

How far are we from true AutoML Winning solutions and results of *AutoDL challenge*

7th ICML AutoML Workshop on AutoML

Presented by Z. Liu in the name of the AutoDL challenge team

The AutoDL challenge team

Original lead organizers:

- Olivier Bousquet (Google, Switzerland)
- André Elisseeff (Google, Switzerland)
- Isabelle Guyon (U. Paris-Saclay; UPSud/INRIA, France and ChaLearn, USA)
- Zhengying Liu (U. Paris-Saclay; UPSud, France)
- Wei-Wei Tu (4paradigm, China)

Other core team members:

- Sergio Escalera (U. Barcelona, Spain, and ChaLearn, USA)
- Julio Jacques Jr. (U. Barcelona, Spain)
- Meysam Madani (U. Barcelona, Spain)
- Adrien Pavao (U. Paris-Saclay; INRIA, France and ChaLearn, USA)
- Sebastien Treger (La Pallaisse, France, and ChaLearn, USA)
- Zhen Xu (Ecole Polytechnique and U. Paris-Saclay; INRIA, France)

Other contributors to the organization, starting kit, and datasets, include:

- Stephane Ayache (AMU, France)
- Hubert Jacob Banville (INRIA, France)
- Mahsa Behzadi (Google, Switzerland)
- Kristin Bennett (RPI, New York, USA)
- Hugo Jair Escalante (IANOE, Mexico and ChaLearn, USA)
- Gavin Cawley (U. East Anglia, UK)
- Baiyu Chen (UC Berkeley, USA)
- Albert Clapes i Sintes (U. Barcelona, Spain)
- Bram van Ginneken (Radboud U. Nijmegen, The Netherlands)
- Alexandre Gramfort (U. Paris-Saclay; INRIA, France)
- Yi-Qi Hu (4paradigm, China)
- Tatiana Merkulova (Google, Switzerland)
- Shangeth Rajaa (BITS Pilani, India)
- Herilalaina Rakotoarison (U. Paris-Saclay, INRIA, France)
- Mehreen Saeed (FAST Nat. U. Lahore, Pakistan)
- Marc Schoenauer (U. Paris-Saclay, INRIA, France)
- Michele Sebag (U. Paris-Saclay; CNRS, France)
- Danny Silver (Acadia University, Canada)
- Lisheng Sun (U. Paris-Saclay; UPSud, France)
- Fengfu Li (4paradigm, China)
- Lichuan Xiang (4paradigm, China)
- Jun Wan (Chinese Academy of Sciences, China)
- Mengshuo Wang (4paradigm, China)
- Jingsong Wang (4paradigm, China)
- Ju Xu (4paradigm, China)

The challenge is running on the Codalab platform, administered by Université Paris-Saclay and maintained by CKCollab LLC, with primary developers:

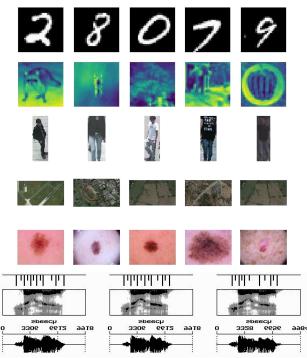
- Eric Carmichael (CKCollab, USA)
- Tyler Thomas (CKCollab, USA)

Sponsors:

Home institutions:

Conferences:

The International Joint Conference on Neural Networks

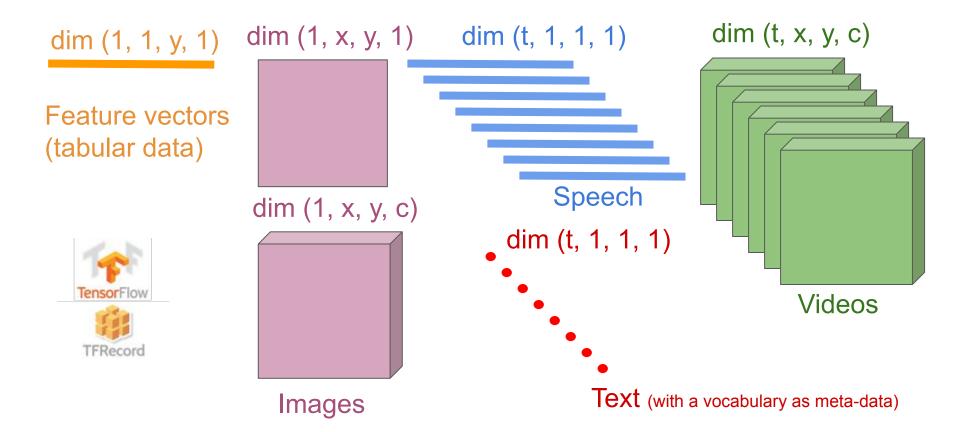

ACML 2019



AutoDL Challenge Design

(1) Data: diverse modalities/domains

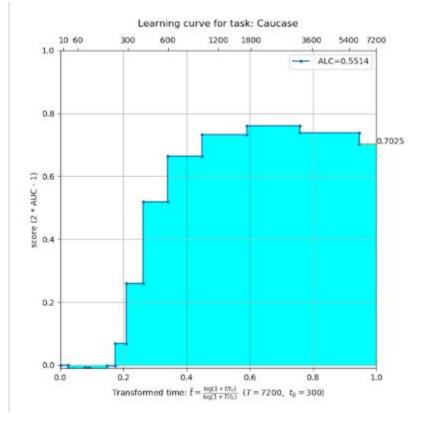
We formatted >100 datasets, 66 or which ended up being used in challenges



- IMAGE
- VIDEO
- SPEECH
 - TEXT
- TABULAR
- Multi-label tasks

Liu Z, Xu Z, Rajaa S, Madadi M. Towards Automated Deep Learning: Analysis of the AutoDL challenge series 2019. To appear in *NeurIPSCD2019* in Proceedings of Machine Learning Research (PMLR) 2019:10.

(1) Data: RAW data in a Tensor Format



(2) Evaluation: Fixed max T + Any-time Learning

Time rescaling:

$$\tilde{t}(t) = \frac{\log(1 + t/t_0)}{\log(1 + T/t_0)}$$

$$ALC = \int_0^1 s(t)d\tilde{t}(t)$$
$$= \int_0^T s(t)\tilde{t}'(t)dt$$
$$= \frac{1}{\log(1 + T/t_0)} \int_0^T \frac{s(t)}{t + t_0}dt$$

(2) Evaluation: Blind testing

Two phases:

- Feed-back phase: 5 datasets, 5 submissions/day for 3-4 months.
- Final test phase: 10 OTHER unseen datasets, ONE single submission.

BOTH phases, code TRAINED and TESTED on the platform => datasets invisible.

Additional "public" datasets => META-LEARNING.

(3) Starting Kit and Baselines

Baseline 0: Constant predictions (for debug purposes)

Baseline 1: Linear model

Baseline 2: Multi-dimensional CNN (auto-rescaling)

domain-agnostic

domain-dependent

Baseline 3: Combination of winning solutions from previous challenges:
 Image & Video: <u>Kakaobrain</u>, ResNet (He et al, 2016) and Fast Auto Augment (Cubuk et al. (2018); Lim et al. (2019))

Speech: <u>PASA_NJU</u>, Spectral transform, logistic reg., lightGBM, CNN, ResNet, VggVox, LSTM, etc.

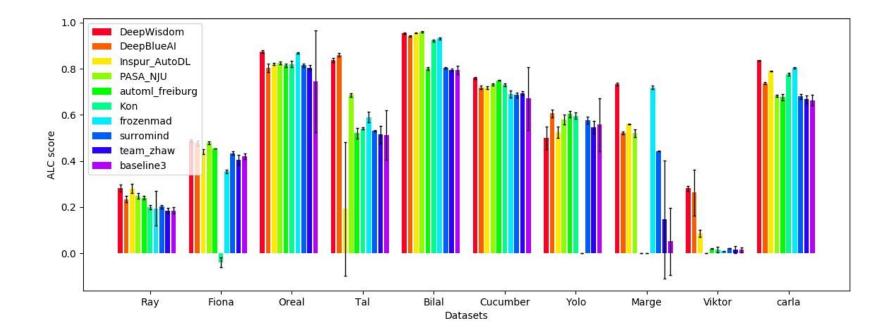
Text: <u>Upwind_flys</u>, LinearSVC, LSTM, BERT, etc., selected with meta-controller **Tabular** (new): Fully connected network.

Challenge Design Recap

(1) Raw data from 5 domains: Image, Video, Speech, Text, Tabular.

- (2) Fixed time budget. Any-time learning (ALC metric). Blind testing.
- (3) Starting kit, sample "public" data and baselines provided.
- (4) Fixed computational resources.
- (5) Using Deep Learning was NOT imposed.

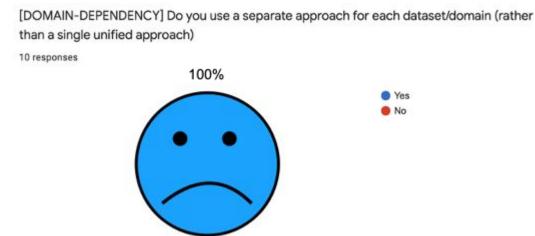
Challenge Results


WINNERS

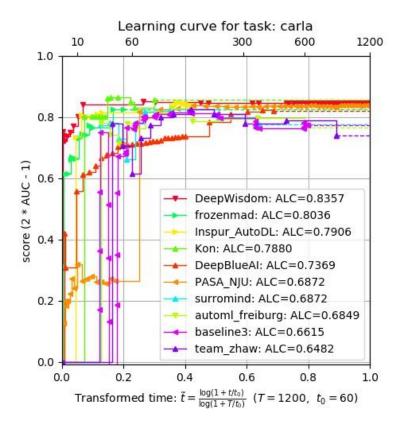
(code open-sourced at autodl.chalearn.org)

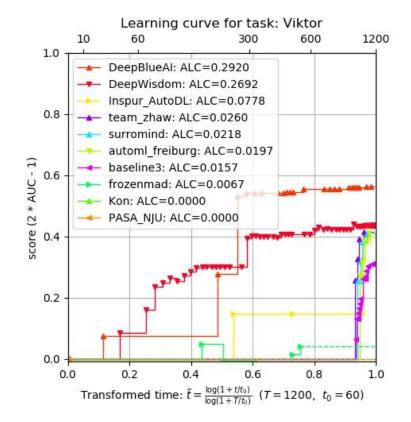
Challenge	1st Prize	2rd Prize	3nd Prize
	(\$2000)	(\$1500)	(\$500)
AutoCV	kakaobrain	DKKimHCLee	base_1
	(Kakao Brain)	(Hana. Tech. Inst.)	(Hanyang University)
AutoCV2	kakaobrain	tanglang	kvr
	(Kakao Brain)	(Xiamen University)	(-)
AutoNLP	DeepBlueAl	upwind_flys	txta
	(DeepBlue Technology)	(Lenovo)	(gsdata.cn)
AutoSpeech	PASA_NJU	DeepWisdom	Kon
	(Nanjing University)	(fuzhi.ai)	(NS Solutions Corporation)
AutoDL	DeepWisdom	DeepBlueAl	Inspur_AutoDL &
	(fuzhi.ai)	(DeepBlue Technology)	PASA_NJU

AutoDL final phase results


Did we get answers to our questions?

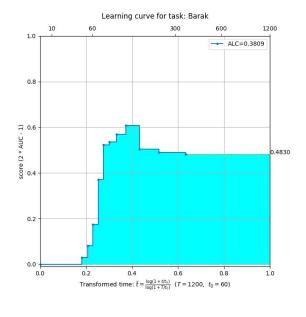
(1) Unified approach for ALL 5 domains? (Image, Video, Speech, Text, Tabular.)


(2) Time budget sufficient? Any-time learning possible?


(3) Was sample "public" data used for meta-learning?

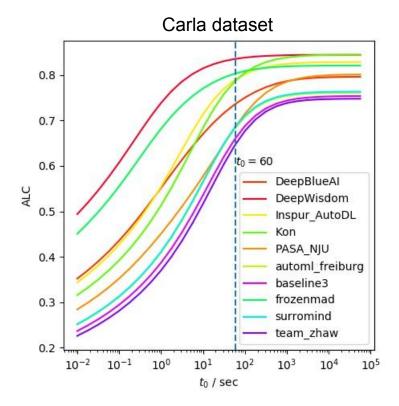
(1) Unified approach for ALL 5 domains? Participant survey:

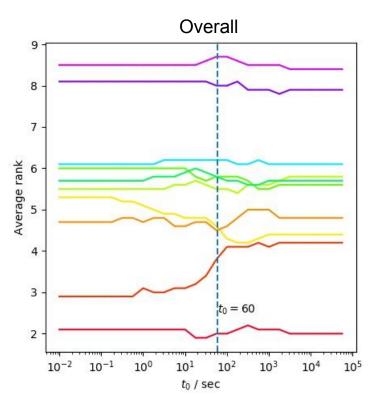
(2) Time budget sufficient? Any-time learning possible?



Impact of t0

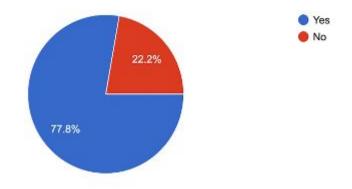
$$\tilde{t}(t) = \frac{\log(1 + t/t_0)}{\log(1 + T/t_0)}$$


$$ALC = \int_0^1 s(t)d\tilde{t}(t)$$
$$= \int_0^T s(t)\tilde{t}'(t)dt$$
$$= \frac{1}{\log(1+T/t_0)} \int_0^T \frac{s(t)}{t+t_0}dt$$



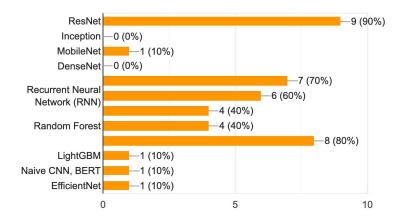
$$\lim_{t_0 \to 0^+} ALC(t_0) = s(0)$$

$$\lim_{t_0 \to +\infty} ALC(t_0) = \frac{1}{T} \int_0^T s(t) dt$$


Impact of t0

(3) Was "public" data used for meta-learning? Participant survey:

[META-LEARNING] Did you use the public datasets (or other data available to you) for model selection or apply meta-learning techniques? 9 responses



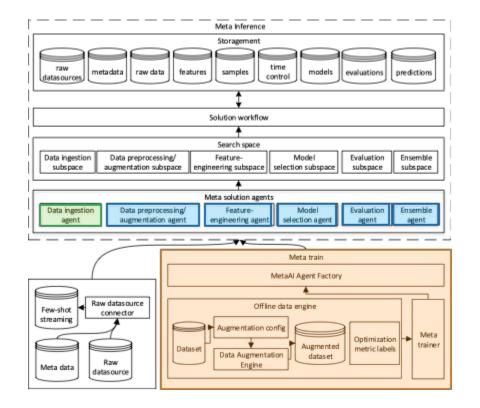
Winning solutions

Neural architectures used in the winning approaches

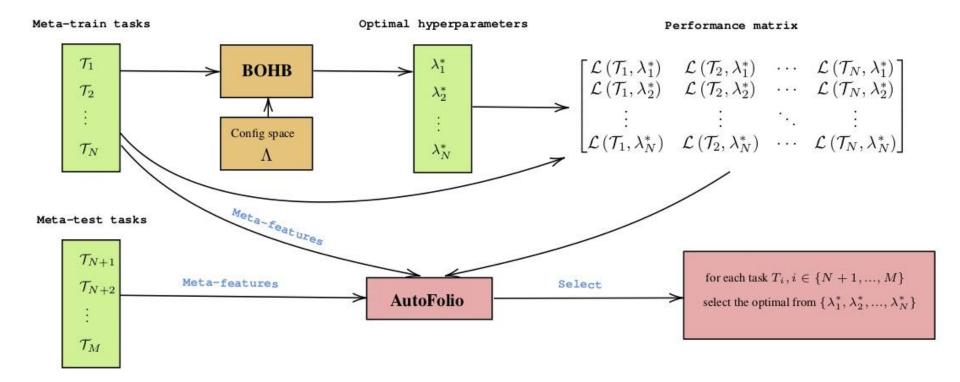
Base predictor / architecture

10 responses

Architecture name	# Parameters	Domains	Teams
ResNet-18, ResNet-9 (<u>He et al</u> 2015)	11.4M, 5.7M	image, video	Kakaobrain, DeepWisdom, automl_freiburg
MC3 (Du Tran et al CVPR 2018)	32.8M	video	DeepWisdom
EfficientNet-(b0, b1, b2) (<u>M. Tan and Q. Le. 2019</u>)	5.3M, 7.8M, 9.2M	image, video	DeepWisdom, automl_freiburg
MobileNetV2 (<u>M. Sandler et al</u> 2019)	3.4M	image, video	team_zhaw, DeepBlueAl
TextCNN	variable	text	Upwind_flys, DeepWisdom
Fast RCNN (Ross Girshick)		text	DeepWisdom
LSTM, BiLSTM (<u>Hochreiter,</u> <u>Schmidhuber 1997</u>)	0.2M-1M	text, speech	frozenmad, PASA_NJU
GRU, BiGRU, (<u>Kyunghyun Cho et</u> al 2014) GRU with Attention	0.1M-1M	text, speech	DeepBlueAl, DeepWisdom
BERT-like (Tiny-BERT(<u>X.Jiao</u> et al))	<110M	text	frozenmad, upwind_flys
DNN	<1M	tabular	DeepWisdom

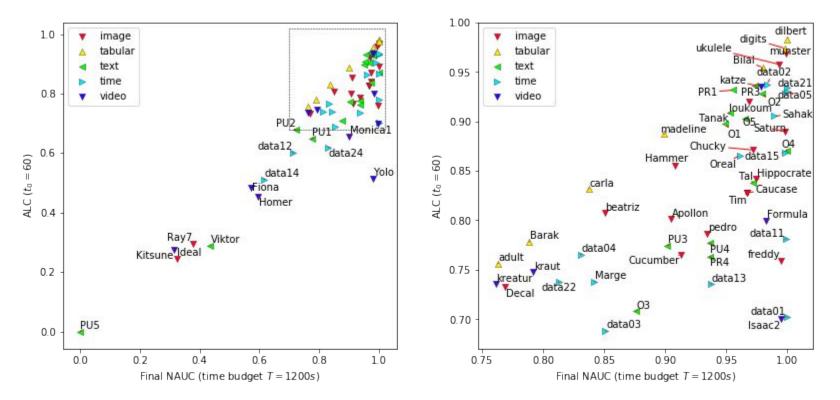

AutoML techniques vs domains

Approach	image	video	speech	text	tabular			
Meta-learning	Offline meta-training transferred with AutoFolio [25] based on meta-features (automl freiburg)							
	Offline meta-training generating solution agents, searching for optimal sub-operators in predefined sub-spaces, based on dataset							
	meta-data. (DeepWisdom)							
	MAML-like method [17] (te	am zhaw)						
	image cropping and data augmentation (<i>PASANJU</i>), fast autoaugment (<i>DeepBlueAI</i>)	Sub-sampling keeping 1/6 frames and adaptive image size (<i>DeepBlueAI</i>) Adaptive image size	MFCC, Mel Spectrogram, STFT	root features extractions with stemmer, meaningless words filtering (<i>DeepBlueAI</i>)	Numerical and Categorical data detection and encoding			
Hyperparameter Optimization	Offline with BOHB [26] (Ba Model-Based Optimization	Baysien Optimization (PASANJU) HyperOpt [27] (Inspur AutoDL)						
Transfer learning	Pre-trained on ImageNet [28] (all teams except	Pre-trained on ImageNet [28] (all top-8 teams except <i>Kon</i>) MC3 model	ThinResnet34 pre-trained on VoxCeleb2	FastText pre-trained on				
	Kon)	except Kon) MC3 model	(DeepWisdom)	Common Crawl				
		(DeepWisdom)		(frozenmad)				
Ensemble learning	Adaptive Ensemble Learning (ensemble latest 2 to 5 predictions) (<i>DeepBlueAl</i>)	(<i>DeepBlueAI</i>); Ensemble Imodels sampling 3, 10, 12	(DeepWisdom) averaging 5 best overall and best of	Weighted Ensemble over 20 best models [29] (<i>DeepWisdom</i>)	LightGBM ensemble with bagging method [30] (<i>DeepBlueAI</i>), Stacking and blending (<i>DeepWisdom</i>)			


Teams vs domains

leam	image video		speech	text	tabular	
DeepWisdom	[ResNet-18 and ResNet-9 models] [pretrained on ImageNet]	[MC3 model] [pretrained on Kinetics]	[fewshot learning] [LR, ThinRestnet34 models] [pretrained on VoxCeleb2]	[fewshot learning] [task difficulty and similarity evaluation for model selection] [SVM, TextCNN,[fewshot learning] RCNN, GRU, GRU with Attention]	[LightGBM, Xgboost, Catboost, DNN models] [no pretrained]	
DeepBlueAl	[data augmentation with Fast AutoAugment] [ResNet-18 model]	[subsampling keeping 1/6 frames] [Fusion of 2 best models]	CNN, CNN+GRU models]	[Samples truncation and meaningless words filtering] [Fasttext, TextCNN, BIGRU models] [Ensemble with restrictive linear model]	[3 LightGBM models] [Ensemble with Bagging]	
PASA NJU	ResNet-18 and SeResnext50; preprocessing: shape standardization and image flip (data augmentation)	ResNet-18 and SeResnext50; preprocessing: shape standardization and image flip (data augmentation)	[data truncation(2.5s to 22.5s)][LSTM, VggVox ResNet with pretrained weights of DeepWis- dom(AutoSpeech2019) ThinRestnet34?]	[data truncation(300 to 1600 words)][TF-IDF and word embedding]	[iterative data loading] [Non Neural Nets models] [models complexity increasing over time] [Baysien Optimization of hyperparameters]	
frozenmad	[images resized under 128x128] [progressive data loading increasing over time and epochs] [ResNet-18 model] [pretrained on ImageNet]	[Successive frames difference as input of the model] [pretrained ResNet-18 with RNN models]	[progressive data loading in 3 steps 0.01, 0.4, 0.7] [time length adjustment with repeating and clipping] [STFT and MeI Spectrogram preprocessing] [LR, LightGBM, VggVox models]	[TF-IDF and BERT tokenizers] [SVM, RandomForest , CNN, tinyBERT]	[progressive data loading] [no preprocessing] [Vanilla Decision Tree, RandomForest, Gradient Boosting models applied sequentially over time]	

DeepWisdom


automl_freiburg

Winning Solutions Recap

- (1) **Deep learning** is still dominant;
- (2) **Fixed domain-dependent** and/or **pre-trained** neural architectures are heavily used
- (3) **Neural architecture search** (NAS) hasn't been employed due to its huge computational cost
- (4) **Meta-learning** and **data loading/ingestion** strategies are used (and are useful)

Benchmarking: DeepWisdom on all 66 AutoDL datasets

More info at: <u>autodl.chalearn.org</u>

References

[1] Liu Z, Bousquet O, Elisseeff A, et al. AutoDL Challenge Design and Beta Tests-Towards automatic deep learning. In: *MetaLearn Workshop @ NeurIPS2018*. Montreal, Canada; 2018. https:// hal.archives-ouvertes.fr/hal-01906226. Accessed October 2, 2019.

[2] Liu Z, Guyon I, Junior JJ, et al. AutoCV Challenge Design and Baseline Results. In: *CAp 2019 - Conférence Sur l'Apprentissage Automatique*. Toulouse, France; 2019. https://hal.archives-ouvertes.fr/hal-02265053. Accessed November 5, 2019.

[3] Liu Z, Xu Z, Escalera S, et al. Towards Automated Computer Vision: Analysis of the AutoCV Challenges 2019. To appear in *Pattern Recognition Letters* of Elsevier. 2020. https://hal.archives-ouvertes.fr/hal-02386805. Accessed December 6, 2019.

[4] Liu Z, Xu Z, Rajaa S, Madadi M. Towards Automated Deep Learning: Analysis of the AutoDL challenge series 2019. To appear in *NeurIPSCD2019* in Proceedings of Machine Learning Research (PMLR) 2019:10.

[5] Liu Z, et al, Post-challenge analysis of AutoDL challenges 2019, submitted to TPAMI.

Lessons learned

- (1) The winning methods are capable of generalizing on new unseen datasets => Potential universal AutoML solutions
- (2) Domain-dependent approaches are dominant
 => No universal workflows, mostly hand-tuned meta-learning
- (3) We cannot afford to run expensive NAS for every new task
 => Need transferability of learned architectures
- (4) Beating Baseline 3 by using "true" meta-learning is hard
 => Need more meta-train datasets (public datasets)

To achieve true AutoML, we need...

- (1) Constructive and efficient representation of meta-knowledges: domain/modality related, pixel correlation, etc
- (2) Constructive and efficient representation of learning algorithms: architecture encoding, code-based, etc
- (3) Transferable neural architecture search (NAS) to learn a fast algorithm/function: meta-knowledges -> architecture
- (4) Lifelong learning systems and/or world models that can learn ONCE but continuously

Thank you! Questions?

	AutoDL challenges	Home	NeurIPS 2019	AutoDL	AutoSeries	AutoWeakly	AutoSpeech 2019	AutoGraph	More 🗸	Q
							57			
		Auto	DL	2(019	9-2()20			
	Overview	Challenge	About Aut	ODL	Timelir	ne	Prizes	About	tus	
	•••••	1 1.							n	
Google Paradigm			S	Sign up						
AutoDL challenges			You will be notified of our new challenges							
	Enter AutoSpeech (E	Deadline Apr 20, 20	020)	0) * Required						
0	Enter AutoGraph (De	eadline May 25, 20	20)	Email *						

JOIN THE CHALLENGES!

autodl.chalearn.org