
Master in Artificial Intelligence
Master of Science Thesis

Human Multi-Robot Interaction
based on Gesture Recognition

Author:
Gerard Canal Camprodon

Supervisor:
Cecilio Angulo Bahón

(ESAII-UPC)

Cosupervisor:
Sergio Escalera Guerrero

(MAiA-UB)

Facultat d’Informàtica de Barcelona (FIB)
Facultat de Matemàtiques (UB)
Escola Tècnica Superior d’Enginyeria (URV)

Universitat Politècnica de Catalunya (UPC)
Universitat de Barcelona (UB)
Universitat Rovira i Virgili (URV)

Defense date: February 6, 2015

January 2015

“Human-like intelligence requires human-like interactions with the world.”
– Rodney Brooks

Abstract

The emergence of robot applications and its growing availability to non-
technical users implies the development of new ways of interaction between
this kind of electronic devices and users. Human Robot Interaction (HRI) is
a research area about the study of the dynamics involved in the interaction
between humans and robots. It involves several knowledge fields such as
natural language processing, computer vision, machine learning, electronics
and even social sciences like psychology and human communication. HRI
aims at the creation of natural interfaces between human and robots which
are intuitive and easy to use without previous knowledge or training.

The main goal of this Master Thesis is the development of a gestural in-
terface to interact with robots in a similar way as humans do, allowing the
user to communicate information beyond linguistic description of the task
(non-verbal communication). In order to fulfill this objective, the gesture
recognition application has been implemented using the Microsoft’s Kinect
v2 sensor. Hence, a real-time algorithm is described to deal with two kinds of
gestures which are described; the static gestures and the dynamic ones, be-
ing the latter recognized using a weighted Dynamic Time Warping method.
Skeletal features are used to define both kinds of gestural sequences, having
each gesture its own set of specific features.

The Kinect based gesture recognition application has been implemented in a
multi-robot case. So, a NAO humanoid robot is in charge to interact with the
users and respond to the visual signals they produce. Moreover, a wheeled
Wifibot robot carries both the sensor and the NAO robot, easing navigation
when necessary. The system is currently able to recognize two gestures, one
of each kind (static and dynamic). The dynamic gesture consists in a wave
movement which the user salutes the robot; meanwhile the static one is a
pointing to an object gesture. When performed, the robot looks for objects
near the location which has been pointed, and tries to detect which is the
object that the user was referring to, asking him or her about it, if needed.
When the object requested by the user is recognized, the robot goes down
the wheeled platform, approaches to it and shows it to the user.

A broad set of user tests have been carried out demonstrating that the sys-
tem is, indeed, a natural approach to human robot interaction, with a fast
response and easy to use, showing high gesture recognition rates. Possi-
ble applications of this kind of systems to household environments are also
discussed.

i

Resum (Catalan)

L’emergent nombre d’aplicacions relacionades amb la robòtica i la seva crei-
xent disponibilitat per part d’usuaris no tècnics implica el desenvolupament
de noves formes d’interacció entre aquests tipus de dispositius i els usuaris.
La Interacció Persona Robot (IPR) és una àrea de recerca que estudia les
dinàmiques involucrades en la interacció entre humans i robots, i que inclou
diferents àrees de coneixement tals com el processament del llenguatge na-
tural, la visió per computador, l’aprenentatge automàtic, l’electrònica i fins
i tot ciències socials com la psicologia i la comunicació humana. L’IPR té
com a objectiu la creació d’interfícies naturals entre persones i robots, que
siguin intuïtives i fàcils d’usar sense cap coneixement o entrenament previs.

El principal objectiu d’aquest Treball Final de Màster és el desenvolupament
d’una interfície gestual per tal d’interactuar amb robots d’una forma similar
a la que empren els humans, permetent a l’usuari comunicar informació més
enllà d’una descripció verbal de la tasca.

Per tal d’acomplir aquest objectiu, l’aplicació de reconeixement de gestos
s’ha implementat utilitzant el sensor Microsoft Kinect v2. Per consegüent,
s’ha descrit un algorisme en temps real que tracta amb dos tipus de gestos
diferents: els gestos estàtics i els dinàmics, i un mètode de Dynamic Time
Warping ponderat s’ha emprat per reconèixer els gestos dinàmics. Ambdós
tipus de gestos s’han definit mitjançant característiques esquelètiques, on
cada gest en té el seu propi conjunt.

L’aplicació de reconeixement de gestos basada en Kinect s’ha implementat en
un cas multi-robot. Un robot humanoide NAO és l’encarregat d’interactuar
amb els usuaris i respondre als estímuls visuals que produeixen. A més, un
robot amb rodes Wifibot transporta tant el sensor com el NAO, facilitant-ne
així la navegació. El sistema és capaç de reconèixer un gest de cada tipus.
El gest dinàmic consisteix en una salutació amb el braç, i l’estàtic rau en
senyalar a un objecte. Quan és realitzat, el robot cerca objectes a prop de
la zona senyalada i intenta detectar quin era l’objecte que l’usuari indicava,
preguntant-li al respecte si és cal. Un cop es reconeix quin era l’objecte
referenciat, el robot baixa de la plataforma i s’hi acosta per mostrar-lo.

Diverses proves d’usuari s’han dut a terme, demostrant que el sistema és una
aproximació natural a la interacció persona robot, amb una ràpida respos-
ta i facilitat d’ús, amb altes taxes de reconeixement. Possibles aplicacions
d’aquests tipus de sistemes en entorns domèstics són també comentades.

ii

Resumen (Spanish)

El emergente número de aplicaciones robóticas i su creciente disponibilidad
por parte de usuarios no técnicos implica el desarrollo de nuevas formas de
interacción entre estos tipos de dispositivos y los usuarios. La Interacción
Persona Robot (IPR) es un área de investigación relacionada con el estudio
de las dinámicas involucradas en la interacción entre personas y robots. Inclu-
ye áreas de conocimiento diversas tales cómo el procesamiento del lenguaje
natural, la visión por computador, el aprendizaje automático, la electróni-
ca e incluso ciencias sociales como la psicología o la comunicación humana.
La IPR pretende crear interfaces naturales entre robots i personas que sean
intuitivas y fáciles de usar sin previo conocimiento o entrenamiento.

El principal objetivo de este Trabajo Final de Máster es el desarrollo de una
interfaz gestual para interactuar con robots de una forma similar a la que
utilizan los humanos, permitiendo al usuario comunicar información más allá
de las descripciones verbales.

Para cumplir este objetivo, un sensor Microsoft Kinect v2 se ha utilizado para
implementar la aplicación de reconocimiento de gestos. Por consiguiente, se
describe un algoritmo en tiempo real para tratar dos tipos de gestos: los
estáticos y los dinámicos, y un método de Dynamic Time Warping ponderado
se utiliza para reconocer los gestos dinámicos. Ambos tipos de gestos se han
definido por medio de características esqueléticas, de las cuales cada gesto
tiene su propio conjunto.

La aplicación de reconocimiento de gestos basada en Kinect se ha imple-
mentado en un caso multi-robot. Un robot humanoide NAO se encarga de
interactuar con los usuarios y responder a los estímulos visuales que produ-
cen. Además, un robot con ruedas Wifibot transporta tanto el sensor como el
NAO, facilitando así su navegación. El sistema es capaz de reconocer un gesto
de cada tipo. El gesto dinámico consiste en un saludo con el brazo, mien-
tras que el estático radica en señalar un objeto. Cuando éste es realizado, el
robot busca objetos en la zona apuntada e intenta detectar a cuál se refería
el usuario, preguntándole si hace falta. Cuando el objeto es reconocido, el
robot baja de la plataforma, se acerca a él y lo muestra al usuario.

Varias pruebas de usuario se han llevado a cabo, demostrando que el sistema
es una aproximación natural a la interacción persona robot, con una rápida
respuesta y fácil uso, con altas tasas de reconocimiento. Posibles aplicaciones
de estos tipos de sistemas en entornos domésticos son también comentadas.

iii

Acknowledgements

I would like to thank my supervisors, Dr. Cecilio Angulo and Dr. Sergio
Escalera, for his enormous support, perfect guidance, strong encouragement,
and for being always there since the beginning. I must also thank my father,
Josep Maria, for his great help in the handicraft part of the project and
to Joan Guasch for the initial ideas, as well as to Dr. Marta Díaz for his
guidelines in the design of the user tests.

A special thanks to all my family, friends and the people from the HuPBA
group, who have given me an unconditional support throughout all this time.

Finally, I want to acknowledge all the volunteers who spent some time to
participate in the user tests, and who gave me a precious feedback about the
system.

iv

Contents

List of Figures vii

List of Algorithms viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3

2 State of the art 4

3 Resources 9
3.1 Microsoft’s Kinect v2 . 9
3.2 Robots . 10

3.2.1 NAO . 11
3.2.2 Wifibot . 13

3.3 ROS: Robot Operating System 14
3.3.1 SMACH . 15

3.4 PCL: Point Cloud Library . 16

4 Human Robot Interaction System 18
4.1 Overview and architecture . 18

4.1.1 The Human Robot Interaction procedure 18
4.1.2 System’s Graphical User Interface 20

4.2 Computer Vision . 21
4.2.1 Real time online gesture recognition 22
4.2.2 Ground plane detection and pointed point extraction . 30
4.2.3 3D cluster segmentation for object detection 33

4.3 Mobile robotics: human interaction 35
4.3.1 Providing robots with skills 36
4.3.2 Finite State Machines (FSMs) 39
4.3.3 Robot interaction . 40

5 Experimental Evaluation 44
5.1 Data, methods, and settings 44
5.2 Gesture recognition evaluation 45
5.3 User experience evaluation . 46

v

CONTENTS

5.3.1 Experiment design and setup 47
5.3.2 User’s survey analysis 48
5.3.3 External test and user’s behaviour analysis 53

6 Conclusions and future work 55

References 58

Glossary 63

A State Machine diagrams 65
A.1 Main Finite State Machine . 65
A.2 Wave response sub-FSM . 65
A.3 Point At response sub-FSM 66
A.4 Disambiguate object sub-FSM 67

B User tests questionnaire 68

vi

List of Figures

1.1 Ideal case of gesture interaction in a household environment . 2

2.1 Naocar, NAO robot driving a BMW Z4 car 8

3.1 Microsoft Kinect v2 for windows sensor 9
3.2 Skeleton joint positions in the Kinect v2 sensor 10
3.3 NAO robot dimensions and Naomi robot 11
3.4 NAO hardware diagram . 12
3.5 Wifibot lab v3 . 13
3.6 Wifibot with Kinect support and NAO seated on it 14
3.7 Diagram of ROS node types and communications 16

4.1 System architecture . 19
4.2 Example case of the system’s application flow 20
4.3 System’s Graphical User Interface 21
4.4 Example of skeletal wave gesture and used features 25
4.5 Example of skeletal pointing gesture and used features 25
4.6 Example of begin-end of gesture recognition 28
4.7 Example of pointing point estimation and surrounding objects

segmentation . 34
4.8 Examples of the robot’s position change towards a goal and

error optimization . 37
4.9 Go to goal problem in a differential drive robot 38
4.10 Example of NAO’s going down sequence 39
4.11 NAO’s eyes LEDs while performing speech recognition 42
4.12 Flowchart of the object disambiguation process 43

5.1 Jaccard Index computation example 45
5.2 User testing environment . 48
5.3 Example of object reflections on the ground 48
5.4 User’s age distribution . 49
5.5 User’s gender distribution . 49
5.6 User’s background distribution 50
5.7 Gesture naturalness . 51
5.8 Skeletal tracking errors during the tests 54

vii

List of Algorithms
4.1 Dynamic Time Warping algorithm for gesture recognition . . 29
4.2 Algorithm for static gesture recognition 31
4.3 Multi threaded gesture recognition algorithm SDGRA 32
4.4 Plane segmentation using RANSAC 33
4.5 Euclidean Cluster Extraction 35

viii

List of Tables

5.1 Gesture recognition performance evaluation results 46
5.2 Numerical user’s answers to the survey 51
5.3 Rest of the answers to the questionnaire 52

ix

1 Introduction

Robots are here and they have come to stay [14]. Research in robotic sys-
tems began many years ago, and there is a long way to go. Scientists have
made robots able to navigate in different kinds of environments, walk, talk
and also understand spoken language. Sensing capabilities have been also
included in order to achieve the previous tasks and sense the environment
that surrounds them to detect objects, persons and obstacles. Moreover,
reasoning methodologies have also been applied, allowing robots to design
plans to achieve their objectives. We have even created robots to human
resemblance, so they are called humanoid robots.

Now that robots are able to complete thousands of interesting tasks for us, it
is time to make them understand humans as well as communicate with. This
is the main aim of Human Robot Interaction (HRI), to design interfaces and
situtations to better operate and interact with robots. Speech and textual
interfaces are widely used in this field, but as many psychologists claim,
approximately more than the 60% of human communication is performed
through non-verbal cues [7, 6]. So, humans tend to interact with themselves
via gestures as an important element of communication. We usually wave to
our acquaintances, or point at an object to refer to them instead of describing
all the scene. In many cases, gestures are more efficient to be performed and
be understood, hence it is really interesting to include these abilities into
robotics systems, and specially humanoid robots. Many research groups are
currently working in gestural interfaces for robots. A major objective is that
they should be natural and intuitive for people. Hence, they can be used with
minor training, just as they would do with another human being. Moreover,
such gesture recognition and understanding skills must be run in real time,
as large processing time is resulting in users frustration as they do not know
what is really happening.

This work introduces a gesture based Human Robot Interaction system which
allows the user to communicate with a robot using nonverbal cues. Those
can be a dynamic movement such as a wave with the arm or a static position
to, for instance, point at an object on the scene. Two robots are involved in
the system, who cooperate in order to fulfill a visual order from the user, such
as pointing to an object in the ground to make the robot fetch it. Then, the
robotic system’s response to this visual stimulus would be to drive together
to the pointed location to see clearly which object was referred, asking to the
user if there is not a clear decision. Once disambiguated, one robot separates

1

CHAPTER 1. INTRODUCTION 2

from the other in order to finish the task of getting the object.

The dissertation begins with a review of related work in Chapter 2. Hardware
and software tools used in the system are explained in Chapter 3. The im-
plemented methods are detailed in Chapter 4. Next, Chapter 5 discusses the
results of the developed algorithms in off-line experiments, as well as when
considering a set of user tests. Finally, Chapter 6 concludes the work and
gives some insights on possible improvements and extensions of the proposed
system.

1.1 Motivation

Imagine the case of an elder or a person with mobility difficulties in his home,
sitting on the sofa, when the remote controller falls to the ground and picking
it up could suppose a big effort to the person, or might even be impossible to
do by themselves. But, a robot could be there in order to help them and pick
the object from the ground to reach it to them, as depicted in Figure 1.1.
Nevertheless, specifying which object is the one to pick in a verbal channel
may be hard, specially if there is more than one object near. So, an ideal
way of communicating the object to the robot could be pointing at it, just
as we would to to tell the same information to another human. Solving this
problem of making robots able to understand people using non-verbal cues
is the main motivation of this Master Thesis.

�

Figure 1.1: Ideal case of gesture interaction in a household environment.

CHAPTER 1. INTRODUCTION 3

To do so, a middle size humanoid robot (Aldebaran’s NAO) is used as the
principal robotic communicative agent. However, as the Kinect 2 sensor
which is used to perform the gesture recognition is too big to be worn by the
NAO, a problem emerged in order to move the sensor with the robot. This
issue was solved by taking inspiration of the DARPA robotics challenge1,
which includes an experiment in which a robot must drive a car towards
some goal; then exit it to finish its task by foot. In a similar way, a wheeled
robot was added to the system in order to carry the sensor as well as the
little humanoid, which has also to exit it in order to finish his task walking.

Furthermore, our wheeled robot is autonomous, which involves some cooper-
ation and collaboration between robots to achieve the common goal. Instead
of creating a single robotics system which can be in charge of everything,
joining different smaller systems which are specialized in fulfilling a single
task can make it easier and improve its efficiency and achievement rate.

1.2 Goals

The goals that have been fixed to be accomplished in this project are to build
a robotics system which is easy to use for a common human being. The user
would interact with the system using gestures, which should be natural for
them to perform, and intuitive. Moreover, a fast response of the robot is
needed in order to give feedback to the user and notify him that the gesture
has been understood, so it must be a real time system.

In order to achieve the previous objectives, some sub goals need to be also
accomplished. The Kinect based gesture recognition algorithm must be able
to deal with both static and dynamic gestures and the user pointing location
has to be accurately estimated.

Moreover, both robots have to work together in order to approach a given lo-
cation, and also to disambiguate the pointed object in case of doubt. Finally,
the NAO has to clearly show which was the referred object.

Several topics have been considered to complete these goals, including: ob-
ject segmentation, 3D scene analysis, human detection and behaviour anal-
ysis, and robotics.

1theroboticschallenge.org

http://www.theroboticschallenge.org

2 State of the art

Several contributions related to this Master Thesis can be found in the lit-
erature. Human Robot Interaction (HRI) is an active research field from
many different points of view: from making humans understand the robot
states through verbal and non verbal communication to doing it the other
way around, making the robot understand humans. As this work is focused
on interaction based on gestures, this section will present a review of the
available work in this field.

To begin with, some general gesture recognition methods will be briefly com-
mented. In [19], an algorithm for semantic motion retrieval in large data sets
is proposed. To achieve it, gesture classification is performed by a method
called Bag-Of-Motion-Features, which extracts wavelet spatio-temporal fea-
tures and expresses them in frequency domain, transforming them into a
Bag-Of-Words representation for efficient computation. A real time gesture
recognition method using artificial neural networks is presented in [26]. The
recognition is performed in both hands, using a hand independent represen-
tation which is obtained from salient motion features extracted from depth
data. The gestures are represented as a sequence of such motion patterns.
Then, Self Organizing Maps (SOM) are used to cluster the motion data in
an unsupervised manner. Experiments on HRI data to operate a robot with
gestures showed good performance with high recognition rates. Dynamic
Time Warping approaches, as the one used in this work, are also widely used
in gesture recognition. A gesture recognition method developed in [5] is ap-
plied on data coming from accelerometers and gyroscopes in real time; [16]
applies the method to RGB and depth data using a probability approach,
and [33, 2] apply DTW in weighted skeletal features obtained from a depth
sensor.

Many publications focus on HRI applications of gesture recognition. One of
the first works in this topic can be found in [45], in which both, person and
arm tracking in color images was performed. Two recognition methods were
compared, one template-based approach and an artificial neural network,
both combined with a Viterbi algorithm. An approach to moving gesture’s
recognition is presented in [18], where a Kinect sensor is used to recognize
gestures while the robot is moving. The method tracks the face of the per-
son in order to perform background subtraction and then joint positions are
estimated by means of a Voronoi diagram. A generated motion context is
used to train a Multi-Layer Perceptron (MLP) classifier in order to recognize

4

CHAPTER 2. STATE OF THE ART 5

similar gestures to the ones proposed here. A low cost RGB-D sensor is used
in [32] to perform dynamic gesture recognition by skeleton tracking. The
recognition method uses a Finite State Machine which encode the temporal
signature of the gesture. An adaptive method was developed in [15] for iden-
tifying the person which is performing the gestures. The goal was to learn
from gestures and therefore adapt the system to the specific person, being
the same gesture performed by two different persons understood in differ-
ent ways, even having the opposite meaning. Another Kinect application to
gesture recognition with HMM (Hidden Markov Models) and skeletal data
is presented in [11], in which the user performs gestures to control the robot
and it responds with voice or a message in the display. Deep neural networks
have also been used to recognize gestures, as done in [3], aiming to recog-
nize gestures in real time with minimal preprocessing in RGB images. They
show high classification rates working online, the application being a robot
that gives speech feedback. User defined gestures can be added in a semi
supervised way to the system from [4], which contributes a non-parametric
stochastic segmentation algorithm, the Change Point Model. This proce-
dure does not need to be supplied with the gesture’s starting and ending
points, making the user able to create its own gestures to control a robot
and thus being highly customizable without the need of explicit user learning
or adaptation.

Elderly assistance is another interesting field in which service robotics is ap-
plied, and gesture interaction may be really useful in such case. A Kinect
based approach to recognize calling gestures is proposed in [47]. This ap-
proach use a skeleton based recognition system to detect when the user is
standing up, and an octree one when the skeleton is not properly tracked. Er-
roneous skeletons are filtered by face detection in order to determine whether
the data is actually a person or a false positive. An application to object
handling to the user is implemented and tested with different elder users.

Besides, some contributions are only concerned with hand gestures. The
hand gesture recognition system introduced in [40] performs gesture classi-
fication in each arm independently, using two artificial neural networks, as
well as HMMs, to perform arm tracking. Their trajectories are used as the
input to the classifier. Another hand gesture decomposition application to
HRI is proposed in [43], in which a color segmentation algorithm is used to
find skin regions and a cascade of Adaboost classifiers is used for the hand
posture. The method was validated in a museum robot guide. An RGB-D
camera is used in [46] for hand gesture recognition. Human segmentation is
performed by background subtraction and hand tracking is then calculated

CHAPTER 2. STATE OF THE ART 6

from both color and depth information. Some static gestures are employed
to indicate the start and end of the gesture to the system, such as opening
and closing the hand. The trajectory followed in the meantime is then used
to recognize the gesture by applying an HMM, as it was similarly done in
[17]. A tour-guide robot able to understand gestures and speech feedback
is introduced in [1], which tracks the user using depth information and per-
forms the recognition with a Finite State Machine gesture modeling. Hand
tracking approaches such as the one in [30] as well as the related work being
developed in Microsoft Research with a Kinect v2 sensor [38], which shows
impressive results, may imply a great improvement in the recognition of hand
gestures, with applications to sign language recognition – which is another
application of gesture recognition systems –.

Cooperation tasks is another research topic, as in the case of the current
work, when the user cooperates with the robot to achieve a given task, for
instance approaching the desired object. The system proposed in [13] detects
a person with a color camera to recognize the face and laser range finders
to find his legs. Then, the person perform gestures to make the robot guide
him or to carry a load together. The method uses invariant Hu moments
to describe the gestures and a probability based approach is used to classify
them. Conversely, there are publications like [34] which make the study in
the reverse way: how can robots make humans cooperate with them when
the robots are those executing a gesture. It is also related to this work, as our
robot performs some gestures that the human has to interpret, and posterior
gestures of the human could be a result of the robots one. A similar study is
conducted in [24], in which they evaluate the effect of the robot utterances
when they are accompanied by gestures such as the robot looking to the
person when he speaks or pointing in the direction of an object.

Spatial and directional gestures are widely used by humans to refer to ele-
ments that surround them. For instance, this work implements a ‘pointing
at’ gesture to refer to an object on the ground. Such gestures, also known as
deictic gestures, have been broadly studied. Pointing gesture recognition and
direction estimation is performed in [27] by means of a cascade of HMMs and
a particle filter to recognize the gesture in stereo images to which hand and
face tracking is applied to capture the pointing direction. A similar HMM
approach is used in [23] to recognize pointing gestures. A ROS-based robot
is used in [44] to detect pointing gestures by means of a Haarlet-based hand
gesture recognition system, extract the pointing direction and translate it
to movement goals in a map. A tracking system is presented in [20] which
recognizes the pointing gesture so that a person can tell the robot where is

CHAPTER 2. STATE OF THE ART 7

another person who wants to interact with it. Finger segmentation is per-
formed to compute the angle to which the robot has to turn its head. A
research about how people refer to objects in the world is carried out in [21].
This deictic interaction comes from both speech and gesture channels. Spa-
tial information from objects is extracted in form of features such as distance
to the hand or its direction relative to the object. A K-SVD algorithm is
trained to perform the classification. Human Augmented Mapping is stud-
ied in Elin Anna Topp’s Ph.D. Thesis [42], in which human concepts are
integrated to the robot map. Such concepts are obtained from user inputs
such as pointing to a place or showing an object. The pointed location on a
wall is obtained in the system of [31], which uses geometry analysis to iden-
tify shoulders and elbows to understand gestures and obtain the direction.
Some constraints in the study include high illumination environments and
user wearing half sleeves to better segment him.

Pointing gestures are used to refer to objects in [8] using a time-of-flight
camera to get depth information. They use the line between the person’s
eyes and their hand as the pointing direction. Knowledge about possible
object locations is exploited in [28] in order to discern between which object
might be pointed, using the Dempster–Shafer theory of evidence to join
information from the head pose and the pointing hand’s orientation.

But deictic gestures can also be applied the other way around, as when our
NAO robot points to an object it has found. Studies on making robots refer
to objects via gestures have also been performed, such as the one presented
in [41], in which realistic, cluttered environments containing many visually
salient targets are considered. A similar study is carried out in [37]: six
deictic gestures are implemented in a NAO robot to evaluate their com-
municative effectiveness. Involved gestures include pointing, touching and
exhibiting objects.

Moreover, gesture based interaction has also been used in multi-robot envi-
ronments. A human-swarm interaction scenario based on hand gestures is
considered in [22]. A novel incremental machine learning approach is also
proposed. This method allows the robot swarm learn and recognize the
gestures in a distributed and decentralized manner.

Furthermore, there also exist applications in which the NAO robot drives.
Naocar, shown in Figure 2.1, was first made by students of the École Informa-
tique Epitech and then sold by RobotsLab1, an educational robots provider

1robotslab.com

http://www.robotslab.com/

CHAPTER 2. STATE OF THE ART 8

based in San Francisco. In it, the robot is the one who drives the vehicle
rather than the vehicle working on its own, as in the case of the present
work.

Figure 2.1: Naocar, NAO robot driving a BMW Z4 car from RobotsLab.

http://shop.robotslab.com/products/nao-car

3 Resources

Several resources have been used for this work, both hardware and software.
The hardware ones include the robots, two laptops and a RGB-depth sen-
sor. The software ones are frameworks, libraries and utilities which ease the
programming of the hardware components.

3.1 Microsoft’s Kinect v2

In order to perform the gesture recognition, a RGB-depth sensor has been
used. The chosen one is the version two of the Kinect sensor, which is man-
ufactured and sold by Microsoft. The Kinect is a widely known sensor, and
was introduced in 2010 for the Xbox 360 game console, being available to
Windows users in 2012. Since then, several applications have been imple-
mented with it, many of them in the robotics area.

The second version of the sensor was released in late 2013 and was included
with the Xbox One console as a single bundle. A public Windows beta ver-
sion was released in July 2014, being the final public release in late September
2014. It includes an infrared sensor, a depth one and a high definition RGB
camera along with a microphone array. The sensor is shown in Figure 3.1.

Figure 3.1: Microsoft Kinect v2 sensor for Windows.

Furthermore, it incorporates several improvements with respect to the pre-
vious version. First of all, it has better resolution for both the color (1080p)
and the depth cameras, and can obtain depth information from up to eight
metres, while the previous one only reached about four and a half metres.
It also has a wider field of view (60 degrees vertical and 70 horizontal) and
works over USB 3.0, which implies a better bandwidth to transmit (extra)

9

CHAPTER 3. RESOURCES 10

data. But not only the hardware’s power and precision were improved, also
the software and its SDK. For instance, the new version is able to track
up to six people at the same time, while the old version could track only
two of them. Also, the new SDK gives skeletal information with twenty-five
joints of each person, while the old sensor only provided twenty of them.
Figure 3.2 displays the body joints that the Kinect 2 provides. Face analy-
sis capabilities have been improved in this second version too, enabling the
application to create a mesh of more than one thousand points for a more
accurate representation of a person’s face. Given that the sensor requires a
powerful computer and the SDK works only in Windows 8 and 8.1, an extra
laptop was needed to process the incoming data. C++ is the programming
language which has been used with the SDK.

Figure 3.2: Skeleton joint positions relative to the human body in the
Kinect 2. Extracted from the Kinect for Windows SDK 2.0 documentation.

3.2 Robots

The robot platforms perform the most important part of this work, and are
the main component to perform the interaction with the user. Two robots
have been employed: a humanoid robot, Aldebaran’s NAO, and a wheeled

http://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx

CHAPTER 3. RESOURCES 11

platform which helps the movement of the NAO and brings the sensors and
part of the computing power, the Wifibot platform.

3.2.1 NAO

NAO is a humanoid robot created and developed in the French company
Aldebaran Robotics1. Its development began in 2005, and it later replaced
Sony’s Aibo dog robot as the official robotic platform for the Robocup2 Soc-
cer League in 2010. Its cute and human-like appearance makes the NAO a
very friendly robot and, thus, a great candidate for a Human Robot Inter-
action task.

The version of the robot which is used in this work is a v3.2, the red NAO
from the UPC ESAII department, which is named Naomi. A size diagram
and a picture of the robot are shown in Figure 3.3. This NAO version
was released in 2009 and was the second generation in the robot evolution.
Even though there were no impediments to perform its work, the robot’s age
and limited computing capabilities arouse some issues which needed to be
handled.

Figure 3.3: NAO robot dimensions, extracted from Aldebaran’s documen-
tation (left). ESAII department’s robot Naomi used in this work (right).

1aldebaran.com
2International robot competition with many different league modalities, robocup.org.

http://doc.aldebaran.com/2-1/family/robots/dimensions_robot.html
http://doc.aldebaran.com/2-1/family/robots/dimensions_robot.html
http://www.aldebaran.com
http://www.robocup.org/

CHAPTER 3. RESOURCES 12

The robot includes a complete set of useful hardware elements: networking
capabilities such as WiFi and Ethernet, speakers, LEDs in the eyes and
ears (which increment its expressiveness), infrared emitters, sonars, tactile
sensors, two cameras, force sensing resistors, gyroscopes, accelerometers and
a 45 minutes life battery. It has an AMD Geode processor at 550 MHz and
runs the NaoQi operating system (a Linux based one). A hardware diagram
of the robot is shown in Figure 3.4.

Figure 3.4: NAO robot hardware diagram. Extracted from Aldebaran’s
NAO Software 1.14.5 documentation.

The software included with the robot is the NaoQi API and the Choregraphe
framework, which allow to program the robot easily. The NaoQi software
includes basic utilities such as joint control, a walking algorithm, speech ca-
pabilities (text-to-speech and speech recognition), along with some computer
vision algorithms to perform face tracking.

http://doc.aldebaran.com/1-14/family/nao_h25/index_h25.html
http://doc.aldebaran.com/1-14/family/nao_h25/index_h25.html

CHAPTER 3. RESOURCES 13

3.2.2 Wifibot

The platform selected to carry the Kinect sensor and the NAO was a Wifibot
robot, more concretely the Wifibot lab v3, from Nexter Robotics3. It consists
on a wheeled platform with an integrated WiFi access point and an on board
computer with an Intel Atom processor. It has currently an Ubuntu 12.04
Operating System installed. Its four 12 volt wheel motors make it suitable
to support all the extra weight. It also has two sonar sensors available, even
though they are not used in the present work. Figure 3.5 shows the used
Wifibot platform.

Figure 3.5: Wifibot lab v3.

Some modifications were needed in order to attach the Kinect sensor to it
and carry the NAO, without losing the visual field of the camera. First of
all, some strategies were developed in order to carry the NAO and making
it able to go down of the platform. The final design had the robot sat on
the platform itself, with its legs hanging. Some hand supports were added
to avoid it fall down forward, and the sitting area was covered by a rubber
sheet in order to increase adherence. Then, an elevated surface was added
on the back part and attached with two bars, having the Kinect on top and
over NAO’s head. This construction allowed some extra space to place the
Kinect’s laptop. Finally, to ensure the safety of the robot and the laptop,
the bars were wrapped with plastic foam, avoiding any possible bump. In
Figure 3.6 a picture of the final Wifibot version is shown along with another
one with the NAO on top of it.

3wifibot.com

http://www.wifibot.com/

CHAPTER 3. RESOURCES 14

Figure 3.6: Wifibot with the mounted support for the Kinect, the laptop
and NAO’s hand supports (left). NAO seated on the Wifibot (right).

3.3 ROS: Robot Operating System

The libraries, tools and utilities from the Robot Operating System (ROS)
framework for robot software development have been used to program the
robots described above. This framework was born in 2007 at Willow Garage4,
and it is currently maintained by the Open Source Robotics Foundation
(OSRF)5.

ROS provides operating system like tools, facilitating the execution of dif-
ferent applications in a distributed way. It allows the developer to focus
on the high level programming rather than on how to interconnect all the
systems, by making such interconnection between processes very easy. The
framework creates the processes as a graph, in which each of them is a node.
Furthermore, ROS utilities are implemented in different languages such as
C++ and Python, allowing the developer to implement the code in the lan-
guage that suits him/her better, without paying attention to the language

4willowgarage.com
5osrfoundation.org

www.willowgarage.com
http://osrfoundation.org/

CHAPTER 3. RESOURCES 15

in which the other software utilities she/he uses are written.

In order to make the nodes communicate, a Master service much be running
so that each process can register to it and send information to other nodes
through this service. Such communication is performed via message passing,
being that messages objects defined in terms of basic programming types
in a file with extension .msg, which is then compiled to create classes for
different programming languages, allowing in this way the multi-language
characteristic of the framework.

There are several ways in which nodes can communicate. For instance, one
node can publish a message to a topic, and some other ones read from it,
being that topic similar to a Linux pipe.

Another method of communication are services. In this case, a node provides
a method which can be called by other nodes, like a Remote Procedure Call
(RPC). Service petitions are defined in a similar way as the topic messages,
but they specify the petition and the response.

Finally, there is a special kind of services which are called actions. Their
main difference with the services is that a service executes its entire method
and returns an answer, while an action sends feedback messages about how is
the process going, and they can be stopped. Usually, actions are used for long
procedures while services execute simple methods. Notice that there is no
need to have all the process in the same machine, being it possible to have a
node in one computer calling to a service or writing to a topic which is located
in another computer. In fact, this is used for the communication of the main
laptop with the Wifibot. Figure 3.7 shows the connection possibilities for
ROS nodes.

The Indigo Igloo version of ROS is the one which has been used in this work.

3.3.1 SMACH

SMACH is a powerful library to write Finite State Machines (FSMs) in
Python. It is included in the ROS distribution and provides specific utilities
to interact with the ROS ecosystem. It has been used in order to develop
the behaviour of the robots during their interaction task.

It allows to write hierarchical FSMs. Hence, it is possible to include some
machine which was developed to make a robot do a simple task inside of a

CHAPTER 3. RESOURCES 16

Figure 3.7: Diagram of ROS node types and communications.

more complex behaviour. This allows to completely reuse already created
states, simplifying the overall work.

SMACH allows the user to define several elements of the states and finite
state machines in order to control the flow of the application. For instance,
each state must define the possible outcomes it has, and to which state should
it transition for each of the defined outcomes. Data sharing to communicate
sates is also possible.

Moreover, the library also includes some tools to visualize the state machines
along with the data and execution flows inside them.

3.4 PCL: Point Cloud Library

The Point Cloud Library (PCL)6 is an open source library whose develop-
ment started in 2010 at Willow Garage. It is written in a modular way in
the C++ language, and includes algorithms to process depth information
organized in Point Clouds. Among several applications which involves geo-
metric 3D processing, it is widely used in robotics and computer vision for

6pointclouds.org

http://pointclouds.org/

CHAPTER 3. RESOURCES 17

tasks such as segmentation, feature estimation, model fitting or surface re-
construction. It also provides tools to visualize the 3D point clouds in an
interactive way.

The version used in this work is the 1.8.1 one, compiled from source in
Windows 8.1. It is used for tasks such as object detection and ground plane
segmentation.

4 HRI System

This chapter is devoted to describe in detail the Human Robot Interaction
system designed and implemented for this Master Thesis1. It will begin with
a general overview of the whole system, then going deeper into the computer
vision part and it will finally focus on the mobile robotics platforms.

4.1 Overview and architecture

The implemented system gathers all the resources as explained in Chapter
3 Resources and connects them to conform the complex application at hands.
A graphical representation of the whole system is shown in Figure 4.1.

The Wifibot robotic platform has its own on board computer, which runs
Ubuntu 12.04 with ROS Fuerte installed. This on board computer is only
managing drivers for motors and capturing information from infra-red sen-
sors. This robot has been endowed with a Kinect camera attached on top.
Since drivers for this device are currently only working on Windows plat-
forms, the Wifibot is also carrying a laptop running Windows 8.1 where the
Kinect sensor is connected to obtain and process its data (it performs the
gesture recognition and 3D cluster segmentation2).

The NAO robot, running an OpenNAO operating system, is connected to
an external laptop using the NAO packages for ROS, which act as a wrapper
to the Aldebaran’s NAOqi API. This laptop acts a server connecting both
robotics platfroms. It runs Ubuntu 14.04 and contains the installation of the
ROS Indigo robotic meta-operating system, controlling both robots. More-
over, the secondary laptop managing the Kinect camera is also connected to
the main one via the WiFi network using the rosserial_windows package.

4.1.1 The Human Robot Interaction procedure

The user interacts with the system by using gestures. For the experiment,
two gestures have been considered: the “Salute” or “Wave” gesture and a
“Point At” one. When the salute is performed, the robot is expected to wave

1The implemented code is publicly available and can be found in the Github’s HR2I
repository (github.com/gerardcanal/HR2I).

2See Chapter 4.2 Computer Vision for details about these methods.

18

http://github.com/gerardcanal/HR2I

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 19

Figure 4.1: System architecture.

back at the user. In case the gesture performed is a point at some object,
the robot should navigate to the object location – provided that the user
has pointed at an object and neither to an empty space nor a non-ground
position – and make clear that it has recognized which object was the user
selecting. In case of ambiguity about the selected object, the robot will ask
the user some questions related to the size or position of the detected objects,
so the user can clarify, using spoken language, which object was the desired
one.

Given that the defined setup and methodology correspond to a proof of
concept, only a few gestures have been integrated into the system. Even
though, it has been implemented in a way in which it is really easy to extend
it to handle a wider set of gestures and more varied ones. Figure 4.2 shows
the flow of execution in an example case.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 20

Figure 4.2: Example case of the system’s application flow.

4.1.2 System’s Graphical User Interface

A Graphical User Interface (GUI) for the system has been implemented to
present the information obtained from the Kinect sensor. It is composed of
two windows and a console.

The left-hand window shows the RGB video output of the Kinect and depicts
the skeleton of the person, when detected. It can be also shown the depth
information from the sensor.

The window in the right-hand shows a graphical representation of the sys-
tem’s information. It displays the PCL point cloud of the scene, which can
be navigated, and the floor plane is shown in red. Furthermore, the skeleton
of the person is also showed in the screen, the segmented objects are drawn in
different colors and an arrow is displayed to show the direction of the point-

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 21

ing gesture, along with a blue sphere representing the estimated pointing
position, as shown in Figure 4.7. Some set-up information is needed in order
to segment the floor plane (named plane coefficients) which are loaded at
the system start up. However, the system asks for user intervention whether
no plane can be found in the scene, or if it is the first time that the system
is executed. Such intervention consists in clicking three points of the ground
in order to recompute the floor plane information. Due to these processing
options, images on both windows are not completely synchronized in time.

The console window prints messages about system’s state and related data
such as the recognized gesture or the coordinates of the estimated pointing
location. An example of the GUI can be seen in Figure 4.3.

Figure 4.3: System’s Graphical User Interface.

4.2 Computer Vision

One of the main parts of the system corresponds to the computer vision
module. It takes care of the gesture recognition, which is the basis of the
interaction system proposed in this current work.

Furthermore, it is also used in the object segmentation part, which is the
method that gives the robot information about which are the possible object
candidates that the user is referring to while doing some deictic gestures.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 22

4.2.1 Real time online gesture recognition

This section focuses on the methodology used in order to perform gesture
recognition. Given the high time constraints of the system, the recognition
must be done in real time. A system in which the user performs the gesture
and sees the reaction of its gesture after a long time is not much robust nor
reliable, and would give raise to the user repeating the gesture a lot of times
in case the robot has not seen or understood him, resulting in a non pleasant
and confusing interaction.

To achieve a natural, human-like interaction, the system must be able to
understand human-like gestures taking roughly the same time that would
take to another human. In the proposed system, the robot reaction to a user
gesture can be seen just after its execution has been finished.

The gesture recognition system has been implemented in a multi-threaded
way3 in order to speed up the process and be able to reach the real time
constraint. A single threaded application would have also worked, but in a
much more slower way which would probably imply the loss of the online and
real time conditions, resulting in an unacceptable delay between the gesture
and the response. Moreover, the recognition time would grow exponential
when the number of possible gestures was increased. The algorithm takes
into account the number of threads which are available in order to avoid that
this part of the whole system monopolises all the assigned CPU time, given
that the interface already two threads. With this information, it divides
the gesture between threads in a way that each thread takes care of the
processing of some gestures. The ideal situation of the algorithm is the one
in which each thread only processes the information about a single gesture,
but this assumption would not be realistic in a domestic computer, in which
the number of logical cores of the processors is usually between four and
eight.

4.2.1.1 Proposed gestures

A taxonomy for gestures is proposed for this system. The available gestures
have been divided into two types: static gestures and dynamic gestures.

3The OpenMP API for shared-memory parallelism (openmp.org) has been used to
handle the multi threading.

http://openmp.org/

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 23

• A static gesture is defined by a static position without any movement
of the user in neither the whole nor a limb of their body.

• In contrast, a dynamic gesture is defined by the movement the user
performs with a part of the body as, for instance, the right arm.

Currently, the system supports a gesture of each type: the “Wave” gesture
which is used to express a greeting, and the “point at” one, which is a deictic
gesture that intends to draw the attention of the other interlocutor to some
point of the space or to make a reference to any element present in the scene.

4.2.1.2 Skeletal extracted features per gesture

The gesture recognition has been performed by extracting body tracking
information from the Kinect v2 sensor. Using the Kinect for windows SDK
v2.0, skeletal information can be extracted from the depth images of the
sensor. Such skeletal data is obtained using a method which may be based
in the one proposed by Shotton et al. in [39], which quickly and accurately
predicts the 3D position of body joints from a single depth image.

The algorithm uses an intermediate body part representation which consists
on the definition of several localized body part labels which cover the whole
body. This allows the authors to use a classification algorithm to solve the
problem, by using the depth and labeled body part images. Then they define
the features used to train the classifier. Those are simple depth comparison
features, which are depth and translation invariant. This features are very
efficient to compute as they do not involve any preprocessing and only the
access to three pixels and five arithmetic operations are needed. As said,
the features are used to classify the depth pixels into body regions. The
classification algorithm they use is a randomized decision forest, which is an
ensemble learning method consisting on a set of decision trees. In each leaf of
the trees a probability distribution of the class given the image and the pixel
is stored, being the final class obtained by averaging the distributions of all
the trees of the forest. The training of each tree is performed on a different
set of images, and uses the information gain metric. Once the forest has been
trained, the algorithm infers the body region of each pixel of the image. That
information is then gathered to generate a proposal for the joint position,
which make up the skeleton. The proposals are obtained by the use of a local
mode-finding approach based on mean shift with a weighted Gaussian kernel
instead of just accumulating the global 3D centers of each part, as the former

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 24

was depth invariant and exhibited significant accuracy improvements. This
algorithm has been used for a long time with the first Kinect sensor, first in
Xbox 360 game consoles and then in desktop computer applications, showing
a great performance. Figure 4.4 shows an example of skeleton obtained with
the Kinect SDK.

In the gesture recognition approach that is defined in this thesis a different
feature space representation is defined for each gesture. There is no need
that all the gestures are defined by the same parameters or set of features,
given that some gesture may be better characterized by using some specific
information of a limb, for instance. The following paragraphs describe the
features used for each gesture. Note that as the skeletal information is ob-
tained in real world coordinates, all the used features are scale and body
orientation invariant. Such properties avoid the need of feature preprocess-
ing and normalization, speeding up the process.

Wave gesture’s features
The wave gesture is performed by moving the forearm near and far, while
keeping the upper arm in an horizontal position with the floor. Figure 4.4
illustrates the gesture.

To characterize the gesture, only two features have been used:

• θ1: Euclidean distance between the Neck joint and the Hand joint4.

• θ2: Angle in the Elbow joint, which is the angle between the vector
from the Elbow joint to the Shoulder, and the vector from the Elbow
to the Hand joints.

Point at gesture’s features
The Point At gesture is a static gesture, so no movement is involved. The
gesture is defined by the elongated arm position of the user. The features
for this gesture are:

• θ1: Distance between the Hand and the Hip joints (both of the same
body part, be it the left or right one).

• θ2: The angle in the Elbow joint, as in the wave gesture.

• θ3: The position of the Hand joint.
4A reference of the joints can be found in Figure 3.2.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 25

Figure 4.4: Example of skeletal wave gesture and used features.

In Figure 4.5 a skeletal representation of the gesture and its features is shown.

Figure 4.5: Example of skeletal pointing gesture and used features.

The features of both gestures can be extracted from both hands, but the
tests have been performing by using the person’s right hand.

4.2.1.3 Dynamic Time Warping (DTW)

The main gesture recognition method we use in this work is the Dynamic
Time Warping (DTW). The algorithm is usually applied as a template

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 26

matching method to measure the similarity or the cost of alignment between
two temporal sequences which may differ in speed or length, finding an align-
ment warping path. The method, originally described in [36], is also widely
used to recognize gestures by detecting input sequences which are similar
enough to a given reference gesture. Once detected, the whole gesture can
be segmented from the input sequence by getting its warping path. Many
examples of application can be found in the literature. For instance, [16] pro-
poses a probability based DTW to recognize gestures in video streams with
color and depth information. They use a Bag-of-Visual-and-Depth-Words
(BoVDW) representation for the gesture information. Their approach uses
the DTW to perform the segmentation of an idle gesture which is performed
between gestures. Once they have the input sequence segmented, a BoVDW
classification is performed by using a k-Nearest Neighbors classifier. The au-
thors of [2] propose a robust recognition based on feature preprocessing and
weighting, using as features the whole body skeleton (joint values). They use
weights for the different joints and gestures to improve the discriminant ca-
pabilities of the DTW. It is a similar approach as the one in [33], from which
this work is mainly based on, where the authors propose a begin-end gesture
recognition system with DTW. They also use skeletal joints information as
the input features to the algorithm, and weight those features (each joint)
depending on its participation in a particular gesture (for instance, legs are
not much important in a handshaking gesture). These weights are obtained
by a training algorithm based on the ground truth of the gestures.

The method which we propose has some differences from the contribution
of [33]. First, our features are not the whole skeleton but some metrics
extracted from the joints of interest. This implies that the position of the
non related limbs are not taken into account, avoiding the noise they would
generate (as in the handshaking example). Secondly, we do not need the
actual segmentation of the gesture in a begin-ends manner, as by knowing
which gesture has the used performed is enough. Furthermore, different
number of features are allowed for each gesture by the framework, along
with a weighting on those features to add discriminant power in case of
some metrics being more important, or for numerical scaling purposes (to
set them to have equal importance). This method is used to detect the
dynamic gestures.

The Dynamic Time Warping (DTW) is a dynamic programming algorithm.
It creates a matrix to store the intermediate computations and uses them to
obtain the following ones. The input data to the algorithm is a gesture model,
which consists in a sequence of features corresponding to a general example of

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 27

the gesture to be recognized, and the features of the frame sequence which is
obtained from the Kinect at real time (data keeps arriving and the algorithm
consumes it as soon as it becomes available).

The algorithm works as follows: be the gesture reference model a sequence
R = {r1, . . . , rm} and the input sequence S = {s1, . . . , s∞}, an alignment
matrixMm×n

5 is constructed in whichMi,j contains the distance between ri
and sj . The input sequence S has infinite length as the system keeps getting
feature frames and processing them until a gesture has been recognized. The
distance metric which has been used to compute the alignment cost between
two feature vectors is a weighted L1 distance, also called taxicab distance,
being it defined as

d1(r, s) =

k∑
i=1

αi|ri − si| , (4.1)

where αi are the positive weight constants associated with the ith feature,
and k is the number of features of the gesture (k = 2 in the case of the wave
gesture).

A warping path is defined as a set of neighbouring matrix elements which
define a mapping between R and S. More formally, a warping pathW isW =
{w1, . . . , wT }, being T the length of the path, and each wi corresponding to
a matrix position wt = Mi,j . The objective warping path is the one which
minimizes the warping cost,

DTW (R,S) = min

 1

T

√√√√ T∑
t=1

M [wt]

 . (4.2)

Note that, even though the warping path computation has been implemented
in the system, it is not used in the system as the gesture segmentation is not
needed.

Then, the recurrence which the dynamic programming algorithm computes
to get the alignment cost is

Mi,j = d1(ri, sj) +min
{
Mi−1,j ,Mi−1,j−1,Mi,j−1

}
. (4.3)

To perform the detection of the beginning and ending of the gesture in an
input sequence, a segment of it which is similar enough to the model gesture

5n is the length of the temporal window from the input sequence which is being taken.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 28

has to be found. Given that a perfect match is almost impossible, a test
sequence is considered similar enough to a model sequence if the following
condition is satisfied,

Mm,k < µ, k ∈ [1, . . . ,∞],

where µ is a cost threshold associated with the gesture. An example of the
begin-end gesture recognition is shown in figure Figure 4.6, and the pseudo
code of the algorithm in Algorithm 4.1. The code runs in a thread which is
in charge of the corresponding gesture, being all the gestures processed in
parallel, and keeps running until one of the threads finds a gesture in the
input sequence. Once this happens, all the gesture recognition threads stop
their execution to return the recognition result.

Figure 4.6: Example of begin-end of gesture recognition of a gesture model
R and an infinite input sequence S using a Dynamic Time Warping matrix.
Extracted from [33].

The implementation makes use of a custom defined data structure called
“Sliding Matrix”, which stores the matrix of the DTW. Given that the in-
put sequence is infinite, the method must deal with an infinite matrix. As
such implementation would not be possible and it is not even needed, the
Sliding Matrix structure stores up to n elements, being it the length of a
time window which is sufficiently large to contain the gesture. The data
structure is implemented in a way in which when its capacity is filled, all the
columns are slided to the left, leaving a new column to be filled. This has

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 29

Algorithm 4.1: Dynamic Time Warping algorithm for gesture recognition
Input: gId: Gesture id
Input: R: Model feature sequence of the gesture corresponding to gId
Output: Alignment cost

begin
// Sliding matrix initialization
/* Matrix of m rows and n columns initialized to infinity */
M = Matrix(m, n, ∞)
for j = 1 : n do

M[0][j] = 0
end
// Cost computation
t = 1
while no gesture has been found do

s = get_input_frame_from_Kinect()
for i = 1 : m do

d = d1(R[i− 1], s)
M[i][t] = d + min(M[i - 1][t], M[i - 1][t - 1], M[i][t - 1])

end
if M[m][t] < µgId then

return M[m][t]
end
t = t + 1

end
return ∞

end

been implemented in an efficient way, being the sliding operation of constant
complexity (O(1)), along with element access operators. Moreover, as the
gesture is not being segmented, only two columns of the matrix are needed,
being the structure quite optimal in space.

To choose the different parameters of the algorithm, such as the αi and µ
of each gesture, a training method has been implemented based on different
example sequences which have been manually labeled. Before this parame-
ter selection, some tests were performed to observe the value of the different
features while performing the gestures, obtaining from them a set of feasible
parameter values for the α and µ values. After this, the parameter selection
method consisted on using the recorded sequences, which were performed by

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 30

different users, to get the values from the set which maximized the perfor-
mance in terms of overlapping6. Such performance was computed by testing
each sequence as if it was a real input sequence, using the DTW with the
current parameters and checking the obtained performance, keeping those
parameters that got better results.

4.2.1.4 Static gesture recognition

Given that the static gesture recognition does not require from temporal
warping but just its spatial configuration, we do not use DTW for recognize
the “Point at” gesture.

The proposed solution to this problem was to adapt the recognition and make
a method to handle static gestures. The method is simple: it just checks
whether the input frames features are above some recognition thresholds
during a certain number of frames. Another constraint is that the limbs
which feature the gestures do not move much during its execution.

Consequently, the parameters involved in the static gesture recognition are
the feature thresholds, the minimum number of frames the gesture has to
be performed and a reference to the limb position such as the hand. The
algorithm is described in Algorithm 4.2. The parameters are obtained in a
similar way as it is done in the training for the dynamic gesture recognition.

4.2.1.5 Static and Dynamic Gesture Recognition Algorithm (SD-
GRA)

Once the system is able to recognize static gestures and dynamic gestures,
both methods must be joined in a single algorithm in order to detect all the
frames. This algorithm is shown in Algorithm 4.3. The actual implementa-
tion takes into account the possibility of more than one thread recognizing a
gesture in the same frame and in such case it returns the one with less cost.

4.2.2 Ground plane detection and pointed point extraction

After the gestures that the user performs have been recognized, some of them
may need some post processing in order to extract meaningful information.

6See section 5.1 Data, methods, and settings for details about the overlapping metric.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 31

Algorithm 4.2: Algorithm for static gesture recognition
Input: gId: Gesture id
Input: P: Parameters of the gesture corresponding to gId
Output: Alignment cost // It will be either zero or infinity

begin
consecutive_frames = 0 // Consecutive detection frames
limb_dist = 0 // Distance that the limb has been moved
limb_pose = (0, 0, 0) // Limb position in the previous frame
while no gesture has been found do

s = get_input_frame_from_Kinect()
// Check that ∀t ∈ {0 : s.num_features}, s[t] > P.thresholds[t]
constraints_satisfied = check_thresholds(s, P.thresholds)
if constraints_satisfied then

limb_dist = limb_dist + euclidean_dist(P.pose, limb_pose)
limb_pose = P.pose
consecutive_frames = consecutive_frames + 1
if consecutive_frames > P.number_frames then

if limb_dist < D_THRESHOLD then return 0
else limb_dist = consecutive_frames = 0

end
end
else limb_dist = consecutive_frames = 0

end
return ∞

end

It does not happen for the “wave” gesture, but it does for the “point at” one,
in which the pointing location must be obtained.

Just three elements are needed to obtain the pointing position: the ground
plane description (such as a vector which is orthogonal to it), a point from
the ground plane and the pointing direction. With this, a simple geometric
line-plane intersection can be computed to obtain the desired point.

To extract the ground plane, the PCL library is used. First, a depth image
is obtained from the Kinect sensor, and with this a Point Cloud object is
created. After that, the biggest planes of the cloud are segmented, keeping
those whose normal vectors do not differ much to the reference ground plane

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 32

Algorithm 4.3: Multi threaded gesture recognition algorithm SDGRA
Input: Models: Set of dynamic gesture models
Input: P: Parameters of the gestures (both static and dynamic)
Output: Recognized gesture

begin
for i = 1 : number_of_gestures do

begin spawn_working_thread
if is_static(i) then c = recognize_static_gesture(i,
P.static_params[i])
else c = recognize_dynamic_gesture(i, Models[i])
if c < ∞ then

stop_recognition_threads()
recognized_gesture = i

end
end

end
return recognized_gesture

end

normal vector7. Such plane is segmented using a Random Sample Consen-
sus (RANSAC) method [10] to generate model hypotheses. The RANSAC
algorithm is fits a model to observed experimental data which may contain
outliers or errors in an iterative way. The plane segmentation algorithm
which is being used is described in [35] and replicated in Algorithm 4.4 for
exemplification purposes.

Once the plane information is obtained, a point of the plane is extracted
from the plane point cloud. The last step is to obtain the line equation of
the pointing direction in order to be able to get the intersection with the
plane. Such line is obtained from the skeletal data, using the mean of the
joint’s position during ten contiguous frames from the middle-end of the
gesture to make sure the correct direction is obtained and overcome possible
tracking errors.

The joints of the Elbow and the Hand are used to compute the direction
vector of the line, being then able to compute the final point on the ground
to which the user is making reference by computing the intersection between

7If available. Either, user intervention is asked as explained in Section 4.1.2 System’s
Graphical User Interface.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 33

Algorithm 4.4: Plane segmentation using RANSAC (from [35])
Input: P: Point Cloud (set of points to which the model will be fitted)
Output: Largest set of points corresponding to the planar model

begin
repeat

1. Randomly select three non-colinear unique points from P
2. Compute the model coefficients (ax+ by + cz + d = 0) from the
points
3. Compute distance ∀p ∈ P to the plane model (a, b, c, d)
4. Count the number of points p∗ ∈ P whose distance d to the plane
model is between 0 ≤ |d| ≤ |dt|, being dt a user specified threshold

until k iterations are done
end

the Elbow - Hand line and the floor plane. We use the Hand and Elbow joints
because tests performed by using the Hand to HandTip joints direction to get
the actual finger pointing direction did not improved the results but rather
produced more deviated locations, due to skeleton estimation inaccuracies.
Figure 4.7 shows an example of the pointing gesture result in the GUI.

Given that an intersection point is found either the user is pointing to the
ground or not (as a line is infinite and does not have direction by itself),
a verification on the pointing direction is done by checking the sign of the
vertical component of the pointing line direction vector.

4.2.3 3D cluster segmentation for object detection

Once the “point at” gesture has been recognized and the pointing point
has been located, the next step is to detect which objects are around the
pointed point. As the point is to make the robot know which is the object
the user is referring to, there is not much need in recognizing the objects
but just detecting them, knowing there are objects there. Therefore, object
recognition has not been used even though the system could be extended to
handle it and actually recognize the objects and tell them by their name.

To detect the objects, the PCL has been used. First of all, a sphere of the
scene of a certain radius8 and centered in the pointed location is extracted

8The tests use a radius of 55 centimeters, which was suitable for the objects used.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 34

Figure 4.7: Example of pointing point estimation and surrounding objects
segmentation.

from the scene point cloud. The spherical cloud contains the objects to be
segmented. This extraction has been performed by constructing a PCL k-
d Tree structure and performing a radius search centered in the point of
interest. Later, all the planes of the spherical cloud are extracted in order
to remove the floor and wall planes, in the way explained in the previous
section. After that, each of the objects should be a set of points which
is isolated from the others. This is a good situation to apply a clustering
algorithm which joins all the neighbouring points in a single point cloud,
getting as a result as point clouds as objects there are. At last, the size of
the objects can be computed by means of a convex hull optimization and
also the centroid of it can be computed to be used as the position of the
object.

The clustering algorithm used to achieve this task is the Euclidean Clus-
ter Extraction algorithm, which is implemented in the PCL. The algorithm
makes use of the nearest neighbours idea and has some resemblance to a
flood fill algorithm. The algorithm is defined in [35], and uses a k-d Tree to
perform efficient nearest neighbour calculations. This clustering method is

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 35

shown as described by the author in Algorithm 4.5.

Algorithm 4.5: Euclidean Cluster Extraction (from [35])
Input: P: Point Cloud (spherical cloud from the scene in the current case)
Output: List of clusters (sets of points)

begin
t = create_kdTree(P)
C = list() // Empty list of to store the clusters
Q = list() // Empty list of the points that need to be checked
foreach pi ∈ P do

if pi already processed then continue
Q.add(pi)
foreach pj ∈ Q do

// Search for the set of point neighbors of pj in a
sphere with radius r ≤ dth, being dth user defined

P k
j = t.find_neighbors(pj , r)

foreach pkj ∈ P k
j do

if not Q.contains(pkj) then Q.add(pkj)
end

end
C.add(Q)
Q = list() // Reset Q to an empty list

end
return C

end

4.3 Mobile robotics: human interaction

Now that the system’s vision techniques have been explained, it is time
to move to the physical world. This Section introduces and explains the
methodology used to endow the robot with the skills and reasoning capabil-
ities needed to fulfill the interaction tasks, making use of the visual informa-
tion (gestures and objects) obtained from the Kinect sensor.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 36

4.3.1 Providing robots with skills

In order to implement the whole robotics application, the robot platforms
must be empowered with some specific skills which they lacked. Those skills
allow to develop some of the main parts of the robotics tasks, and they are
essential for the success of the interaction.

4.3.1.1 Wifibot’s navigation

The Wifibot’s ROS driver running on the on-board computer only provides
a basic interface to move the robot. The left and right velocities for both
wheels can be specified, as well as the odometry and the infra-red sensors
information can be read. Hence, a higher level behaviour to control the robot
navigation is needed.

This behaviour will allow to move the platform towards the goal position,
that pointed at by the user. Given that a free path is assumed, without any
obstacles, a simple navigation towards a goal skill has been implemented.
To do so, a standard PID controller [25] approach has been used, in which
the control signal is the angle towards the goal and the process variable is
the distance to the goal. This kind of standard go-to-goal behaviour can be
found in several courses, books and papers of introduction to mobile robotics
control, such as [12].

As far as the Wifibot geometry is considering two rotating axis, the right
and the left one, a differential drive robot model has been employed, even
though our robot is equipped with four wheels. To simplify it even more,
the linear speed is assumed to be constant, and only the angular speed is
modified as control output. The robot model used is

ẋ =
R

2
(vr + vl) cosφ

ẏ =
R

2
(vr + vl) sinφ

φ̇ =
R

L
(vr − vl) ,

(4.4)

where R is the wheel radius and L the distance between the right and left
wheels.

However, it is easier to work with robot velocities rather than left and right

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 37

Figure 4.8: Examples of the robot’s position change towards a goal (upper
plots) and the angular error optimization (lower plots).

wheels ones, so the model used to design the controller is
ẋ = v cosφ
ẏ = v sinφ

φ̇ = ω .

(4.5)

This odometry information is used to compute the distance and angle to the
goal position.

The problem to be solved is shown in Figure 4.9. Given that the linear
velocity is fixed and constant, the only variable to be controlled is the heading
of the robot, which is measured by the angle ω. Let φ be the current heading
of the robot and (x, y) its current pose, the goal orientation φd to a goal
position (xg, yg) will be calculated as φg = arctan

yg−y
xg−x . Then, the error to

be minimized by the feedback control algorithm is e = φd − φ, from which
the angular velocity can be obtained as ω = PID(e).

Consequently, the algorithm gets the data from the ROS’s odometry topic,
and each time a new update is received the angle error is computed to ob-
tain the new angular velocity ω from which the left and right velocities are
obtained and send as a command to move the wheels. Once the distance to
the goal and the angular error are low enough, the robot is stopped as it has
reached the goal position (xg, yg). Figure 4.8 shows two examples of the er-
ror optimization plot and its corresponding robot’s position change towards
the goal.

This feedback controller has been implemented as a ROS service which can

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 38

be called by sending a goal position and it returns once the robot has reached
it.

Figure 4.9: Go to goal problem in a differential drive robot. Extracted
from [12].

Then, the right and left velocities can be obtained easily by

vr =
2v + ωL

2R

vl =
2v − ωL

2R
.

(4.6)

This model can be used to compute the odometry which is provided by the
driver (in fact it is computed by using the previous model), gathering the
information of the wheel encoders. Only this information is employed, so
the pose estimation is not very precise – as the wheels may slip –.

4.3.1.2 NAO’s “going down the Wifibot” movement

Another big issue to be solved was to make the NAO robot go down of the
Wifibot. Given that NAO moves with the platform by sitting on it, there
was a moment in which they had to separate in order to fulfill the given task.

Such handicap was solved by creating a “going down” movement. It was
designed in an iterative way. The first attempts were to move the body
forward in order to generate an unbalance that translated NAO’s weight
to the front meanwhile it pushed himself with the knee joints (moving the
legs backward). This strategy resulted in the first successes, but it some

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 39

times ended in a failure in which NAO’s safety checks detected a possible
fall, making him relax all the motors and lay safely in the ground, but
making it impossible for the task to be completed. After some analyses on
that movement, an improvement was added by also using the arms to push
him forward taking advantage of the handles in the Wifibot. This tactical
action improved significantly the effectiveness of the movement, which was
optimized by sitting the robot a little bit more to the edge. Hence, the
unbalanced movement makes the robot put its foot on the ground, and the
arms help him get the correct orientation. This last version has shown a
near perfect performance.

� �

Figure 4.10: Example of NAO’s going down sequence. First seated be-
ginning to move the weight forward, then with the arms in the front and
pushing with the legs to fall, and finally in the floor pushing himself with
the arms.

Unfortunately, designing a movement to make the NAO go back up the
Wifibot has been not possible. A little behaviour was programmed to help
the user sit the NAO on top. Therefore, NAO asks the user to lift him up, it
puts its joints in the sitting position and once placed on the Wifibot, the user
touch its head in order to make the robot put its arms in a safety position.

4.3.2 Finite State Machines (FSMs)

The state machine paradigm has been used to program the whole application.
The system can be in a finite number of states in which some conditions
are held and a specific task is encapsulated. Once a state has finished its
execution, the machine transits to one state or another one depending on
the outcome, generating the application flow.

The considered approach has been to use states which perform a single and

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 40

little task, which are then used to build simple state machines that use
the task for a more complex behaviour, which at its time is included into
another state machine, giving rise to a complex hierarchical state machine
that executes the whole application flow. An example of this state machine is
shown in Annex A State Machine diagrams. Several states which are specific
to this Human-Robot interaction application have been developed, but a lot
of already made states from the NAO@UPC9 repository were used, as far as
many of them were contributed by the author.

For the Kinect controller application, a single state machine with three states
has been implemented: the wait state waits until a command is received
from the server laptop, and depending on it make the transition to either
the gesture recognition state or the object segmentation state, both of them
transiting back to the wait state.

4.3.3 Robot interaction

The overall objective of the methods introduced is to generate a single gesture
based interaction of a human with a robot. Since NAO is a humanoid robot,
it can interact with a human person both via gestures and voice, as people
knows how to interpret those gestures in a similar form to those made by a
human. However, this similarity also involves some prejudices as users may
expect the robot to act and behave as a real human. So, one aside objective
of the interaction is to avoid user frustration due to unexpected actions or
unintelligible gestures from the robot side. In addition, successful but also
funny interaction will increase engagement for the user and enjoy more the
situation.

To accomplish all of these goals, different elements have been used. To begin
with, the response gestures are as human-like as possible, from the wave
gesture which is similar to the one the user has to perform to the gesture
it does to reference an object, in which NAO shows which was the object
the user pointed at with his hand, but also accompanying it with a head
movement. The movement to go down of the Wifibot is also quite natural,
despite being it more similar to the one a clumsy person would do.

Secondly, the robot verbalizes almost everything it is doing or is going to do.
9Repository of NAO utilities and SMACH states developed for the Humabot 2014

challenge which was held in Madrid during the 2014 IEEE-RAS International Conference
on Humanoid Robots. The code is found in the GitHub’s NAO-UPC repository.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 41

This communication allows the user to be informed and enlivens the process.
To make it even more pleasant, a set of messages are available for the robot
for every utterance, from which it chooses one of them at random, avoiding
repeated sentences. Hence, even though there exist some states which are
repeated in the process, the robot says something different every time. For
instance, when NAO has not recognized any gesture after a given amount
of time, it says something like “I did not see you moving. Are you there?”;
when the timeout is reached again, it could say “Please, do a gesture”, among
other sentences. Furthermore, utterances have been designed to be a little bit
funny so the robot does not look like a cold machine. An example would be
that when the user points at an object but the robot is not riding the Wifibot
(since it has already gone down); it could say “I can not get there without
my cool Wifibot transport”. Whe the users points at a non-ground place,
NAO could tell the user that “I can not fly! Please point at the ground”.
However, if the user repeats the same action, the robot will say something
different, maybe in a more severe tone.

Finally, the eye LEDs are also used to send information to the user, although
it has only been used in a specific case. This is the moment in which NAO is
listening to the user answer its question. To indicate it is listening, the robot
emits a beep sound, and puts its eye LEDs in a blue circular animation, which
means it is waiting. When a sound is being recorded, the light turns yellow,
and when a recorded signal is being processed, the eyes are in still white
with the blue circular animation in the background, meaning that it is still
listening while processing the previous information. If the processed signal is
a successful recognition, the eyes blink in green, while if it was an erroneous
one they blink in red. A final beep signal tells the user that it has stopped
listening, after it understood what the user said. This is what the default
speech recognition behaviour does, and it was kept because we thought it
was informative and intuitive enough. The eye’s LED lights execution flow
is depicted in Figure 4.11.

Even though, not all the process could be as human like. For instance, when
the object segmentation is performed, the robot tilts its head back in order
to move it away from the Kinect’s field of view. This action results in the
NAO “looking for objects” in the ground but looking to the ceiling, which
may seem incoherent for the user. Moreover, the robot does not follow the
user’s face with its gaze and it may be quite impersonal, although in most
of the movements the robot moves the head up so it seems like it is looking
to the user.

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 42

Figure 4.11: NAO’s eyes LEDs while performing speech recognition.

4.3.3.1 Object disambiguation

Another special case of interaction is performed by the object disambiguation
sub state machine. It is the one which processes the object segmentation
result, and outputs the object which the user selected.

First of all, the state tries to discriminate whether the pointed location was
close to a single object and far enough of the rest of them. If this is the
case, there is no doubt and that object is selected. Else, the robot needs
more information in order to accomplish its task, and makes a question to
the user. Again, the question depends on different factors in order to make it
more varied and easy for the user. Provided that the objects are significantly
different in size, the robot asks whether the biggest object was the one the
user wanted. If the user answer is negative, it will know that the desired
object is the other one, if there are only two objects or will ask again if it is
the smallest one, so it can then know which object was. In case the objects
can not be differentiated by its size, it asks to the user if the desired object
is the one in NAO’s left, repeating the same discarding method as for the
size question. A flowchart of the process is depicted in Figure 4.12.

The object disambiguation process involves a natural dialogue with the user,
enhancing the interaction along with the ways of interacting, and simplifying

CHAPTER 4. HUMAN ROBOT INTERACTION SYSTEM 43

the task while improving the chances of success by removing any guessing or
random choice when there is a doubt.

Figure 4.12: Flowchart of the object disambiguation process.

5 Experimental Evaluation

The system implemented and tested, some evaluation is needed in order to
obtain some performance measures that give some idea about how the dif-
ferent methods behave. The focus of this evaluation will be on the gesture
recognition and interaction parts, first introducing the evaluation methods
used, then showing the gesture recognition evaluation and finally user expe-
rience results.

5.1 Data, methods, and settings

Several data has been collected in order to perform an exhaustive evaluation
of the methods proposed in this work. To begin with, seven skeletal sequences
of three different users doing the proposed gestures were recorded in order
to use them to obtain the gesture recognition parameters as explained in
4.2.1.3 [Dynamic Time Warping (DTW), but also to compute a performance
metric on the gesture recognition method. Those sequences were manually
labeled to obtain the starting frame and the ending frame of each gesture
appearing in them. The sequences have a total of 2082 gesture frames and 61
gestures, 27 of them being static gestures and the other 34 dynamic gestures.

The chosen metric is the overlap measure, also known as Jaccard Index. It
is computed as

J(A,B) =
|A ∩B|
|A ∪B|

, (5.1)

where A is the ground truth information (set of frames which contains a
gesture) and B is the set of frames in which a gesture has been recognized.
An index value of one means a perfect recognition to the frame level, while a
zero would mean that no frame was correctly recognized. Figure 5.1 depicts
an example of its computation.

The other source of data comes from user experience evaluation. Several
users were invited to perform different tests with the system and then fill a
questionnaire to state their opinions and answer some questions about how
they felt the interaction. Those tests were videotaped to better analyse the
results. User information gives us an idea of how good the system behaves
in terms of user experience rather than getting some numbers which depend
on some predefined sequences. Given that the objective is to generate a
natural interaction application, user opinion and system performance while

44

CHAPTER 5. EXPERIMENTAL EVALUATION 45

operated by different users gives us a more real world idea about how well
does it perform.

Figure 5.1: Jaccard Index computation example. Extracted from [9].

5.2 Gesture recognition evaluation

To obtain a general measure of the performance of the algorithm on the
recorded skeletal sequences, a Leave-One-Out Cross-Validation (LOOCV)
strategy has been used. Hence, one sequence is left out from the threshold
selection method (explained in 4.2.1.3 [Dynamic Time Warping (DTW)) and
the other ones are used to compute the better thresholds to recognize the ges-
tures they include. After the parameters were computed, the test sequence
was evaluated to obtain its overlap measure in unseen data. This procedure
is repeated for each one of the sequences, obtaining the performance mea-
sures both for the static gestures and the dynamic ones. Those measures
were averaged for the seven sequences, obtaining a general Jaccard Index of
each type of gesture, and the average of the mean overlap of both categories
gives the final gesture recognition performance value of the system.

The results obtained with this methodology are shown in Table 5.1. Each
fold is a test sequence, and the results of the parameter selection with all the
sequences but the fold sequence are in the left columns, while the right ones
show the performance on the fold sequence with the parameters obtained
with the rest of the data. The “Global” row shows the results of the parameter
selection when all the sequences are used to compute the parameters, and
the test sequence columns show the mean of the above rows.

As it can be seen in Table 5.1, the mean Jaccard Index in unseen sequences
is about 0.49. This means that roughly the 50% of the gestures are well
recognized from begin to end – although more than the 50% may be correctly

CHAPTER 5. EXPERIMENTAL EVALUATION 46

Parameter selection Test sequence

Fold Static
gestures

Dynamic
gestures Mean Static

gestures
Dynamic
gestures Mean

0 0.703642 0.552158 0.627611 0.349593 0.636364 0.49298
1 0.641827 0.658219 0.650023 0.711538 0.0 0.35577
2 0.713837 0.557703 0.63543 0.279476 0.603093 0.44128
3 0.71538 0.625359 0.67037 0.172078 0.186992 0.17954
4 0.640198 0.554127 0.597163 0.721311 0.624549 0.67293
5 0.667304 0.528129 0.59772 0.543605 0.77037 0.65699
6 0.595776 0.54133 0.56855 -a 0.620818 0.62082

Global 0.653063 0.564187 0.608625 0.46293 0.491744 0.48862
a Sequence 6 does not contain any static gesture.

Table 5.1: Gesture recognition performance evaluation results.

recognized, but not segmented –, which is not a bad result but still could
be much better. The parameter selection results are better, reaching the
60% of overlap in the gestures, mainly because all the sequences are used to
compute them, as more variability considered and it is slightly over fitted,
like a training error. As for the different kinds of gestures, it looks like
dynamic gestures are better segmented than the static ones. However, some
sequences failed in recognizing the dynamic gestures, such as the sequence
1. This may be caused by the little amount of data and the variability of
the gestures between users, therefore if the other sequences are similar this
could lead to this result. A solution, leading to a more accurate measure,
would be to get more data, but it was not feasible mainly due to the high
amount of labeling work but also to the lack of candidates at the time of the
skeletal sequences recording, which was at the early stages of this project.
Furthermore, the user experience evaluation is another valuable source of
performance information which compliments the data exposed in this section.

5.3 User experience evaluation

The system was prepared to be tested publicly in the Facultat de Matemà-
tiques i Estadística (FME). A total of twenty-four people came there to try
the Human Robot Interaction application and give their opinion about it.

CHAPTER 5. EXPERIMENTAL EVALUATION 47

5.3.1 Experiment design and setup

The test began with a simple explanation of the objectives of this work and
the task to perform along with an introduction to the NAO robot. Then
the available gestures were explained and an example of the wave gesture
was shown to the users, as it can be done in several different ways – moving
only the hand or moving the whole straight arm –. After that, the test was
performed and finally the user answered the survey about its experience.

Each user had to perform three tries of the task: one in which only one
object was placed in the robot area, another one with two of them and a
final one with one of the two objects replaced. Those who desired it could
make more tests. The objects which were used were two milk bottles and
an empty cookie box. The order of the tries was changed between users to
avoid any bias in the results due to user fatigue. The objects used in each
of the test was also varied, being some tests performed with the two bottles
and others with a bottle and the box. There were no restrictions about the
order of the gestures to be performed, but users tended to begin with a wave
gesture to then point at an object. Also, the objects were usually placed by
the test controller, but those who asked were allowed to place the objects by
themselves.

The environment in which the tests took place was a corridor of the FME
building, given that a big open space was needed to both receive the people
and to perform the tests. The testing setup can be observed in Figure 5.2.
It consisted on a table in which the main laptop was placed, the robots and
the objects were in the middle of the corridor and a desktop computer in
the contiguous room was ready for the users to answer the questionnaire.
A camera was settled at the other side the corridor in order to record the
tests, prior informed consent of the user. Given that a battery for the Kinect
sensor could not be obtained, a power supply extension cord was needed.

This testing environment was a little bit troublesome because of the high
reflectivity of the floor, which made the Kinect see the objects mirrored on
the ground, as the infrared projections got reflected on the ground. This
resulted in the appearance of underground objects, and a fix was needed to
be implemented in order to filter such reflections. An example of the issue
is shown in Figure 5.3.

CHAPTER 5. EXPERIMENTAL EVALUATION 48

Figure 5.2: User testing environment.

Figure 5.3: Example of object reflections on the ground.

5.3.2 User’s survey analysis

This section highlights some interesting results which were obtained from
the answers to the questionnaire that the twenty-four volunteers who partic-
ipated in the experiment had to fill after the test. The questionnaire can be
found in the Annex B User tests questionnaire. Tables and Figures in this
section refer to the questions as “QX” where X is the question number.

CHAPTER 5. EXPERIMENTAL EVALUATION 49

To begin with, demographic data was asked to know which is the profile
of the users that tested the system. As it can be seen in Figure 5.4 and
Table 5.2, users aged from 21 to 42 years, being the range of 26 to 30 years
the most common one, and being them mostly male as it can be seen in
Figure 5.5. As for the background, many people were from the robotics field,
computer science and artificial intelligence, but a great percentage of them
had very different backgrounds. For instance, a medical doctor, an optician,
a translator or a school teacher are examples of this variation, being most
of them still studying. Consequently, the system was tested with a great
variety of people from different education levels and ages.

Figure 5.4: User’s age distribution (Q1).

Figure 5.5: User’s gender distribution (Q2).

CHAPTER 5. EXPERIMENTAL EVALUATION 50

Figure 5.6: User’s background distribution (Q4).

The answers to the interaction questions were mostly in the positive sense.
For the “Wave gesture”, a 96% of the users expected the robot’s behaviour,
and they though that this response was quite fast, being the mean a 4.21
out of 5, and the lowest score was a 3. Also, as it can be seen in Figure 5.7,
they though the gesture was natural to perform, even though some users
felt it was hard to perform or not natural. Some suggestions on the wave
gesture were that it should be able to understand different type of waves (for
instance with only the hand), or maybe a verbal salute. They also thought
it would be good to wave with both arms (it was restricted to the right hand
for the tests), that NAO could try to make visual contact with the user, or
that he should speak the “hello” faster.

The “Point At” gesture was also agreed to be natural – as it is shown in
Figure 5.7 – and also fast, even though not as fast as the “Wave one”. Most
of the users thought that they did not have to point at the object for too
much time, that it usually got the correct object and that the robot showed
which was the object it understood. The disambiguation part did not appear
in all the tests, as the robot saw clearly which object was the user pointing
at. In the cases the robot needed to ask, most of the volunteers understood
what it said, even tough a high percentage of them (25%) did not and needed
external help, and another 25% of them did not know if NAO understood
them or not. But almost all of them agreed that NAO’s behaviour was the
one they expected after their gesture. Some comments about the “Point At”
included the difficulty for the user to know when they could point at the
object, and some failures at the time of detecting more than one object, as
well as it could be faster or more natural with the arm more relaxed.

CHAPTER 5. EXPERIMENTAL EVALUATION 51

Figure 5.7: User opinion about gesture naturalness (Q8 and Q13).

Question Range Min Max Mean ± SD

Age (Q1) - 21 42 28.46 ± 6.14
Familiarity with robots (Q3) 1-5 1 5 3.75 ± 1.33
NAO’s response speed to a Wave (Q9) 1-5 3 5 4.21 ± 0.88
NAO’s response speed to a Point At (Q14) 1-5 2 5 3.83 ± 0.82
NAO got the correct object (Q16) 1-4 2 4 3.00 ± 0.78
NAO clearly showed its object guess (Q17) 1-4 2 4 3.17 ± 0.76
Naturalness of the whole interaction (Q24) 1-5 2 5 3.71 ± 0.91

Table 5.2: Numerical user’s answers to the survey.

Looking at the whole test interaction, the users graded it with a mean value
of 3.71 ± 0.91 out of 5, which indicates that the interaction was sufficiently
natural. Almost all of them were able to understand the robot indications
(although some needed help), and only a 29% felt frustration, which is a feel-
ing that usually arises when dealing with robots. This frustration appeared
when the pointed point was erroneously estimated and the robot went away
or when the robot did not get the gesture. Some of them were not aware
about what was the robot doing at some moments such as when it was wait-
ing for a gesture after waving, and some of them were able to understand
what was going on while the robot was performing its tasks. Another im-
portant result is that most of them thought it was easy and satisfactory to
interact with the robot, and all of them enjoyed the test.

Some questions about future extensions were also asked. For instance, they
asked about the possible integration of head movements to answer “yes” and

CHAPTER 5. EXPERIMENTAL EVALUATION 52

Question Yes No

I
don’t
know

Need to
repeat

Robot
didn’t
ask

I am still Studying (Q6) 83% 17% - - -

The wave response was expected (Q10) 96% 4% - - -

I had to point for too much time (Q15) 33% 67% - - -
I understood robot’s question (Q18) 58% 17% - - 25%
The robot understood my answer (Q19) 50% 0% 25% - 25%
It was easy to anwer the question (Q20) 46% 8% - 8% 38%
The Point At response was expected (Q21) 92% 8% - - -

I understood robot indications (Q25) 88% 13% - - -
I felt frustrated (Q26) 29% 71% - - -
I had unawareness of what was happening (Q28) 25% 75% - - -
It was easy to make NAO do a task (Q30) 96% 4% - - -
It was a satisfactory interaction (Q32) 88% 13% - - -
I enjoyed the test (Q33) 100% 0% - - -

It’d be better to answer with a head movement (Q34) 58% 42% - - -
It’d be easier to answer with the head (Q35) 54% 46% - - -
It’d be better to have both answering modes (Q36) 100% 0% - - -

Application could be useful in homes (Q37) 96% 4% - - -

Columns with a - were not an option in the question.

Table 5.3: Rest of the answers to the questionnaire.

“no” questions. There is not a clear tendency about whether this would
improve the interaction or it would be easier, even though the majority
thought so. However, they all think it would be good to have the ability of
answering both via head movements and speech. Also, most of them said
that applications like this one could be useful in household environments to
help the humans.

Finally, they proposed new gestures to be added to the system. Some of
the most interesting ones are a “stop” gesture with the open hand in front
(which would be a static one) was repeated a lot of times. “Come here”
and “go there” gestures were also recurrent, and silent gesture to mute the
robot or put it in sleep mode was also proposed, along with a “help” gesture.
Some other suggestions they provided were to give more feedback about
what was the robot doing, that an obstacle avoidance system or a Kinect
based correction for NAO’s walking could be implemented. Some users also
suggested that it would be good to make the NAO grasp the objects to, for
example, help people with reduced mobility.

Tables 5.2 and 5.3 show the detailed results which have been described above.

CHAPTER 5. EXPERIMENTAL EVALUATION 53

5.3.3 External test and user’s behaviour analysis

The external observations of the tests, taken by the test controller, are also a
valuable source of information about the performance and proper functioning
of the system.

The users showed an appropriate learning curve, and minimal external in-
tervention was needed. They usually began by pointing too high and the
estimated point was too far away of the objects, hence NAO could not see
them, but they learned that they should point more precisely to the objects.
Besides, some left handed user tried naturally to perform the gestures with
the left hand even though they were told to do it with the right one. Also,
most of them began with a wave, and then waited for the controller to allow
them to point at, when the robot was already waiting. This could be the
sign of a lack of feedback from robot’s side, and they usually asked before
performing the gestures instead of trying things freely. Nevertheless, some
users tried to see what would happen when pointing at an object when the
NAO was already on the ground, and got a pleasant surprise when NAO
answered that he could not go there. Some other people tried to harden
the tests by placing the objects by themselves, some times resulting in a too
hard placement (with obstacles in the middle).

Moreover, some issues arouse while testing the system with the volunteers.
In the beginning of the experiments, the robot was not walking properly and
showed a deviation to the left, which needed to be fixed. This may have
been due to the slipping floor.

The height and clothing of the person also had influence in the tests. For
instance, some users were too tall to have the skeleton estimated from where
they were placed, their hands went out of the field of view during a wave
or they had to walk back after the Wifibot had moved in order to be in the
Kinect’s field of view to perform a new gesture. What’s more, some clothes
– usually black, as some black dyes absorb infrared light – made that the
skeleton could not be tracked. This fact implied that one user had to take
off its jacked, and another had to cover his trousers. Other problems in the
skeleton estimation are shown in Figure 5.8.

The final evaluation after all the tests were performed is that the tests were
performed correctly, and the users enjoyed them. it was clearer in those users
who had not had much contact with robots, and even they asked to repeat the
test more times. The robot speech was hard to understand for some users due

CHAPTER 5. EXPERIMENTAL EVALUATION 54

Figure 5.8: Skeletal tracking errors during the tests.

to NAO’s spelling, but they got used to it at the end. The batteries supposed
some problems and NAO was needed to be plugged, even though it did not
affect the test performance. Some good points are that, even though the
pointed location was deviated, NAO was able to approach the location and
refine the search to find the correct object at the end. But, this fact implied
that not many disambiguation speeches were performed, which is not bad,
but the speech part could not be studied in the same depth as the others.
External intervention from the collector was only needed when the user did
not know what to do or when the robot went to a wall, in which case was
stopped for safety reasons. Furthermore, NAO’s performance was correct in
almost all the tests, failing only twice: when the whole robot computer got
frozen and once that he got trapped with the cable. Moreover, the robot did
not fall to the ground any time, and was able to successfully go down the
Wifibot all the times he needed to.

6 Conclusions and future work

A real-time gesture based Human Robot Interaction system has been pro-
posed and implemented in this Master Thesis with the novel Microsoft’s
Kinect v2 sensor. Two types of gestures have been described, the static ges-
tures and the dynamic ones, and a gesture of each type has been included in
the system. Features obtained from skeletal information have been used in
the algorithm, being them gesture independent and allowing different num-
ber of features per gesture. Moreover, the system allows easy addition of new
gesture with its specified features. An implementation of a feature weighted
Dynamic Time Warping algorithm has been applied to the dynamic gesture
recognition, and a parameter selection method has been implemented to tune
the different values of the algorithm. Additionally, some utilities from the
PCL library have been used in order to detect the floor plane in order to find
the user’s pointing location, and an Euclidean cluster extraction algorithm
has been employed to segment the object candidates around the referred
point.

A medium size humanoid robot, Aldebaran’s NAO, has been used to interact
with the user via both speech and gestures, and a wheeled platform, Nexter
Robotics’ Wifibot robot, is employed to ease NAO’s navigation and sensor
movement. NAO is able to ride Wifibot and to go down of it once they have
approached a given goal. Both robots work in an independent way, and they
are able to collaborate each other in order to fulfill a task which right now
includes, but it is not limited to, finding an object which has been referred by
the user with a pointing gesture, with a speech based disambiguation using
spatial or dimensional characteristics. Some extensions to this task could be
adding more types of interactions or using the Wifibot to see the elements
from other points of view.

Furthermore, an extensive series of tests with a varied set of users have
been carried out, resulting in a good experience for them. Most of the users
thought the gestures were a natural way of interacting with the robot, and
the response the robot had was the expected one and fast enough. This
means that the system is easy to be used for human beings with minor
indications on how to perform the gestures and, thus, the initial objectives
of this project are considered as successfully accomplished.

It has been shown that applications like this could be really useful in house-
hold environments, as the users suggested. Make robots bring something
they pointed could be useful for elderly people or those which mobility dif-

55

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 56

ficulties, but waving at them and having a response give them a living and
understanding feeling, helping to avoid loneliness. Many other gestures could
be added in order to improve this interaction that rather than teleoperat-
ing the robot, intends to be a source of information to ease robotic task
fulfillment, everything made in a natural, non forced way.

However, many extensions and improvements could be included in the sys-
tem, as the amount of possibilities is as huge as human imagination, and
some limitations needed to be added to the project. One of the most impor-
tant ones may be the enhancement of the pointing at location estimation, as
the elbow-hand direction tends to point to further places, and also humans
tend to point above the object. This is not a problem for us to distinguish
the object, but it is a handicap for a robotic system. Some solutions to this
issue may be the use of a learning method in order to adapt to the user,
be it a general user – to get the “general” human pointing deviation – or
user specific, or a fixed factor could be applied to solve the major deviations.
Also, other cues could be used to improve the estimation of the pointing
direction, such as the use of the gaze trajectory in other to adapt the arm
one, as humans tend to look to the place they are pointing at.

In addition, more gestures could be added, as the ones suggested by the
users, as well as more variability to the current ones, as the wave gesture
can be performed in different ways and, even though the proposed way has
demonstrated to be natural, some users would have performed it in a different
way. Other interesting gestures to add would be head gestures, such as
nodding to confirm NAO’s suppositions. This would be performed by means
of Kinect’s face tracking utilities and extracting 3D pose information of, for
instance, the eyes and mouth to build gesture features which can be fed
to the algorithm. This possibility could enhance the gesture interaction of
the system, and a great number of users thought it would be good to have,
provided that the speech capability is still present. Also, as some users
suggested, better feedback should be included in order to avoid that the user
does not know what is happening with the system at any moment.

These extensions could be also used to improve the skeletal tracking, which
showed some problems as phantom skeletons or tracking errors as the ones
already shown. Using a face detector on the RGB image could be helpful in
order to filter some of these errors, as if no face is found it would mean that
no person is in front of the camera. Given that the skeletal tracking is the
main basis of the system and depends on it, failures on that method imply
the inability of the robot to understand the gestures and hence it should be

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 57

the most robust part of the application.

Another issue some users complained about is that the height of the person
can imply if the user is recognized or not, and the distance needed to the
sensor as they needed to move or their arms went out of the sensor’s field
of view. This could be tackled in the previous Kinect version by using the
included pan and tilt motor, which was discarded in this renewed sensor.
Nevertheless, some external motor could be included in order to solve this
point.

Besides, different improvements could be applied to the navigation compo-
nent. Firstly by taking obstacles into account in Wifibot’s move to goal
behaviour, in order to have a more robust approach. Then, NAO tracked
could be used in order to improve NAO’s walking behaviour with a closed
loop controller, seeing when it deviates and correcting such deviation to as-
sure that it reaches its goal successfully. In addition, a SLAM algorithm
could be used to create a map of the environment, which would enormously
ease both robot’s navigation capabilities, and would give information about
the exact location of each robot on a map, which would the need of relying
on the odometry of the robots.

Finally, a cognitive architecture could be used in the robotics part of the
system. Following the approach of [29], in which the SOAR1 reasoner is
applied to a general purpose service robot, the state machines could be re-
placed by it. This would simplify the programming of the robots, easing
the addition of new gestures as there would not be the need of taking all
the possible transitions into account, as SOAR would create the appropriate
plan obtaining any needed information. A first coding of our system skills
into SOAR operators was performed, but this method could not be tested
deeply enough to extract sufficient conclusions.

1soar.eecs.umich.edu

http://soar.eecs.umich.edu/

References

[1] V. Alvarez-Santos, Iglesias. R., X. M. Pardo, C. V. Regueiro, and
A. Canedo-Rodriguez. Gesture-based interaction with voice feedback
for a tour-guide robot. Journal of Visual Communication and Image
Representation, 25(2):499 – 509, 2014.

[2] T. Arici, S. Celebi, A. S. Aydin, and T. T. Temiz. Robust gesture recog-
nition using feature pre-processing and weighted dynamic time warping.
Multimedia Tools and Applications, 72(3):3045–3062, 2014.

[3] P. Barros, G. I. Parisi, D. Jirak, and S. Wermter. Real-time gesture
recognition using a humanoid robot with a deepneural architecture. In
Proceedings of the IEEE-RAS International Conference on Humanoid
Robots (Humanoids ’14), pages 83–88. IEEE, 2014.

[4] E. Bernier, R. Chellali, and I. M. Thouvenin. Human gesture segmen-
tation based on change point model for efficient gesture interface. In
Proceedings of the 2013 IEEE RO-MAN, pages 258–263, Aug 2013.

[5] F. Bettens and T. Todoroff. Real-time DTW-based gesture recognition
external object for Max/MSP and Puredata. In Proceedings of the Sound
and Music Computing conference (SMC ’09), pages 30–35, 2009.

[6] C. Breazeal, C.D. Kidd, A.L. Thomaz, G. Hoffman, and M. Berlin.
Effects of nonverbal communication on efficiency and robustness in
human-robot teamwork. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005. (IROS 2005),
pages 708–713, Aug 2005.

[7] J.A. DeVito and M.L. Hecht. The Nonverbal Communication Reader.
Waveland Press, 1990.

[8] D. Droeschel, J. Stuckler, and S. Behnke. Learning to interpret point-
ing gestures with a time-of-flight camera. In Proceedings of the 2011
6th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 481–488, March 2011.

[9] S. Escalera, X. Baró, J. González, M. A. Bautista, M. Madadi, M. Reyes,
V. Ponce, H. J. Escalante, J. Shotton, and I. Guyon. Chalearn looking at
people challenge 2014: Dataset and results. In Proceedings of European
Conference on Computer Vision (ECCV) 2014, ChaLearn Looking at
People Workshop, 2014.

58

REFERENCES 59

[10] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Commununications of the ACM, 24(6):381–395, June 1981.

[11] T. Fujii, J. Hoon Lee, and S. Okamoto. Gesture recognition system
for human-robot interaction and its application to robotic service task.
In Proceedings of The International MultiConference of Engineers and
Computer Scientists (IMECS 2014), volume I, pages 63–68. Interna-
tional Association of Engineers, Newswood Limited, 2014.

[12] Tzafestas S. G. Mobile robot control I: The lyapunov-based method. In
Spyros G. Tzafestas, editor, Introduction to Mobile Robot Control, pages
137 – 183. Elsevier, Oxford, 2014.

[13] F. Garcia, R. Frizera, and E. O. Teatini. Human–robot interaction and
cooperation through people detection and gesture recognition. Journal
of Control, Automation and Electrical Systems, 24(3):187–198, 2013.

[14] Bill Gates. A Robot in Every Home. Scientific American Magazine,
January 2007.

[15] Md. Hasanuzzaman, T. Zhang, V. Ampornaramveth, H. Gotoda, Y. Shi-
rai, and H. Ueno. Adaptive visual gesture recognition for human–robot
interaction using a knowledge-based software platform. Robotics and
Autonomous Systems, 55(8):643 – 657, 2007.

[16] A. Hernández-Vela, M. Á. Bautista, X. Perez-Sala, V. Ponce-López,
S. Escalera, X. Baró, O. Pujol, and C. Angulo. Probability-based Dy-
namic Time Warping and Bag-of-Visual-and-Depth-Words for Human
Gesture Recognition in RGB-D. Pattern Recognition Letters, 50(0):112–
121, 2014. Depth Image Analysis.

[17] S. Iengo, S. Rossi, M. Staffa, and A. Finzi. Continuous gesture recogni-
tion for flexible human-robot interaction. In Proceedings of the 2014
IEEE International Conference on Robotics and Automation, ICRA
2014, pages 4863–4868, 2014.

[18] H. Kim, S. Hong, and H. Myung. Gesture recognition algorithm for
moving kinect sensor. In Proceedings of the 2013 IEEE RO-MAN, pages
320–321, August 2013.

[19] Y. Kondo, K. Takemura, J. Takamatsu, and T. Ogasawara. Body ges-
ture classification based on bag-of-features in frequency domain of mo-
tion. In Proceedings of the IEEE RO-MAN, pages 386–391, Sept 2012.

REFERENCES 60

[20] R.C. Luo, S. Chang, and Y Yang. Tracking with pointing gesture recog-
nition for human-robot interaction. In System Integration (SII), 2011
IEEE/SICE International Symposium on, pages 1220–1225, December
2011.

[21] C. Matuszek, L. Bo, L. Zettlemoyer, and D. Fox. Learning from un-
scripted deictic gesture and language for human-robot interactions. In
Proceedings of the 28th National Conference on Artificial Intelligence
(AAAI), Québec City, Quebec, Canada, March 2014.

[22] J. Nagi, H. Ngo, A. Giusti, L. M. Gambardella, J. Schmidhuber, and
G. A. Di Caro. Incremental learning using partial feedback for gesture-
based human-swarm interaction. In Proceedings of the 2012 IEEE RO-
MAN, pages 898–905, Sept 2012.

[23] K. Nickel and R. Stiefelhagen. Visual recognition of pointing gestures
for human–robot interaction. Image and Vision Computing, 25(12):1875
– 1884, 2007. The age of human computer interaction.

[24] K. O’Brien, J. Sutherland, C. Rich, and C. L. Sidner. Collaboration with
an autonomous humanoid robot: A little gesture goes a long way. In
6th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 215–216, March 2011.

[25] K. Ogata. Modern Control Engineering. Instrumentation and controls
series. Prentice Hall, 2010.

[26] G. I. Parisi, D. Jirak, and S. Wermter. Handsom - neural clustering of
hand motion for gesture recognition in real time. In Proceedings of the
2014 RO-MAN: The 23rd IEEE International Symposium on Robot and
Human Interactive Communication, pages 981–986, August 2014.

[27] C. Park and S. Lee. Real-time 3d pointing gesture recognition for mo-
bile robots with cascade {HMM} and particle filter. Image and Vision
Computing, 29(1):51 – 63, 2011.

[28] M. Pateraki, H. Baltzakis, and P. Trahanias. Visual estimation of
pointed targets for robot guidance via fusion of face pose and hand
orientation. Computer Vision and Image Understanding, 120(0):1 – 13,
2014.

[29] J. Puigbo, A. Pumarola, C. Angulo, and R. Tellez. Using a cognitive
architecture for general purpose service robots control. Connection Sci-
ence, 2015.

REFERENCES 61

[30] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and robust hand
tracking from depth. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014.

[31] J. L. Raheja, A. Chaudhary, and S. Maheshwari. Hand gesture pointing
location detection. Optik - International Journal for Light and Electron
Optics, 125(3):993 – 996, 2014.

[32] A. Ramey, V. González-Pacheco, and M. A. Salichs. Integration of a low-
cost rgb-d sensor in a social robot for gesture recognition. In Proceedings
of the 6th International Conference on Human-robot Interaction, HRI
’11, pages 229–230, New York, NY, USA, 2011. ACM.

[33] M. Reyes, G. Dominguez, and S. Escalera. Feature weighting in Dy-
namic Time Warping for gesture recognition in depth data. In 2011
IEEE International Conference on Computer Vision Workshops (ICCV
Workshops), pages 1182–1188, November 2011.

[34] L. D. Riek, T. Rabinowitch, P. Bremner, A. G. Pipe, M. Fraser, and
P. Robinson. Cooperative gestures: Effective signaling for humanoid
robots. In Proceedings of the 2010 5th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI), pages 61–68, March 2010.

[35] R. B. Rusu. Clustering and segmentation. In Semantic 3D Object Maps
for Everyday Robot Manipulation, volume 85 of Springer Tracts in Ad-
vanced Robotics, chapter 6, pages 75–85. Springer Berlin Heidelberg,
2013.

[36] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech
and Signal Processing, 26(1):43–49, February 1978.

[37] A. Sauppé and B. Mutlu. Robot deictics: How gesture and context shape
referential communication. In Proceedings of the 2014 ACM/IEEE In-
ternational Conference on Human-robot Interaction, HRI ’14, pages
342–349, New York, NY, USA, 2014. ACM.

[38] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim,
C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei, D. Freedman, P. Kohli,
E. Krupka, and S. Fitzgibbon, A. amd Izadi. Accurate, robust, and
flexible real-time hand tracking. In Proceedings of the ACM CHI ’15,
April 2015. To appear.

REFERENCES 62

[39] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake. Real-time human pose recognition in parts
from single depth images. In Proceedings of the 2011 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR ’11, pages 1297–
1304, Washington, DC, USA, 2011. IEEE Computer Society.

[40] M. Sigalas, H. Baltzakis, and Trahanias. P. Temporal gesture recogni-
tion for human-robot interaction. In Proceedings of Mutimodal Human-
Robot Interfaces Workshop. IEEE International Conference on Robotics
and Automation (ICRA), Anchorage, Alaska, USA, May 2010.

[41] A. St. Clair, R. Mead, and M. J. Mataric. Investigating the effects of
visual saliency on deictic gesture production by a humanoid robot. In
Proceedings of the 2011 IEEE RO-MAN, pages 210–216, July 2011.

[42] E. A. Topp. Human-Robot Interaction and Mapping with a Service
Robot: Human Augmented Mapping. PhD thesis, KTHKTH, Computer
Vision and Active Perception, CVAP, Centre for Autonomous Systems,
CAS, 2008. QC 20100914.

[43] H. Tran and T. Thanh. How can human communicate with robot by
hand gesture? In Proceedings of the 2013 International Conference
on Computing, Management and Telecommunications (ComManTel),
pages 235–240, January 2013.

[44] M. Van den Bergh, D. Carton, R. de Nijs, N. Mitsou, C. Landsiedel,
K. Kühnlenz, D. Wollherr, L. J. Van Gool, and M. Buss. Real-time 3d
hand gesture interaction with a robot for understanding directions from
humans. In Henrik I. Christensen, editor, Proceedings of the 2011 IEEE
RO-MAN, pages 357–362. IEEE, 2011.

[45] S. Waldherr, R. Romero, and S. Thrun. A gesture based interface for
human-robot interaction. Autonomous Robots, 9(2):151–173, 2000.

[46] D. Xu, X. Wu, Y. Chen, and Y. Xu. Online dynamic gesture recognition
for human robot interaction. Journal of Intelligent & Robotic Systems,
pages 1–14, 2014.

[47] X. Zhao, A. M. Naguib, and S. Lee. Kinect based calling gesture recog-
nition for taking order service of elderly care robot. In The 23rd IEEE
International Symposium on Robot and Human Interactive Communi-
cation, 2014 RO-MAN, pages 525–530, Aug 2014.

Glossary

API Application Program Interface. 12, 22

Deictic gesture A gesture that specifies identity or spatial location de-
pending on the context of one or more of the participants in the com-
munication act, which can be accompanied by a deictic utterance such
as here, there, this or that. 6, 7, 21, 23

Differential drive robot A robot which has two wheels mounted on the
left and right side of it, and driven independently. A passive wheel is
usually added for stability purposes. 36

DTW Dynamic Time Warping. 4, 25, 26, 28–30, 55

Dynamic gesture A gesture which is defined by a movement the person
performs with the whole body or a part of it. 3, 5, 22, 23, 26, 30,
44–46, 55

ESAII department Departament d’Enginyeria de Sistemes, Automàtica i
Informàtica Industrial de la UPC (Department of Systems Engineering,
Automatics and Industrial Informatics from UPC). 11

FME Facultat de Matemàtiques i Estadística (Mathematics and Statistics
Faculty) from UPC. 46, 47

FSM Finite State Machine. 5, 6, 15, 16, 39, 65–67

GUI Graphical User Interface. 20, 21, 33

HMM Hidden Markov Model. 5, 6

HRI Human Robot Interaction. 1, 4, 5, 18, 46, 55

Humanoid robot A robot whose body shape resembles that of the human
body. 1, 3, 11, 40, 55

LOOCV Leave-One-Out Cross-Validation. 45

MLP Multi-Layer Perceptron. 4

63

Glossary 64

Odometry Method which provides an estimation of the position informa-
tion of a robot or its change over time. 36–38, 57

OpenMP Open Multi-Processing. 22

OSRF Open Source Robotics Foundation. 14

PCL Point Cloud Library. 16, 20, 31, 33, 34, 55

PID Proportional-Integral-Derivative controller. 36

RANSAC RANdom SAmple Consensus. 32, 33

RGB Red-Green-Blue data channel information from a color image. 4, 5,
20, 56

ROS Robot Operating System. 6, 14–16, 18, 36, 37

RPC Remote Procedure Call. 15

SD Standard Deviation. 51

SDGRA Static and Dynamic Gesture Recognition Algorithm. 30, 32

SDK Software Development Kit. 10, 23, 24

SLAM Simultaneous Localization And Mapping. 57

SMACH State MACHine. 15, 16, 40

SOM Self Organizing Maps. 4

Static gesture A gesture in which the person does not move neither the
whole body nor some limbs but rather stays still in a specific position
for some short period of time. 3, 22, 23, 30, 44–46, 52, 55

UPC Universitat Politècnica de Catalunya (Polytechnic University of Cat-
alonia). 11, 63

A State Machine diagrams

A.1 Main Finite State Machine

HR2I_SM

WELCOME

preemptedabortedsucceeded

SAY_DONE

WAIT_FOR_GESTURE

preempted abortedsucceeded

SAY_HELLO

preemptedaborted succeeded hello_recognized

POINT_AT_SM

pointat_recognized

preemptedaborted succeeded

SAY_CAN_NOT

preempted abortedsucceeded

aborted

succeeded

nothing_found

not_riding_wb

A.2 Wave response sub-FSM

SAY_HELLO

HELLO_GESTURE SAY_HELLO

preemptedabortedsucceeded

CHOOSE_GESTURE

preemptedabortedsucceeded

succeeded

NAO_HELLO_GESTURE_STAND

standing

NAO_HELLO_GESTURE_WB

on_wb

succeeded succeeded

SELECT_STRING

preempted aborted succeeded

succeeded

SAY_SELECTED_MESSAGE

preempted aborted succeeded

succeeded

65

APPENDIX A. STATE MACHINE DIAGRAMS 66

A.3 Point At response sub-FSM

POINT_AT_SM

CHECK_IF_POSSIBLE

not_riding_wb nothing_foundaborted succeeded

POINT_RIGHT_HAND

preempted aborted succeeded

CHECK_WHICH_ARM

right_arm

POINT_LEFT_HAND

left_arm

POINT_BOTH_HANDS

both_arms

UPDATE_GROUND_POINT

SEGMENT_BLOBS

succeeded

preempted aborted succeeded

SAY_GOING_POINT

MOVE_TO_POINTING_PLACE

preempted aborted succeeded

preempted aborted succeeded

aborted

WAIT_CAMERA_STABILIZATION

succeeded

impossible

possible

DISAMBIGUATE

RELEASE_NAO

succeeded

succeeded

SAY_NOT_FOUND

no_object_found

SAY_CHECKING

timeouted

GET_ODOM

succeeded

timeouted

preempted aborted succeeded

preempted aborted succeeded

NAO_GO_TO_BLOB

aborted

succeeded

preempted succeeded

succeeded

APPENDIX A. STATE MACHINE DIAGRAMS 67

A.4 Disambiguate object sub-FSM

DISAMBIGUATE

GENERATE_PREPARE_INFO

succeeded

CHECK_RL

succeeded

SAY_FOUND

SELECT_STRING

preempted

preempted

aborted

aborted

succeeded

succeeded

SAY_SELECTED_MESSAGE

preemptedaborted succeeded

succeeded

LISTEN_USER

START_LISTEN preempted

preempted

aborted

aborted

succeeded

CHECK_RECOGNITION

succeeded

STOP_LISTEN_ABORTED

ASK_TO_REPEAT

succeeded

ANSWER_DETECTION

succeeded

preemptedabortedsucceeded

STOP_LISTEN

GET_SINGLE_RESPONSE

succeeded

succeededtimeouted succeeded

remaining_one answer_yes

ASK_QUESTION

answer_no

SELECT_STRING

preempted

preempted

aborted

aborted

succeeded

succeeded

SAY_SELECTED_MESSAGE

preemptedaborted succeeded

succeeded

succeededdisambiguate

B User tests questionnaire

Please, answer the questions below about the interaction test you have just
performed. This is an anonymous form, so feel free to be sincere.

Questions marked with * are compulsory.

Demographic data

1. How old are you?*

2. And you are...?*

? A man

? A woman

3. Robot familiarity*
From 1 to 5, how used to robots are you? (1 - It’s the first time I see
one, 5 - I live with them around)

1 2 3 4 5
Never ◦ ◦ ◦ ◦ ◦ Usually

4. Studies background*

? Secondary School

? High School

? University

? Professional training

5. If you chose University or Professional training, which is its
major?

6. Are you currently studying?*

? Yes

? No

7. If your answer was yes, what are you studying?

68

APPENDIX B. USER TESTS QUESTIONNAIRE 69

About the Wave gesture

8. The Wave gesture was...*

? Natural

? Unnatural

? Hard to perform

9. NAO’s response was...*
1 - NAO didn’t answer the wave, 5 - NAO’s response was fast

1 2 3 4 5
Non existant ◦ ◦ ◦ ◦ ◦ Fast

10. Was the response the one you expected?*

? Yes

? No

11. If you answered no, why?

12. Any suggestion for the wave gesture?

The Point At gesture

13. The Point At gesture was...*

? Natural

? Unnatural

? Hard to perform

14. NAO’s response was...*
1 - NAO didn’t move, 5 - NAO’s response was fast

1 2 3 4 5
Non existant ◦ ◦ ◦ ◦ ◦ Fast

APPENDIX B. USER TESTS QUESTIONNAIRE 70

15. Do you think you had to point to the object for too much
time?*

? Yes

? No

16. In general, did NAO figure out which object you pointed at?*

1 2 3 4
Never ◦ ◦ ◦ ◦ Always

17. Did the robot clearly show which object did HE THINK you
pointed at?*
Even though he may have mistaken, did he clearly show what he thought?

1 2 3 4
Never ◦ ◦ ◦ ◦ Always

18. If the robot asked you about which object was, did you un-
derstand his question?

? Yes

? No

19. If he asked you a question, did he understand your answer?

? Yes

? No

? I don’t know

20. And if the robot asked you a question, was it easy to answer?

? Yes

? Yes, but I had to repeat the answer a lot of times

? No

21. Was NAO’s response the one you expected?*

? Yes

? No

22. In case of answering NO, why?

APPENDIX B. USER TESTS QUESTIONNAIRE 71

23. Any suggestion for the Point At gesture?

About the test in general...

24. How natural has the whole interaction been?*
Tell me your opinion

1 2 3 4 5
Very unnatural ◦ ◦ ◦ ◦ ◦ Quite natural

25. Did you clearly understand robot’s indications?*

? Yes

? No

26. Did you feel frustrated at any moment?*

? Yes

? No

27. In case of answering yes, why?

28. Did you feel like you didn’t know what was happening at any
moment?*

? Yes

? No

29. In case of answering yes, at which moment?

30. Was it easy to interact with the NAO and make him do a
task?*

? Yes

? No

31. In case of NO, why?

32. Was the interaction result satisfactory?*

? Yes

? No

APPENDIX B. USER TESTS QUESTIONNAIRE 72

33. Did you enjoy the test?*

? Yes

? No

About the future...

34. Would it have been better to answer the Yes/No with a head
movement?*

? Yes

? No

35. Would it have been easier?*

? Yes

? No

36. Do you think it would be better to be able to answer both
with voice and head movements?*

? Yes

? No

To end with...

37. Do you think an application like this would be useful for a
household environment?*

? Yes

? No

38. Any gesture you can imagine which may be useful to interact
with the NAO?

39. Any last comment, suggestion or constructive critic?

	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Motivation
	Goals

	State of the art
	Resources
	Microsoft's Kinect v2
	Robots
	NAO
	Wifibot

	ROS: Robot Operating System
	SMACH

	PCL: Point Cloud Library

	Human Robot Interaction System
	Overview and architecture
	The Human Robot Interaction procedure
	System's Graphical User Interface

	Computer Vision
	Real time online gesture recognition
	Ground plane detection and pointed point extraction
	3D cluster segmentation for object detection

	Mobile robotics: human interaction
	Providing robots with skills
	Finite State Machines (FSMs)
	Robot interaction

	Experimental Evaluation
	Data, methods, and settings
	Gesture recognition evaluation
	User experience evaluation
	Experiment design and setup
	User's survey analysis
	External test and user's behaviour analysis

	Conclusions and future work
	References
	Glossary
	State Machine diagrams
	Main Finite State Machine
	Wave response sub-FSM
	Point At response sub-FSM
	Disambiguate object sub-FSM

	User tests questionnaire

