the optical flow information in their models.

2.2 Ways to use temporal info

In the work of Feichtenhofer et al. [6] they fuse appearance with spatio-temporal information
for action recognition in videos using Convolutional Neural Networks. They propose a ConvNet
architecture for spatio-temporal fusion of video snippets. The network they propose is similar
to the networks we develop in this work. They use a stack of the optical flow of the frames of
the video as spatio-temporal information as the second input of the network.
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Figure 1: The networks proposed in the paper Convolutional Two-Stream Network Fusion for
Video Action Recognition, showing how to combine the two streams in two possible ways. Image
extracted from [6].

In this work, we analyze several multi-stream CNN network for person and head pose-
independent 3D gaze estimation for a mid-distance scenario, adding optical flow for temporal
information as a key component. To the best of our knowledge, this is the first work using optical
flow for gaze estimation.
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3 Dataset

The dataset we use for this project is the EYEDIAP dataset [8]. We choose the EYEDIAP
dataset because it is the only one that contains image sequences without visual artifacts in the
face (for instance, the RT-GENE [7] has this problem). This dataset intends to fill the need for
a standard database for gaze estimation from remote RGB, and RGB-D (standard vision and
depth) cameras. It has a total of 96 recording sessions, each with different characteristics. The
RGB stream has two versions, the VGA resolution (640x480 pixels) at 30 frames per second
and the High definition resolution. For this work, we chose to use the VGA resolution to mimic
mid-distance scenarios. The subjects recorded in the sessions were 16 adults, 12 male and four
female participants with varied age range.

The recording methodology was designed to systematically include and isolate most of the
variables which affect the remote gaze estimation algorithms, such as head pose variations, person
variation, changes in environment and sensing condition. In the Figure 2 we can see the recording
Setup.

Figure 2: Setup of the recording room for the EYEDIAP dataset where can be seen the subject,
the floating target, the screen target and the cameras. (from [8])

The sessions in the dataset have an average of 4538 frames recorded and were done in two
different illumination conditions (A and B), and can be split into three types:

1. Discrete screen target (DS) a small circle appears at the screen every 1.1 seconds at random
locations.

2. Continuous screen target (CS) the circle appears at the screen and moves along a random
trajectory for 2 seconds.

9



3. 3D floating target (FT): A small 4cm diameter ball was moved within a 3d region in front
of the subject. The distance between the camera and the participant was 1.2 meters in
this case.

The floating target recorded sessions consisted of two types:

1. The subject performs head movements (rotations and translations) in all directions while
looking at the target, to obtain appearances of faces with very varied poses.

2. Fixed head while the subject looks at the objective, to get images where only changes the
appearance of the eyes.

We decided to select the 66 sessions that consisted of looking at floating targets since we did
not have time to test to compute all the experiments with all the dataset and in the related work
we observed that the mid-range problem is what is more challenging.
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4 Methodology

We present a 3D gaze regression method based on appearance, shape cues, and optical flow for
still images and image sequences. First, we explain how we obtain the features for the models
and formulate the problem. Then, we present the models designed for the experiments.

4.1 Gaze regression

The 3D gaze unit vector in the Camera Coordinate System (CCS) is represented as g =

[gx, gy, gz]
T ∈ R3. This coordinate system has the origin in the central point between eye-

ball centers. Then with a calibrated camera, and knowing the head transformation (position and
rotation), we can estimate g from a still image in the case of the static models and a from a
sequence of images

{
(I(i−4), I(i−3), ..., Ii)|I ∈ RW×H×3} in the recurrent models.

Wollaston [21] demonstrates that gaze direction could not be based only on the estimation
where the irises are located within the lid aperture but also the rotation of the head is also
important, see Figure 3. So we can conclude that eye images are not enough to estimate gaze
direction, and the whole face image is needed.

Figure 3: Same eyes in two different faces illustrating the Wollaston effect (From “On the Ap-
parent Direction of Eyes in a Portrait,” by W. H. Wollaston, 1824, Philosophical Transactions
of the Royal Society of London, 114, p. 256. In the public domain)

In our approach, we jointly model appearance, geometry, and shape cues as a whole using
the face image, a higher resolution of the eyes (scaled), the face landmarks, and the optical flow
between the previous frame and the current one.

4.2 Features

In this section, we are going to explain how the features used by the models are extracted.

4.2.1 Landmarks

Facial landmarks can be used as global shape cues to encode spatial relationships and geometric
constraints. Current state-of-the-art face alignment approaches are robust enough to handle
large appearance variability, extreme head poses, and occlusions, being especially useful when
the dataset used for gaze estimation does not contain such variability. Facial landmarks are
mainly correlated with head orientation, eye position, eyelid openness, and eyebrow movement,
which are valuable features for our task.

The 3D landmarks are extracted using the state-of-the-art method of Bulat and Tzimiropoulos
[4], which is based on stacked hourglass networks [20] (see Figure 4). This method extracts
landmarks in 3D coordinates.
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Figure 4: Image extracted from [4]. This network takes as input the RGB image and the 2D
landmarks and outputs the corresponding 3D projections of the 2D landmarks.

For each frame of the dataset a 68-landmark vectors denoted by L =
{

(lx, ly, lz)c |∀c ∈ [1, . . . , 68]
}

is extracted. An example can be seen in the Figure 5

(a) 68 points mark-up used for face annotations.
(b) The 68 point landmarks on a face Image. Image
extracted from [12]

Figure 5: Visualization of the coverage of the 68 face landmarks.

4.2.2 Eyes region extraction

The eyes region has been obtained cropping the eyes using the face landmarks. The rectangle
region of each eye is obtained by using the landmarks corresponding to each eye and making it
a % bigger, so the eye is completely captured even if the landmark is not accurate enough.

Due to dealing with wide head pose ranges, some eye images may not depict the whole eye,
containing mostly background or other surrounding facial parts instead. We use a single image
composed of two patches of centered left and right eyes to reduce this problem, so at least one
of the eyes will contain all the information needed.

A sample of the input of the eyes region is shown in Figure 6
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Figure 6: An example of the original face image, the normalized face and the eyes region ex-
tracted. Face images extracted from [22].

4.2.3 Optical flow

Optical flow is the motion of objects between consecutive frames of a sequence, caused by the
relative movement between the object and camera and has several uses, including video encoding,
video re-timing, and video stabilization [30]. However, in this work, we are going to use it to
track the movement of the face and eyes between two frames. In the Figure 7 an example of
applying it to two consecutive frames could be seen.

Figure 7: Example of resulting displacement vectors using several optical flow methods.

It can be expressed as can be shown in the Figure 8:
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Figure 8: Graphical representation of the optical flow problem.

where I is a function of (x, y) space and (t) time that give us the intensity of a pixel in the
coordinates x, y in the frame t. The displacement (dx, dy) represents how much a pixel has been
moved in x,y.

We want an algorithm able to compute how much a pixel has been moved, which means we
need an algorithm that computes dx and dy. For this, we have to solve the next equation:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (1)

Using the Taylor Series Approximation in the right-hand side of equation and removing
common terms:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+ . . .

⇒ ∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0

(2)

And finally dividing by dt to derive the optical flow equation:

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (3)

where u = dx/dt and v = dy/dt.
We conclude that we need to solve u(dx/dt) and v(dy/dt) to determine the movement over

time. This equation has two unknowns and cannot be solved without adding some other restric-
tions. This is known as the aperture problem of the optical flow algorithms. To find the optical
flow, we need another set of equations, with some additional constraints. Optical flow methods
introduce additional conditions for estimating the actual flow. We choose the method from C.
Liu. [15] to solve these equations, is a method based in the Lucas/Kanade [3] that combines Lo-
cal and Global Optical flow methods and uses the RGB information of the image instead of only
the intensity of the pixels usually obtained converting the images to greyscale. We choose this
one instead of the classical Lucas/Kanade because, empirically, in the tests we did, we observed
less noise and more precision in the results.
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(a) Example of image It with floating target and
moving head.

(b) Optical flow of the motion from frames It−1 to
It

Figure 9: Example of visualization of optical flow between two frames of the dataset

The optical flow is converted to RGB for visualization interpreting the dx and dy of each
pixel as a vector converted to polar coordinates and using the angle as the color selector and the
magnitude as the value in HSV color space.

4.3 Data normalization

A normalization step in 3D space and the 2D image is needed to be able to apply the gaze esti-
mation model regardless of the original camera configuration. We use the normalization method
of Sugano et al. [24]. The resulting image is a cropped image patch of size Wn ×Hn centered in
p showing only the head, where the head roll rotation has been removed. This normalization is
achieved by applying a perspective warping transformation to the input image. An example can
be seen in Figure 6.

The 3D gaze vector is unit normalized. Then, gn (gaze vector normalized) is transformed to
spherical coordinates (θ, φ), where θ and φ denote the horizontal and vertical direction angles,
respectively. These two angles are what our regression model estimates.

The 2D angle representation is delimited in the range [−π/2, π/2] and is computed as θ =
arctan (gx/gz) and φ = arcsin (−gy), such that (0,0) represents looking straight ahead to the
CCS origin.

The landmarks and optical flow are also normalized using the same warping matrix like the
image face. The eye region is extracted from the already normalized face using the normalized
landmarks, so no further normalization step is needed for the eyes.

The magnitudes of optical flow are also normalized before being used as a feature for the
model. The two channels (dx, dy) are normalized individually using the following algorithm:

# Fi r s t we f i nd the maximum magnitude o f the dx and dy in a l l the frames .
for frame in o p t i c a l f l o w f r a m e s :

norml ize dx = max(abs ( frame [ dx ] ) )
norml ize dy = max(abs ( frame [ dy ] ) )
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# Then we d i v i d e each frame by t h i s maximum magnitudes .
for frame in o p t i c a l f l o w f r a m e s :

frame [ dx ] = frame [ dx ] / normal ize dx
frame [ dy ] = frame [ dx ] / normal ize dy

4.4 Models

The models developed to solve the problem of regression of the estimation of the gaze are con-
volutional neural networks (CNN) combined with fully connected (FC) and recurrent layers.

In particular, we develop and train five new models that use as base models the VGG16
network [23] and the ResNet50 [11] network. Both are outstanding networks in the competitions
of Large Scale Visual Recognition Challenge 2017 (ILSVRC2017) but in this case trained to do
face recognition. Although it is not the task that we want to solve, they are useful for computing
the embeddings of some of the features of our model, in particular, face, eyes, and optical flow of
both face and eyes. Face recognition is a technology capable of identifying or verifying a person
from a digital image. We expect that the embeddings will contain enough information to model
all the aspects of the appearance of the face.

These backbones have the following characteristics:

VGG16 (see Figure 10 (b)) has a total of 138 million parameters and a depth of 16 layers. All
the convolutional kernels are of size 3x3, and max pool kernels are of size 2x2 with a stride of two.

ResNet (see Figure 10 (a)) introduced residual blocks that have connections between layers,
meaning that the output of a layer is a convolution of its input plus its input, avoiding the van-
ishing gradient problem allowing a much more deep network and reducing the number of total
parameters. In particular, ResNet50 has 50 layers and 25.6 million parameters. An ensemble
of these residual nets achieves a 3.57% error on the ImageNet test set. This result won the 1st
place on the ILSVRC 2015 classification task.

(a) Resnet50 Diagram architecture. (b) VGG16 Diagram architecture.

Figure 10: Networks used as base models

4.4.1 Static models

In the following sections, we are going to describe the models developed during this work and
explain the particularities of each one and in what experiments are used. All the models have
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the number of neurons that defines the last fully connected layers already pre-defined as a sum
of the neurons associated with the input streams in the following way:

• Face (Normalized or not) (224x224x3) RGB pixels: 4096 neurons

• Eyes (120x48x3) RGB pixels: 1536 neurons

• Optical flow of the face (224x224x3) (dx, dy, dy): 1536 neurons

• Landmarks (3D points [x,y,z]x68): 204 neurons

The number of neurons is decreased proportionally in the case of the eyes. Optical flow fewer
neurons than the face because it codifies much less information than the face itself.

We divided the models depending on how many streams are used as input.

One stream The most basic network model consists only of the input of a face in RGB
(224,224,3) pixels. The experiment that uses this model is (Normalized Face, 4096) that can be
seen in Section 5.6.1. This model was also used to compute this same experiment but without
normalizing the face.

Figure 11: One stream model.

Two streams The two-stream network consists of two VGG16 models trained for face detec-
tion, concatenated with a FC layer at the end that reduces the dimensionality, before the two
neurons that output the pitch and yaw prediction. There are two versions of two streams:

1. Eyes version This is the version used by the original experiments in [22], where the
inputs of the network are:

• The face of the person for which the gaze vector is to be estimated.

• The cropped eyes of the person in this frame.

• The face landmarks of the person in this frame.

The landmarks are an optional input feature to the model and are concatenated with the
output of each stream as the input of the first fully connected layer of 5836 neurons. This model
is used by the next experiments:

• Normalized face, eyes, landmarks with 5836 neurons in the las fully connected layer (re-
ferred to as NFEL5836).
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• Normalized face, eyes, landmarks with 2918 neurons in the las fully connected layer (re-
ferred to as NFEL5836 2918).

• Recurrent model of NFEL5836 2918 with a GRU as a tepomporal layer (referred to as
NFEL5836GRU).

Figure 12: Architecture of the two stream network model for face, eyes and optionally landmarks

2. Optical flow version This is the most basic model that adds optical flow as an input
feature, and we use it to obtain a baseline of the performance of the experiments with optical
flow. The experiments realized with this model have as input the normalized face and the optical
flow of the face of the current frame with the previous one, also normalized.

Figure 13: Architecture of the two stream network model for face and optical flow.

This model is used by the NFO5632 experiment in Section 5.7.1.

Three streams This model adds the eyes as input feature to the two-stream model with the
intention to recover this lost feature.
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Figure 14: Architecture of the three stream network model for face, eyes and optical flow.

This model is used by the NFEOF5632 experiment in Section 5.7.2.

Three streams landmarks This model also adds the landmarks as an input feature to the
three-stream model with the intention to add a geometric contraint to the networks.

Figure 15: Architecture of the three stream network model for face, eyes, optical flow and face
landmarks.

19



This model is used by the NFEOF5632 experiment in Section 5.7.2.

Four streams This is the most complete and complex model with all the possible features
extracted (Normalized face, optical flow from the face, eyes, optical flow from the eyes, and face
landmarks).

Figure 16: Architecture of the four stream network model for face, eyes, optical flow of face,
optical flow of eyes and face landmarks.

4.4.2 Recurrent model

In this section, we show the recurrent model that we are going to use in the experiments. This
model has as input the sequential information resulting from the feature vectors of each frame.
It is a many-to-one recurrent network.
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Figure 17: Recurrent model used in the temporal experiments. Face images extracted from [22].

During the training, the static model is frozen except for the last fully connected layers.
Allowing learning in the last layers helps to adapt the output of the static models for a better
representation that helps the recurrent layer.

The static model could be any of the previous ones as long as the input is adapted to the
model.
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5 Experiments

Our main goal is to evaluate whether the addition of optical flow improves gaze estimation
accuracy in comparison to other static and spatio-temporal approaches. The metric we used to
measure how well a model performed is the angular error. This measures the average angular
error between the vector predicted and the ground truth. In the equation 4 could be seen how
is computed.

angular error = arccos(
A ·B
‖A‖‖B‖

) =

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(4)

Where A could be the estimated vector and B the ground truth vector.

5.1 Hardware

To do these experiments, we used two computers:

1. AMD Ryzen 3900X with 24 execution threads, 32GB of RAM, 2TB of SSD and 2TB of
HDD, 1x NVIDIA TITAN (Maxwell) X 12GB VRAM.

2. AMD Ryzen 2600X with 12 execution threads, 64GB of RAM, 4TB of HDD, 2x NVIDIA
G-FORCE 1080ti 11GB VRAM.

These computers took a total of 1.5 months to compute all the experiments working in
parallel.

5.2 Data

The final size of the dataset after processing all the data was 1.5TB of disk space. Specifically,
it is distributed as follows:

• The EYEDIAP dataset with the subjects of the floating target part occupied 300GB of
disk space in 640x480 RGB BMP images. We had to compress them in PNG, in which
they only needed 70GB. Converting from PNG over BMP also helps with the loading time
from an HDD. The decompression of a PNG file is faster than the reading of the equivalent
image in BMP format from an HDD.

• The optical flow vectors of the 66 sessions of the EYEDIAP dataset took 1,2TB of disk
space because the matrices storing the displacements of the pixels in x and y should be
float32 or the small movements of pixels will not be represented with enough precision.
We also make a cache with the trimmed part of the face (250x250x2 floats) and the eyes
part (120x48x2 floats) that gave us a 10x speed increase and a space reduction remaining
in only 80GB of disk space.

Experiment names We had to name the experiments to make the plots more clear. We used
the following pattern <letters meaning the inputs of the network><number of neurons in the last
fully connected layer> [optional comment relevant for the experiment]. The possible meanings
of the letters are the next: N - Normalized, F - Face, E - Eyes, O - Opticalflow, L - Landmarks
of the face.

For instance:
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• NF4096, this means Normalized Face as input and 4096 neurons in the last fully connected
layer.

• NFEL5632, this means Normalized Face, Eyes, landmarks, and 5632 neurons in the last
fully connected layer.

• NFEL5632GRU, the comment at the end of the name in this experiment means it is a
recurrent one, and for the still part of the model is using the weights of NFEL5632.

Folds We decided to do four-fold cross-validation because four divisions are the best we can
do with the 16 subjects for the floating target of the EYEDIAP dataset. In particular, we used
the following splits:

• Fold 1: 5 A FT S, 5 A FT M, 10 A FT S, 10 A FT M, 11 A FT S, 11 A FT M, 14 A -
FT S, 14 A FT M, 14 B FT S, 14 B FT M.

• Fold 2: 1 A FT S, 1 A FT M, 4 A FT S, 4 A FT M, 6 A FT S, 6 A FT M, 15 A FT S,
15 A FT M, 15 B FT S, 15 B FT M.

• Fold 3: 2 A FT S, 2 A FT M, 3 A FT S, 3 A FT M, 8 A FT S, 8 A FT M, 16 A FT S,
16 A FT M, 16 B FT S, 16 B FT M.

• Fold 4: 7 A FT S, 7 A FT M, 9 A FT S, 9 A FT M, 12 B FT S, 12 B FT M, 13 B FT S,
13 B FT M.

5.3 Input pre-processing

During training, the original image is pre-processed to get the two normalized input images.
The normalized whole-face patch is centered 0.1 meters ahead of the head center in the head
coordinate system and is defined such that the image has a size of 250×250 pixels. The difference
between this size and the final input size allows us to perform random cropping and to zoom
to augment the data. Similarly, each normalized eye patch is centered in their respective eye
center locations. In this case, the virtual camera matrix is defined so that the image is cropped
to 70×58, while in practice, the final patches have a size of 60×48.

The augmentation step consist in:

• Apply horizontal flip in random frames.

• Apply a shift displacement to the image in x and y.

• apply a zoom in range [0.98 to 1.02].

• Modify the brightness conditions.

• Add a Gaussian noise of a 3

The optical flow is pre-processed with the same method that is used in the original face, so
each pixel containing (dx, dy) displacements corresponds with the correct pixel in the normalized
image.

Some of the frames do not have a valid ground truth vector. We discarded the frames with
some of the following problems:

• Face landmarks not detected
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• Subject not looking at the target

• 3D head pose, eyes or target location not properly recovered

• Eyeballs rotation violating physical constraints (|θ| ≤ 40◦, |φ| ≤ 30◦).

Figure 18: Diagram of the flow of the data generation.

5.4 Hyperparameters

We fixed the next hyperparameters for all the experiments:

Learning rate In our experiments, we tried three learning rates, 0.001, 0.0001, and 0.00001.
These learnings rates were empirically pre-selected, observing the descending of the angular error
in the first epochs of the experiments. The experimentation shows that 0.0001 is a good learning
rate for all the experiments. Fine-tuning of this parameter could be interesting to do a best final
and more accurate model.

Optimizer The optimizer in all the experiments was Adam [14]. Adam is an algorithm for first-
order gradient-based optimization of stochastic objective functions, based on adaptive estimates
of lower-order moments, is computationally efficient, has little memory requirements, and works
in problems that are large in terms of data and parameters. The main advantage of Adam it
computes an adaptive learning rates for each parameter that is tuned.
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Batch size For the batch size, we tried with 8, 16, 24, 32, 48, 64, but not all the experiments
could be trained using the bigger ones because the memory of the GPU was not enough to
copy the train data in the 12GB of VRAM. In the appendix, ”Complete history logs of the
experiments.” the loss and angular error tried for all the experiments could be seen. For the
sake of the comparative, we decided to go with a batch size of 8 for mainly two reasons: (i)
the temporal experiments only work with this batch size, and (ii) The best angular error was
obtained with this batch size. Obtain a better accuracy with a smaller batch size is the effect of
a less averaged vector with a more significant norm. It also makes the training noisier, allowing
the loss to arrive at a better local minimum. Instead, with a bigger batch size the averaged
gradient would result in smaller steps. In [1] this effect is analyzed.

Dropout We empirically set a dropout with a probability of 0.3 in the last layers of the models.
Dropout is a regularization technique that approximates training a neural network simulating
different architectures in parallel. Its usually placed between two fully connected layers with the
objective of reducing overfitting. Works in the following way: during training, some connections
between two layers are erased with a probability p.

5.5 Software

The software used to code the experiments was:

• Python=3.5.6

• tensorflow=1.10

• keras=2.1.5

• keras vggface=0.5

• numpy=1.14.2

• opencv=3.4.0.14

The base models are the ones provided in the Keras VGGFace package[5]. This package
includes several famous deep neural networks pre-trained to do face recognition.

5.6 Baseline results

The first thing that we should check is if we can reproduce the results of the experiments of [22].
To do that, we recreated the exact same environment very carefully using the same Python and
packages versions.

5.6.1 Normalized face, 4096 neurons

This is the first experiment that we test, and the most basic one, the input of the network,
consists only in the face normalized. The configuration of this experiment is:

• Model: One stream, see Section 4.4.1.

• Fully connected layers neurons: 4096

• Input: Only generates faces

25



For this experiment the best result are in the next table:

experiment fold batch size val angle error epoch

NF4096 1 8 5.02703 16
NF4096 2 8 5.14182 12
NF4096 3 64 4.90789 20
NF4096 4 8 6.68591 11

Table 1: Results of the best epochs of the experiment NF4096 for the four folds.

5.6.2 Normalized face, eyes and landmarks, 5836 neurons

This experiment is the most complete of the experiments without optical flow and aims to test
if using all the features extracted improves the basic model given better results. The input of
the network consists of the face normalized, the eyes extracted, and landmarks.

The configuration of this experiment is:

• Model: Two stream (with landmarks) 4.4.1

• Fully connected layers neurons: 5836

• Input: Generates face, eyes and landmarks.

For this experiment the best result are in the next table:

experiment fold batch size val angle error epoch

NFEL5836 1 8 5.09876 11
NFEL5836 2 8 5.14995 21
NFEL5836 3 8 4.99211 21
NFEL5836 4 64 6.92378 21

Table 2: Table of the best epochs of the experiment NFEL5836.

5.6.3 Normalized face, eyes, and landmarks, 2918 neurons

This experiment is the same as the previous one 5.6.2, only changing the last fully connected
layer to 2918 neurons (exactly the number of neurons of the previous fully connected divided by
two). The reasons to do this experiment are the following ones:

• To have a smaller output, so the recurrent models that use this model as the static part
could be trained more easily since the recurring models explored have been very slow to
train (3x times a static model).

• Explore the impact of the reduction of the last fully connected layer before the two neurons
that makes the output prediction.

For this experiment the best result are in the next table:
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experiment fold batch size val angle error epoch

NFEL5836 2918 1 8 5.11546 12
NFEL5836 2918 2 8 5.23134 15
NFEL5836 2918 3 8 4.81456 20
NFEL5836 2918 4 32 6.36455 12

Table 3: Table of the best epochs of the experiment NFEL5836 2918

5.6.4 Baseline summary results

Finally, we can compare the results that we obtained. We can observe in Table 4 that the
experiments with more features performs slightly better but not to say that they are clearly
better.

Fold NFEL5836 2918 NFEL5836 NF4096
1 5.11546 5.09876 5.02703
2 5.23134 5.14995 5.14182
3 4.81456 4.99211 4.90789
4 6.36455 6.92378 6.68591

Table 4: Results of the four fold of all the experiments together, in bold the lower error of each
one.

(a) Means of the results of the folds of the experi-
ments that we reproduced. (b) Final results of [22].

Figure 19: Plots of the means with the standard deviation obtained in all the experiments.

We can see how selecting a batch size of 8 give us better accuracy in the simplest experiment
(NF4096). These errors are what we are going to take as a baseline to see if optical flow improves
the results.

5.7 Optical flow experiments

In this section, we show the experiments that we design to see how the addition of the optical
flow information affects in the angular error of the experiments using the models previously
defined. All the optical flow experiments have the last fully connected layer before prediction
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fixed to 5632 neurons since we saw in the previous section that the experiment with 2918 neurons
performed as good as the others and did not impact the accuracy of the experiments. However,
the first fully connected layer changes its size depending on the inputs.

5.7.1 Normalized face, Optical flow, 5632 neurons

This experiment is very similar to the first experiment that we test in Section 5.6.1, the main
modifications are, changing the model for the two-stream one defined in the Section 4.4.1, and
increasing the number of neurons in the last fully connected layer before the output. The input of
the network consists of the face normalized and the optical flow of that normalized face computed
using the previous frame in time. The configuration of this experiment is:

• Model: Two stream for optical flow 4.4.1

• Fist fully connected layer neurons: 5632

• Last fully connected layers neurons: 5632

• Input: Generates faces and optical flow of the face.

For this experiment the best result are in the next table:

experiment fold batch size val angle error epoch

NFO5632 1 8 4.74253 6
NFO5632 1 48 4.84704 16
NFO5632 2 8 5.34078 4
NFO5632 2 32 5.24506 20
NFO5632 3 8 4.55839 16
NFO5632 4 8 6.65459 4

Table 5: Table of the best epochs of the experiment NFO5632

5.7.2 Normalized face, eyes, Optical flow, 5632 neurons

In this experiment, we decided to add the information of the eyes to the previous one. To do
this, we had to make a new model the three-stream optical flow that can be seen in Section 4.4.1.

• Model: Three stream for optical flow 4.4.1.

• Fist fully connected layer neurons: 7168.

• Last Fully connected layers neurons: 5632.

• Input: Generates faces, eyes, and optical flow of the face.

For this experiment the best result are in the next table:

experiment fold batch size val angle error epoch

NFEOF5632 1 8 4.50474 20
NFEOF5632 2 8 5.49019 12
NFEOF5632 3 8 4.70594 18
NFEOF5632 4 8 6.60661 11

Table 6: Table of the best epochs of the experiment NFEOF5632
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5.7.3 Normalized face, eyes, landmarks and Optical flow, 5632 neurons

In this experiment, we decided to add the information of the landmarks to the previous one.
To do this, we had to modify the three-stream optical flow model also to accept the landmarks
information that can be seen in Section 4.4.1.

• Model: Three streams for optical flow with landmarks 4.4.1

• Fist fully connected layer neurons: 7362

• Last Fully connected layers neurons: 5632

• Input: Generates faces, eyes, landmarks, and optical flow of the face.

For this experiment the best result are in the next table:

experiment fold batch size val angle error epoch

NFELOF5632 1 8 4.71119 18
NFELOF5632 2 8 5.67651 20
NFELOF5632 3 8 4.63749 12
NFELOF5632 4 24 6.55591 15

Table 7: Table of the best epochs of the experiment NFELOF5632

5.7.4 Normalized face, Optical flow, Resnet, 5632 neurons

In this experiment, we decided to change the VGG network of the models by a resnet50, hoping
that the more expression power of the network helps to achieve better results. The base experi-
ment is the NFO5632 since it is not clear that adding the eyes and landmarks to the input are
making better predictions.

• Model: Two streams for optical flow 4.4.1, but instead of the VGG network for the two
streams, we use resnet50, also pre-trained for face detection.

• Fist fully connected layer neurons: 5632

• Last fully connected layers neurons: 5632

• Input: Generates faces and optical flow of the face.

For this experiment the best result are in the next table:

experiment fold batch size val angle error epoch

NFO5632RESNET 1 8 4.25655 5
NFO5632RESNET 2 8 5.77746 12
NFO5632RESNET 3 8 4.34516 18
NFO5632RESNET 4 8 6.53762 12

Table 8: Table of the best epochs of the experiment NFO5632RESNET
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5.7.5 Normalized face, Optical flow, Resnet, 2918 neurons

Modified the previous experiment to have 2918 neurons in the last fully connected layer. Prepar-
ing this model to be the static part of the recurrent one.

• Model: Two streams for optical flow 4.4.1, but instead of the VGG network for the two
streams, we use resnet50, also pre-trained for face detection.

• Fist fully connected layer neurons: 5632

• Last fully connected layers neurons: 2918

• Input: Generates faces and optical flow of the face.

For this experiment the best result are in the next table:

experiment fold batch size val angle error epoch

NFO5632RESNET 2918 1 16 4.72577 18
NFO5632RESNET 2918 2 16 5.71042 10
NFO5632RESNET 2918 3 16 4.46826 13
NFO5632RESNET 2918 4 16 5.99694 8

Table 9: Table of the best epochs of the experiment NFO5632RESNET 2918

5.7.6 Comparing results

To be able to compare the results of the experiments with the optical flow, we followed two
methodologies.

Fold NFO5632 NFEOF5632 NFELOF5632 NFO5632RESNET NFO5632RESNET 2918
1 4.74253 4.50474 4.71119 4.25655 4.72577
2 5.24506 5.49019 5.67651 5.77746 5.71042
3 4.55839 4.70594 4.63749 4.34516 4.46826
4 6.65459 6.60661 6.55591 6.53762 5.99694

Table 10: Table with the results of each fold for each experiment.

Do the mean of all the frames for each experiment.

Figure 20: Mean angular error of all the frames in the dataset for each experiment.
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Experiment Mean Standard deviation
NFO5632RESNET 5.21 3.74

NFO5632RESNET 2918 5.24 3.61
NFO5632 5.32 3.67

NFEOF5632 5.33 3.92
NFELOF5632 5.38 3.81

NFEL5836 2918 5.46 3.86
NFEL5836 5.62 3.92

NF4096 5.45 3.86

Table 11: Mean and standard deviation of the experiments with the estimations of all the frames
of the dataset.

We can observe that all the experiments with opticalflow perform better, and the simplest
model (normalized face and optical flow of the face) are the ones that obtain better accuracies.
And comparing the base models the experiments that use ResNet50 also perform better. We can
conlcude that opticalflow improved the performance in a range of 1.3% to 7.3%.

5.8 Recurrent experiments

In this section, we explore the effects of adding temporal information to the already trained
models for gaze estimation from still images. To do this, we use a new recurrent model explained
in Section 4.4.2. First, we are going to reproduce the results of [22], and then we analyze
the effects of converting the models with the optical flow (that they already have temporal
information) in recurrent ones. All the recurrent models are trained using the same four-fold
cross-validation explained in the Section 5.2. The weights of the static models are always the
weights of the corresponding fold.

5.8.1 Baseline experiment

As in the models of the still image, we want first to reproduce the results of [22] to ensure
that we are using the same metrics to compare the experiments. In this case, there is only one
experiment.

Normalized face, eyes, landmarks, recurrent with GRU layer. We are reproducing the
results of this experiment. Each fold has been trained using the best fold of the still image
NFEL5836 2918 model (see, Section 5.6.3).

• Model: Recurrent model 4.4.2, Frozen pretained model NFEL5836 2918 5.6.3.

• Recurrent layers: 1 GRU with 128 units.

• Input: Generates from 4 consecutive frames, faces, eyes and landmarks.

This experiment was trained using the four folds defined in Section 5.2 and the mean using
only the folds with the minimum error was 5.29 while each fold individually performed in the
following way:
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experiment fold batch size val angle error epoch

NFEL5836GRU 1 8 4.57239 6
NFEL5836GRU 2 8 5.43925 20
NFEL5836GRU 3 16 4.59519 8
NFEL5836GRU 4 8 6.57170 1

Table 12: Table of the best epochs of the experiment NFEL5836GRU

5.8.2 Optical flow recurrent experiments

In this section, we explore the effects of the use of a recurrent neural network. Like in the previous
section, we use the model defined in Section 4.4.2. We are using a network already trained of
one of the best models of optical flow for the still image gaze estimation part of the model. The
objective of this experiment is to see if they improve the angular error when having both the
temporal information provided by the optical flows of the frames and the temporal information
that provides the sequence of frames by itself.

Normalized face, optical flow face, recurrent with GRU layer. This experiment uses
one of the best optical flow models for the still image gaze estimation for the frozen part of the
recurrent model.

This experiment was trained using the four folds defined in the Section 5.2 and the mean
using only the folds with minor error was 5.28 while each fold individually performed in the
following way:

experiment fold batch size val angle error epoch

NFO5632GRU 1 8 4.55079 6
NFO5632GRU 2 8 5.15773 13
NFO5632GRU 3 8 4.61644 2
NFO5632GRU 4 8 6.79343 6

Table 13: Table of the best epochs of the experiment NFO5632GRU

5.8.3 Summary results

The recurrent experiments gave an angular error of 5.29 in the case of the baseline experiment
NFEL5836GRU and 5.28 in the case of NFO5632GRU experiment.

These results compete with the ones obtained in the static experiments (NFO5632RESNET
and NFO5632RESNET 2918) that uses as temporal information the optical flow of the face.
However, this does not mean that recurrent models are not working or can achieve better results.
The only valid conclusion that we can extract is with these hyperparameters (Units in the
recurrent layer, type of the recurrent layer, learning rate, batch size, optimizer); the experiments
do not give better accuracy than the static ones with optical flow and a resnet50 base model.

5.9 Filter experiments

In this chapter, we analyze the effects of adding a median filter to the model estimation. First,
we have to define what is the median vector. We used the following definition.
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Figure 21: Image extracted from [16]. Comparison of the vector median vector and the scalar
median vector. The median vector a3 is a member of the input set of vectors, whereas the scalar
median vector asm found by taking the scalar median of each component of vectors in the input
set is not a member of the input set.

5.9.1 Median vector

The standard definition of a median value is: Given a set of scalars Si = {ai} i = 1, 2, . . . , N,
if the set is sorted, then the middle value of the sorted set is the median. This sorting-based
definition is intuitive and easy to understand, but hard to extend to a set of vectors. In the work
of Liu et al. [16], they redefine the scalar median value based on a minimum-distance concept.
The median member am, according to the minimum-distance definition, is the member whose
distance to all other members in the set is smallest. This definition can be expressed as:

am = argmin
am∈Si

N∑
i=1

‖am − ai‖L (5)

Where i is the summation index, N is the number of members in the set, and L denotes the
order of the norm. Any proper norm (e.g., L1, L2 or L∞ ) is eligible to be used in this definition.
In our particular case, we choose L2.

5.9.2 Window Filter

The filter we apply consist in instead of predicting exactly the last frame recorded from the
camera, we compute the estimation for each frame in a window of frames. Once we have the
estimated vectors per frame, we apply a medium window size filter w, and taking into account
the values of this window we take the median vector, this being the value of the central frame of
the window.
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Figure 22: Illustrating the sliding window that we use in the filter.

5.9.3 Experiments

We decided to experiment using one of the best models we obtain during the experiments of gaze
estimation with still images. In particular, we choose to do the test with the NFO5632RESNET
model, see Section 5.7.4. The evaluation methodology is similar to other experiments. We use
the validation data of each fold to compute the predictions and then over these predictions apply
the window filter before computing the angular error with the ground truth.

Window size
Fold Without filter 3 5 7

1 4.246263 4.2088714 4.189559 4.190738
2 5.624934 5.597168 5.578781 5.586626
3 4.3602552 4.327826 4.3174233 4.3054256
4 6.570273 6.5285983 6.516427 6.5036163

mean 5.2 5.17 5.15 5.15

Table 14: Validation angular error when a median filter is applied to the experiment
NFO5632RESNET in the four folds.

It can be observed that in all cases applying a median filter with a window of 3 to 7 improves
the accuracy of the estimate by 1%.

5.10 Eye Ablation studies

In this section, we show how by eliminating the eyes from the cutout of the face, the network
is still able to estimate the gaze, although with a larger error. We have to remember that the
EYEDIAP dataset has the moving head part, which is composed of subjects who are not looking
towards the target is located. See Section 3.

The ablation of the eyes was made using the already computed face landmarks replacing with
two black rectangles, the eyes regions.
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Figure 23: Subject 1 A FT M of the EYEDIAP dataset with eyes ablation.

A new experiment like the NF4096 was trained with a dataset where the eyes were ablated,
and the experiments show that the accuracy is still relevant and is as good as some of the
techniques reviewed in the Related work Section 2.
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(a) Fold 1. (b) Fold 2.

(c) Fold 3. (d) Fold 4.

Figure 24: Plots of the train and test angle error for the experiment NF4096 using the eyes
ablation dataset.

experiment fold batch size val angle error epoch

NF4096 1 8 12.30331 9
NF4096 2 8 12.31694 9
NF4096 3 8 10.91418 7
NF4096 4 8 13.02588 8

Table 15: Table of the best epochs of the experiment NF4096 with ablation of the eyes.
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Figure 25: Comparison of the angular error for the experiment NF4096 between the original
dataset and the dataset with eye ablation.
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6 Ethics

Since there cannot be a future responsible for artificial intelligence without ethics, in this section
we analyze the moral implications of this work, although without going into much depth. The
ethical considerations do not come from the new model or the comparative we make, but from
the uses that can be given to the models developed in this master thesis and the previous or
related works.

For the training data, we are using a dataset of people that gave their consent to be recorded
and use this information to do academic research. So in principle, there is no problem with
training a model that is based on their data. We have to remember that we are using the whole
face to predict the gaze and not only the eyes. The personal information of the subjects will be
codified in the models.

This technology could be applied without us knowing it, and this could produce undesired uses
without our consent. For example private companies can do gaze analysis to determine people
interests and adapt establishments to obtain economic revenues. Collecting information about
what products you watch more, what gets your attention, so they can optimize the organization
of their stores and research what things that get people’s attention to sell more. But they can
also sell your private information to other companies for worse purposes.

Of course, immoral uses of this technology will occur as well. The desire that companies
have to collect data nowadays will make them try to collect more data. For instance, how
people interact with their phones, analyze how two persons are interacting and infer the type of
conversation they are having (without taking into account other techniques like natural language
processing and extracting information from the video), and this could be used to make more
addictive games or applications.

In the other hand, there is much room to do of the world a better place, just for good. For
instance, applications that can help in the wellness of the people, if you have a mobile phone
equipped with this technology you could make applications that can detect if you are having a
sad moment while using your mobile phone chat applications. The app can give you a tip to
make you feel better or if it detects suicidal thoughts, prevent them. It can also be useful for
helping people to improve their communication skills thanks that with a simple video, they can
analyze human-human interactions.

In conclusion, we can only hope that the Governs legislate about the advances made with
artificial intelligence so that they are used mainly for beneficial purposes for the world and not
misused.
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7 Conclusions and future work

In this work, we studied the addition of optical flow at the combination of full-face and eye
images along with facial landmarks for person and head pose-independent 3D gaze estimation.
We proposed several multi-stream CNN networks and one recurrent model that utilizes sequential
eye and head movement with optical flow information. After that, we analyze the effects of
applying a median filter to the output vector using several window sizes. Besides, an eye ablation
study has also been carried out to analyze how much information the models could extract only
from the appearance of the face.

We showed that adding optical flow to the baseline experiments outperform the accuracy in
almost all input combinations, and the use of the resnet50 as a base model for the streams was
a better choice than the VGG16. We also showed that applying a median filter could improve
the accuracy of the models that already have temporal information of optical flow.

To the best of our knowledge, this is the first attempt to use optical flow as temporal informa-
tion in the context of gaze estimation from remote cameras. As future work, a better fine tuning
of the hyperparameters of the models could be done, also a recurrent model using ConvLSTM
instead of GRU could be interesting, and try 3DCNNs as well to encode the deep features.
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