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Abstract

Detecting incipient cognitive dysfunction in Preclinical Alzheimer’s Disease
subjects

by Rachel TRIMBLE

The number of people with Alzheimer’s disease, a degenerative brain disorder,
is projected to triple worldwide by 2060, with no current cure. There has been
a paradigm shift in the diagnostic conceptualization of Alzheimer’s disease (AD)
based on evidence suggesting that structural and biological changes start to occur
during a preclinical phase beginning decennia prior to the emergence of symptoms.
However diagnostic methods for this phase are invasive and costly, thus clinicians
are searching for cognitive tools for screening the population before diagnosing
them.

The goal of this thesis is to support the clinicians in their search for these new cogni-
tive tests for Preclinical AD (pre-AD) detection through machine learning. In partic-
ular to provide a tool for clinicians to validate if a test is sensitive enough to detect
incipient cognitive dysfunction in pre-AD subjects.

To achieve this we first investigated multiple classifiers and ensemble methods to
find a suitable one for the datasets supplied by the clinicians. We incorporate data
augmentation through Synthetic Minority Oversampling Technique (SMOTE) to deal
with the imbalanced nature of the dataset. We also compute the importance for each
individual feature using a technique that assigns a score to these features based on
how useful they were during the classification.

We found Random Forest to be the preferred choice among the tested algorithms.
SMOTE proved to be a crucial step, improving both the AUC and most importantly
the sensitivity. The traditional neuropsychological tests were not sensitive enough
to detect incipient cognitive dysfunction in pre-AD subjects. While the new tapping
tests were more sensitive. Our tool was also easily understandable for the clinicians
thanks to the feature importance.

HTTP://WWW.UNIVERSITY.COM
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Chapter 1

Introduction

1.1 Problem Statement

The pathophysiological process of Alzheimer’s disease (AD) is believed to begin
decennia before the diagnosis of AD. This long “preclinical” phase of AD happens
in the absence of dementia, and could provide a critical opportunity for therapeutic
intervention. The detection of this phase of AD is currently costly, invasive and thus
not suitable for mass testing and detection. Researchers are interested in finding new
tests that are sensitive enough to detect incipient cognitive dysfunction in preclinical
AD patients.

Our objective is to investigate to which degree data science tools can be used to help
provide insights to support clinicians in their discovery of these new cognitive tests.
In particular to provide a tool that will assess which tests are important while classi-
fying preclinical AD subjects (pre-AD) and healthy subjects to help them design new
cognitive tests to detect incipient cognitive dysfunction in the preclinical group.

1.2 Similar work

There has been an increased interest in discovering a method to detect the early
stages of AD. The research spans across many very different approaches, for exam-
ple Hadoux et al [36] use hyperspectral imaging of the retina, Zhu et al [8] test if
linguistic features can detect the early stages, Wilcockson et al [35] hypothesize that
eye movement deteriorates as Alzheimer’s disease progresses, with the gradual loss
of the efficient control of attention and develop impairments of both inhibitory con-
trol and eye movement error-correction while Siedlecki-Wullich et al [11] found that
MicroRNAs in the blood can be a predictive factor in understanding the AD stage a
person is in. While some of these methods were able to detect later stages of the dis-
ease, none could conclude on a robust method for detection at the preclinical phase.

Much research has also been focused on cognitive testing for early detection, as it
is widely accepted that memory loss is generally the earliest cognitive change in
AD. Traditional neuropsychological testing is not sensitive enough for detection of
cognitive changes in the preclinical phase, as such the research is directed towards
finding more demanding testing procedures. Rentz et al. [9] presented a series of
demanding memory tests and found associations between a high demanding face-
name associative memory test and amyloid plaques, a pathophysiological hallmark
of AD. Likewise Tort-Merino et al. [4] found a highly demanding experimental as-
sociative learning test sensitive and capable of detecting subtle memory difficulties.
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Other research has reported that motor dysfunction may be a sensitive marker of
preclinical phases of AD [27, 6] with some literature focusing on motor speed [31].
Additionally, Mollica et al. [24] explored whether motor dysfunction could be useful
for early detection, through a novel finger tapping test. In the study their findings
suggest that motor dysfunction is associated with amyloid pathology and may sub-
tly emerge during the earliest stage of the Alzheimer’s continuum. Hence there are
promising findings that finger tapping could be a test to detect first changes in the
Pre-AD subjects.

There has also been an interest in the application of machine learning to support the
search for a method for detecting the early stages of AD. Most of this research has
been centralised on relatively large data sets and thus deep learning models have
been applied, for example Manu Raju et al [23] utilise a transfer Learning technique
on Magnetic Resonance Imaging (MRI) of the brain. However the cost of diagnosis
is high, and thus not suitable for the mass-sampling that is desired.
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Chapter 2

Introduction into Alzheimer’s
Disease

First identified by Dr. Alois Alzheimer in 1906, AD is now thought to be the most
common cause of dementia. AD is a neurodegenerative disease, affecting brain func-
tion and cognitive processes related to learning and memory. [1] The disease alters
synaptic connectivity through the accumulation of specific brain pathologies and the
distributed neuronal connectivity in time results in the death of brain cells and as a
consequence produces dementia .This results in a decline in memory, ability to artic-
ulate, problem-solve and other cognitive skills and these characteristics eventually
impede the individual from performing basic everyday tasks.

With the aging population on the rise, the economic burden of AD is set to follow suit
and is expected to increase rapidly with the growing percentage of this demographic
in the developed world. In 2015, it was estimated that 46.8 million people are living
with dementia, which is expected to double every 20 years to reach over 74 million
by 2030 and AD is estimated to represent 60-80% of dementia cases [7]. By 2050, the
prevalence of AD is estimated to increase to over 100 million [34] and with no cure
for the debilitating and ultimately fatal disease, it is vitally important to develop
new intervention tools and treatments to manage the imminent healthcare crisis.

Disease-modifying therapies that aim to treat AD patients with cognitive impair-
ment have not demonstrated adequate efficacy in clinical trials. During the last
decade research has made a paradigm shift based on evidence that suggests struc-
tural and biological changes start to occur during a preclinical phase beginning de-
cennia prior to the appearance of clinical symptoms [3]. This preclinical stage of
AD has become a major research focus as the field postulates that early intervention
could provide the best prospect for finding a cure.

2.1 AD stages

In 2011, The National Institute on Aging and the Alzheimer’s Association (NIA-AA)
[26] revised the diagnostic criteria that was originally created in 1984 for diagnosing
AD dementia and established new diagnostic guidelines for the stages of AD. The
highlight of these new criteria was the introduction of biomarkers into the frame-
work, allowing the definition of the preclinical phase of the disease [33]. The AD
biomarkers are detailed in the following subsection and the diagnostic and preclini-
cal stages are described in table below in 2.1.
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FIGURE 2.1: Alzheimer’s Disease stages

2.2 Preclinical AD

AD comprises a long asymptomatic (or preclinical) phase beginning decennia prior
to the emergence of the first clinical symptoms, which trigger the pathophysiological
processes characteristic of the disease. This silent phase can last for years or even
decades without the individual knowing they are in the phase and could potentially
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progress to the later and more aggressive stages of the disease.

Clinical trials in search of a drug development targeting mild-to moderate AD have
had limited success in the search for an effective treatment for AD. The preclinical
stage of AD presents a window of opportunity for disease modifying therapies [15]
and thus it’s detection is crucial.

Historically AD has been defined as a clinical-pathological entity characterized by
a particular clinical phenotype, rendering the definition of an early stage of AD
ambiguous. The NIA-AA group defined a purely biological framework that ex-
cluded clinical outcomes. In this framework, preclinical AD is defined as cognitively
unimpaired individuals that present Alzheimer’s two pathologies, namely amyloid
plaques and neurofibrillary tangles.

2.2.1 Pathophysiology of Preclinical AD

Beta-amyloid

The extracellular accumulation of β-amyloid is one of the processes distinctive to
the pathological features of AD. It is a small piece of a larger protein called amyloid
precursor protein (APP), in the form of sticky, starch-like plaques, in an increased
manner in individuals with AD. It starts with the pieces forming small clusters
called oligomers, these clusters form chains of clusters called fibrils which then form
“mats” of fibrils called beta-sheets. This finally results in plaques which are clumps
of beta-sheets and other substances.

The amyloid cascade hypothesis [14], the dominant model of AD pathogenesis, pos-
tulates that these stages of beta-amyloid aggregation disrupt cell-to-cell communi-
cation and activate immune cells. These immune cells trigger inflammation and
eventually lead to neuronal death.

Neurofibrillary tangles (NFTs) of protein tau

The tau protein is predominantly found in neurons with one of it’s many functions
being to stabilize internal microtubules. The microtubules are structures that facili-
tate axonal transport, and thus a vital element to keep the neuron healthy.

In the presence of Alzheimer’s disease, the tau detaches from these microtubules
and sticks to other tau molecules which create threads that in time join to form Neu-
rofibrillary tangles disrupting the microtubule assembly which ultimately leads to
neural death [5]. Intracellular accumulation of hyperphosphorylated tau is therefore
the second neuropathological hallmark of AD.
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2.2.2 Detection of Preclinical AD

Early detection of AD is crucial and thus it is fundamental to develop new tools
for this purpose. This will allow the detection of individuals who are at risk of the
biological evolution of the disease earlier.

One method for detecting the presence of beta-amyloid and NFTs and thus detecting
the preclinical phase is by performing lumbar puncture procedures and collecting
the Cerebrospinal fluid (CSF) [20]. An alternative method is neuroimaging by con-
ducting positron emission tomography (PET) on the brain [17]. While these methods
have been widely used in research, they are not suitable for mass testing of the pub-
lic, on subjects that seem healthy, which is essential for the detection of the early
stage considering the subject does not experience symptoms. For the prior, the lum-
bar puncture is because the extraction of the CSF is highly invasive that introduces
health risks to patients. While the latter, PET carries a high cost and has limited
availability.

In light of the two aforementioned diagnostic methods being either invasive or costly,
meaning that mass-scale screening of the population is not feasible, research has
shifted to find a method for detecting the incipient cognitive dysfunction in pre-
AD which indicates that the dementia phase is nearer. The research spans across
many very different approaches, with neuropsychological assessments being one of
the front runners. Cognitive and behavioral assessments through battery tests have
proved successful at detecting cognitive impairment in MCI subjects but they are
not sensitive enough to subtle deficits that may be present in preclinical subjects [9].
However, neuropsychologists are rising to the challenge by designing newer and
more sensitive cognitive measures of Preclinical detection, and accurate computer-
ized neuropsychological testing methods [25].
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Chapter 3

Dataset

In this thesis we analyze two different datasets of subjects that have been tested
for the presence of Alzheimer’s Disease. The subjects are grouped into either being
healthy or the stage of the Alzheimer’s Disease that they are in. This categorization
is achieved by taking cerebrospinal fluid through a lumbar puncture, and measuring
the phosphorylated tau and Beta-amyloid values. These two aforementioned values
are present in both datasets.

The datasets are distinct in the features that they contain, with the first dataset con-
taining neuropsychological tests, the traditional tests used for detecting mild cogni-
tive impairment and demographic characteristics. The second dataset also contains
neuropsychological tests, although not completely the same ones, along with new
motor dysfunction tests, namely tapping tests. Both datasets possess characteris-
tics that we need to acknowledge before feeding them into any machine learning
models. In the section we describe the features in the two datasets, summarize their
characteristics and finally mention the data preprocesses applied.

3.1 Features

3.1.1 Dataset 1 - Battery tests

Subjects were divided into four groups according to their stage in Alzheimer’s Dis-
ease: 80 control subjects, 25 Pre-AD, prodromal/MCI 43 and 30 AD patients. All
subjects underwent a neuropsychological battery and their age and gender was also
noted in the dataset.

Neuropsychological battery test

We tested 22 of the battery tests in our model, in particular;

1. buschke_AL: Free and cued selective reminding test free learning score

2. buschke_AT: Free and cued selective reminding test total learning score

3. buschke_RDL: Free and cued selective reminding test delayed free recall score
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4. buschke_RDT: Free and cued selective reminding test Delayed total recall score

5. tam: Memory alteration test

6. vis_cerad: visual memory test

7. paisajes_tot: visual memory test

8. bnt: Boston Naming Test score

9. flu_anim: category fluency task animals in one minute

10. compren: comprehension test

11. ideom: cognition test

12. prax_cerad: cognition test

13. tdp: cognition test

14. VOSP_num: Visual Object and Space Perception battery number location sub-
test

15. VOSP_letras: Visual Object and Space Perception battery incomplete letters
subtest

16. tmtA: Trail Making Test Form A

17. tmtB: Trail Making Test Form B

18. fas_total: fluency test

19. Stroop_lect: Stroop test word reading subtest

20. Stroop_color: Stroop test color reading subtest

21. Stroop_I: Stroop test word-color reading subtest

22. Clave_num: speed test
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3.1.2 Dataset 2 - Battery tests and Tapping Features

Subjects were divided into three groups according to their stage in Alzheimer’s Dis-
ease: 37 control subjects, 20 Pre-AD and 15 AD patients. Control and Pre-AD sub-
jects underwent a neuropsychological battery and all subjects were given a finger
tapping task. The finger tapping task, based on a novel version [32], to measure
the tapping speed and intrasubject variability. Below we mention the features in the
battery and tapping tests that we utilized. The dataset also contains the age, gender
and years of education for each subject.

Neuropsychological battery test

We tested 13 of the battery tests with our model, in particular;

1. buschke_AL: Free and cued selective reminding test free learning score

2. buschke_AT: Free and cued selective reminding test total learning score

3. buschke_RDL: Free and cued selective reminding test delayed free recall score

4. buschke_RDT: Free and cued selective reminding test Delayed total recall score

5. bnt: Boston Naming Test score

6. flu_anim: category fluency task animals in one minute

7. VOSP_num: Visual Object and Space Perception battery number location sub-
test

8. VOSP_letras: Visual Object and Space Perception battery incomplete letters
subtest

9. tmtA: Trail Making Test Form A

10. tmtB: Trail Making Test Form B

11. Stroop_lect: Stroop test word reading subtest

12. Stroop_color: Stroop test color reading subtest

13. Stroop_I: Stroop test word-color reading subtest



10 Chapter 3. Dataset

Tapping Features

The tapping test included six different blocks of 10s each, for each block the sub-
jects were instructed to tap as many times possible. The features used to measure
the motor dysfunction from the tapping test were the tapping speed and intrasubject
variability. These variables showed a strong relationship with the variables used to
form the grouping, phosphorylated tau and Beta-amyloid values, during the data
analysis we performed.

It should be noted that we engineered other features from the tapping dataset, but
none showed a strong correlation with phosphorylated tau and Beta-amyloid val-
ues. The tapping rate is computed simply as the number of taps made over all of
the blocks, while the tapping intrasubject variability is computed by dividing the
subject’s standard deviation by their mean (SD/mean). Where a higher intrasubject
variability indicates greater inconsistent performance across trials.
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3.2 Dataset characteristics

Small with large dimensions

The first dataset contains 178 samples and 1,443 variables while the second contains
72 samples and 51 variables. Small datasets can be difficult to model as they are
accompanied by difficulties such as overfitting. This happens when we increase
the dimensionality of a model without increasing the number of training samples,
resulting in the feature space becoming more sparse and leading the classifier to
overfit easily. As a first step, to model the small datasets, we reduced their dimen-
sionality. We removed features that were irrelevant for our analysis, and worked
with the clinicians that created the datasets to gain domain knowledge to reduce the
dimensionality further.

Imbalanced

The two datasets are imbalanced with a smaller proportion of subjects in the Pre-AD
group, representing 31-35% of the entire datasets. This imbalance property, that is
common to many real healthcare datasets, makes classification a challenging task.
Most classification models are not able to deal with imbalanced datasets, they re-
quire the dataset to be sufficiently balanced for the model to learn from. As outlined
in the subsequent sections, we oversampled the minority class to balance both of the
datasets.

Missing Values

Both datasets contain many samples with missing feature values, which is very com-
mon in these types of medical datasets. There are two types of missing data present
in the datasets:

1. Missing completely at random (MCAR): The missing data are unrelated to the
observation being studied or the other variables in the data set.

2. Missing at random (MAR): The fact that data are missing can be predicted from
the other variables in the study, but not from the missing data themselves.

As we outline in the subsequent subsection, we handle these missing values through
inputting.
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3.3 Dataset preprocessing

3.3.1 Standardization

While scaling of the data is not a necessary step for random forest, we decided to
scale the data before applying the imputing method since it uses a distance based
measure (KNN). This is because we do not want the imputing to be affected by the
magnitude of the features, which without scaling would be biased towards features
with higher magnitude.

We scale the data through normalization. We chose this method over standardiza-
tion since standardization assumes that your observations fit a Gaussian distribu-
tion with a well-behaved mean and standard deviation which is not the case for our
datasets. While you can still standardize data that don’t meet these expectations,
reliable results are not guaranteed.

The data is normalized using the scikit-learn object MinMaxScaler, for which the a
value is normalized as follows:

y = (x − min)/(max − min)

3.3.2 Imputing

As mentioned we have many missing values of the types MCAR and MAR. To han-
dle these missing values we decided to impute them. Imputation is the process of
substituting the missing values in the dataset. Much research has concluded that k-
Nearest Neighbor Imputation (KNN Imputation) is the superior imputation choice
[21, 10]. We tested this method along with replacing the values with the mean, me-
dian, most frequent value and a constant (zero), and witnessed the same results as
the aforementioned papers, indicating that KNN Imputation is the superior method.

With KNN imputation, a new sample is imputed for those missing by finding the
samples in the training set that are closest to it, using euclidean distance, and aver-
aging these nearby points to fill in the value [28]. If the variable is a categorical one,
the most frequent category is taken.

3.3.3 One-hot encoding

When we have categorical data, that is, data that takes only a limited number of val-
ues, are plugged into a machine learning models in Python without being encoded
first we most likely cause an error. Thus coding category data is necessary for most
machine learning models.

One of the most commonly used types of encoding is one-hot encoding. It is primar-
ily used when there are not too many categories for the particular variable. It creates
new binary columns that indicate the presence of each category in the variable.
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Tree-based models, such as Random Forest don’t usually work well with one-hot
encoding when there are many levels. However in our case we do not have any
categorical variables with more than two levels, for example “Gender” and thus
one-hot encoding can be used for our datasets.
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Chapter 4

Proposed Method

Considering the intention of this thesis is to classify two subjects, control and Pre-
AD, we utilize classification models. To choose the most appropriate model we took
a number of aspects into consideration, including the characteristic of data and the
respective model, along with the performance of the classification model. From this
analysis we deemed that Random Forest was the suitable model to classify the data.
We use sklearn library to implement random forest and fine tune the model to be
robust against overfitting. We compute the importance of all features to provide ex-
plainability of the model. Furthermore, considering the imbalanced nature of the
data we propose a data augmentation for the minority class, namely Synthetic Mi-
nority Oversampling Technique (SMOTE).

In the preceding subsections we give a light introduction into Random Forest and
expand on our motivations for the model choice. Following this we introduce the
concept of SMOTE and finally explain the method of validation for the model.

4.1 Random Forest

Devised by L. Breiman in the early 2000s [19], Random Forest still remains one of the
most popular machine learning ensemble methods, due to its adaptability to a wide
range of prediction problems and having few parameters to fine tune. Additionally
it is recognized for its accuracy, along with its capacity to handle small sample sizes
and high-dimensional feature spaces.

Random Forest is an ensemble model based on decision trees that follows the bag-
ging technique. The term bagging stands for bootstrapping and aggregating: rather
than building one single predictor, a single decision tree in this case, the method cre-
ates many decision trees from random samples of data points drawn with replace-
ment, known as bootstrapping. Once the forest of trees has been built, the aggre-
gation happens where a sample is classified by taking the majority vote among all
of the trees in the forest. The technique of bagging, with its multiple decision trees,
helps in reducing the variance in the data, and increasing the number of trees will
reduce the variance of the estimator. Random Forests also apply a method referred
to as random subspace projection [18]. This process randomly selects subsets of fea-
tures used in each data sample, preventing overfitting on features that are powerful
predictors for the target class.
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4.1.1 Random Forest algorithm

1. Ntree bootstrap samples are drawn from the data.

2. For each sample, a decision tree is built and a prediction is estimated.

3. Predict new data by aggregating the predictions of the ntree trees (majority
votes).

4. The final prediction is the most voted prediction result.

FIGURE 4.1: Pseudo code for Random Forest algorithm

4.1.2 Motivation for Random Forest

High dimensional data

Random forests work well with high dimensional data sets since it works with sub-
sets of the data. This is an important characteristic for our purpose considering
clinicians use many tests to assess the cognition state of subjects.

Feature Importance

Estimates of each feature’s importance during the classification are computed by
measuring how much it decreases the impurity at each split in the node, where the
higher the decrease the greater the importance. This feature of random forest is
crucial to demonstrate to the clinicians the importance of each feature (test), firstly
to confirm that how the model gives importance to the features is aligned with their
domain knowledge and secondly to provide a means of assessing the importance of
newly introduced features.

Overfitting

They are able to cope with overfitting due to the power of averaging [2]. Thus when
there is a robust number of decision trees in a random forest, overfitting is unlikely,
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but not impossible, since the averaging of uncorrelated trees lowers the overall vari-
ance and prediction error. We fine tune the parameters of the model to avoid over-
fitting.

Unexcelled in performance among tested algorithms

We tested multiple classifiers and ensemble methods on the datasets and found ran-
dom forest to be a high performer in terms of accuracy and area under the curve
(AUC). A table of this performance can be found in the annex.

Robust to outliers

Outliers are essentially binned making random forest more robust to outliers com-
pared to other models such as logistic regression.

Multicollinearity

This occurs when features are strongly dependent on each other. If multicollinearity
is present in the dataset, it is difficult to determine the importance of a feature. While
some models are sensitive to multicollinearity, like logistic regression, this is less of
a problem for random forest. This is because random forests select features one at a
time and even if there are multiple features that are equally good, random forest can
simply choose one of them at random.
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4.1.3 Overfitting

Overfitting occurs when a model learns the details and noise of the training dataset
to the extent that it negatively impacts the performance of the model on unseen data.
There has been a misconception on the definition of overfitting, with some believing
that a 100% accuracy in the training set indicates overfitting. The confusion arises
from mixing overfitting as a phenomenon with its indicators. A simple, but yet more
accurate definition of overfitting is when a model is no longer as accurate as we want
it to be on the data important to us.

Overfitting happens when adding additional complexity to a model results in the
test error increasing. To ensure our model was not overfitting, we measured the
model’s performance (AUC) on the training dataset and the model’s performance
for unseen data through LOOCV. We do this for three of the model’s parameters
that are mostly associated with overfitting, in particular, the number of trees, the
maximum depth and the minimum number of samples per leaf. We take a range of
values for each of the parameters and plot the training and test AUC for each of the
parameters values in the defined range. If overfitting is present we expect to see a
divergence between the training and test AUC.

Below are the graphs of this analysis per parameter. From these we see that neither
the number of trees nor the maximum depth paramaters are an issue. However it
is evident that when the parameter for the minimum samples per leaf is set at 1
overfitting takes place. We avoid this by setting it equal to 2.

(A) Number of trees (B) Maximum depth

(C) Minimum samples per leaf

FIGURE 4.2: Graphs for checking overfitting
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4.2 Handling Imbalanced data

Imbalanced data is common in medical datasets, where the classes in a dataset have
a highly unequal number of samples. Traditional classification methods, including
Random Forest, perform poorly on minority class examples as they assume the data
is balanced and their misclassification cost during training is equal. However the
misclassification cost of patient samples is higher than that of healthy subjects [37].
It is therefore crucial to improve the identification of patients without disturbing the
classification of healthy subjects.

There are two primary approaches to deal with imbalanced data while using the
random forest model, namely cost-sensitive learning and sampling. The prior, cost-
sensitive approach, works by assigning different weights to the classes, where a
higher weight is assigned to the minority class and thus assigning a higher mis-
classification cost. This helps reduce the biases towards the majority class. The latter
approach, sampling, is achieved by either undersampling the majority class or over-
sampling the minority class. While undersampling is an efficient strategy, it throws
away many potentially useful data and considering our datasets are relatively small,
oversampling is more suitable.

In terms of oversampling there are many techniques that can improve the model
performance . We chose SMOTE [30], a widely used technique that has been shown
to be an optimal choice [12].

4.2.1 SMOTE

We use SMOTE from the imblearn library with the default parameters. This tech-
nique synthesises new minority instances from existing minority instances. First a
random instance is taken from the minority class, then k of the nearest neighbors
are identified (in our case k=5). One of these neighbours is selected at random and
a new synthetic instance is created at a randomly selected point between the two
instances in feature space [29]. The technique is effective since the new synthetic
instances from the minority class are relatively close in feature space to existing in-
stances from the minority class.
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4.3 Validation Method

4.3.1 Performance Metrics

To validate the performance of our model we utilized three performance metrics.

Area under the curve (AUC)

Commonly used in binary classification, it measures the ability of a classifier to dis-
tinguish between classes, the higher the AUC, the better the model is at distinguish-
ing between the classes.

Sensitivity

Measures how often the model correctly identifies people who have the condition
(Pre-AD). This is a key metric since the cost of misclassifying a subject with Pre-AD
is higher to that of misclassifying a healthy subject.

Specificity

Measures how often the model correctly identifies people who do not have the con-
dition (Pre-AD). This metric is not as important as the sensitivity since the cost of
misclassifying a healthy subject is lower to that of misclassifying a subject with Pre-
AD .

4.3.2 Cross Validation

Cross-validation, or k-fold cross-validation [22], is a model evaluation method better
than residuals that estimates the performance of a model on previously unseen data.
Under cross-validation the dataset is divided into k subsets, and the model is trained
k times. Each time, one of the k subsets is used as the test data and the remaining
k-1 subsets are combined to form a training set. The k-fold cross-validation estimate
is then computed as the mean of the evaluation metric over the k models.

There is no correct answer to what size k should be chosen, the main point of cross-
validation is to ensure that the training and validation splits represent, as much as
possible, the variety in the underlying population distribution. For example if the
samples are all biased compared to the actual population, cross validation will be of
no help.

Leave-one-out cross-validation (LOOCV) is the most extreme form of cross-validation,
with K equal to N, the number of data points in the dataset. An attractive prop-
erty of LOOCV is that it provides an almost unbiased estimate of the test error [13].
However, this improved estimate of model performance comes with a high compu-
tational cost and thus may not be suitable for large datasets.

LOOCV is usually the preferred choice when dealing with small datasets, since it
allows for the smallest amount of data to be removed from the training data at each
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iteration. Considering our dataset is small and an accurate estimate of model per-
formance is critical we chose to use LOOCV.
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Chapter 5

Results

5.1 Dataset 1

As expected the model has the ability to classify effectively when the groups differ
cognitively, that is, one has cognitive impairment while the other has no cognitive
complaints, for example while classifying the Control and MCI groups. This is be-
cause the tests being used to make the classification were the tests used to assign the
grouping in terms of cognitive impairment.

For the primary classification of the thesis, being the classification of Control and
Preclinical, the model fails to classify the groups correctly with an area under the
curve value of 0.561 as seen in the below table. This is because by definition the
two groups are deemed cognitively normal. The sensitivity is strikingly low at 0.16,
indicating that the ability to detect Preclinical subjects is low, and thus there is a high
number of people classified as Control that are actually Preclinical. This illustrates
that the tests used as features in the classification are not sensitive enough to detect
preclinical subjects, which is aligned to many other research papers [9, 4, 27].

FIGURE 5.1: Dataset 1 performance

The feature importance scores of the tests allow us to understand which tests are
most important during the classification. This could provide insights for the clin-
icians to understand which tests are pertinent and those that are not in order to
design new tests for detecting incipient cognitive dysfunction in pre-AD subjects.

Below is a table indicating the importance score of each individual feature of the
model, where the higher the score the greater the importance of the feature. From
this we see that the bottom 5 features are a cognition test (ideom), comprehension
test (compren), gender (Sexo), praxis test (prax_cerad) and a cognition (tdp) indicat-
ing they are the least sensible measures for detecting Preclinical. It should be noted
that these features also appeared in the bottom for the classification between Control
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and MCI which is more reliable given the high accuracy and AUC values. The top 5
features included 3 of the buschke tests, a trail making test (tmtA) and a stroop color
test (Stroop_color).

FIGURE 5.2: Dataset 1 feature importance
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5.2 Dataset 2

In this dataset there are traditional battery tests, similar to what we saw in the pre-
vious dataset 1, along with a new test focused on tapping rate and intrasubject vari-
ability.

The objective for this analysis is to understand if the new tests (tapping) are more
sensitive than that of the traditional battery tests for classifying Preclinical and Con-
trol subjects. It should be noted that this dataset does not contain MCI patients that
were available in dataset 1.

Firstly we ran the model on the battery tests and found that they presented no pre-
dictive power with an AUC of 0.48. This reinforces the conclusion we found in the
previous dataset, that battery tests are not sensitive enough to incipient cognitive
dysfunction in pre-AD subjects .

Next we conducted the model with the tapping features, tapping rate and tapping
variability. Here we found that the AUC improved dramatically with an AUC value
of 0.721 as seen in the below table. This indicates that the tapping test features are
more sensitive to subtle cognitive issues in Preclinical subjects.

FIGURE 5.3: Dataset 2 performance

The only features that show evidence of being sensitive enough to identify cognitive
dysfunction in preclinical subjects are the tapping features. However the sensitivity
is very low at 0.550 due to the imbalance nature of the dataset and thus we apply
SMOTE to make the dataset balanced. The performance metrics improve thanks to
SMOTE with an increase of 0.076 in AUC (0.797) and an increase of 0.261 in sensitiv-
ity (0.811)

We then computed the feature importance scores and found that intrasubject vari-
ability was the most important feature with a score of 0.72 out of 1. This is aligned to
other motor dysfunction studies, Verghese et al. (2008) [16] indicated that a group of
subjects In the early stages of AD presented greater variability when walking than
the control group.

While this result suggests that tapping features are more sensitive than battery tests,
we have not been successful at effectively identifying cognitive dysfunction in pre-
clinical subjects with a sensitivity value of 0.811. We would need more new features
sensitive enough to detect cognitive dysfunction in preclinical subjects.
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Chapter 6

Conclusions

The goal of this thesis was to provide a tool for clinicians to validate if a test is
sensitive enough to detect incipient cognitive dysfunction in pre-AD subjects. Fur-
thermore to provide a means of understanding what features are important in the
classification. We can conclude that we have achieved these goals by providing a
model, in particular Random Forest, that is easily understandable for the clinicians
and provides a means to understand the importance of a test thanks to the feature
importance score.

We found that imputing the missing values through k-Nearest Neighbor Imputa-
tion was the most successful in terms of performance of the model. Additionally we
concluded that data augmentation through SMOTE was crucial to correct the imbal-
anced nature of the datasets and substantially improved the model performance.

We tested the model on two different datasets provided by the clinicians, the first
containing neuropsychological tests and the second containing relatively new fea-
tures based on finger tapping. We found that the neuropsychological tests were not
sensitive enough to detect incipient cognitive dysfunction in pre-AD subjects. While
the new tapping tests were more successful, none of the tests were sufficient enough
to effectively identify incipient cognitive dysfunction in pre-AD subjects, and thus
additional testing is needed for this purpose.
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Chapter 7

Source code

All the source code used to develop this project is available on GitHub: Link

https://github.com/rachelt27/TFM2021
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Appendix A

Model selection performance

FIGURE A.1: Model performance during the model selection process
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