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Motivation
Introduction

I The proportion of elderly people in
developed countries

I Health care robots
I Service robots

Challenges:

I Hardware
I Sensing/planning/executing

1

2

3
Sensing the surroundings

1http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
2http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
3https://www.willowgarage.com/sites/default/files/images/pr2Image.png

http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
https://www.willowgarage.com/sites/default/files/images/pr2Image.png
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Motivation
Introduction

The aim of the project is to create a vision based
system, capable of semantically categorizing objects in

indoor cluttered scenes using RGB-D cameras and
computer vision techniques.
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Semantic Segmentation
Introduction

I Semantic - Meaningful

I Segmentation - Division/Separation
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Dataset
Introduction

The literature suggest to use:

The NYU-v2 dataset[13]

About the dataset:

I 1449 densely labelled Kinect 360
RGB-D images

I 894 annotated classes
I Data split used by SOTA (795/654)
I Mapping into four semantic classes



55

Segmentation of
RGB-D Indoor Scenes

Mikkel Thøgersen

5Introduction

Overview

Preprocessing
Superpixel Segmentation

Features
Primitives

Dominant Normals

CRF Model
Graph Structure

Learning

RF and ROF features
Random Offset Features

Random Forest

MMSSL
Multi-scale Decomposition

Results

References

Dept. of Electronic Systems
Aalborg University

Denmark

Dataset
Introduction

The literature suggest to use:

The NYU-v2 dataset[13]

About the dataset:

I 1449 densely labelled Kinect 360
RGB-D images

I 894 annotated classes
I Data split used by SOTA (795/654)
I Mapping into four semantic classes



55

Segmentation of
RGB-D Indoor Scenes

Mikkel Thøgersen

6Introduction

Overview

Preprocessing
Superpixel Segmentation

Features
Primitives

Dominant Normals

CRF Model
Graph Structure

Learning

RF and ROF features
Random Offset Features

Random Forest

MMSSL
Multi-scale Decomposition

Results

References

Dept. of Electronic Systems
Aalborg University

Denmark

Dataset
Introduction

RGB image Depth map

Using all available classes Four semantic classes
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Choice of Models
Introduction

The literature points toward Conditional Random Fields.
I Works that use the CRF shows SOTA results[2, 9, 11, 8].

I Structured prediction.
I Contextual.
I Independent of interest points.

Couprie et. al use Convolutional Neural Networks, however
their results are worse than the previously mentioned.
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Choice of Models
Introduction

Testing the CRF alone:

not good enough

Stückler et. al[14] use a Random Forest with random offset
features, which gives pixel wise predictions.

4

Use it as an input to the CRF.
A similar approach is adopted in [9] and shows good results.

4(Decision Forests for Computer Vision and Medical Image Analysis, Criminisi and
Shotton, 2013, [4])
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Choice of Models
Introduction

Lastly, the work of Gatta et. al[5] shows how stacking
classifiers and using intermediate multi-scale decompositions
can enhance performance of models. This is further shown by
Sampedro et. al [12].

The included models are consequently:
I Conditional Random Field
I Random Forest with Random Offset Features
I A stacked classifier using the MSSL framework
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Overview

The model consists of three
main elements:

I SLIC, CRF and features
I Random Forest
I MMSSL using a Stacked

Random Forest
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Extracting Primitives
Preprocessing

Extracting 3D Cartesian coordinates:

Extracting normals:
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Superpixel Segmentation
Preprocessing

A trend in literature is to use an over segmentation method to
obtain superpixels and then label them. An over segmentation
has some advantages:

I Diminishing data
I Keeps object boundaries
I Enables local features in coherent regions
I Match very well with graph based methods

Achanta et. al[1] presents the SLIC segmentation:
I Superior in speed
I Superior in performance (mostly)
I Used in the works of Reza and Kosécka[11] and Müeller

and Behnke[9].
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SLIC Segmentation
Preprocessing

Is based on K-means clustering and limiting the search area for
the clustering.

[1]
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Introduction
Features

The features should describe the superpixels!
Furthermore, Conditional Random Fields (CRFs) rely on
contextual features.

I Node Features→ Node Potentials
I Edge Features→ Edge Potentials
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Genreic Features
Features

Primitive features:
I Color histograms

I Normals
I Spatial differences
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Dominant Normals
Features

Finding the dominant normal direc-
tions:

I Up is generally up

I Dominant directions
→ Manhattan assumption
→ scene coordinates

Method:
I Mean shift clustering
I Evaluate modes based on

direction and support

nfloor = argmax
p∈P

exp

−( |pθ − θstd|
180

)λ (
1− pµ∑

p∈P
pµ

)
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Dominant Normals
Features

Knowing the floor normal gives a
range of valuable information:

I Find the floor

I Comparing the vertical
alignment

I Getting height
I Helps to find the walls
I Room Layout
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CRF Model
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Parameterization
CRF Model

But what is ψα?

ψα(si−1, k, si, c,w) → exp (fn(si−1, k,w) + fe(si−1, k, si, c,w))

So what is fn and fe then?
All the node and edge feature functions combined!

fn(si−1, k,w) = wk fNstd(si−1) + wk fD∇(si−1) + . . .

fe(si−1, k, si, c,w) = w1{c=k} fColDiff(si−1, si) + . . .
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Learning
CRF Model

To fit the model to the data, we have to learn the w-parameters.
Several methods available, but they all optimize some form of:

w∗ = argmax
w

N∏
n=1

p(yn|xn,w)

where yn and xn are the training samples.
Through the use of the Kullback-Leibler divergence, and by
adding regularization parameters, an expression for the
optimization of w∗ is derived:

L(w) = λ||w||2 +
N∑
n=1

∑
ψ∈Ψ

ψ(sn, sn)−
N∑
n=1

logZ(xn, w)

Which is the Regularized Maximum Conditional Likelihood
Training.
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Optimization
CRF Model

There are different ways of optimizing the parameters, w.

From descriptions of the methods[10], the Pseudo-Likelihood
method is chosen as it is fast to train.
Main benefit: Optimize over the individual nodes→ fast.
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Optimization
CRF Model

The model is optimized w.r.t the regularization parameters,
using a validation set and a 2D grid search:

102 103 104 105 106

102
103

104
105

106
107

Optimization w.r.t Avg. Class Acc.

λe λn

0.2

0.3

0.4

0.5
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0.7
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Optimization w.r.t Pixel Acc.

λe λn

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

This shows an accuracy in the optimal points of:

Opt. Param.
λn 101

λe 106

Resulting accuracies
Pix. acc. 70.9
avg. class acc. 67.7
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SOTA comparison
CRF Model

Work Per class acc. Pix. acc.
Müller and Behnke[9] 71.9 72.3

Couprie et al[3] 63.5 64.5

Khan et al[8] 65.6 69.2

Gupta et al[6] 65 64.9

Nico Höft et al[7] 62.0 61.1

This work 67.7 70.9
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Random Offset Features
RF and ROF features

Random Offset Features:

I Similar to the well known Haar-features used by
Viola-Jones[15]

I Can capture non-obvious features
I Fast
I Proven, used by Stückler et al[14].
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Random Offset Features
RF and ROF features

For a query point p:
I Generate random pixel offsets

I Generate a randomly sized box around each offset
I Choose a channel at random (Lab color or depth) for each

offset and sum inside the box
I Randomly take the absolute differences between the

values
I Done!
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As a model for evaluating and using them, a Random Forest is
chosen!
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RF and ROF features

Decision Tree, consecutive split functions:

[4]
[4]

Information Gain (KL-divergence):
I(S, θ) = H(S)−

∑
i∈{L,R}

|Si|
|S| H(Si)

Shannon Entropy:
H(S) = −

∑
c∈C

p(c) log(p(c))
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RF and ROF features

At the leaf nodes, a prob-
ability for each class is as-
signed.

Depth of the tree is con-
trolled usually by:

I Maximum depth
I Minimum number of

samples at leaf

Trees are gathered in ensembles and trained using Bagging.
→ Random Forests
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Random Forest
RF and ROF features

A Random Forest is trained on three thousand random
features.

Based on out-of-bag-samples, the features are evaluated using
the trained model.
Following, the features are ranked.

The final model can now be trained.

The model has a series of parameters:
I Number of splits at each branch
I Number of trees to train
I Minimum number of samples at Leaf

[4]
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Optimization
RF and ROF features

Number of trees in random forest
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Optimization
RF and ROF features

To accommodate the Random Forests’ predictions as input for
the CRF, the regularization have to be re-optimized.
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Optimal parameters are approximately:

Optimal Parameters
λn 100

λe 106
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SOTA comparison
RF and ROF features

Work Per class acc. Pix. acc.
Müller and Behnke[9] 71.9 72.3

Couprie et al[3] 63.5 64.5

Khan et al[8] 65.6 69.2

Gupta et al[6] 65 64.9

Nico Höft et al[7] 62.0 61.1

This work 70.0 71.5

Not good enough
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Multi-scale Multi-class Stacked Sequential Learning
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Introduction
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Multi-scale Multi-class Stacked Sequential Learning

Consists of:
I A multi-scale decomposition
I A stacked classifier
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Multi-scale Decomposition
Multi-scale Multi-class Stacked Sequential Learning

From a query point:

I Define a set of distance intervals, I. (4 chosen)
I For each interval sum over each of the confidence maps.
I Normalize over each interval.
I Result: a CI dimension feature vector (16-dim).
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Stacked Random Forest
Multi-scale Multi-class Stacked Sequential Learning

Another Random Forest

Acts on the features of the CRF and the decomposition

Sample:

CRF+RF CRF+RF+SRF GT
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Final Results
Results

Work Floor Struct. Furn. Props Cl. acc. Pix. acc.
Müller and Behnke[9] 94.9 78.9 71.1 42.7 71.9 72.3

Couprie et al[3] 87.3 87.8 45.3 35.5 63.5 64.5

Khan et al[8] 87.1 88.2 54.7 32.6 65.6 69.2

Gupta et al[6] 82 73 64 37 65 64.9

Nico Höft et al[7] 77.9 65.4 55.9 49.9 62.0 61.1

This work 95.5 80.5 77.1 35.3 72.1 73.8
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Measures
Results

Measure Floor Struct. Furn. Props Average
Precision 83.1 78.1 69.0 54.4 71.1

Recall 94.9 82.8 82.1 19.0 69.7

Specificity 97.3 86.7 80.1 96.9 90.2
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Measures
Results

The posterior class distributions:
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Measures
Results

A common method to evaluate methods is the Receiver
Operating Curve:

False Positive Rate
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Floor AUC: 0.9925
Structure AUC: 0.91888
Furniture AUC: 0.88164
Props AUC: 0.81014
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Conclusion
Results

The project showed:

I State-of-the-art results
I MMSSL works
I CRF is powerful
I Dominant normal directions is powerful
I Paper pending! BMVC
I Journal paper
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Sample results

RF CRF + RF

RF + CRF + RFS GT
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Sample results

RF CRF + RF

RF + CRF + RFS GT
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Thank you Jordi!
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