Segmentation of RGB-D Indoor Scenes
by stacking Random Forests and Conditional Random Fields

June 24, 2015

Mikkel Thggersen

Department of Electronic Systems
Aalborg University
Denmark

«

AALBORG UNIVERSITY
DENMARK




«

AALBORG UNIVERSITY
DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thegersen

Introduction

Features

CRF Model

RF and ROF features

MMSSL

Results

References

Dept. of Electronic Systems
Aalborg University
Denmark

Agenda

Introduction
Overview
Preprocessing
Superpixel Segmentation
Features
Primitives
Dominant Normals
CRF Model
Graph Structure
Learning
RF and ROF features
Random Offset Features
Random Forest

MMSSL
Multi-scale Decomposition

Results



« Motivation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thegersen

Introduction

"http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
O s Uvara ™ 2http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
Denmark 55 Shttps://www.willowgarage.com/sites/default/files/images/pr2lmage.png


http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
https://www.willowgarage.com/sites/default/files/images/pr2Image.png

« Motivation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thegersen
Introduction
» The proportion of elderly people in
developed countries

"http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
O s Uvara ™ 2http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
Denmark 55 Shttps://www.willowgarage.com/sites/default/files/images/pr2lmage.png


http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
https://www.willowgarage.com/sites/default/files/images/pr2Image.png

« Motivation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thagersen v @
e
Introduction . A
» The proportion of elderly people in L
1

developed countries
» Health care robots

b

"

» Service robots \g ) (
2

"http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
O s Uvara ™ 2http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
Denmark 55 Shttps://www.willowgarage.com/sites/default/files/images/pr2lmage.png


http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
https://www.willowgarage.com/sites/default/files/images/pr2Image.png

« Motivation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thagersen v @
e
Introduction . A
» The proportion of elderly people in L
developed countries 1
» Health care robots o8
. A /L4
» Service robots o
Challenges: )

"http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
O s Uvara ™ 2http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
Denmark 55 Shttps://www.willowgarage.com/sites/default/files/images/pr2lmage.png


http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
https://www.willowgarage.com/sites/default/files/images/pr2Image.png

« Motivation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thagersen v @
e
Introduction -
» The proportion of elderly people in L
developed countries 1
» Health care robots R
. A /L4
» Service robots o
Challenges: )
» Hardware >

"http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
O s Uvara ™ 2http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
Denmark 55 Shttps://www.willowgarage.com/sites/default/files/images/pr2lmage.png


http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
https://www.willowgarage.com/sites/default/files/images/pr2Image.png

« Motivation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thagersen v @
Oi=n
Introduction -
» The proportion of elderly people in L
developed countries 1
» Health care robots .8
. A YLA\N
» Service robots /
Challenges: )
» Hardware =
» Sensing/planning/executing @‘
7
3

"http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
O s Uvara ™ 2http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
Denmark 55 Shttps://www.willowgarage.com/sites/default/files/images/pr2lmage.png


http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
https://www.willowgarage.com/sites/default/files/images/pr2Image.png

«

AALBORG UNIVERSITY
DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thegersen

Introduction
Overview
Preprocessing
Features

CRF Model

RF and ROF features

MMSSL

Results

References

Dept. of Electronic Systems
Aalborg University
Denmark 55

Motivation

Introduction

. @
Oi=n
. A
» The proportion of elderly people in L
developed countries 1
» Health care robots R
» Service robots ‘
Challenges: 5
» Hardware =
» Sensing/planning/executing @‘
7
3

Sensing the surroundings ‘

"http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
2http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
Shttps://www.willowgarage.com/sites/default/files/images/pr2lmage.png


http://asimo.honda.com/ASIMO_DCTM/News/images/highres/Meet_ASIMO.jpg
http://www.toyota-global.com/innovation/partner_robot/images/family_img01.jpg
https://www.willowgarage.com/sites/default/files/images/pr2Image.png

« Motivation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thegersen

Introduction

The aim of the project is to create a vision based
system, capable of semantically categorizing objects in
indoor cluttered scenes using RGB-D cameras and
computer vision techniques.

Dept. of Electronic Systems
Aalborg University
Denmark 55



« Semantic Segmentation

AALBORG UNIVERSITY Introduction

DENMAR

Segmentation of
RGB-D Indoor Scenes

Mikkel Thegersen

Introduction

» Semantic - Meaningful

Dept. of Electronic Systems
Aalborg University
Denmark 55



« Semantic Segmentation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thegersen
Introduction

» Semantic - Meaningful
» Segmentation - Division/Separation

Dept. of Electronic Systems
Aalborg University
Denmark 55



« Semantic Segmentation

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes
Mikkel Thegersen

Introduction

Overview » Semantic - Meaningful
e » Segmentation - Division/Separation

Features
oor curtain
tssue
toiet paper hoide
CRF Model tollet paper
tssue box
towel
towel o
rug
toilet
RF and ROF features mirtor
binds
sink
wall
floor
faucet
MMSSL counter
cabinet
battle
unused
Results
References

Dept. of Electronic Systems
Aalborg University
Denmark 55



« Dataset

AALBORG UNIVERSITY Introduction

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thogersen The literature suggest to use:

Introduction

The NYU-v2 dataset[13]

Dept. of Electronic Systems
Aalborg University
Denmark 55



«

AALBORG UNIVERSITY
DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thegersen
Introduction
Overview

Preprocessing

Features

CRF Model

RF and ROF features

MMSSL

Results

References

Dept. of Electronic Systems
Aalborg University
Denmark

55

Dataset

Introduction

The literature suggest to use:

The NYU-v2 dataset[13]

About the dataset:

» 1449 densely labelled Kinect 360
RGB-D images

» 894 annotated classes

» Data split used by SOTA (795/654)

» Mapping into four semantic classes

| Flaor | | Structure | | Furniture | - -
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The literature points toward Conditional Random Fields.
Works that use the CRF shows SOTA results[2, 9, 11, 8].
Structured prediction.

Contextual.

Independent of interest points.
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Couprie et. al use Convolutional Neural Networks, however
their results are worse than the previously mentioned.
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Stlckler et. al[14] use a Random Forest with random offset
features, which gives pixel wise predictions.

Features v
!

Tree t=1

CRF Model

RF and ROF features

B Use it as an input to the CRF.
A similar approach is adopted in [9] and shows good results.

O s Uvara ™ *(Decision Forests for Computer Vision and Medical Image Analysis, Criminisi and

Denmark s5 ) Shotton, 2013, [4])
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Sampedro et. al[12].

Depth  —] Feature X Base z X' Stacked Y’
RGE —jp| Extraction Classifier Classifier

The included models are consequently:
» Conditional Random Field
» Random Forest with Random Offset Features
» A stacked classifier using the MSSL framework
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Superpixel Segmentation

Preprocessing

A trend in literature is to use an over segmentation method to
obtain superpixels and then label them. An over segmentation
has some advantages:

Diminishing data

» Keeps object boundaries

» Enables local features in coherent regions
» Match very well with graph based methods

v

Achanta et. al[1] presents the SLIC segmentation:
» Superior in speed
» Superior in performance (mostly)

» Used in the works of Reza and Kosécka[11] and Mueller
and Behnke[9].
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Knowing the floor normal gives a
range of valuable information:

» Find the floor

» Comparing the vertical
alignment

» Getting height
» Helps to find the walls
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Knowing the floor normal gives a
range of valuable information:

v

Find the floor

Comparing the vertical
alignment

Getting height
Helps to find the walls
Room Layout

Dominant Normals
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Parameterization
CRF Model

But what is ¢, ?
1/)(\ (Si71 ; k;7 Si, C, W) — exp (fn(Si71 ’ k;7 W) + fﬂ(sifl ) k7 Si, C, W))

So whatis f, and f. then?
All the node and edge feature functions combined!

fr(siz1,k, W) = wi fusa(si-1) +wk fov(si-1) + ...

fe(siz1,k,5i,¢,W) = Wy (e} fooitt(si—1,8:) + ...
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Learning
CRF Model

To fit the model to the data, we have to learn the w-parameters.
Several methods available, but they all optimize some form of:

N
w* = argmax H p(y™|z"™, w)

w n=1

where y™ and z™ are the training samples.

Through the use of the Kullback-Leibler divergence, and by
adding regularization parameters, an expression for the
optimization of w* is derived:

N N
L(w) = \||w]|]* + Z Z P(s™,s") — Z log Z(x",w)
n=1ypew n=1

Which is the Regularized Maximum Conditional Likelihood
Training.
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Optimization
CRF Model

There are different ways of optimizing the parameters, w.
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Optimization
CRF Model

There are different ways of optimizing the parameters, w.

From descriptions of the methods[10], the Pseudo-Likelihood
method is chosen as it is fast to train.
Main benefit: Optimize over the individual nodes — fast.
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« Optimization

AALBORG UNIVERSITY CRF Model

DENMARK

Segmentation of
RGB-D Indoor Scenes

Mikkel Thagersen The model is optimized w.r.t the regularization parameters,
using a validation set and a 2D grid search:

Optimization w.r.t Avg.

ss Acc. Optimization w.r.t

This shows an accuracy in the optimal points of:

Opt. Param. Resulting accuracies
An 10" Pix. acc. 70.9
Ae 10° avg. class acc. | 67.7
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« SOTA comparison

ArLsoRo UNIVERSITY CRF Model

DENMAR

Segmentation of

RTABKES"”:;;’SZ:% Work Per class acc.  Pix. acc.
Muller and Behnke[9] 71.9 72.3
Couprie et af[3] 63.5 64.5
Khan et al[8] 65.6 69.2
Gupta et al[6] 65 64.9
Nico Hoft et af[7] 62.0 61.1
This work 67.7 70.9

Learning @ floor _structure furniture

floor

structure

furniture
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Random Offset Features:

» Similar to the well known Haar-features used by
Viola-Jones[15]

» Can capture non-obvious features
» Fast
rancomonserreanres (28) > Proven, used by Stickler et af14].
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CRF Model

RF and ROF features For a query pOInt p
A » Generate random pixel offsets
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Introduction
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Features

CRF Model

RF and ROF features For a query pOInt p
A » Generate random pixel offsets

MMSSL » Generate a randomly sized box around each offset
Results » Choose a channel at random (Lab color or depth) for each
References offset and sum inside the box
» Randomly take the absolute differences between the
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Introduction
Overview

Preprocessing

Features

CRF Model

RF and ROF features For a query pOInt p
A » Generate random pixel offsets

MMSSL » Generate a randomly sized box around each offset
Results » Choose a channel at random (Lab color or depth) for each
References offset and sum inside the box
» Randomly take the absolute differences between the
values

Dept. of Electronic Systems

Aalborg University
» Done!
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To make these features work:
» Create a large set of Random Offset Features
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To make these features work:
» Create a large set of Random Offset Features
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To make these features work:
» Create a large set of Random Offset Features
» Test them all
» Evaluate features

Random Offset Features @
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AALBORG UNIVERSITY RF and ROF features
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To make these features work:

Create a large set of Random Offset Features
Test them all

Evaluate features

Keep and use the best of them

vV v v VY

Random Offset Features @
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To make these features work:

Create a large set of Random Offset Features

Test them all

Evaluate features

Keep and use the best of them

As a model for evaluating and using them, a Random Forest is

vV v v VY

chosen!

Random Offset Features @

Tree t=1
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data before split class distribution
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Information Gain (KL-divergence):  Shannon Entropy:
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At the leaf nodes, a prob-
ability for each class is as-
signed.
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ability for each class is as- Depth of the tree is con-
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At the leaf nodes, a prob-
ability for each class is as- Depth of the tree is con-
signed. trolled usually by:

‘SJ
» Maximum depth
- » Minimum number of

samples at leaf

Trees are gathered in ensembles and trained using Bagging.
Random Fores — Random Forests
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RGB-D Indoor Scenes A Random Forest is trained on three thousand random
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RGB-D Indoor Scenes A Random Forest is trained on three thousand random
Mikkel Thegersen featu res.

Based on out-of-bag-samples, the features are evaluated using
the trained model.

Following, the features are ranked.

Random Forest
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Random Forest
RF and ROF features

A Random Forest is trained on three thousand random
features.

Based on out-of-bag-samples, the features are evaluated using
the trained model.

Following, the features are ranked.

The final model can now be trained.

The model has a series of parameters:
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Random Forest
RF and ROF features

A Random Forest is trained on three thousand random
features.

Based on out-of-bag-samples, the features are evaluated using
the trained model.

Following, the features are ranked.

The final model can now be trained.

The model has a series of parameters:
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Random Forest
RF and ROF features

A Random Forest is trained on three thousand random
features.

Based on out-of-bag-samples, the features are evaluated using
the trained model.

Following, the features are ranked.

The final model can now be trained.

The model has a series of parameters:
» Number of splits at each branch
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Random Forest
RF and ROF features

A Random Forest is trained on three thousand random
features.

Based on out-of-bag-samples, the features are evaluated using
the trained model.

Following, the features are ranked.

The final model can now be trained.

The model has a series of parameters:
» Number of splits at each branch
» Number of trees to train
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Random Forest
RF and ROF features

A Random Forest is trained on three thousand random
features.

Based on out-of-bag-samples, the features are evaluated using
the trained model.

Following, the features are ranked.

The final model can now be trained.

The model has a series of parameters:
» Number of splits at each branch
» Number of trees to train
» Minimum number of samples at Leaf
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AALBORG UNIVERSITY RF and ROF features

DENMARK

Segmentation of

Rae-D indoor scenes - TO accommodate the Random Forests’ predictions as input for
Hikel Thogersen the CRF, the regularization have to be re-optimized.

Optimization w.r.t Avg. Class Acc. Optimization w.r.t Pixel Acc.

Random Forest

Optimal parameters are approximately:

Optimal Parameters
An 100
Ae 108
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Work Per class acc.  Pix. acc.
Muller and Behnke[9] 71.9 72.3
Couprie et all3] 63.5 64.5
Khan et af[8] 65.6 69.2
Gupta et af6] 65 64.9
Nico Hoft et al[7] 62.0 61.1
S © This work 70.0 71.5
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Work Per class acc.  Pix. acc.
Muller and Behnke[9] 71.9 72.3
Couprie et all3] 63.5 64.5
Khan et af[8] 65.6 69.2
Gupta et af6] 65 64.9
Nico Hoft et al7] 62.0 61.1
S © This work 70.0 71.5
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Multi-scale Multi-class Stacked Sequential Learning

BASE CLASSIFIER: Y | CONTEXTUAL ENCODING: STACKED CLASSIFIER:
X RF+CRF Multi-scale decomposition RF

Consists of:
MMSSL ©  » Amulti-scale decomposition
» A stacked classifier
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Mult-scale Decomposition @ From a query pOint:
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Mult-scale Decomposmon From a query pOint:
» Define a set of distance intervals, I. (4 chosen)
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Mult-scale Decompcsmon From a query pOint:
» Define a set of distance intervals, |. (4 chosen)
» For each interval sum over each of the confidence maps.
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Vit scalo Doomposiion (41 ) From a query point:
» Define a set of distance intervals, |. (4 chosen)
» For each interval sum over each of the confidence maps.
» Normalize over each interval.
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i sao esamosion (1) T TOM @ QUETY point:
» Define a set of distance intervals, |. (4 chosen)
» For each interval sum over each of the confidence maps.
» Normalize over each interval.

O oy Unerany » Result: a Cl dimension feature vector (16-dim).
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Another Random Forest

Acts on the features of the CRF and the decomposition
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Another Random Forest

Introduction
Crenvew Acts on the features of the CRF and the decomposition
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Features Sample
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CRF Model l
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Results

DENMARK
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RGB-D Indoor Scenes

Mikkel Thagersen Work Floor Struct. Furn. Props | Cl. acc. Pix. acc.
Muller and Behnke[9] | 94.9  78.9  71.1  42.7 71.9 72.3
Couprie et al3] 87.3 87.8 45.3 35.5 63.5 64.5
Khan et al[8] 87.1 88.2 54.7 32.6 65.6 69.2
Gupta et al[6] 82 73 64 37 65 64.9
Nico Héft et af[7] 77.9 65.4 55.9 49.9 62.0 61.1
This work 95.5 80.5 77.1 35.3 721 73.8

structure furniture

structure

Results @
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Measure | Floor Struct. Furn. Props | Average

Precision | 83.1 78.1 69.0 54.4 71.1
Recall 94.9 82.8 82.1 19.0 69.7
Specificity | 97.3 86.7 80.1 96.9 90.2
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The project showed:

>
>
>
>
>
>

State-of-the-art results

MMSSL works

CRF is powerful

Dominant normal directions is powerful
Paper pending! BMVC
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