
Generalized Stacked Sequential

Learning

Eloi Puertas i Prats

Department of Applied Mathematics and Analysis

Universitat de Barcelona

Doctoral advisors:

Dr. Oriol Pujol i Vila

Dr. Sergio Escalera Guerrero

A thesis submitted in the Mathematics and Computer Science Doctorate

Program

Doctor in Mathematics - Computer Science (PhD)

Sep 2014

logoUB.eps


ii



Abstract

In many supervised learning problems, it is assumed that data is indepen-

dent and identically distributed. This assumption does not hold true in

many real cases, where a neighboring pair of examples and their labels ex-

hibit some kind of relationship. Sequential learning algorithms take benefit

of these relationships in order to improve generalization. In the literature,

there are different approaches that try to capture and exploit this correla-

tion by means of different methodologies. In this thesis we focus on meta-

learning strategies and, in particular, the stacked sequential learning (SSL)

framework.

The main contribution of this thesis is to generalize the SSL highlighting

the key role of how to model the neighborhood interactions. We propose an

effective and efficient way of capturing and exploiting sequential correlations

that take into account long-range interactions. We tested our method on

several tasks: text line classification, image pixel classification, multi-class

classification problems and human pose segmentation. Results on these

tasks clearly show that our approach outperforms the standard stacked

sequential learning as well as off-the-shelf graphical models such conditional

random fields.
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to my parents, brother and sister

All men by nature desire to know. An indication of this is the delight we

take in our senses; for even apart from their usefulness they are loved for

themselves; and above all others the sense of sight. For not only with a

view to action, but even when we are not going to do anything, we prefer

sight to almost everything else. The reason is that this, most of all the

senses, makes us know and brings to light many differences between things.

Aristotle. Book I, 980.a21: Opening paragraph of Metaphysics
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and Carles Sierra. Special thanks goes to Nate Davison for your lessons of

life, guitar and english!

Finally, last but not least, I would like to thank all my doctoral fellows in

MAIA department: Ari Farrés, Marta Canadell, Dani Pérez, David Mart́ı,
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Introduction

Over the past few decades, machine learning (ML) algorithms have become a very

useful tool in tasks where designing and programming explicit, rule-based algorithms

are infeasible. Some examples of applications where machine learning has been applied

successfully are spam filtering, optical character recognition (OCR), search engines and

computer vision. One of the most common tasks in ML is supervised learning, where

the goal is to learn a general model able to predict the correct label of unseen examples

from a set of known labeled input data. In supervised learning often it is assumed

that data is independent and identically distributed (i.i.d). This means that each

sample in the data set has the same probability distribution as the others and all are

mutually independent. However, classification problems in real world databases can

break this i.i.d. assumption. For example, consider the case of object recognition in

image understanding. In this case, if one pixel belongs to a certain object category, it

is very likely that neighboring pixels also belong to the same object, with the exception

of the borders. Another example is the case of a laughter detection application from

voice records. A laugh has a clear pattern alternating voice and non-voice segments.

Thus, discriminant information comes from the alternating pattern, and not just by the

samples on their own. Another example can be found in the case of signature section

recognition in an e-mail. In this case, the signature is usually found at the end of the

mail, thus important discriminant information is found in the context. Another case

is part-of-speech tagging in which each example describes a word that is categorized

as noun, verb, adjective, etc. In this case it is very unlikely that patterns such as

[verb, verb, adjective, verb] occur. All these applications present a common feature:

the sequence/context of the labels matters.

Sequential learning (25) breaks the i.i.d. assumption and assumes that samples are
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not independently drawn from a joint distribution of the data samples X and their

labels Y . In sequential learning the training data actually consists of sequences of pairs

(x, y), so that neighboring examples exhibit some kind of correlation. Usually sequential

learning applications consider one-dimensional relationship support, but these types of

relationships appear very frequently in other domains, such as images, or video.

Sequential learning should not be confused with time series prediction. The main

difference between both problems lays in the fact that sequential learning has access

to the whole data set before any prediction is made and the full set of labels is to be

provided at the same time. On the other hand, time series prediction has access to real

labels up to the current time t and the goal is to predict the label at t + 1. Another

related but different problem is sequence classification. In this case, the problem is

to predict a single label for an input sequence. If we consider the image domain, the

sequential learning goal is to classify the pixels of the image taking into account their

context, while sequence classification is equivalent to classify one full image as one class.

Sequential learning has been addressed from different perspectives: from the point of

view of meta-learning by means of sliding window techniques, recurrent sliding windows

or stacked sequential learning where the method is formulated as a combination of

classifiers; or from the point of view of graphical models, using for example Hidden

Markov Models or Conditional Random Fields.

In this thesis, we are concerned with meta-learning strategies. Cohen et al. (17)

showed that stacked sequential learning (SSL from now on) performed better than

CRF and HMM on a subset of problems called “sequential partitioning problems”.

These problems are characterized by long runs of identical labels. Moreover, SSL is

computationally very efficient since it only needs to train two classifiers a constant

number of times. Considering these benefits, we decided to explore in depth sequential

learning using SSL and generalize the Cohen architecture to deal with a wider variety

of problems.

1.1 Overview of Contributions

The contributions of this thesis aim to give solutions to the open problems in sequential

learning described in (25) which are: a) how to capture and exploits sequential corre-

lations; b) how to represent and incorporate complex loss functions; c) how to identify

long-distance interactions; d) how to make sequential learning computationally efficient.

Our first contribution is a generalization of the SSL framework. We argue that a

fundamental and overlooked step in SSL is the way in which the extended set (which
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is fed into the second classifier) is created. Instead of creating the extended set using a

standard window approach, we propose a new aggregation method capable of capturing

long-distance interactions efficiently. This method (MSSL) is based on a multi-scale

decomposition of the first classifier predictions. In this way, we provide answers to

the above open questions obtaining a method that: a) captures and exploit sequential

correlations; b) since the method is a meta-learning strategy the loss function depen-

dency is delegated to the second step classifier; c) it efficiently captures long-distance

interactions; and d) it is fast, because it relies on training a few general learners.

Starting from this general framework, we propose a range of extensions with the

purpose of making our architecture usable in a broader number of applications. By

using theses extensions, our framework provides a general way for the classification

of objects at different scales as well as for performing multi-class classification in an

efficient way.

Our concluding contribution is an application of our framework for human body

segmentation.

Summarizing, the main contributions of this thesis are:

• Multiscale Stacked Sequential Learning: A generalization of the SSL framework

where the extended set is built by applying a multi-scale decomposition of the

first classifier predictions.

• Scale invariant MSSL: An extended architecture of the MSSL framework useful

when objects appear at different scales. Using this methodology different sized

objects can be classified correctly without retraining.

• Multi-class MSSL: A way to extend MSSL to multi-class classification problems.

By applying the ECOC framework in the base classifiers of MSSL and converting

predictions to a likelihood measure we propose a general way to use MSSL in

multi-class classification

• Memory-efficient multi-class MSSL: A compression approach of multi-class MSSL

for reducing the number of features in the extended set depending on the number

of classes.

• Application of MSSL for human body segmentation: An application of MSSL

framework for human body segmentation. Here results show that our framework

gives useful contextual information about joint body parts, helping to improve

final classification accuracy.
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1.2 Outline

This thesis proceeds as follows:

Chapter 2: Background. Chapter 2 covers some background material on sequential

learning from several points of view inside machine learning: meta-learning, hid-

den markov models and discriminative probabilistic graphical models. Moreover,

from the side of computer vision, works related to contextual information are also

described. Finally some works specifically related to sequential learning applied

to multi-class problems are shown.

Chapter 3: Generalized Stacked Sequential Learning. In chapter 3 we intro-

duce our main contribution to the sequential learning problem. First a gener-

alization of the called stacked sequential learning method is described. Next, an

implementation of the proposed multi-scale stacked sequential learning (MSSL)

method is presented explained. Finally, experiments and results comparing our

methodology with other sequential learning approaches are discussed.

Chapter 4: Extensions to MSSL. Chapter 4 provides several improvements over

MSSL framework. First the inclusion of likelihoods measures instead of class la-

bels in the stacked pipeline is proposed. Next, we show the extended architecture

of our framework, where objects can be classified at different scales without re-

training. In addition, a general methodology for multi-class classification problem

is integrated with MSSL framework. Finally, an approach for compressing the

number of features in the stacked pipeline is described.

Chapter 5: Application of MSSL for human body segmentation. In chapter 5

an application of MSSL for human body segmentation is described. Here the

stacked pipeline is modified to be used along with cutting-edge technologies for

body segmentation.

Chapter 6: Conclusions. Chapter 6 concludes this thesis, highlighting the most rel-

evant contributions of this work.

1.3 List of publications

Much of the work presented here has appeared first in other publications. The results

of Chapter 3 appeared in (34), though the discussion here is extended. The extension

to our MSSL framework learning objects at multiple scales described in Chapter 4
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appeared in (52). The multi-class and the compression of the extended set appeared in

(53).

Finally the application of MSSL for human body segmentation has been published in

the ECCV14 workshop ChaLearn Looking at People: pose recovery, action/interaction,

gesture recognition that will be held in Zurich, Switzerland from September 6th to 12th

2014 (54).

In addition of these publications, preliminary results were presented in high relevant

conferences in the area. A comprehensive list of all the contributions is found in the

following lines:

• (2009) Multi-modal laughter recognition in video conversations. S Escalera, E

Puertas, P Radeva, O Pujol. Computer Vision and Pattern Recognition Work-

shops, 2009. CVPR Workshops. IEEE Computer Society Conference on,

• (2009) Multi-scale stacked sequential learning. O Pujol, E Puertas, C Gatta.

Multiple Classifier Systems, 262-27.

• (2009) Multi-Scale Multi-Resolution Stacked Sequential Learning. E Puertas, C

Gatta, O Pujol. Proceedings of the 12th International Conference of the Catalan

Association for Artificial Intelligence (CCIA). 112-117.

• (2010) Classifying Objects at Different Sizes with Multi-Scale Stacked Sequential

Learning. E Puertas, S Escalera, O Pujol Proceedings of the 10th International

Conference of the Catalan Association for Artificial Intelligence (CCIA), 193-200.

• (2011) Multi-scale stacked sequential learning. C Gatta, E Puertas, O Pujol.

Pattern Recognition 44 (10), 2414-2426

• (2011) Multi-class multi-scale stacked sequential learning. E Puertas, S Escalera,

O Pujol. Multiple Classifier Systems, 197-206

• (2013) Generalized multi-scale stacked sequential learning for multi-class classi-

fication. E Puertas, S Escalera, O Pujol. Pattern Analysis and Applications,

1-15

Additionally, in the following lines a list of other coauthored published works related

to this PhD is given:

• (2010) Adding Classes Online in Error Correcting Output Codes Framework. S

Escalera, D Masip, E Puertas, P Radeva, O Pujol ICPR 2010, 2945-2948
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• (2011) Online error correcting output codes. S Escalera, D Masip, E Puertas, P

Radeva, O Pujol. Pattern Recognition Letters 32 (3), 458-467
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Background

In this chapter we first explain the sequential learning concept. Next, previous works

related to sequential learning from different points of view are described. Besides these

related works coming from the machine learning field, sequential learning can be applied

in computer vision problems as a tool for contextual information retrieval. Therefore,

relevant works in this area are also commented. To conclude this chapter, we point

out some works related to sequential learning but explicitly in the case of multi-class

problems.

2.1 Sequential Learning

The classical supervised learning problem consists in constructign a classifier that can

correctly predict the classes of new objects given training examples of already known

objects (48). This task is typically formalized as follows:

Let assume the problem domain of classifying a pixel of an image to the class which

it belongs to. Let X denote an image of an object of interest and Y ∈ {C1, C2, ..., CN}
denote the corresponding ground truth label image. A training example is a pair (x,y)

consisting of a pixel of the image and its associated class label. We assume that the

training examples are drawn independently and identically from the joint distribution

P (x,y), and we will refer to a set of n such examples as the training data. A classifier

is a function H that maps from images to classes. The goal of the learning process is to

find an H that correctly predicts the class y = H(x) for each pixel x from a new image.

This is accomplished by searching some space H of possible classifiers for a classifier

that produces good results on the training data without overfitting. One thing that

is apparent in this and other applications is that they do not quite fit the supervised
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learning framework. Rather than being drawn independently and identically (i.i.d.)

from some joint distribution P (x,y), the training data actually consist of sequences of

(x,y) pairs. These sequences exhibit significant sequential correlation. That is, nearby

x and y values are likely to be related to each other. Sequential patterns are important

because they can be exploited to improve the prediction accuracy of our classifiers, as

in the case of image segmentation, where surrounding pixels belong to the same class,

except for the ones on the edges.

Sequential learning (25) breaks the independent and identically distributed (i.i.d.)

assumption and assumes that samples are not independently drawn from a joint dis-

tribution of the data samples X and their labels Y . In sequential learning the training

data consists of sequences of pairs (x,y), and the goal is to construct a classifier H

that can correctly predict a new label sequence Y = h(X) given an input sequence X.

Sequential learning is often confused with two other, closely-related tasks. The

first of these is the time-series prediction problem. The main difference between both

problems lays in the fact that sequential learning has access to the whole data set before

any prediction is made and the full set of labels is to be provided at the same time. On

the other hand, time series prediction has access to real labels up to the current time t

and the goal is to predict the label at t+1. The second closely-related task is sequence

classification. In this task, the problem is to predict a single label y that applies to

an entire input sequence X. For example, in the case of images, instead of classifying

each pixel of the image, simply to say whether the whole image belongs to a class or

another.

In literature, sequential learning has been addressed from different perspectives. We

split them into three big families: a) from the point of view of meta-learning techniques,

b) from the point of view of hidden markov models and c) from the point of view of

various probabilistic graphical models.

2.1.1 Meta-Learning sequential learning

Meta-learning techniques (71) use a combination of different classifiers in order to

predict a test example. The idea is to extend the classical supervised learning problem in

a recursive fashion, where each step is aimed to obtain better results than the previous,

but without overfitting. Recurrent sliding windows and stacked learning are well-known

meta-learning strategies. In next subsections they are explained whitin the context of

sequential learning,
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2.1.1.1 Sliding and recurrent sliding window

The sliding window method converts the sequential supervised learning problem into

the classical supervised learning problem. It constructs a classifier H that maps

an input window of width w into an single output value y. Specifically, let d =

(w − 1)/2 be the half-width of the window. Then H predicts yi using the window

[xt−d, xt−d+1, . . . , xt, . . . , xt+d−1, xt+d]. The window classifier H is trained by convert-

ing each sequential training example (xi,yi) into windows and then applying a standard

supervised learning algorithm. A new sequence x is classified by converting it to win-

dows, applying H to predict each y to form the predicted sequence Y . The obvious

advantage of this sliding window method is that it permits any classical supervised

learning algorithm to be applied. Although the sliding window method gives adequate

performance in many applications(29, 55, 63), it does not take advantage of correlations

between nearby yt values. To be more precise, the only relationships between nearby

yt values that are captured are those that are predictable from nearby xt values. If

there are correlations among the yt values that are independent of the xt values, then

these are not captured. One way that sliding window methods can be improved is to

make them recurrent. In a recurrent sliding window method, the predicted value yt is

fed as an input to help make the prediction for yt+1. Specifically, with a window of

half-width d, the most recent d predictions, yt−d, yt− d+ 1, . . . , yt−1, are used as inputs

(along with the sliding window [xt−d,xt−d+1, . . . ,xt, . . . ,xt+d−1,xt+d] ) to predict yt.

Clearly, the recurrent method captures predictive information that was not being cap-

tured by the simple sliding window. The values used for the yt inputs when training the

classifier can be achieved by means of meta-learning; by training a first non-recurrent

classifier, and then use its yt predictions as the inputs. This process can be iterated, so

that the predicted outputs from each iteration are employed as inputs in the next iter-

ation. Another approach is to use the correct labels yt as the inputs. The advantage of

using the correct labels is that training can be performed with the standard supervised

learning algorithms, since each training example can be constructed independently. On

the other hand, when correct labels are used instead of predicted labels, the window

classifier can overfit, thus the features used during the training will be much more ac-

curate than the ones used during testing, leading the classifier to a higher testing error

by relying on not trustworthy features. By using a first non-recurrent classifier we can

know the a priory accuracy of the predictions features that will be used during the

testing phase, resulting in a more reliable testing error.
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2.1.1.2 Stacked sequential learning

Stacked sequential learning is a meta-learning (71) method, in which an arbitrary base

learner is augmented, in this case, by making the learner aware of the labels of nearby

examples. Basically, the stacked sequential learning (SSL) scheme is a two layers clas-

sifier where, firstly, a base classifier H1(x) is trained and tested with the original data

X. Then, an extended data set is created which joins the original training data features

X with the predicted labels Y ′ produced by the base classifier considering a fixed-size

window around the example. Finally, a second classifier H2(x) is trained with this new

feature set. Then the inference algorithm takes part. Using the trained model of H1

on new instances x, a set of predictions ŷ are obtained. With these predictions, a new

extended set instance xext is constructed as above. Finally, using the trained model of

H2 on this extended set, a final set of predictions Ŷ are obtained. Figure 2.1 describes

the SSL algorithm. The main drawback of the SSL approach is that the width of the

window around the sample determines the maximum length of interaction among sam-

ples. Therefore, the longer the window, the further the interaction is considered, but

also the extended data set is increased in terms of features. This makes this approach

not suitable for problems that present long range sequential relationships. Further-

more, if we consider more than one relationship dimension, the size of the extended

set increases exponentially, making it not feasible for sequential type of datasets like

images.

2.1.2 Hidden Markov Models

The hidden Markov Model (HMM (1, 56)) is a statistical Markov model in which the

system being modeled is assumed to be a Markov process with unobserved (hidden)

states. A HMM can be presented as the simplest dynamic Bayesian network. HMM

describes the joint probability P (x,y) of a collection of hidden and observed discrete

random variables. It is defined by two probability distributions: the transition distri-

bution P (yt|yt−1), which tells how adjacent y values are related, and the observation

distribution P (x|y), which tells how the observed x values are related to the hidden y

values. It relies on the assumption that the tth hidden variable given the (t− 1)th hid-

den variable is independent of previous hidden variables, and the current observation

variables depend only on the current hidden state. These distributions are assumed to

be stationary (i.e., the same for all times t). In most learning problems, x is a vector

of features (x1, . . . , xn), which makes the observation distribution difficult to handle

without further assumptions. A common assumption is that each feature is generated
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Parameters: a neighborhood window of size W, a cross-validation parameter K,

two base classifiers H1 and H2

Result: prediction ŷ = H2x

Learning algorithm: Given a data set X = {(xt,yt)}
// Construct a sample of predictions Y ′

t for each xt ∈ X as follows:

1. Split X into K equal-sized disjoint subsets X1, . . . ,Xk

for i← 1 to K do

2. fj ← H1(X−Xj)

end for

3. Y ′ ← {(xt,y
′
t) : y

′
t ← fj(xt);x ∈ Xj}

// Construct an extended set xext

4. xext ← (xt
′,yt) : xt

′ ← [x′
1, . . . ,x

′
t] where x′i ← (xi, y

′
i −W, . . . , y′i +W ) and y′i is

the i-th component of y′t, the label vector paired with xt ∈ Y′

return {f ← H1(X), f ′ ← H2(x
ext)}

Inference algorithm: Given an instance vector x

1. ŷ ← f(x)

2. Construct an extended set instance xext, as above (using ŷ instead of y′t)

return Ŷ ← f ′(xext)

Figure 2.1: Stacked sequential learning algorithm.
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independently (conditioned on y). This means that P (x|y) can be replaced by the

product of n separate distributions P (xj|y), j = 1, . . . , n.

In a sequential supervised learning problem, it is straightforward to determine the

transition and observation distributions. P (yt|yt−1) can be computed by looking at

all pairs of adjacent y labels Similarly, P (xj |y) can be computed by looking at all

pairs of xj and y. The most complex computation is to predict a value ŷ given an

observed sequence x. Because the HMM is a representation of the joint probability

distribution P (x,y), it can be applied to compute the probability of any particular

y given any particular x : P (y|x). Hence, for an arbitrary loss function L(ŷ, y), the

optimal prediction is:

ŷ = argmin
z

∑

y

P (y|x)L(z, y).

In the case where the loss function decomposes into separate decisions for each yt, the

Forward-Backward algorithm (56) can be applied. Rather, where the loss function de-

pends on the entire observed sequence, the goal is usually to find the y with the highest

probability: y = argmaxy P (y|x). This can be solved by the dynamic programming

algorithm known as the Viterbi algorithm (56), that computes, for each class label c

and each time step t, the probability of the most likely path starting at time 0 end

ending at time t with class u. When the algorithm reaches the end of the sequence, it

has computed the most likely path from time 0 to time ti and its probability.

Although HMMs provide an elegant and sound methodology, they suffer from one

principal drawback: any relationship relying on long-range interactions (this is, involv-

ing not only two consecutive y values) cannot be captured by a first-order Markov model

(i.e., where P (yt) only depends on yt−1). A second problem with the HMM model is

that it generates each xt only from the corresponding yt. This makes it difficult to use

an input window, moreover if the input window is not just of one dimension, but two,

like in the case of images, where there exists a spatial relationship.

2.1.3 Discriminative Probabilisitic Graphical Models

Several directions have been explored to try to overcome the limitations of the HMM.

The introduction of probabilistic graphical models that represent discriminative model

P (y|x) rather than the generative model P (x,y) is one of these directions. These mod-

els do not try to explain how the x’s are generated. Instead, they just try to predict the

y values given the x’s. In a generative model, one expends efforts to model the joint dis-

tribution P (x,y), which involves implicit modeling of the observations x. This means

that the generative approach may spend a lot of resources on modeling the generative
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yt−1    yt yt+1

xt−1    xt xt+1

(a)HMM

yt−1    yt yt+1

xt−1    xt xt+1

(b)MEMM

yt−1    yt yt+1

xt−1    xt xt+1

(c)CRF

Figure 2.2: Graphical structures of HMM, MEMM and CRF for sequencial learning.

models which are not particularly relevant to the task of inferring the class labels. This

permits them to use arbitrary features of the x’s including global features, features

describing non-local interactions, and sliding windows. Moreover, discriminative ap-

proaches can be particularly beneficial in cases where the domain of x is very large or

even infinite. Some examples of discriminative graphical models are: Maximum En-

tropy Markov models (MEMM (47)), Input-Output HMM (IOHMM (5)), Conditional

random fields (CRF (44)). Figure 2.2 shows the graphical structures of HMM which is

a purely generative model, MEMM which is a discriminative model, hence it represents

a conditional distribution P (y|x) and CRF which is also discriminative model but here

the interactions between the labels y are modeled as undirected edges.

2.1.3.1 Maximum Entropy Markov model (MEMM)

A maximum-entropy Markov model (MEMM), or conditional Markov model (CMM),

is a probabilistic graphical model that combines features of hidden Markov models

(HMMs) and maximum entropy (MaxEnt) models. An MEMM is a discriminative

model that extends a standard maximum entropy classifier by assuming that the un-

known values to be learnt are connected in a Markov chain rather than being con-

ditionally independent of each other, i.e. it learns P (yt|yt−1,xt). It is trained via a

maximum entropy method that attempts to maximize the conditional likelihood of the

data:
∏n

i=1 P (yi|yi−1,xt). The maximum entropy approach represents P (yt|yt−1,xt)

as a log-linear model:

P (yt|yt−1,x) =
1

Z(x, yt−1)
exp

(
∑

a

λafa(x, yt)

)

,

where, the fa(x,yt) are real-valued or categorical feature-functions that can depend

on yt and on any properties of the input sequence x, and Z(x,yt−1) is a normalization

term ensuring that the distribution sums to one. This form for the distribution corre-

13

./2/figures/graphicalmodels.eps
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sponds to the maximum entropy probability distribution satisfying the constraint that

the empirical expectation for the feature is equal to the expectation given the model:

Ee [fa(x,y)] = Ep [fa(x,y)] ∀a.

The parameters λa can be estimated using generalized iterative scaling (21). The

optimal state sequence y1, . . . , yn can be found using a very similar Viterbi algorithm

to the one used for HMMs.

Bengio and Frasconi (5) introduced a variation of MEMM called Input-Output

HMM (IOHMM). It is similar to the MEMM except that it introduces hidden state

variables st in addition to the output labels yt. Sequential interactions are modeled by

the st variables. To handle these hidden variables during training, the Expectation-

Maximization (EM (22)) algorithm is applied.

One drawback of MEMMs and IOHMM models is that they potentially suffer from

the ”label bias problem”. Notice that in MEMM model:

∑

yt

P (yt|yt−1,x1, . . . ,xt) =
∑

yt

P (yt|yt− 1,xt) · P (yt−1|x1, . . . ,xt−1)

= 1 · P (yt|yt−1,x1, . . . ,xt−1)

= P (yt|yt−1,x1, . . . ,xt−1)

This says that the total probability mass “received” by yt−1 (based on x1, . . . , xt−1)

must be “transmitted” to labels yt at time t regardless of the value of xt. The only

role of xt is to influence which of the labels receive more of the probability at time t.

In particular, all of the probability mass must be passed on to some yt even if xt is

completely incompatible with yt. Thus, observations xt from later in the sequence has

absolutely no effect on the posterior probability of the current state; or, in other words,

the model does not allow for any smoothing.

Conditional random fields (CRF) (44) were designed to overcome this weakness,

which had already been recognized in the context of neural network-based Markov

models in the early 1990s. Another source of label bias is that training is always done

with respect to known previous predictions, so the model struggles at test time when

there is uncertainty in the previous prediction.

2.1.3.2 Conditional Random Fields (CRF)

Conditional random fields (44) are a type of discriminative undirected probabilistic

graphical model. In the CRF, the relationship among adjacent pairs yt−1 and yt is

modeled as an Markov Random Field (13) conditioned on the x inputs. In other
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words, the way in which the adjacent y values influence each other is determined by

the input features. It is used to encode known relationships between examples and

construct consistent interpretations. The CRF is represented by a set of potentials

Mt(yt−1, yt|x), for each position in t in the sample sequence x, it is defined as:

Mt(yt−1, yt|x) = exp(Λt(yt−1, yt|x))
Λt(yt−1, yt|x) =

∑

k

λkfk(yt−1, yt,x) +
∑

k

µkgk(yt,x),

where the fk are features that encode some information about yt−1, yt, and arbitrary

information about x, and the gk are features that encode some information about yt and

x. It is assumed that both fk and gk are given and fixed. In this way, it is possible to

incorporate arbitrarily long-distance information about x. The conditional probability

P (y|x) is written as:

P (y|x) =
∏n+1

t=1 Mt(yt−1, yt|x)
[
∏n+1

t=1 Mt(x)
]

start,stop

,

where y0 = start and yn+1 = stop. The normalizer in the denominator is needed

because the potentials Mt are unnormalized ”scores”.

The training of CRFs is expensive, because it requires a global adjustment of the

λ values. This global training is what allows the CRF to overcome the label bias

problem by allowing the xt values to modulate the relationships between adjacent yt−1

and yt values. Algorithms based on iterative scaling and gradient descent have been

developed for optimizing both P (y|x) and also for separately optimizing P (yt|x) for

loss functions that depend only on the individual label. Whereas in HMMs or MEEMs

case, each gradient step required only a single execution of inference, when training a

CRF, we must execute inference for every single data case, conditioning on variables x.

This makes the training phase considerably more expensive than HMMs or MEMMs.

For example, in image classification task, inference step using a generative method

involves summation over the space of all possible images; if we have N×N image where

each pixel can take 256 values, the resulting space has 256N
2
values, giving rise to a

highly intractable inference problem (even using approximate inference methods). The

next section shows other methods and approaches that particularly exploit contextual

information in image classification tasks.

15



2. BACKGROUND

2.2 Contextual information in image classification tasks

While the contribution of this thesis can appear limited into the machine learning area,

it is also of interest for the computer vision community. A large part of the com-

puter vision community is recently devoting efforts to exploit contextual information

to improve classification performance in object/class recognition and segmentation. For

these reasons, relevant state of the art comes from machine learning as well as from

computer vision communities.

The use of contextual information is potentially able to cope with ambiguous cases

in classification. Moreover, the contextual information can increase a machine learning

system performance both in terms of accuracy and precision, thus helping to reduce

both false positive and false negatives. However, the methods presented in the previous

section suffer from different disadvantages.

Although CRFs are a general and powerful framework for combining features and

contextual information, its application to image classification tasks can be very ex-

pensive. This is because the computational cost of both training and inference are

very high and both proportional to the exponential of the clique cardinality. Since we

assume that all the variables are observed in the training set, we can find the global

optimum of the objective function, so long as we can compute the gradient exactly.

Unfortunately for CRF involving large clique cardinality it is not tractable to compute

the exact gradient. Several approximate inference methods have been used, like mean

field, loopy belief propagation (69) or graph cuts (11). Even though approximate in-

ference methods will be used, if the clique is not reduced to a few nodes (usually the

4-neighborhood, i.e. the pixels at north, west, south and east of the center pixel), it is

infeasible to compute the inference step. In fact, successful CRF models (43, 68) have

been applied to groups of pixels using a clique of size 2 on a 4-neighborhood.

Other methods of the literature exploit contextual information by identifying super-

pixels using segmentation algorithms tuned to perform over-segmentation (18, 36, 37).

In (37), for example, the set of super-pixels is clustered forming a vocabulary of possible

local contexts. Finally, the super-pixels are considered as the context for classification

by considering the spatial relationship between the pixel (or area) being classified and

the neighborhood super-pixels. In (18, 36) the super-pixels are used to form the puzzle

that better fits the object, using also contextual information, and geometric coher-

ence, among different puzzles. All these methods assume that an over-segmentation

is possible, and hopefully, different super-pixels can cluster together in a semantically

meaningful way.
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Other contextual methods extract a global representation of the context, and use

it to influence the classification step. In (65), the context is modeled globally. Thus,

the method does not locally compute the context and can not relate labels (or objects)

spatially (or temporally) by means of the local context.

2.3 Sequential learning in multi-class problems

Usually, the applications considered need classifiers that are able to deal with multiple

classes. However, in the case of sequential learning, few of the previous approaches

are able to deal with the multi-class case. One case of multi-class extension is the

CRF using graph-cut with alpha-expansion (11). Another approach is to decompose

the multi-class problem into a set of binary-class problems and combine them in some

way. In this sense, the Error-Correct Output Codes (ECOC) (24) framework is a well-

studied methodology that is used to transform multi-class problems to an ensemble

of binary classifiers. The fundamental issues here are: how this decomposition can be

done in an efficient way, and how a final classification can be obtained from the different

binary predictions. In the ECOC framework, these two issues are defined as coding and

decoding phases in a communication problem. During the coding phase a codeword is

assigned to each label in the multi-class problem. Each bit in the codeword identifies

the membership of such class for a given binary classifier. The most used coding

strategies are the one-versus-all (50), where each class is discriminated against the

rest and one-versus-one (3), which splits each possible pairs of classes. The decoding

phase of the ECOC framework is based on error-correcting principles, where distances

measurements between the output code and the target codeword are the strategies most

frequently applied. Among these, Hamming and Euclidean measures are the most used

(27).

2.4 Conclusions

Independently of the specific method, there are still fundamental issues in sequential

supervised learning that require the attention of the community. In (25) the authors

acknowledge the following issues: a) how to capture and exploit sequential correlations;

b) how to represent and incorporate complex loss functions; c) how to identify long-

distance interactions; d) how to make sequential learning computationally efficient.

In the next chapter we propose our contribution to the sequential learning research.

Our framework, called Generalized SSL (GSSL), is a generalization of the standard
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stacked sequential learning stated in the stacked sequential learning section 2.1.1.2.

Our method aims to give an answer to these previous questions. Particularly, we are

interested in how to capture and exploit sequential correlations and how to identify

long-distance interactions, focusing on image classification tasks. Our secondary goal

is to do it as generally (i.e. setting the minimum number of parameter) as possible,

while being computationally efficient and accurate compared to general probabilisitics

models, as CRFs.
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3

Generalized Stacked Sequential

Learning

In this chapter, first (Section 3.1) we propose a Generalized Stacked Sequential Learning

(GSSL) schema for classification tasks. As mentioned in the previous chapter, our

contribution is centered on sequential learning problems. Sequential learning assumes

that samples are not independently drawn from a joint distribution of the data samples

X and their labels Y . Therefore, here the training data is considered as a sequence of

pairs: example and its label (x, y), such that neighboring examples exhibit some kind

of relationship.

Cohen et al (17) presents an approach of sequential learning based on a meta-

learning framework (71) . Basically, the Stacked Sequential Learning (SSL) scheme is

a two layers classifier where, firstly, a base classifier H1(x) is trained and tested with

the original data X. Then, an extended data set is created which joins the original

training data features X with the predicted labels Y ′ produced by the base classifier

considering a fixed-size window around the example. Finally, second classifier H2(x)

is trained with this new feature set. The final result is a set of predictions Ŷ . Figure

3.1 shows a scheme of the SSL framework. As said before, the main drawback of

this SSL approach is that the width of the window around the sample determines the

maximum length of interaction among samples. Therefore, the longer the window,

the further the interaction is considered, but also the extended data set is increased in

terms of features. This makes this approach not suitable for problems that present long

range sequential relationships. Furthermore, if we consider more than one relationship

dimension, the size of the extended set increases exponentially, making it not feasible

for sequential types of datasets like images, videos, or time series. Our method aims to

19



3. GENERALIZED STACKED SEQUENTIAL LEARNING

give an answer to these drawbacks. Particularly, we are interested in how to capture and

exploit sequential correlations and how to identify long-distance interactions, focusing

on image classification tasks. Our secondary goal is to do it as generally (i.e. setting

the minimum number of parameter) as possible, while being computationally efficient

and accurate compared with general probabilisitics models, as CRFs.

Next, section 3.2 describes our implementation of Generalized Stacked Sequential

Learning, called Multi-scale Stacked Sequential Learning (MSSL), which gives response

to these questions. Finally this chapter ends (Section 3.3) with some experiments using

our approach and a discussion of the results obtained.

H1(x) ∪ H2(x)

X

Y
′

X

X
′ = (X;Y ′) Ŷ

Figure 3.1: Block diagram for the stacked sequential learning.

3.1 Generalized Stacked Sequential Learning

The framework for generalizing the stacked sequential learning includes a new block,

called J , in the pipeline of the basic SSL. Figure 3.2 shows the Generalized Stacked

Sequential Learning process.

H1(x) J(x, ρ, θ) ∪ H2(x)

X

Y
′

Z

X

X
′ = (X,Z) Ŷ

Figure 3.2: Block diagram for the generalized stacked sequential learning.

As before, a classifier H1(x) is trained with the input data set X ∈ (x,y) and

the predicted labels Y ′ are obtained. Now, but, the next block defines the policy for

creating the neighborhood model of the predicted labels, where z = J(y′, ρ, θ) : R→ Rw

is a function that captures the data interaction with a model parameterized by θ in a

neighborhood ρ. The result of this function is a w-dimensional value, where w is the

number of elements in the support lattice of the neighborhood ρ. In the case of defining
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MULTI-SCALE 

DECOMPOSITION

SAMPLING 

PATTERN

z

Figure 3.3: Design of J(y′, ρ, θ) in two stages: a multi-scale decomposition followed by a

sampling pattern.

the neighborhood by means of a window, w is the number of elements in the window.

Then, the output z = J(y′, ρ, θ) is joined with the original training data creating the

extended training set X′ ∈ (x′, z). This new set is used to train a second classifier

H2(x
′) with the goal of producing the final prediction Ŷ . Observe, that the system will

be able to deal with neighboring relations depending on how well J(y′, ρ, θ) characterize

them. In next section we propose a way for defining neighboring relationships based

on multi-scale decomposition.

3.2 Multi-Scale Stacked Sequential Learning (MSSL)

In our approach called Multi-Scale Stacked Sequential Learning (MSSL), we propose

to design J(y′, ρ, θ) function in a two stage way: (1) first the output of the classi-

fier H1(x) is represented according to a multi-scale decomposition in a similar way

of Laplacian-pyramid code by Burt and Andelson(12) and (2) a grid sampling of the

resulting decomposition to create the extended set xext. The first stage answers how

to model the relationship among neighboring locations, and the second stage answers

how to define the support lattice given by the extended set. Figure 3.3 shows the two

stages composing J .

In the next subsections we will explain how to obtain a multi-resolution decompo-

sition and a pyramidal decomposition. Then, an appropriate sampling pattern is pre-

sented for the two types of multi-scale decompositions. Finally, we discuss advantages

and disadvantages of each decomposition method. A discussion on how the sampling

schema influences the long-range interaction ends the section.

3.2.1 Multi-scale decomposition

We propose two ways to decompose the initial label field that outputs the first classi-

fier H1(x). A standard multi-resolution (MR-MSSL) decomposition and a pyramidal

decomposition (Pyr-MSSL). To clarify the method, figure 3.4 shows an example in
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3. GENERALIZED STACKED SEQUENTIAL LEARNING

which a label field, resulting from an image classification algorithm, is decomposed and

sampled.

s Multi-resolution Pyramidal

1

2

3

Figure 3.4: Two examples of multi-scale decomposition and a possible sampling pattern

for both. White and black crosses denote the sampling positions.

3.2.1.1 Multi-resolution Decomposition

The Multi-resolution decomposition directly derives from classical multi-resolution the-

ory in image processing and analysis. Given y′Ci
(~q), the probability, the marginal, or

the likelihood of the class Ci at position ~q; we define the multi-resolution decomposition

Φ, as following:

ΦCi
(~q; s) = y′Ci

(~q) ∗G(0, γs−1) (3.1)

where s ∈ {1, 2, . . . , S} represents the scale; ‘∗’ is the convolution operator, G is a mul-

tidimensional Gaussian distribution with zero mean and σ = γs. Here γ is the “step”

of the multi-resolution decomposition (typically γ = 2). As it can be seen in figure 3.4,

this methodology, applied on label fields coming from image pixel classification, is mim-

icking exactly the well known multi-scale methodology used in image processing and

analysis techniques. However here the images represent the probability, the marginal
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or the likelihood of a certain class. As a result, the Multi-resolution decomposition

provides information regarding the spatial homogeneity and regularity of the label field

at different scale. It is easy to understand that, for example, a noisy classification at

scale 1 does not influences importantly the results of scale 3. In this way, the highest

scale robustly represents the label field in presence of noisy classification (reaching the

limit of an almost homogeneous label field) and, at the same time, intermediate scales

give different levels of details in the initial label field.

3.2.1.2 Pyramidal Decomposition

An alternative is provided by the pyramidal decomposition (2). The pyramidal de-

composition is substantially similar to the multi-resolution decomposition with the

exception that actually, the resulting pyramid codify more efficiently the multi-scale

information. However, it has an important drawback that will be discussed in next

subsections.

Starting from the above mentioned Multi-resolution decomposition, the Pyramidal

decomposition Ψ can be obtained as follows:

ΨCi
(~q; s) = ΦCi

(⌊kss~q⌋; s) (3.2)

where ⌊·⌋ is the floor function, ~q ∈ N
N , N is the dimensionality of the data. Here

~qj ∈
[

1
Xj

γs−1

]

, where Xj is the integer size of every dimension j (for an image, N = 2,

X1 and X2 are respectively the width and height of the image). Here ks is the sampling

step and depends on γ, ks = γs/2. Actually, the pyramidal decomposition samples the

Multi-resolution theoretically without loss of information, since at higher scales, the

high frequency content have been progressively filtered out.

3.2.1.3 Pros and cons of multi-resolution and pyramidal decompositions

The multi-resolution approach is the most appropriate in terms of signal processing

theory. However, the pyramidal decomposition actually contains the same information

as the multi-resolution while coding it in a more compact way. Unfortunately, as it can

be noticed in formula (3.5), the sampling at large scales is prone to produce blocking

artifacts. This is due to the fact that during the pyramidal decomposition process,

each scale summarizes the information of the above area in a block that is γN times

smaller (here N is the dimensionality of the data, for images N = 2). Obviously, at

large scales this reflects a sharp transition form a value to another in the feature vector.

This does not happen using the multi-resolution decomposition, where the Gaussian

filtering assures smooth transitions at every scale.
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Summarizing, if the input data is sufficiently small, the use of the multi-resolution

decomposition is highly recommended, while if the input data is inherently large, the

pyramidal decomposition can help to save memory at the cost of possible blocking

artifacts. To avoid blocking artifacts, an interpolation technique could be used. How-

ever, after the next step, sampling pattern, the resulting output will be the same size,

therefore pyramidal decomposition compactness is not a big advantage. For sake of

simplicity, our MSSL framework will use the multi-resolution approach as a standard

multi-scale decomposition method.

3.2.2 Sampling pattern

Once the desired multi-scale representation has been computed, an appropriate sam-

pling pattern should be applied. This pattern can be represented by a set of displace-

ment vectors that defines the neighborhood ρ =
⋃M

m=1
~δm. Once the displacement vec-

tors are defined, the feature vector for the multi-resolution decomposition is obtained

by the following formula:

z(~p) = {Φ(~p + ~δ1; 1),Φ(~p + ~δ2; 1), . . . ,Φ(~p+ ~δM ; 1),
︸ ︷︷ ︸

scale s=1

Φ(~p+ γ ~δ1; 2),Φ(~p + γ ~δ2; 2), . . . ,Φ(~p+ γ ~δM ; 2),
︸ ︷︷ ︸

scale s=2

...

Φ(~p+ γ(S−1) ~δ1;S),Φ(~p + γ(S−1) ~δ2;S), . . . ,Φ(~p+ γ(S−1) ~δM ;S)
︸ ︷︷ ︸

scale s=S

}

(3.3)

This formula shows that the sampling is performed following the displacement vectors

at each scale s. However, the displacement at different scales are multiplied by a factor

γ(s−1) so that, higher scales correspond to larger displacement. For the sake of clarity,

the sampling in figure 3.4 (left) is obtained with S = 3, γ = 2, M = 9 and the following

set of displacements:

ρ = { ~δ1 = (−1,−1), ~δ2 = (−1, 0), ~δ3 = (−1, 1),
~δ4 = (0,−1), ~δ5 = (0, 0), ~δ6 = (0, 1),
~δ7 = (1,−1), ~δ8 = (1, 0), ~δ9 = (1, 1)}.

(3.4)

This displacement set can be represented graphically as in figure 3.5.
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!δ1  

!δ2  
!δ3

 
!δ4  

!δ5  
!δ6

 
!δ7  

!δ8  
!δ9

x

y

Figure 3.5: A graphical representation of the displacements set ρ as defined in formula

(3.4)

The feature vector for the pyramidal decomposition can be obtained by the following

formula:

z(~p) = {Ψ(~p+ ~δ1; 1), . . . ,Ψ(~p+ ~δM ; 1),
︸ ︷︷ ︸

scale s=1

Ψ(⌊~p/γ⌋+ ~δ1; 2), . . . ,Ψ(⌊~p/γ⌋ + ~δM ; 2),
︸ ︷︷ ︸

scale s=2

...

Ψ(⌊~p/γ(S−1)⌋+ ~δ1;S), . . . ,Ψ(⌊~p/γ(S−1)⌋+ ~δM ;S)
︸ ︷︷ ︸

scale s=S

}

(3.5)

where ⌊·⌋ is the floor function. As in the previous case, the sampling is performed

over all the displacements and scales. On the other hand, the position vector ~p is

divided by the quantity γ(s−1) to adequately re-scale the coordinates to the resized

images at higher scales. The floor function is needed to obtain an integer vector that

lays in the image lattice. The displacement pattern ρ is not modified as the images

are progressively smaller at a higher scale. Figure 3.4 (right) shows an example of this

sampling with S = 3, γ = 2, M = 9 and the same displacement set ρ as in formula

(3.4).
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3.2.3 The coverage-resolution trade-off

If we look carefully at the design of J , we can observe that for a fixed size of the extended

set, the sampling policy defines whether we focus on nearby or far away samples. Notice

that the higher the number of scales is, the longer the range of interaction is considered.

This feature allows us to capture long distance interactions with a very small set of

features while keeping a relatively good short distance resolution. In order to quantify

this effect we define the coverage of the method as the maximum effective range in which

two samples affect each other. Similarly we can define the detail as the average detail

size considering all the scales in the multi-resolution sampling scheme. If we restrict to
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Figure 3.6: (a) number of features needed for covering a certain number of predicted

values for different window sizes r, (b) detail with respect to the coverage, (c) number of

features needed to consider a certain detail value
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grid square samplings, the sampling scheme can be expressed as a set of displacements

obtained by ~δ = (k · i, k · j) where i, j ∈ {1, 0,−1} and k = 1, 2, . . . , r. This defines a

square grid of size 2r + 1 centered at the sample of interest as the one shown in figure

3.5. The value of r plays an important role in the scheme since it allows to govern

the average detail of the approximation. In this setup the coverage can be computed

as c = γ(S−1)(2r + 1)d, the number of features generated by the proposed approach is

f = S(2r + 1)d and detail is computed as the average value of the relative distance

between adjacent points at scale i, given by γi−1. Thus, d = 1
S

∑S−1
i=0 γi = γS−1

γ−1 .

Figure 3.6 shows the relationship among detail, coverage and number of features.

Figure 3.6(a) plots the number of features needed for observing a certain number of

predicted labels (coverage). Different curves show the effect of altering the size of

the support window r. Thus, in a 2-dimensional sequential domain if the support

window has a size of 3, r = 1, we need 7 scales and a total of 63 features to capture

information from about 600 labels. The parameter r governs the trade-off between

resolution and coverage. Observe in Figure 3.6(b) that average detail is coarser as the

coverage increases. Thus, small patterns in long distance label interactions are lost. As

r increases, the number of features also increase (Figure 3.6(c)), but more complex and

detailed label patterns can be captured. On the contrary, maximum interaction details

are observed at the cost of using the same number of features as the coverage value.

This trade-off allows the practitioner to consider different strategies according to the

degree of sequential correlation expected in the sequence.

3.3 Experiments and Results

In order to validate the proposed techniques, MR-SSL and Pyr-SSL are applied and

compared to state-of-the-art strategies in two different scenarios. The first scenario

considers one dimensional correlations in the label field in a text categorization task.

The second experiment concerns the image domain, where correlations are found on a

two dimensional support lattice.

3.3.1 Categorization of FAQ documents

• Dataset The FAQ categorization task has been frequently used in literature as a

benchmark for sequential learners (17) (26). In this data set, three different com-

puter science FAQ groups pages are used (ai-neural-nets, ai-general, aix). Each

FAQ group consists of 5 to 7 long sequences of lines; each sequence corresponds to

a single FAQ document. Each line is characterized using McCallun et al features
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(47), with 24 attributes that describe line characteristics with the respective class

label. In total, each FAQ group contains between 8965 and 12757 labeled lines.

This data set is multi-class, with 4 possible classes; in our experiments, for each

of the three groups we split the multi-class problem into two binary problems

considering the following labels “answer” vs “not answer”, and “tail” vs “not

tail”, yielding a total of 6 different problems.

• Methods We compared the pyramidal and multiresolution approaches with stan-

dard Adaboost with decision stumps, Conditional Random Fields, and the origi-

nal stacked sequential learning strategy.

• Experimental and parameters settings The base classifier for SSL, Pyr-SSL

and MR-SSL is Adaboost with a maximum of 100 decision stumps. All stacked

learning techniques use an inner 5-fold cross validation on the training set for the

first step of the sequential learning schema.

• Evaluation metrics Due to the fact that each sequence must be evaluated as a

whole set, and that there is a small amount of sequences per problem, one of the

fairest ways for comparing the results is to average the accuracy using a leave-

one-sequence-out cross-validation scheme – one sequence is used as testing and

the rest of the sequences are joined into one training sequence – for each problem.

Different configurations according to the (γ, S, ρ) parameterization are compared.

The average rank for each method is also provided1.

• Statistical analysis In order to guarantee that the results convey statistically

relevant information, a statistical analysis was performed for each experiment.

First, an Iman’s and Davenport correction of the Friedman’s test was performed

to ensure that the differences in the results are not due randomness with respect to

the average performance rank. The statistic for this test is distributed according

to a F-distribution with k − 1 and (N − 1)(k − 1) degrees of freedom, where k is

the number of methods compared and N the number of data sets. The statistic

is computed as follows,

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

where χ2
F is the Friedman’s statistic given by

χ2
F =

12N

k(k + 1)




∑

j

Rj −
k(k + 1)2

4





1The average rank accounts for the sum of the ranking position of each method for each database.
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where Rj is the average rank of each method.

If the null hypothesis is rejected we can ensure that the resulting ranks convey

significantly relevant information. Then, a post-hoc test using Nemenyi’s test

can be performed in order to single out methods or groups of methods. Using

this statistical test, two sets are statistically different if the difference of ranks is

higher than a given critical value computed as follows,

CD = qα

√

k(k + 1)

6N

where, qα is based on the studentized base statistic divided by
√
2.

AdaBoost CRF SSL Pyr-SSL MR-SSL

(γ, S) - - (−, 1) (−, 1) (2, 2) (4, 4) (2, 2) (4, 4)

ρ - - ρ3 ρ6 ρ1 ρ1 ρ1 ρ1

Features - - 7 13 6 12 6 12

Coverage - - 7 13 12 192 12 192

neural-netsA 7.0675 7.5812 5.9855 5.8103 6.1495 4.5257 5.4504 3.4667

neural-netsT 1.8067 2.0831 1.4826 0.7825 1.3146 0.5199 0.2834 0.4065

Ai-GeneralA 8.2764 9.3902 9.2944 10.3183 9.2636 10.3834 9.8923 9.1097

Ai-GeneralT 1.8916 2.4267 1.6275 0.9392 1.7031 1.1964 1.4219 0.0001

Ai-AixA 9.7971 12.5310 9.3519 9.9028 9.3307 9.5689 8.9304 9.7452

Ai-AixT 1.2553 1.5741 0.8966 0.7493 0.9233 0.2662 0.4257 0.0001

Rank 5.67 7.34 4.67 4.67 4.34 3.67 3 2

Table 3.1: Average percentage error and methods ranking for different FAQ data-

sets, different methods; and different parameterization of SSL, Pyr-SSL and MR-SSL.

For the sake of table compactness, the following definitions should be considered: ρ3 =

{−3,−2, . . . , 2, 3}, ρ6 = {−6,−5, . . . , 5, 6}, ρ1 = {−1, 0, 1}.

Table 3.1 shows the results obtained for the FAQ experiments comparing the base

algorithm Adaboost with decision stumps, conditional random fields, two configurations

of SSL, two configurations of Pyr-SSL and two of MR-SSL. In order to ensure a fair

comparison, the configurations have similar number of features in the extended training

set. The average performance rank of each method is displayed in the last row of the

table. The best performance for each data set is highlighted in bold font.

Observe that sequential learning approaches generally reduce the error rate percent-

age except for the AI-GeneralA data set. Moreover, as the number of features increases

the accuracy improves. Comparing SSL with Pyr-SSL and MR-SSL approaches, it
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Pyr-SSL MR-SSL

(γ, S) (2, 2) (2, 3) (2, 4) (4, 4) (2, 2) (2, 3) (2, 4) (4, 4)

ρ ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1

Features 6 9 12 12 6 9 12 12

Coverage 12 24 48 192 12 24 48 192

neural-netsA 6.1495 5.624 4.9195 4.5257 5.4504 4.6303 4.0018 3.4667

neural-netsT 1.3146 0.7159 0.5257 0.5199 0.2834 0.2499 0.2210 0.4065

Ai-GeneralA 9.2636 9.1998 9.0374 10.3834 9.8923 9.3698 8.8874 9.1097

Ai-GeneralT 1.7031 1.2716 0.6582 1.1964 1.4219 0.7136 0.6407 0.0001

Ai-AixA 9.3307 9.3412 9.1311 9.5689 8.9304 9.1276 9.2907 9.7452

Ai-AixT 0.9233 0.4754 0.2888 0.2662 0.4257 0.0001 0.0806 0.0001

Rank 7 6.17 4 5.33 5 3.25 2.16 3.08

Avg rank 5.63 3.37

Table 3.2: Average percentage error for different configurations of Pyr-SSL and MR-SSL.

The last two rows show the average rank for each parameterization as well as the average

rank for each of the multi-scale families.

is worth noting that using a similar number of features, the multi-scale counterparts

achieve much better results. This seems to suggest that the data sets include some

structure information that can only be captured at large scales. This idea is reinforced

by the fact that for some of the data sets, the larger the coverage, the lower the error

rate achieved. Finally, when the multi-scale step γ is doubled – thus quadrupling the

coverage by sacrificing resolution in the data sequence – we can see that applying Pyr-

SSL accuracy improves on half of the data sets. On the other hand, when applying

MR-SSL accuracy improves in all except for one data set.

Observing the ranks for all proposed methods, it can be noticed that Pyr-SSL

and MR-SSL strategies perform better than Adaboost, CRF and SSL. Considering the

different configurations of the MSSL technique, Pyr-SSL performs poorer than MR-

SSL. A detailed analysis of this effect is shown in Table 3.2.

A statistical analysis of the results shows that, in our case, Iman’s and Davenport

correction of the Friedman’s test yields FF = 2.9329 and the critical value for this test

is F (7, 35) = 2.249, so we reject the null hypothesis that the results may be due to

randomness with respect to the average rank. Thus we can safely say that the analysis

of ranks convey statistically relevant information.

A post-hoc analysis of the data using Nemenyi’s test1 singles out MR-SSL (4, 4) from

SSL, CRF and AdaBoost with a 95% confidence. Additionally, all proposed strategies

1Critical difference using Nemenyi’s test at 0.05 is 2.44, and at 0.10 is 2.05.
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are statistically different than CRF and Adaboost at 90% confidence. On the other

hand, SSL shows statistically significant differences with respect to CRF, as reported

in the original SSL paper but fails to display any statistically significative difference

with respect to Adaboost.

Table 3.2 shows a detailed comparison between Pyr-SSL and MR-SSL using different

parameter configurations. Average ranks for each configuration are provided. Addi-

tionally, a single average rank for Pyr-MSSL and MR-SSL is given. The parameters

are chosen such that the number of features and coverages are comparable.

Using Iman’s and Davenport statistic FF = 6.0689, with a critical value for F (7, 35) =

2.249, so we reject the null hypothesis that the results may be due to randomness with

respect to the average rank. A post-hoc test using Nemenyi’s test critical difference

with 95% of confidence shows that MR-SSL always statistically outperforms Pyr-SSL

when we compare the same parameter configurations.

3.3.2 Weizmann horse database

• Dataset The Weizmann horse database is composed of 328 side-view color images

of horses and their respective manual segmentations. This database has been

proposed to evaluate the performance of a segmentation algorithm (7). In the

database, the horses exhibit a sufficiently regular structure; i.e. all are standing

and face towards the left. They vary significantly in color and size.

• Methods We compared the proposed methods against AdaBoost, CRF and stan-

dard SSL (using a window of size 7×7). For the following experiments, the CRF

implementation is a modified version of the one in (68). We incorporated Ad-

aBoost to generate the unary potential. In this way, the base classifier for all the

SSL strategies is the same as the one used by CRF. For the learning phase we used

the stochastic gradient descent as it proved to be one of the fastest ways to train

a CRF (68). Finally, inference is performed by means of the belief propagation

method.

• Experimental and parameters settings

Two different experiments are performed using this dataset:

– First, in order to perform a fair comparison to the method in (7), we resize

all the images to 40x30 pixel size. This problem will also serve to establish

proper comparisons with computationally intensive methods such as CRF.
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A good way to show the capabilities of the proposed method, is to reduce

the number of features that the first classifier can use to discriminate the

horse class. In this way, the behavior of the proposed method will be easier

to describe. We actually reduce the feature vector to pixel-wise color. The

images are transformed from sRGB to CIELAB color space to highlight

lightness and chromatic components. The first classifier (h1(x)) only has

access to the three CIELAB color coordinates for each pixel in the image.

Observe that this classification can be prone to several errors due to the

similarity between horses color and background color. Moreover, since the

classification is performed pixel-wise, the first classifier is prone to isolated

misclassifications.

As in the previous experiment, the base classifier is an AdaBoost with deci-

sion stumps reaching a maximum of 100 iterations. Regarding the MR-SSL,

to have an effective long-range label interaction, we set the number of scales

S = 5, γ = 2 and ρ as in formula (3.4), so that the maximum displacement

during sampling is of ±γ(S−1) = ±24 = ±16 pixel, thus covering great part

of the image size.

– In order to show that the proposed method also works well with bigger

images, the other experiment uses full size images. In this case results are

compared with segmentation state-of-the-art methods.

To deal with full size images, we use the SIFT descriptor for the first classifier

(using the CIELAB color space) because texture is an important feature

when the images have a sufficient resolution. Moreover, we set the number

of scales S = 7, γ = 2 and ρ as in formula (3.4), obtaining a coverage value

of ±64 pixels.

• Evaluation metrics

Due to the significant amount of data a 5-fold cross-validation technique is used

for obtaining the average evaluation metrics. As done in (7), we used the Jac-

card index (40) as a quality measure of the overlapping o between the automatic

segmentation and the labeled ground-truth; being A and M respectively the au-

tomatic and manual (ground-truth) segmentations, the overlapping is defined as

o = |A∩M |
|A∪M | . This measure is equivalent to the ratio of the true positive over the

sum of true positive, false positive and false negatives.

• Statistical analysis The amount of data in these experiments enable the pos-

sibility of using powerful statistical tests that were not available in the former
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experiment. In this case, we tested for statistical significance of the results using

the Wilcoxon signed rank test and comparing the p-values obtained across the

different methods, as suggested in (23).

3.3.2.1 Results on the resized Weizmann horse database

Figure 3.7 shows comparisons in terms of accuracy, precision and the overlapping mea-

sure o. In the first row, the plots represent respectively the accuracy, precision and

overlapping of AdaBoost and the proposed MR-SSL method. Each dot in the plot rep-

resents the performance obtained on a specific image for both algorithms. In the plot,

a distribution that is mainly above the diagonal means that MR-SSL performs better

than AdaBoost. The same applies for the second row, where MR-SSL is compared to

CRF. It is clear that MR-SSL outperforms both AdaBoost and CRF. Last row shows a

comparison between MR-SSL and Pyr-SSL, confirming that the former performs better

than the latter. Table 3.3 shows the average accuracy, precision and overlapping values

for all the tested configurations, with the respective standard deviation. Observe that

both Pyr-SSL and MR-SSL achieve much better results than standard SSL, CRF and

AdaBoost. Moreover, MR-SSL shows improvements over Pyr-SSL.

Accuracy Precision Overlapping o

AdaBoost 0.7322 (0.1808) 0.5555 (0.2398) 0.6112 (0.2064)

CRF 0.7195 (0.1946) 0.5174 (0.3257) 0.5137 (0.2641)

SSL 7×7 0.7915 (0.1285) 0.6327 (0.2308) 0.5584 (0.2264)

Pyr-SSL 0.8196 (0.1158) 0.6664 (0.2250) 0.6030 (0.2195)

MR-SSL 0.8592 (0.0903) 0.7191 (0.2091) 0.6819 (0.2109)

Table 3.3: The average performance of AdaBoost, SSL (7×7 window size), MR-SSL, CRF

and Pyr-SSL in terms of Accuracy, Precision and Overlapping. Standard deviations are in

brackets.

Tables 3.4 and 3.5 show the p-values applying the Wilcoxon signed rank test on

the values of accuracy and overlapping for all the images of the horse data set. Values

followed by ◦ display those results that are not statistically significant. Values followed

by • are statistically significant at 10%. In Table 3.4 we observe that the proposed

methodologies as well as the standard SSL show results statistically significant with

respect to Adaboost and CRF in terms of accuracy. Furthermore, the multi-scale

strategies proposed statistically differ from SSL. And, in particular, MR-SSL is the

most statistically different from all the techniques studied. In Table 3.5 we see that
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Figure 3.7: Comparison of the proposed MR-SSL method to AdaBoost (first row), SSL

using a window of size 7×7 (second row), CRF (third row) and Pyr-SSL (last row) on the

resized Weizmann horse database.
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MR-SSL is again the most statistically different from the rest in terms of overlapping.

In general, the conclusions are very similar to those obtained in the accuracy table. It

is worth noting that SSL and Pyr-SSL are not statistically significant. And, Pyr-SSL

only achieve statistically significant results at 10% when compared with Adaboost.

Accuracy p-val ADA SSL Pyr-SSL MRSSL CRF

ADA - 0.0001 0.0000 0.0000 0.6847◦
SSL 0.0001 - 0.0032 0.0000 0.0001

PyrSSL 0.0000 0.0032 - 0.0000 0.0000

MRSSL 0.0000 0.0000 0.0000 - 0.0000

CRF 0.6847◦ 0.0001 0.0000 0.0000 -

Table 3.4: Wilcoxon paired signed rank test p-values for the results of the accuracy

measure.

Overlapping p-val ADA SSL Pyr-SSL MRSSL CRF

ADA - 0.0048 0.0691• 0.0000 0.0000

SSL 0.0048 - 0.3082◦ 0.0000 0.0426

PyrSSL 0.0691• 0.3082◦ - 0.0000 0.0031

MRSSL 0.0000 0.0000 0.0000 - 0.0000

CRF 0.0000 0.0426 0.0031 0.0000 -

Table 3.5: Wilcoxon paired signed rank test p-values for the results of the overlapping

measure.

It is also interesting to compare the training and inference time of both MR-SSL

and CRF. The CRF implementation used in this work is the one in (68), written in

Matlab but with many optimized functions in C. The MR-SSL has been implemented

in Matlab without specific optimization. To train one fold (using about 260 images),

the CRF requires 52’ 6” while the MR-SSL only 1’ 10”. Regarding inference, for each

image CRF requires and average time of 0.4846 seconds, while the MR-SSL just 0.0882

seconds. We also tested the training time of the MR-SSL with full size images (using

S = 7), resulting in a training time of 14’ 35” for one fold. The same test performed

with CRF is unfeasible since training the method on each fold requires several days.

Finally, it is interesting to note that in reference (7) they achieve an average o = 0.71

using a sophisticated segmentation algorithm on 40x30 image size, requiring about 40

sec per image to perform the segmentation, using a leave-one-out testing. Using the

proposed MR-SSL, and just with color features, we achieved an average o = 0.682.
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Accuracy Precision Overlapping o

AdaBoost-Haar-27 0.7651 (0.1468) 0.5727 (0.1960) 0.6451 (0.1699)

MR-SSL-Haar-27 0.8716 (0.0745) 0.7379 (0.1659) 0.7147 (0.1846)

Table 3.6: The average performance of AdaBoost and MR-SSL in terms of Accuracy, Pre-

cision and Overlapping; adding 27 Haar-like features to the first feature vector x. Standard

deviations are in brackets.

However, one can argue that the advantage of the proposed method is relevant

only if the first classifier performs poorly. To controvert this hypothesis, we performed

another test, in which the feature vector x is augmented with 27 Haar-like features. As

it can be seen in table 3.6, the performance of the base AdaBoost classifier is increased

(+0.033 accuracy, +0.017 precision, +0.034 overlapping); but at the same time the

MR-SSL performs better (+0.012 accuracy, +0.018 precision, +0.033 overlapping). The

Haar-like features helped the first classifier and this improvement has reflected entirely

on the MR-SSL performance; this shows that the improvement due to the MR-SSL

schema over the base classifier is still significant (+0.11 accuracy, +0.16 precision,

+0.07 overlapping). Finally, it is worth noting that the proposed MR-SSL in this case

achieves an average overlap of (o = 0.7147) that is comparable with the one reported

in (7).

3.3.2.2 Results on the full size Weizmann horse database

Finally, to compare our method to state-of-the-art segmentation methods, we used

the MR-SSL together with the SIFT descriptor as detailed above. Table 3.7 shows

the results in terms of accuracy, precision and overlapping of the Adaboost-SIFT and

the MR-SSL-SIFT on full size images of the Weizmann dataset. Several segmentation

methods have used the Weizmann dataset to evaluate their performances: in (36) the

authors report an average accuracy of 91.47%, the method in (6) reports 93%, method

in (70) reports 93% on 200 horse images, the method in (46) reports an accuracy of

95%, finally the method in (42) reports an accuracy of 96% and precision of 89%. As

depicted in Table 3.7 our method shows an average accuracy of 92.1% and an average

precision of 82.1% using all the images of the dataset. Figure 3.8 shows the best 30

segmentations on full size images, which overlap ranges from 0.92 to 0.85; first column

shows the input image, second column the ground truth, third column the classification

result and the last column shows a color coded image with true positives (blue), true

negatives (white), false positives (cyan) and false negatives (red).
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Figure 3.8: The best 30 segmentations on full size images. First column shows the input

image, second column shows the ground truth, third column shows the classification result

and the last column shows a color coded image with true positives (blue), true negatives

(white), false positives (cyan) and false negatives (red).
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Accuracy Precision Overlapping o

AdaBoost-SIFT 0.8123 (0.1122) 0.6286 (0.1818) 0.7041 (0.1302)

MR-SSL-SIFT 0.9209 (0.03) 0.821 (0.13) 0.7466 (0.16)

Table 3.7: The average performance of AdaBoost and MR-SSL in terms of Accuracy,

Precision and Overlapping using the color plus SIFT descriptor as the first feature vector

x. Standard deviations are in brackets.

To clearly show the contribution of the extended set to the final classification per-

formance, in Figure 3.9 we show the weights Adaboost assigned respectively to the (a)

pixel-wise color features, (b) textural SIFT descriptor and (c) contextual features. The

total weight of the pixel-wise color feature is 1.06 (10.2%), the total weight of SIFT

features is 2.4 (23.2%) and the total weight of contextual features is 6.89 (66.6%).

This experiment confirms two important facts: (1) the original feature vector x, in

this case the color and SIFT features, contributes to the final classification, giving the

second classifier the possibility to exploit correlations between appearance features and

contextual features; (2) the contextual features are providing relevant information, as

confirmed by the fact that Adaboost assigns the 66.6% of the weights to these features.

Further comments must be devoted to the plot in Figure 3.9(c). The second classifier

gives a large weight (23.5%) to the central location at the second scale and a very low

weight (0.024%) at the central location at the first scale. This means that the sec-

ond classifier does not “trust” pixel-wise classifications of the first stage classifier (first

scale), but it is much more prone to “trust” the classification if averaged in a small

neighborhood (second scale). Moreover, the central locations at scales 6 and 7 have re-

spectively the 7% and 4.6%; this means that, to a certain extent, the classifier consider

the information over large areas useful, probably due to the fact that the horses’ bodies

tend to cover quite a large area. Finally, at central scales, from 3th to 5th, central

locations have very low weights while neighborhoods at almost all directions have more

consistent weights. This means that the second classifier correctly uses the mid-range

interaction between horse and background classes.

3.4 Results Discussion

In this section, we discuss in depth some of the results obtained in the experiments.

Without loss of generality, we focus this discussion on the Weizmann database because

of the ease of illustrating classification results in the form of images. However, the same

conclusions and observations can be drawn for the FAQ data sets.
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Figure 3.9: The weights Adaboost assigned to the (a) pixel-wise color features, (b)

textural SIFT descriptor and (c) contextual features. The total weight of the pixel-wise

color feature is 1.06 (10.2%), the total weight of SIFT features is 2.4 (23.2%) and the total

weight of contextual features is 6.89 (66.6%).

First of all, it is interesting to note that CRF works especially well when the base

classifier is able to perform a quite good classification. In these cases, CRF is able to

distinguish and remove isolated misclassifications. Figure 3.10 shows one example in

which CRF slightly outperforms the proposed MR-SSL method. It is easy to notice

that AdaBoost performed well, and the only contribution of the CRF is to remove some

isolated misclassification and refine the silhouette of the horse.

Figure 3.10: Input, ground truth and results of different methods on the test image

number 142.

When the classification performance of the base classifier is poorer, CRF is usually

not able to improve the classification. On the contrary, the proposed MR-SSL method,
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thanks to its multi-scale approach, is able to improve the classification helping in dis-

criminating ambiguous cases exploiting the contextual information. Figure 3.11 shows

several cases in which the base classifier performs poorly.

Figure 3.11: Input, ground truth and results of different methods on the test image

numbers: 84, 22, 71, 88, 108 and 109 respectively.

The first row shows an example in which the CRF interprets the base classification

result (the unary potential) as if it represents a sparse set of misclassifications. Within

this interpretation, the best behavior CRF can exhibit is to remove the misclassifica-

tions, thus classifying no horse in the picture. Thanks to the multi-scale approach,

the label field probability that results from the base classifier is interpreted within the

multi-scale paradigm, so that at coarser scales the horse is roughly classified correctly.

Figure 3.12 shows the multi-resolution decomposition ΦCi
(~q; s) obtained from the base

classifier output, for the scales s = {1, 2, 3, 4}, when classifying the horse in the first

row of figure 3.11).

As it can be noticed, at scale 1, the body of the horse has less probability to

be classified correctly than the horse legs and head. However, at coarser scales, the
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Figure 3.12: Label field multi-resolution decomposition classifying image number 84.

horse outline is roughly visible and the discrepancy in these probabilities is lower. This

“blurred” information gives the necessary contextual information to the second classifier

that is consequently able to correctly classify a great part of the horse. Obviously, the

quality of the classification is not perfect, but compared with the AdaBoost and CRF,

the achieved result is clearly superior.

In figure 3.11, the second and third rows show two cases in which the AdaBoost

classification is noisy. Here, the CRF removes all the one pixel size false positives.

Unfortunately, close to the horse silhouette, it tends to fuse some false classifications

(see row 2) or remove thin structures such as the horse legs (see row 3). On the other

hand, MR-SSL removes many of the noisy false positives, but not all of them, while

preserving small structures in both examples.

Rows 4 and 5 show two examples in which the color of the ground and the fence

easily cheats the first AdaBoost classifier, that incorrectly classifies all the ground and

the fence as ‘horse’. Here, SSL tries to reduce the false positives with limited results.

CRF cannot represent the structure of the context and thus converges to blocks that

fuse the ground and the horse. Finally, the MR-SSL outperforms the previous methods,

removing great part of the false positives, thus segmenting the horse sufficiently well.

The last row of figure 3.11 shows an example in which the result of AdaBoost is

already very good; in this case, the proposed method slightly refines the segmentation

while the CRF removes the legs of the horse, as they are small structures.

In some of the examples we also found that the contextual information is able to

almost invert the classification performed by the first classifier. Figure 3.13 shows one

of this cases. While the final result is surely not excellent, the ability of the proposed

method to understand the context is evident.

Finally, Figure 3.14 shows an example in which the MR-SSL algorithm is able to

remove an important quantity of misclassifications while, at the same time, increasing

the precision. As it can be noticed, the upper part of the picture background is very
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Figure 3.13: Input, ground truth and results of different methods on the test image

number 41.

similar to the horse. For this picture, the overlapping o for AdaBoost is 0.3534 while for

the MR-SSL is 0.7298. The precision is 0.4023 for AdaBoost, and 0.6811 for MR-SSL.

This tremendous increase in the performance parameters clearly show the potential

ability of the MR-SSL method to solve ambiguous classification cases. However, this

behavior is not occasional, but it is evident as a general trend in the plots of Figure

3.7.

Figure 3.14: Input, ground truth and results of different methods on the test image

number 153.

3.4.1 Blocking effect using the pyramidal decomposition

For the sake of completeness we now show some examples of the blocking effect that can

appear if using the pyramidal decomposition without any interpolation method. This

effect is hard to note in small images, thus in this subsection we show two examples

in figure 3.15, where the image size is 100×150 pixels. In the figure, it is clear that a

blocking effect is visible for the Pyr-SSL method. Moreover, the performance of the

Pyr-SSL is visibly inferior than the one of the MR-SSL, as confirmed by the plots in

figure 3.7.
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Figure 3.15: Visual comparison of the Pyr-SSL and the MR-SSL on images number 68

and 144.

3.5 Conclusions

In this chapter we generalized the Stacked Sequential Learning framework. We pro-

posed a multi-scale decomposition of the predicted label field, followed by an appro-

priate sampling schema to form a extended feature vector. The proposed method is

able to capture long range interactions in the label field efficiently, as well as, it is

highly modular, thus any base classifier can be applied. In addition, a clear and de-

tailed explanation on how to define the sampling schema with respect to the desired

coverage/resolution trade-off is provided.

The proposed method has been tested on two different data sets, the first on a 1D

correlation lattice and the second on a 2D correlation lattice. For the 1D case, the

proposed method outperformed the CRF on 5 data-sets over 6. In the only case in

which CRF outperforms the proposed MR-SSL, the best performance is given by the

base AdaBoost classifier. For the 2D case, the proposed method outperformed both the

base AdaBoost classifier and the CRF in terms of Accuracy, Precision and Overlapping.

The next chapter covers several extensions to the MSSL framework explained so far.

We will show how to use likelihoods instead of label predictions; how to learn objects

that appear at different scales; how to cope with multi-class problems and finally how

to efficiently reduce the number of features in the extended set for large multi-class

problems.
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Extensions to MSSL

In this chapter we introduce four extensions to our MSSL framework. First extension

is using likelihoods instead of predictions labels as inputs of J function. Second exten-

sion is learn to classify objects which are present in different scales by doing several

test phases where the extended set is shifted. Third extension is upgrade MSSL for

binary classification problem to a multi-class classification problem. We present a gen-

eral framework suitable for any binary classifier thanks to the ECOC framework used.

Finally our fourth extension is provide a compression approach for reducing the amount

of features in the extended set. This is particularly useful in multi-class problems where

the number of features in the extended set increase geometrically.

4.1 Extending the basic model: using likelihoods

In the MSSL model we use the predicted labels as the input of J(y′, ρ, θ). An extension

of this idea is to use a likelihood-based measure for each label instead of label prediction.

The use of likelihoods gives more precise information about the decisions of the first

classifier than just its predictions. In the bi-class case, where the set of possible labels

is L = {λ1, λ2}, we have two membership likelihoods: z = J({F (y = λ1|x), F (y =

λ2|x)}, ρ, θ). The multi-scale decomposition and the sampling phases are the same, but

now, each step is applied for each label, resulting in as many decomposition sequences

as labels, and thus, the number of features in the extended set becomes (2r+1)d×|Σ|×
|L|. In the case of binary classification, the second term is not needed, because it is

complementary of the first. Therefore in this case the number of features are the same

as using labels. This information can be taken into account by the second classifier,

and then a more accurate prediction can be given, specifically in those cases that the
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first classifier has limited support for deciding the predicted label.

In order to obtain these values we need the base classifier H1(x) to generate not

only a class prediction, but also its likelihood. Unfortunately, not all kind of classifiers

can give a likelihood for their predictions. However, classifiers that work with margins,

such as Adaboost or SVM, can be used (32). In these cases, it is necessary to con-

vert the margins used by these classifiers to a measure of likelihood. In case of using

Adaboost, we apply a sigmoid function that normalizes Adaboost margins from the

interval [−∞,∞] to [−1, 1] by means of the following equation,

f(x) =
1− e−βmx

1 + e−βmx
, (4.1)

wheremx is the margin given by Adaboost algorithm for the example x, and a constant

that governs the transition: β = − ln(0.5ǫ)
0.25t . It depends on the number of iterations t that

Adaboost performs, and an arbitrary small constant ǫ. Now, we use a soft distance

to convert the normalized values to a likelihood in the range [0, 1] for each label λ as

follows:

f(x|y = λ1) = e−αd(−1,f(x)),

f(x|y = λ2) = e−αd(1,f(x)),

where α = − ln(ǫ)/2 , and ǫ is an arbitrarily small constant (i.e ǫ = 10−3).

4.2 Learning objects at multiple scales

In MSSL the choice of the scales is critical. The more scales are selected, the better

performance is obtained. This is because different patterns at different scales can be

detected. Nonetheless, if we learn a pattern with a concrete size, then when a new

sequence at different size (smaller for example) is classified, the prediction would not

be correct using such scales. This is because the ranges of interactions displayed in

the test sequence are not comparable with the ones displayed in the training phase,

due to the fact that MSSL learns absolute interaction ranges. In order to effectively

learn interactions in the pattern of interest we must ensure that the training set display

these interactions at the same range. We call this particular training set a template.

However, during the testing phase, objects can be found at different sizes displaying

different interaction ranges that the ones learned.

For example, let suppose we have a set of template images X of size D and we

train the model using a set of scales Σ0 = {2, 4, 8}. During the testing phase, let it be

a set of test images X of size D/2 and the same set of scales Σ0 = {2, 4, 8}, then we
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Figure 4.1: Architecture of the shifting technique.

can observe that the features in both extended sets (training and testing) do not fit,

relationships between them are now halved.

In order to successfully cope with this problem we propose an ensemble architec-

ture at testing time. Figure 4.1(a) shows an example of training phase using selected

templates. A learned model is produced and then used in testing phase. Figure 4.1(b)

show a scheme of this phase. It is based on the aggregation of the responses of the

trained system considering different relative range of interactions. Since the interac-

tion range set Σ defined in MSSL follows a geometric progression such that σi = kσi−1;

therefore testing at different ranges can be simply regarded as a shifting process of the

extended features set. Following the previous example, if we use a different set of scales

Σ1 = {1, 2, 4}, i.e. Σ0/2 during the testing phase, now the resulting test features z

have been shifted and their interaction relationships fit with those learned. Finally all

results are combined with an aggregation function, for example taking the maximum

value among all the likelihood responses for each sample. In section 4.5 we present

several experiments where this shifting technique is used.
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4.3 MMSSL: Multi-class Multi-scale Stacked Sequential

Learning

In order to extend the Generalized Stacked Sequential Learning scheme to the multi-

class case,it is necessary that base classifiers H1(x) and H2(x) can deal with data

belonging to N classes instead of just two (binary case). This can be achieved using

inherent multi-class base classifiers such as Random Forests, Naive Bayes, Decision

Trees, Nearest Neighbors, Linear Discriminant Analysis etc. However in those cases

where the base classifiers are not inherently multi class, such as Super Vector Machines

or Regularized Lesat-Squares, a multi-class scheme is needed. The two basics schemes

are: One vs. All and All vs. All. The former consists in building N different binary

classifiers, where for the ith classifier, all the points in class i are the positive examples,

and all the points not in class i are the negative examples. Therefore, let fx be the ith

classifier, the result of classification is to pick the class of the most confident classifier

(Equation 4.2). While the later consists in buildingN(N−1) classifiers, one classifier to
distinguish each pair of classes i and j. Let fij be the classifier where class i were positive

examples and class j were negative. Note that exists symmetry between classifiers of

the same pair of classes, i.e. fji = −fij. Therefore the result of classification can be

expressed as in Equation 4.3.

f(x) = argmax
i

fi(x). (4.2)

One vs. All

f(x) = argmax
i




∑

j

fij(x)



 . (4.3)

One vs. One

An other approach is using the ECOC framework. Error-Correcting Output Codes

(ECOC) are a general framework to combine binary problems to address the mutli-class

problem (24, 27). ECOC framework consists of two phases: a coding phase, where a

codeword is assigned to each class of a multi-class problem, and a decoding phase,

where, given a test sample, it looks for the most similar class codeword. Originaly (24),

a codeword was a sequence of bits represented by {−1,+1}, where each bit identifies

the membership of the class for a given binary classifier (dichotomizer). Afterwards (3),

a third symbol (the zero symbol) was introduced, which means that a particular class is

not considered by a given classifier. Given a set of N classes to be learned in an ECOC
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design, n different bipartitions (groups of classes) are formed, and n dichotomizers

over the partitions are trained. As a result, a codeword Yc, c ∈ [1, . . . , N ] of length

n is obtained for each class c. Arranging the codewords as rows, a coding matrix

M ∈ {−1, 0,+1}N×n is defined. The most used coding strategy is the one-versus-all

(50), where each class is discriminated against the rest, obtaining a codeword of length

equal to the number of classes. In Figure 4.2 we show an example of one-versus-one

coding matrix, which considers all possible pairs of classes, with a codeword length

of N(N−1)
2 . The matrix is coded using ten dichotomizers {b1, . . . , b10} for a 5-class

problem. The white regions are coded by 1 (considered as one class by the respective

dichotomizer bj , the dark regions by -1 (considered as the other class), and the gray

regions correspond to the zero symbol (classes that are not considered by the respective

dichotomizer bj).

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Y1

Y2

Y3

Y4

Y5

Figure 4.2: ECOC one-versus-one coding matrix.

During the decoding process, applying the n binary classifiers, a code X is obtained

for each data sample in the test set. This code is compared to the base codewords

(Yc, c ∈ [1, . . . , N ]) of each class defined in the matrix M . The data sample is then

assigned to the class with the closest codeword. In order to find the closest codeword,

the decoding strategies most frequently used are Hamming and Euclidean measures

(28). those based on distances measurements between the output code and the target

codeword. Among these, the most applied(27) are defined as: HD(x, yi) =
∑n

j=1(1 −
sign(xj · yji ))/2; defined as: ED(x, yi) =

√
∑n

j=1(x
j − yji )

2.

Apart from the extension of the base classifiers, the neighborhood function J(y′, ρ, θ)

has also to be modified. Figure 4.3 shows the Multi-class Multi-scale Stacked Sequential

Learning (MMSSL) scheme presented in this work. Given an input sample x, the

first classifier produces not only a prediction, but a measure of confidence F̂ (x, c)

for belonging to each class defined in c ∈ [1, . . . , N ]. These confidence maps are the

input of the neighborhood function J(F̂ (x, c), ρ,Σ). This function performs a multi-

class decomposition over the confidence maps into s scales defined by Σ. Over this
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decomposition, a sampling ρ around each input example is returned, producing the z

vector. The extended data set is built up using the original samples as well as the set of

features in z. Finally, having the extended data set xext as input, the second classifier

will predict to which class the input sample x belongs to. In the next two subsections

we explain in detail this process. In the last subsection, we propose a compression

approach for encoding the resulting confidence maps in order to reduce them to log2N

without degrading the performance of the second classifier. Figure 4.3 shows the detail

of function J once added the compression step between multi-scale decomposition and

sampling.

ECOC   ECOCJ(F̂ (x, c), ρ,Σ). . .

zF̂ (x, c)

. . .

SAMPLING 
PATTERN. . .

F̂ (x, c) z

. . .

log c

. . . . . .MULTI-SCALE 
DECOMPOSITION

Com
pres
sion

J(F̂ (x, c), ρ,Σ)

h1(x) h2(x
ext)

Figure 4.3: Multi-class multi-scale stacked sequential learning and detail of function

J(F̂ (x, c), ρ,Σ) with the compression step between multi-scale decomposition and sam-

pling.

4.3.1 Extending the base classifiers

For training the first base classifier h1(x), where x is a sample of N possible classes,

an ECOC coding strategy is defined. Based on this strategy, we obtain a codeword

Yc, c ∈ [1, 2, . . . , N ] of length n for each class. The symbols in the codeword {−1, 1, 0}
indicate whether this class belongs to one partition or another or if it should not be

considered at all. The length of the codeword determines the number of dichotomizers

(binary classifiers) that has to be trained. The matrix M defines for each dichotomizer

which binary partition has to be performed on the training set. Given a test sample x,

each dichotomizer produces a prediction [1,−1], forming a new codeword X of length n.

The final predicted class is the closest codeword Yc to codeword X. A distance measure

between codewords can be used for determining the closest class.

If the dichotomizers only produce binary predictions, all the predictions within
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4.3 MMSSL: Multi-class Multi-scale Stacked Sequential Learning

X have the same importance. Instead, if the dichotomizers can produce a measure

of confidence on its predictions, a more fine-grained distance between codewords can

be obtained. By applying equation 4.1 we can convert the margins used by those

classifiers to a measure of confidence with values between the codeword interval [−1, 1].
Applying this for each dichotomizer, a new codeword X of length n is formed, where

all the symbols ∈ R. Once we have a normalized codeword, we use a soft distance δ

for decoding, i.e. we compare the codeword X with each codeword Yc, c ∈ [1, . . . , N ]

defined in the matrixM . These distance measures can be seen as a prediction confidence

measure for each class, once we normalize them to the range [0, 1]. Therefore, given a

set of possible labels ci, i ∈ [1, . . . , N ], we define the membership confidences as follows:

F̂ (y = ci|x) = e−αδ(Y1,X),∀i ∈ [1, .., N ], (4.4)

where δ is a soft distance such the Euclidean one, and α depends on δ. By applying this

to the all data samples in X we define the confidence map for each class as expressed

in Equation 4.5:

F̂ (x, c) = {F̂ (y = c1|x), . . . , F̂ (y = cN |x)},∀x ∈ X. (4.5)

4.3.2 Extending the neighborhood function J

We define the neighborhood function J in two stages: 1) a multi-scale decomposition

over the confidence maps F̂ (x, c) and 2) a sampling performed over the multi-scale

representation. This function is extended in order to deal with multiple classes. Now

it is formulated as follows:

z = J(F̂ (x, c), ρ,Σ).

Starting from the confidence maps, we apply a multi-scale decomposition upon them,

resulting in as many decomposition sequences as classes. For the decomposition we

use the multi-resolution Gaussian approach (3.2.1.1). Each level of the decomposition

(scale) is generated by the convolution of the confidence map by a Gaussian mask with

standard deviation σ. In this way, the bigger σ is, the longer interactions are considered.

Therefore, at each level of decomposition all the points have information from the rest

accordingly to the sigma parameter. Given a set of Σ = {σ1, . . . , σs} ∈ R
+ and all

the predicted confidence maps F̂ (x, c), each level of the decomposition si, i ∈ [1, . . . , s]

is computed as follows:

F̂ si(x, c) = gσi(x) ∗ F̂ (x, c),∀i ∈ [1, .., s],
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where gσi(x) is defined as a multidimensional isotropic gaussian filter with zero

mean:

gσi(x) =
1

(2π)d/2σ
1/2
i

e−
1
2
xT σ−1

i
x.

Once the multi-scale decomposition is performed, we define the support lattice z.

This is, the sampling over the multi-scale representation which forms the extended

data. Our choice is to use a scale-space sliding window over each label multi-scale

decomposition. The selected window has a fixed radius with length defined by ρ in each

dimension d and with origin in the current prediction example. Thus, the elements

covered by the window is w = (2ρ + 1)d around the origin. Then, for each scale si

considered in the previous decomposition the window is stretched in each direction

using a displacement proportional to the scale we are analyzing. This displacement

at each scale forces that each point considered around the current prediction has very

small influence from previous neighbor points. In this way, the number of features of

z appended to the input data set is equal to (2ρ+ 1)d · s · c. According to this, we can

see that the extended data set increases with the number of classes. This can produce

a scalability problem, since the second classifier has to deal with large feature sets.

4.4 Extended data set grouping: a compression approach

The goal of grouping the extended data set is to compress its number of features without

losing significant performance. Using our MMSSL approach, we can see that the size

of the extended set depends on the number of classes, the number of scales, and the

number of samples around each example. We can choose the number of samples and

scales, but the number of classes is problem dependent. Therefore, for reducing the

number of confidence maps, we add a compression process between the multi-scale

decomposition and the sampling process as shown in Figure 4.3. This compression is

done following information theory by means of partitions.

Let P be a set {{P 1
1 , P

2
1 }, . . . , {P 1

κ , P
2
κ}} of partitions groups of classes and c =

{c1, . . . , cN} the set of all the classes, so that for any j, P 1
j ⊆ c, P 2

j ⊆ c | P 1
j ∪ P 2

j = c,

and P 1
j ∩ P 2

j = ∅. The confidence maps are grouped using the elements on P. We

have defined two different ways of combining the partitions: using binary compression

or using ternary compression. Let the confidence map F̂ sk of a certain scale sk, k ∈
[1, . . . , s] be expressed as follows,

F̂ sk(x, Pj) =

N∑

i

γijF̂
sk(x, ci), (4.6)
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c1 c2 c3 c4 c5

c1 c2 c3 c4 c5

Γ1 1 0 0 1 1

Γ2 0 1 1 0 1

Γ3 1 0 1 0 1

c1 c2 c3 c4 c5

Γ1 1 -1 -1 1 1

Γ2 -1 1 1 -1 1

Γ3 1 -1 1 -1 1

Table 1.

Table 2.

P1

P1

P2

P3

P3

P2

Binary compression

Ternary compression

Figure 4.4: 5-class likelihood maps compressed to three, using partitions. Binary ap-

proach is represented by Table 1. The symbols used are 0 and 1. Ternary approach is

represented by Table 2. The symbols used are -1 and 1. Applying Equation. 4.6 we obtain

the aggregated likelihood maps P1, P2, P3 ∈ P. In the case of binary compression, any

class marked with zero in a codeword Γ is not considered, while in the case of ternary

compression, all classes are aggregated according to each of the codewords Γ.

where

γij =

{

a if ci ∈ P 1
j

b if ci ∈ P 2
j

for all the sets of partitions Pj , j ∈ [1, . . . , κ] in P, being a = 0 and b = 1 in the case

of binary compression and a = −1 and b = 1 in the case of ternary compression (we

choose only {−1, 1} values from the ternary set {−1, 0, 1}).
We use a partition strategy for P which produces a minimum set of partitions

P = {{P 1
1 , P

2
1 } . . . , {P 1

κ , P
2
κ}}, where κ = ⌈log2 |c|⌉, being ⌈x⌉ = min {n ∈ Z | n ≥ x}.

Our strategy builds the partitions assigning an unique binary code of length equals to

number of partitions in P for each class. For example in Figure 4.4 a 5-class problem c =

{c1, c2, c3, c4, c5} is illustrated. We can reduce the problem to a set of three partitions

P = {{P 1
1 = {c2, c3}, P 2

1 = {c1, c4, c5}}, {{P 1
2 = {c1, c4}, P 2

2 = {c2, c3, c5}}, {{P 1
3 =
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{c2, c4}, P 2
3 = {c1, c3, c5}}. Therefore, in the binary case, the assigned codes for each

partition are Γ1 = {1, 0, 0, 1, 1}, Γ2 = {0, 1, 1, 0, 1}, and Γ3 = {1, 0, 1, 0, 1}, and in the

ternary case, the assigned codes are Γ1 = {1,−1,−1, 1, 1}, Γ2 = {−1, 1, 1,−1, 1}, and
Γ3 = {1,−1, 1,−1, 1}. Thus, applying Equation 4.6, we obtain the likelihood maps for

each partition, P1, P2, P3. As it is shown in Figure 4.4, in the case of binary compression,

the classes in P 1
i for any partition i are not considered, while in the case of ternary

compression, the classes in P 1
i and P 2

i for any partition i are combined.

Following this compression approach, now the support lattice z is defined over

F̂Σ(x,P). This is, applying Equation 4.6 over all the scales defined by Σ = {σ1, . . . , σs}.
Therefore, the number of features in z is reduced from (2ρ+1)d · s · c to (2ρ+1)d · s ·
⌈log2 c⌉.

4.5 Experiments and Results

In this section we present different experiments for validating our extensions on the

MSSL framework. First the shifting technique explained in 4.2 is tested in two domains,

horse image classification and flowers classification. Second we performed experiments

in several multi-class classification problems where different approaches of compression

are used as well.

4.5.1 Horse image classification using shifting

Original Adaboost MSSL MSSL shifting

Figure 4.5: Examples of horse classification. Second column shows Adaboost prediction.

Third and forth uses MSSL over the images with and without shifting.

In order to validate the shifting technique, we define a toy problem using the Weiz-

mann horse database (8), which consist in classify RGB horse images but rescaled to
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half size with respect to the ones used during the training phase. Each image is la-

belled according to the horse silhouette. We selected 100 images of horses from the

database. Then, we define 5 random partitions of samples, each one consisting of the

half of images for training and the remaining for testing. As a pre-processing step, we

rescale all the horses images to the same resolution 150 × 100. The feature vector is

composed of RGB attributes. All configurations use Adaboost with 100 iterations of

decision stumps. For each image in the training set we perform a stratified sampling

of 7500 pixels per image. This data is classified by the first base classifier applying

leave-one-image-out. Using the generated predicted labels we perform a multi-scale

decomposition with Σ = {2, 4, 8, 16}. The extended data set is created choosing the

8-neighbors of each pixel on each level of decomposition. Finally, both classifiers are

trained using the same feature samples without and with the extended set, respectively.

Table 4.1 shows results of predictions whether shifting is applied or not. For assessing

the validity of the results we use the Overlapping, defined as TP
FN+FP+TP . First row

shows the metrics using Adaboost. As sensitivity and specificity show up, the classifi-

cation of the horses (MSSL) fails, because the system have learned the relative distance

with respect to the size of the training horses. Now, we use the shifting approach by

sliding the scales that are used in the testing phase to Σ = {1, 2, 4, 8}. As we can

observe in Figure 4.5, applying this scale decomposition the model we trained before

is able to classify the small horses appropriately without the need of retraining the

system. Table 4.1 shows the improvement of the results classifying the small horses

with the shifting approach.

Table 4.1: Results of prediction using Adaboost and MSSL with and without shifting

technique.

Acc Over Sens Spec Prec NPV

Adatboost 0.7789 0.4417 0.8237 0.6559 0.8681 0.5749

MSSL 0.7465 0.0588 0.9963 0.0594 0.7444 0.8561

MSSL shift 0.8734 0.6448 0.8777 0.8617 0.9458 0.7193

4.5.2 Flowers classification using shifting

In this experiment we test the shifting technique in a free environment where flowers

can be found in different number and size. (49). As training set, we define a flower

template consisting of a set of similar flowers in size and shape, but having different

types and colors. Each image is labeled according to the flower silhouette whether it

is flower class or background class. For the testing set we choose flowers related to the
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Figure 4.6: Predictions using Adaboost and MSSL.

defined template but at different size and color. We use 16 images for training and 25

for test. As a pre-processing step, we rescale all the images to the same resolution on

the x-axis, maintaining the same proportion in the y-axis. The feature vector is only

composed of RGB attributes. All configurations use Adaboost with 100 iterations of

decision stumps.

Table 4.2: Results using Adaboost and MSSL.

Acc Over Sens Spec Prec NPV

ADABoost 0,8773 0,5621 0,9207 0,7217 0,9222 0,7176

CRF 0,8568 0,5840 0,8430 0,9052 0,9689 0,6220

Shift MSSL 0,9012 0,6243 0,9427 0,7524 0,9317 0,7858

For each image in the training set we perform a stratified sampling of 3000 pixels

per image. This data is classified by the first base classifier applying leave-one-image-
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out. Using the generated predicted labels we perform a multi-scale decomposition with

Σ = {18, 27, 41}. The extended data set is created choosing the 8-neighbors of each

pixel on each level of decomposition. Finally, both classifiers are trained using the same

feature samples with and without the extended set, respectively. We have performed

several testing phases using always the same trained model. For each testing phase,

we use a three scale decomposition from the range Σ = {0.5, 3, 5, 8, 12, 18, 27, 41}. This

makes a total of 6 test rounds per image. At the end of each test round we take the

measures of the likelihood of each image. Examples of background and flower likelihoods

images at different rounds are shown in Figure 4.6. We calculate the maximum for all

rounds, resulting in two images. The row Shift MSSL shows the result of joining both

images using the greater than operation. The figure also shows the original image and

its resulting classification using Adaboost and CRF (45). Table 4.2 shows the metrics

for these methods. Shift MSSL approach beats the non-sequential Adaboost approach

for each metric and it also beats CRF in accuracy and overlapping. The rest of metrics

point out that our method is better defining the flower class than the CRF method.

4.5.3 MSSL for multi-class classification problems

In the next subsection data, methods and validation protocol for each experiment are

presented. Afterwards, the results are presented in two aspects, a) statistical results,

where different measures are computed and significance tests are performed on different

datasets, and b) qualitative results, where concrete results are particularly analyzed for

a more intuitive understanding of the behavior of each method.

4.5.3.1 Experimental Settings

• Data: we test our multi-class methodology performing 9 different experiments

out from four databases:

1. Sensor Motion data database: The sensor motion database (14) is a data set

of accelerometer sensor runs from 15 different people performing certain ac-

tivities. Each accelerometer sample is labeled as one of 5 different activities,

namely walking, climbing stairs, standing idle, interacting and working. The

spatial relationship in label space is 1D. There are two different scenarios.

Sequential scenario is where all the people is doing the activities in the same

order (motion sequential scenario). Random scenario is where all the people

is performing the activities in random order (motion random scenario)). We

57



4. EXTENSIONS TO MSSL

also performed a third experiment for benchmark purposes in which there

are only activities from one person (motion one person).

2. FAQ database (17, 26): The FAQ database is a set of frequented asked

questions pages from Usenet. There are 48 annotated pages from several

topics. Each line in a page is labeled as (0) header, (1) question, (2) answer,

or (3) tailing. There are 24 boolean features characterizing each line. The

spatial relationship in label space is 1D.

3. IVUS image database (16): It contains images from Intravascular Ultra-

sound (IVUS). They are a set of IVUS frames manually labelled. 8 classes

are considered: (1) blood, (2) plaque, (3) media, (4) media adventitia, (5)

guide-wire, (6) shadowing, (7) external tissue, and (8) calcium. The spa-

tial relationship in label space is 2D. There are 29 textural features in total

extracted from IVUS data.

4. e-trims database (41): The e-trims database is comprised of two image

datasets, e-trims 4-class with four annotated object classes and e-trims 8-

class with eight annotated object classes. There are 60 annotated images in

each of the dataset. The object classes considered in 4-class dataset are: (1)

building, (2) pavement/road, (3) sky, and (4) vegetation. In 8-class dataset

the object classes considered are: (1) building, (2) car, (3) door, (4) pave-

ment, (5) road, (6) sky, (7) vegetation, and (8) window. Additionally, for

each database we have a background class (0) for any other object. All

images are resized proportionally to 150 pixels height. Train images are

stratified sampled, taking 3000 pixels. We have performed experiments with

two different set of features: RGB representation of each pixel, and RGB

plus HOG (Histogram of oriented gradient (19)) with 9 bins, ending up with

12 features for sample. The spatial relationship in label space is 2D.

• Methods: We test all the databases with four different configurations of our

MMSSL methodology. Also, we test with Real Adaboost (31) and CRF Multi-

label optimization through Graph Cut α-expansion (10) as baseline experiments.

The settings for all the MMSSL configurations are the same, the only difference

is the way the extended data set is generated. We have used as base classi-

fier a Real Adaboost ensemble of 100 decision stumps. The coding strategy

for the ECOC framework in each classifier is one-versus-one and the decoding

measure is Euclidean distance. The neighborhood function performs a Gaussian

multi-resolution decomposition in 4 scales, using Σ = {1, 2, 4, 8}, except in IVUS
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database where we used 6 scales Σ = {1, 2, 4, 8, 16, 32} due to the images di-

mensions. In 1D databases, we used w = 7 elements in both directions of the

neighborhood, while in 2D databases we used just the surrounding points, i.e.

w = 1. Summarizing, the different experiments we have performed are:

1. MMSSL using labels. It uses the MMSSL framework using only the predicted

labels from the first classifier as input for neighborhood function.

2. MMSSL using confidences. It uses the MMSSL framework using the confi-

dence maps for all the classes as input for neighborhood function.

3. MMSSL using compression approach with binary matrix: It uses the MMSSL

framework using a compression over the confidence map. The compression

matrix uses binary values {0, 1}.
4. MMSSL using compression approach with ternary matrix. It uses the MMSSL

framework using a compression over the confidence map. The compression

matrix uses ternary values {−1, 1}.
5. Adaboost. Uses only one Adaboost classifier, without taking into account

the neighborhood relationship. Used as baseline experiment.

6. Multi-label optimization. It uses multi-label optimization via α-expansion.

We have applied the α-expansion optimization, using the confidence maps

for each class obtained from the first classifier. For the neighborhood term,

we use the intensity between the point and its neighbors for each direction

defined in the database.

• Validation: For the different experiments we use 5-fold cross-validation or one-

leave-out for final prediction. For each fold, the base classifier h1(x) uses ten-fold

cross-validation for predicting the labels of the training set, which produces the

confidence maps used later for the second classifier h2(x). We measure the results

in terms of the accuracy, and the mean of overlapping, recall, and precision from

a N × N confusion matrix , computed as follow: accuracy =
∑N

i TPi
∑N

i (TP+FP+FN)i
,

overlappingi =
TPi

(TP+FN+FP )i
, recalli =

TPi

(TP+FN)i
, and precisioni =

TPi

(FP+TP )i
,

where TPi means the predictions correctly classified in the class i, FPi means the

predictions misclassified as class i and FNi means the actual class i predictions

misclassified as any other class. For comparing the results obtained from the

different experiments we have used statistic tests: the Friedman test for checking

the non-randomness of the results and the Nemenyi test for checking if one of the

configurations can be statistically singled out (23).
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4.5.3.2 Numerical Results

Tables 4.3 to 4.9 show accuracy, overlapping, recall, and precision averaged for each

experiment. Best results are marked in bold. The tables show similar tendency of the

different classifiers results for different databases. Non sequential methods such Ad-

aboost give the poorest accuracies. Multi-label optimization using Graph cut achieves

better results, specially in 2D databases. Finally, all methods based in MMSSL give

the best results. Usually, using just predictions it leads to worse results than using

confidence maps. It is also remarkable that by using compression techniques (binary

and ternary coding) the global accuracy is not significantly degraded. In order to com-

pare the performances provided for each of theses strategies, Table 4.10 shown in the

mean rank of each strategy considering the accuracy terms of the 9 different experi-

ments. The rankings are obtained estimating each particular ranking rji for each data

sequence i and each system configuration j, and computing the mean ranking R for

each configuration as Rj =
1
E

∑

i r
j
i , where E is the total number of experiments.

Accuracy Overlapping Recall Precision

ADABoost 0.5771 0.3142 0.4419 0.4504

GraphCut 0.5766 0.3129 0.4404 0.4489

Labels 0.6403 0.4766 0.6079 0.6516

Standard 0.7069 0.5905 0.7048 0.8098

SublinealBinary 0.7361 0.6021 0.7427 0.7914

SublinealTernary 0.7026 0.5648 0.6843 0.7638

Table 4.3: Result figures for database motion sequential scenario.

Accuracy Overlapping Recall Precision

ADABoost 0.5771 0.3142 0.4419 0.4504

GraphCut 0.5766 0.3129 0.4404 0.4489

Labels 0.5951 0.3833 0.5292 0.5375

Standard 0.7109 0.4365 0.552 0.5867

SublinealBinay 0.7305 0.4677 0.5912 0.6266

SublinealTernary 0.6937 0.4392 0.5748 0.6159

Table 4.4: Result figures for database motion random scenario.
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Accuracy Overlapping Recall Precision

ADABoost 0.7607 0.553 0.6805 0.715

GraphCut 0.7888 0.5865 0.7043 0.7654

Labels 0.879 0.7489 0.8372 0.8736

Standard 0.902 0.793 0.8792 0.8824

SublinealBinary 0.8571 0.7133 0.8125 0.8458

SublinealTernary 0.8796 0.7477 0.8395 0.8652

Table 4.5: Result figures for database motion one person.

Accuracy Overlapping Recall Precision

ADABoost 0.8552 0.2392 0.2781 0.3906

GraphCut 0.858 0.2355 0.2718 0.4427

Labels 0.8906 0.4346 0.4961 0.6675

Standard 0.8866 0.5125 0.5627 0.8122

SublinealBinary 0.8786 0.4809 0.5275 0.7649

SublinealTernary 0.8998 0.5628 0.6277 0.8067

Table 4.6: Result figures for database FAQ.

Accuracy Overlapping Recall Precision

ADABoost 0.6605 0.3127 0.422 0.4978

GraphCuts 0.6748 0.3102 0.4175 0.4654

Labels 0.6789 0.3359 0.4435 0.5098

Standard 0.7199 0.3764 0.4842 0.5555

SublinealBinary 0.684 0.3379 0.4457 0.5205

SublinealTernary 0.7006 0.3544 0.4618 0.5345

Table 4.7: Result figures for database IVUS, using 6 scales.

In order to reject the null hypothesis that the measured ranks differ from the mean

rank, and that the ranks are affected by randomness in the results, we use the Friedman

test. The Friedman statistic value is computed as follows:

χ2
F =

12E

k(k + 1)




∑

j

R2
j −

k(k + 1)2

4



 .
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Accuracy Overlapping Recall Precision

RGB

ADABoost 0.7274 0.3612 0.4351 0.5334

GraphCuts 0.7283 0.3435 0.4113 0.4688

Labels 0.7612 0.4232 0.5004 0.6716

Standard 0.8074 0.5189 0.6137 0.6922

SublinealBinary 0.7987 0.4957 0.5806 0.6924

SublinealTernary 0.8078 0.5172 0.6085 0.7028

HOG

ADABoost 0.8067 0.5115 0.608 0.6648

GraphCuts 0.8317 0.53 0.6108 0.6962

Labels 0.8305 0.5447 0.6385 0.6878

Standard 0.8686 0.599 0.6912 0.7373

SublinealBinary 0.8514 0.5767 0.678 0.7151

SublinealTernary 0.8599 0.5852 0.6752 0.7333

Table 4.8: Result figures for database ETRIMS 4 classes RGB and HOG.

Accuracy Overlapping Recall Precision

RGB

ADABoost 0.606 0.1991 0.2591 0.3003

GraphCuts 0.6039 0.1859 0.2405 0.2719

Labels 0.6549 0.2526 0.3193 0.4297

Standard 0.703 0.3133 0.3891 0.4752

SublinealBinary 0.6616 0.267 0.3389 0.4439

SublinealTernary 0.6742 0.2768 0.346 0.4361

HOG

ADABoost 0.6723 0.2868 0.3618 0.4623

GraphCuts 0.6812 0.2618 0.3255 0.3678

Labels 0.6885 0.3031 0.3797 0.4706

Standard 0.7312 0.3479 0.4338 0.5103

SublinealBinary 0.6895 0.3038 0.3837 0.4765

SublinealTernary 0.7164 0.3348 0.4222 0.4986

Table 4.9: Result figures for database ETRIMS 8 classes RGB and HOG.

In our case, with k = 6 system configurations to compare, χ2
F = 35.79. Since this value

62



4.5 Experiments and Results

ADAboost GraphCut Labels Standard Sub.Binary Sub.Ternary

Rank 5.7 5.1 3.9 1.7 2.8 1.9

Table 4.10: Mean rank of each strategy considering the accuracy terms of the different

experiments.

is undesirable conservative, Iman and Davenport (23) proposed a corrected statistic:

FF =
(N − 1)χ2

F

E(k − 1)− χ2
F

.

Applying this correction we obtain FF = 31.11. With 6 methods and 9 experiments,

FF is distributed according to the F distribution with 5 and 40 degrees of freedom.

The critical value of F (5, 40) for 0.05 is 2.44. As the value of FF = 31.11 is higher than

2.44 we can reject the null hypothesis. Once we have checked for the non-randomness of

the results, we can perform an a post-hoc test to check if one of the configurations can

be statistically singled out. For this purpose we use the Nemenyi test. The Nemenyi

statistic is obtained as follows:

CD = qα

√

k(k + 1)

6E
.

In our case with k = 6 system configurations to compare and E = 9 experiments (data

configurations) the critical value for a 90% of confidence is CD = 1.27. In Figure 4.7 we

can see a graphical representation of this post-hoc test. As the ranking of the MMSSL

Standard method intersects with both sub-lineal approaches ranks for that value of the

CD, we can state that MMSSL using confidences outperforms the rest of the methods

in the presented experiments. Moreover, it reveals that among compressed and non

compressed MMSSL strategies statistically significant differences do not exist. This

fact reinforce our idea of grouping features without losing performance is feasible. The

main advantage for using the compression approach is that by reducing the number of

features in the extended dataset, the time of the learning phase for the second classifier

is reduced. Therefore, the MMSSL framework scales sublinearly in feature space with

the number of classes without a loss in generalization.

4.5.3.3 Qualitative Results

In this section we highlight general observations comparing ADAboost, multi-label

optimization gaph cut and our MMSSL approach. Figure 4.8 shows results in 1D

motion database. The rest of figures shows results in 2D databases, Figure 4.11 shows
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6 5 4 3 2 1

CD

ADAboost
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Labels Sub. Binary
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Figure 4.7: Comparison of all methods against each other with the Nemenyi test. Groups

of classifiers that are not significantly different are connected.

results in IVUS database, Figure 4.9, and Figure 4.10 show results in e-trims database

4 and 8 classes, respectively.

The images resulting from ADAboost classification show how this method is not

capable to capture sequential relationship among labels. For example, in 1D database

results shown in Figure 4.8, we can see how contiguous points inside a long class interval

are classified as belonging to another class. In 2D database results show spurious

classified pixels appearing inside big objects. For example, in the first row of Figure

4.9 in the upper side of the building appears few pixels labelled as tree. In the second

row of the same image clouds in the middle of sky are marked as building and in the

third row of the same figure a wire crossing the sky is misclassified. In the last two

rows shadows on the top of the buildings are classified as road. In Figure 4.10 as

many other classes exist, the effect of spurious artifacts on Adaboost results are more

notorious, for example int he last row dark clouds are misclassified as belonging to the

building. In Figure 4.11 we can see that Adaboost fails, producing results far from the

real classification, like in the first and second row. All artifacts observed appear due to

specific pixel values which lead the classifier to a misclassification.

On the contrary, the multi-label optimization technique by means of Graph Cut

captures sequential relationships between labels, erasing such interclass artifacts. In

1D database results shown in Figure 4.8, we can see how the number of bad classified

contiguous points decreases respect ADAboost, but it still fails in classify correctly

short intervals of contiguous points of certain classes. In 2D databases, the drawbacks

of this method are a) the tendency to crop the contours of the objects producing sharp

shapes resembling blobs, as is reflected in the first, third and fourth rows of Figure

4.9 where trees lose all its shape, even the building in the third row is rounded, and

b) the elimination of entire overlapped objects, as is shown in the three first rows of

Figure 4.10, where trees, windows and doors are completely removed, only prevailing

the building class. Even though, long objects are still misclassified, as the shadows
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in the top part of the buildings in the last two rows in Figure 4.9, or worst, the dark

clouds in the last row of Figure 4.10 are completely joined with the building forming a

huge building. In Figure 4.11 we can see a fairly improvement respect Adaboost, but it

still fails in the classification of the three first rows. This method fails mainly because

it is not considering the relationship among objects at different scales.

The last method considered is our approach, MMSSL using confidences without

compression.The results of this method are qualitatively better than the rest. The

results are a trade-off between spacial coherence and shape permanence. This is because

the relationship among classes is considered at different scales. In 1D database results

shown in Figure 4.8, we can see how the MMSSL is the only method that achieves good

performance as well in long sequences as in short sequences of points of the same class

and does not matter whether the activities are carried on in the same order as trained or

not. In 2D databases, we can see in Figure 4.9 how MMSSL is able to keep the shape

of buildings and trees in all the images and how it removes interclass artifacts that

previous method were not able to, for example the shadows on the top of the building

in the last two rows. In Figure 4.10 we can see in all the images that windows, trees

and doors are fairly kept, even the dark clouds in the last row are practically removed,

appearing only spurious pixels in the border of the image. Moreover, in Figure 4.11, we

can see how MMSSL is able to close big areas of the same class like in the three firsts

rows, where the rest of methods fail. Also is remarkable in the fourth and fifth row

how narrower classes between wider classes are preserved, where the other methods fail.

The points where the method fails the most are the junctions between classes where

does not exist a clear distinction, for example in the second row in Figure 4.10 where

cars are classified altogether as one, mixing with the grass and the road.
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Figure 4.8: Figures of final classification in motion sequential scenario and motion random

scenario for ADAboost, multi-label optimization Graph cut, and our proposal MMSSL. Y-

axe shows the labels for each class and X-axe is the time interval. Predictions values are

marked with + and real values are marked just below with dots.
66

./4/figures/Ssubj_4ADAboost.eps
./4/figures/subj_4ADAboost.eps
./4/figures/Ssubj_4Graph.eps
./4/figures/subj_4Graph.eps
./4/figures/Ssubj_4Standard.eps
./4/figures/subj_4Standard.eps


4.5 Experiments and Results

(a) (b) (c) (d) (e)

Figure 4.9: Figures of final classification in ETRIMS 4 Classes HOG database. (a)

Shows the original image, (b) the groundtruth image, and (c),(d), and (e) show ADAboost,

GraphCut, and MMSSL without compression, respectively.
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(a) (b) (c) (d) (e)

Figure 4.10: Figures of final classification in ETRIMS 8 Classes HOG database. (a)

Shows the original image, (b) the groundtruth image, and (c),(d), and (e) show ADAboost,

GraphCut, and MMSSL without compression, respectively.
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(a) (b) (c) (d) (e)

Figure 4.11: Figures of final classification in IVUS using 6 scales. (a) Shows the original

image, (b) the groundtruth image, and (c),(d), and (e) show ADAboost, GraphCut, and

MMSSL without compression, respectively.
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4.5.3.4 Comparing among proposed multi-class MSSL techniques

Finally, Figures 4.12 and 4.13 show the difference among MMSSL approaches. It is

appreciable how MMSSL using labels fails classifying long areas of contiguous pixels,

while the rest of methods predict them correctly. This is because using confidences

for each sample instead of the most probable label makes possible to break ties of

equiprobable classes. Differences between compressed and non compressed methods

are not so straightforward to see, but while in Figure 4.12 there are few differences

in Figure 4.13 we can see how non compressed methods leads to smoother results

than compressed methods. Compressed methods tend to fail in closing some classes,

appearing spurious pixels inside them. Sometimes this behavior can lead to a better

classification if it was misclassified, as it happens in the last row of Figure 4.12. The

second row of Figure 4.13 shows the learning capacity of the likelihood maps. In column

(d), MMSSL without compression, we can see a boundary marked as unknown object

(class 0, black label) in front of the building. Inside this region, it is marked as car label.

In the original image, column (a), it is appreciable a woman riding a bicycle in those

area. Although in the groundtruth image, column (b), these elements are omitted, our

method using likelihood maps is capable of detecting them as an element different to

road or building, and assigning the inner region to car label, given its visual appearance

and position.
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(a) (b) (c) (d) (e) (f)

Figure 4.12: Comparative between multi-class multi-scale stacked sequential learning

approaches in ETRIMS 4 Classes HOG database. (a) Shows the original image, (b) the

groundtruth image, and (c), (d), (e), and (f) shows the different MMSSL schemes: (c)

MMSSL using only label predictions, (d) MMSSL using confidences, (e) MMSSL using

binary compression, and (f) MMSSL using ternary compression
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(a) (b) (c) (d) (e) (f)

Figure 4.13: Comparative between multi-class multi-scale stacked sequential learning

approaches in ETRIMS 8 Classes HOG database. (a) Shows the original image, (b) the

groundtruth image, and (c), (d), (e), and (f) shows the different MMSSL schemes: (c)

MMSSL using only label predictions, (d) MMSSL using confidences, (e) MMSSL using

binary compression, and (f) MMSSL using ternary compression.
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4.6 Conclusions

In this chapter we extended the Multi-scale stacked sequential learning framework in

different ways. First we adapt the J for working with likelihood values instead of

prediction labels when the first classifier is able to produce them. Secondly we adjust

the MSSL framework for classifying objects at different sizes. In order to do this, we

proposed the shifting technique at testing time. This allows to correctly classify objects

at different sizes than the learned ones. Thirdly, we adapt the multi-scale sequential

learning (MSSL) to the multi-class case (MMSSL). In order to do this, we put the

ECOC framework into the base classifiers and show how to compute the confidence

maps using the normalized margins obtained from the ECOC base classifiers. Finally we

define a compression approach for reducing the number of features in the extended data

set. The results show that, on the one hand, MMSSL achieves accurate classification

performance in multi-class classification problems taking benefit of sequential learning.

On the other hand, the compression process is feasible, since in terms of accuracy the

loss of information is negligible.

In next chapter we present an example application of MSSL for human body segmen-

tation, where exists sequential dependences between instances. In this scenario MSSL is

used with great success, improving results with respect state-of-the-art methodologies.
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5

Application of MSSL for human

body segmentation

Human segmentation in RGB images is a challenging task due to the high variability

of the human body, which includes a wide range of human poses, lighting conditions,

cluttering, clothes, appearance, background, point of view, number of human body

limbs, etc. In this particular problem, the goal is to provide a complete segmentation

of the person/people appearing in an image. In literature, human body segmentation

is usually treated in a two-stage fashion. First, a human body part detection step is

performed, obtaining a large set of candidate body parts. These parts are used as prior

knowledge by segmentation/inference optimization algorithms in order to obtain the

final human body segmentation.

In the first stage, that is the detection of body parts, weak classifiers are trained

in order to obtain a soft prior of body parts (which are often noisy and unreliable).

Most works in literature have used edge detectors, convolutions with filters, linear SVM

classifiers, Adaboost or Cascading classifiers (67). For example, (58) used a tubular

edge template as a detector, and convolved it with an image defining locally maximal

responses above a threshold as detections. In (57), the authors used quadratic logistic

regression on RGB features as the part detectors. Other works, have applied more

robust part detectors such as SVM classifiers (15, 35) or AdaBoost (51) trained on

HOG features (19). More recently, Dantone et. al used Random Forest as classifiers

to learn body parts (20). Although recently robust classifiers have been used, part

detectors still involve false-positive and false-negatives problems given the similarity

nature among body parts and the presence of background artifacts. Therefore, a second

stage is usually required in order to provide an accurate segmentation.

75



5. APPLICATION OF MSSL FOR HUMAN BODY SEGMENTATION

In the second stage, soft part detections are jointly optimized taking into account

the nature of the human body. However, standard segmentation techniques (i.e. region-

growing, thresholding, edge detection, etc.) are not applicable in this context due to

the huge variability of environmental factors (i.e lightning, clothing, cluttering, etc.)

and the changing nature of body textures. In this sense, the most known models for

the optimization/inference of soft part priors are Poselets (9, 51) of Bourdev et. al.

and Pictorial Structures (4, 30, 62) by Felzenszwalb et. al., both of which optimize the

initial soft body part priors to obtain a more accurate estimation of the human pose,

and provide with a multi-limb detection. In addition, there are some works in literature

that tackle the problem of human body segmentation (segmenting the full body as one

class) obtaining satisfying results. For instance, Vinet et al. (66) proposed to use

Conditional Random Fields (CRF) based on body part detectors to obtain a complete

person/background segmentation. Belief propagation, branch and bound or Graph Cut

optimization are common approaches used to perform inference of the graphical models

defined by human body (38, 39, 59). Finally, methods like structured SVM or mixture

of parts (72, 73) can be use in order to take profit of the contextual relations of body

parts.

In this chapter, we present a novel two-stage human body segmentation method

based on the Multi-Scale Stacked Sequential Learning (MSSL) framework. In the first

stage of our method for human segmentation, a multi-class Error-Correcting Output

Codes classifier (ECOC) is trained to detect body parts and to produce a soft likelihood

map for each body part. In the second stage, a multi-scale decomposition of these

maps and a neighborhood sampling is performed, resulting in a new set of features.

The extended set of features encodes spatial, contextual and relational information

among body parts. This extended set is then fed to the second classifier of MSSL, in

this case a Random Forest binary classifier, which maps a multi-limb classification to

a binary human classification problem. Finally, in order to obtain the resulting binary

human segmentation, a post-processing step is performed by means of Graph Cuts

optimization, which is applied to the output of the binary classifier.

5.1 Stage One: Body Parts Soft Detection

In this work, the first stage detector H1(x) in the MSSL pipeline is based on the soft

body parts detectors defined in (60). The work of Bautista et al (60) is based on

an ECOC ensemble of cascades of Adaboost classifiers. Each of the cascades focuses

on a subset of body parts described using Haar-like features where regions have been
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previously rotated towards main orientation to make the recognition rotation invariant.

Although any other part detector technique could be used in the first stage of our

process, we also choose the same methodology. As a case study, although any classifier

can be included in the ECOC framework, here we considerer as base learner also the

same ensemble of cascades given its fast computization.

Because of its properties, cascades of classifiers are usually trained to split one visual

object from the rest of possible objects of an image. This means that the cascade of

classifiers learns to detect a certain object (body part in our case), ignoring all other

objects (all other body parts). However, some body parts have similar appearance, i.e.

legs and arms, and thus, it makes sense to group them in the same visual category.

Because of this, we learn a set of cascades of classifiers where a subset of limbs are

included in the positive set of one cascade, and the remaining limbs are included as

negative instances together with background images in the negative set of the cascade.

In this sense, classifier H1 is learned by grouping different cascades of classifiers in a

tree-structure way and combining them in an Error-Correcting Output Codes (ECOC)

framework (28). Then, H1 outputs correspond to a multi-limb classification prediction.

An example of the body part tree-structure defined taking into account the nature

of human body parts is shown in Fig. 5.2(a). Notice that classes with similar visual

appearance (e.g. upper-arm and lower-arm) are grouped in the same meta-class in most

dichotomies. In addition, dichotomies that deal with difficult problems (e.g. d5) are

focused only in the difficult classes, without taking into account all other body parts.

In this case, class c7 denotes the background.

We use the problem dependent coding matrix defined in (60) in order to allow

the inclusion of cascade of classifiers and learn the body parts. In particular, each

dichotomy is obtained from the body part tree-structure. Fig. 5.2(b) shows the coding

matrix codification of the tree-structure in Fig. 5.2(a).

In the ECOC decoding step an image is processed using a sliding windowing ap-

proach. Each image patch x, is described and tested. In our case, each patch is first

rotated by main gradient orientation and tested using the ECOC ensemble with Haar-

like features and cascade of classifier. In this sense, each classifier d outputs a prediction

whether x belongs to one of the two previously learnt meta-classes. Once the set of

predictions c ∈ {+1,−1}1×n is obtained, it is compared to the set of codewords of the

classes yi from M , using a decoding function δ(c, yi) and the final prediction is the

class with the codeword with minimum decoding, i.e. argmini δ(c, y
i). As a decoding

function we use the Loss-Weighted approach with linear loss function defined in (28).

Then, a body-like probability map is built. This map contains, at each position the
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Figure 5.1: Method overview. (a) Abstract pipeline of the proposed MSSL method

where the outputs Y ′

i
of the first multi-class classifier H1(x) are fed to the multi-scale

decomponsition and sampling function J(x) and then used to train the second stacked

classifier H2(x) which provides a binary output Ŷ. (b) Detailed pipeline for the MSSL

approach used in the human segmentation context where H1(x) is a multi-class classifier

that takes a vector X of images from a dataset. As a result, a set of likelihood maps

Y ′

1
. . . Y ′

n for each part is produced. Then a multi-scale decomposition with a neighborhood

sampling function J(x) is applied. The output X′ produced is taken as the input of the

second classifier H2(x), which produces the final likelihood map Ŷ, showing for each point

the confidence of belonging to human body class.
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Figure 5.2: (a) Tree-structure classifier of body parts, where nodes represent the defined

dichotomies. Notice that the single or double lines indicate the meta-class defined. (b)

ECOC decoding step, in which a head sample is classified. The coding matrix codifies

the tree-structure of (a), where black and white positions are codified as +1 and −1,
respectively. c, d, y, w, X , and δ correspond to a class category, a dichotomy, a class

codeword, a dichotomy weight, a test codeword, and a decoding function, respectively.

proportion of body part detections for each pixel over the total number of detections

for the whole image. In other words, pixels belonging to the human body will show a

higher body-like probability than the pixels belonging to the background. Additionally,

we also construct a set of limb-like probability maps. Each map contains at each posi-

tion (i, j) the probability of pixel at the entry (i, j) of belonging to the body part class.

This probability is computed as the proportion of detections at point (i, j) over all

detection for that class. Examples of probability maps obtained from ECOC outputs

are shown in Fig. 5.3, which represents the H1(x) outputs Y
′
1 . . . Y

′
n defined in Fig. 5.1

(a).

5.2 Stage Two: Fusing Limb Likelihood Maps Using MSSL

The goal of this stage is to fuse all partial body parts into a full human body likelihood

map (see Fig. 5.1 (b) second stage). The input data for the neighborhood modeling

function J(x) are the body parts likelihood maps obtained in the first stage (Y ′
1 . . . Y

′
n).

In the first step of the modeling a set of different gaussian filters is applied on each

map. All these multi-resolution decompositions give information about the influence

of each body part at different scales along the space. Then, a 8-neighbor sampling is

performed for each pixel with sampling distance proportional to its decomposition scale.

This allows to take into account the different limbs influence and their context. The
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(a) RGB Image (b) Head (c) Torso (d) Arms

(e) Forearms (f) Thighs (g) Legs (d) Full Body

Figure 5.3: Limb-like probability maps for the set of 6 limbs and body-like probability

map. Image (a) shows the original RGB image. Images from (b) to (g) illustrate the

limb-like probability maps and (h) shows the union of these maps.

extended set X ′ is formed by stacking all the resulting samplings at each scale for each

limb likelihood map (see the extended feature set X ′ in Fig. 5.1(b)). As a result, X ′

will have dimensionality equals to the number of samplings multiplied by the number

of scales and the number of body parts. In our experiments we use eight neighbor

sampling, three scales and six body parts. Notice that contrary to the MSSL traditional

framework, we do not fed the second classifier H2 with both the originalX and extended

X ′ features, and only the extended set X ′ is provided. In this sense, the goal of H2

is to learn spatial relations among body parts based on the confidences produced by

first classifier. As a result, second classifier provides a likelihood of the membership

of an image pixel to the class ’person’. Thus, the multiple spatial relations of body

parts (obtained as a multi-class classifier in H1), are labelled as a two-class problem

(person vs not person) and trained by H2. Consequently, the label set associated to the

extended training data X ′ corresponds to the union of the ground truths of all human

body parts. Although, within our method any binary classifier can be considerer for

H2, we use a Random Forest classifier to train 50 random trees that focus on different

configurations of the data features. This strategy has shown robust results for human

body segmentation in multi-modal data (64). Fig. 5.4 shows a comparative between

the union of the likelihood maps obtained by the first classifier and the final likelihoods

obtained after the second stage. We can see that a naive fusion of the limb likelihoods

produce noisy outputs in many body parts. The last column shows how second stage
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clearly detects the human body using the same data. For instance, Fig. 5.4 (f) shows

how it works well also when two bodies are close one to other, splitting them accurately,

preserving the poses. Notice that in Fig. 5.4 (f) a non zero probability zone exists

between both silhouettes, denoting the existence of a handshaking. Finally in Fig. 5.4

(c) we can see how the foreground person is highlighted in the likelihood map, while

in previous stage (Fig. 5.4 (b)) it was completely missed. This shows that the second

stage is able to restore body objects at different scales. Finally, the output likelihood

maps obtained after this stage are used as input of a post-process based on graph-cut

to obtain final segmentation

Original H1 joint output map H2 maps

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Comparative between H1 and H2 output. First column are the original

images. Second column are H2 output likelihood maps. Last column are the union of all

likelihood map of body parts

5.3 Experimental Results

Before present the experimental results, we first discuss the data, experimental settings,

methods and validation protocol.

5.3.1 Dataset

We used HuPBA 8k+ dataset described in (61). This dataset contains more than 8000

labeled images at pixel precision, including more than 120000 manually labeled samples

of 14 different limbs. The images are obtained from 9 videos (RGB sequences) and a
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5. APPLICATION OF MSSL FOR HUMAN BODY SEGMENTATION

total of 14 different actors appear in those 9 sequences. In concrete, each sequence has

a main actor (9 in total) which during the sequence interacts with secondary actors

portraying a wide range of poses. For our experiments, we reduced the number of limbs

from the 14 available in the dataset to 6, grouping those that are similar by symmetry

(right-left) as arms, forearms, thighs and legs. Thus, the set of limbs of our problem

is composed by: head, torso, forearms, arms, thighs and legs. Although labeled within

the dataset, we did not include hands and feet in our segmentation scheme. In Fig. 5.5

some samples of the HuPBA 8k+ dataset are shown.

Figure 5.5: Different samples of the HuPBA 8k+ dataset.

5.3.2 Methods

We compare the following methods for Human Segmentation: Soft Body Parts

(SBP) detectors + MSSL + Graphcut. The proposed method, where the body

like confidence map obtained by each body part soft detector is learned by means

of MSSL and the output is then fed to a GraphCut optimization to obtain the final

segmentation. SBP detectors + MSSL + GMM-Graphcut. Variation of the pro-

posed method, where the final GraphCut optimization also learns a GMM color model

to obtain the final segmentation as in the GrabCut model (59). SBP detectors +

GraphCut. In this method the body like confidence map obtained by aggregating all

body parts soft detectors outputs is fed to a GraphCut optimization to obtain the final

segmentation. SBP detectors + GMM-GraphCut. We also use the GMM color

modeling variant in the comparison.

5.3.3 Settings and validation protocol

In a preprocessing step, we resized all limb samples to a 32× 32 pixels region. Regions

are first rotated by main gradient orientation. In the first stage, we used the standard

Cascade of Classifiers based on AdaBoost and Haar-like features (67) as our body part

multi-class classifier H1. As model parameters, we forced a 0.99 false positive rate and
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maximum of 0.4 false alarm rate during 8 stages. To detect limbs with trained cascades

of classifiers, we applied a sliding window approach with an initial patch size of 32× 32

pixels up to 60 × 60 pixels. As result of this stage, we obtained 6 likelihood maps for

each image. In the second stage, we performed 3-scale gaussian decomposition with σ ∈
[8, 16, 32] for each body part. Then, we generated a extended set selecting for each pixel

its 8-neighbors with σ displacement. From this extended set, a sampling of 1500 selected

points formed the input examples for the second classifier. As second classifier, we used

a Random Forest with 50 decision trees. Finally, in a post-processing stage, binary

Graph Cuts with a GMM color modeling (we experimentally set 3 components) were

applied to obtain the binary segmentation where the initialization seeds of foreground

and background were tuned via cross-validation. For the binary Graph Cuts without

a GMM color modeling we directly fed the body likelihood map to the optimization

method. In order to assess our results, we used 9-fold cross-validation, where each fold

correspond to images of a main actor sequence. As results measurement we used the

Jaccard Index of overlapping (J = A
⋂

B
A
⋃

B ) where A is the ground-truth and B is the

corresponding prediction.

5.3.4 Quantitative Results

In Table 5.1 we show overlapping results for the HuPBA 8K+ dataset. Specifically,

we show the mean overlapping value obtained by the compared methods on 9 folds of

the HuPBA 8k+ dataset. We can see how our MSSL proposal consistently obtains a

higher overlapping value on every fold.

Notice that MSSL proposal outperforms in the SBP+GC method in all folds (by at

least a 3% difference), which is the state-of-the-art method for human segmentation in

the HuPBA 8k+ dataset (60).

5.3.5 Qualitative Results

In Fig. 5.6 some qualitative results of the compared methodologies for human segmen-

tation are shown. It can be observed how in general SBP+MSSL+GMM-GC obtains

a better segmentation of the human body than the SBP + GMM-GC method. This

improvement is due to the contextual body part information encoded in the extended

feature set. In particular, this performance difference is clearly visible in Fig. 5.6(f)

where the human pose is completely extracted from the background. We also observe

how the proposed method is able to detect a significative number of body parts at dif-

ferent scales. This is clearly appreciated in Fig. 5.6(c), where persons at different scales
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GMM-GC GC

MSSL Soft Detect. MSSL Soft Detect.

Fold Overlap Overlap Overlap Overlap

1 62.35 60.35 63.16 60.53

2 67.77 63.72 67.28 63.75

3 62.22 60.72 61.76 60.67

4 58.53 55.69 58.28 55.42

5 55.79 51.60 55.21 51.53

6 62.58 56.56 62.33 55.83

7 63.08 60.67 62.79 60.62

8 67.37 64.84 67.41 65.41

9 64.95 59.83 64.21 59.90

Mean 62,73 59,33 62,49 59,29

Table 5.1: Overlapping results over the 9 folds of the HupBA8K+ dataset for the proposed

MSSL method and the Soft detectors post-processing their outputs with the Graph-Cuts

method and GMM Graph-Cuts method.

are segmented, while in Fig. 5.6(b) the SBP+GMM-GC fails to segment the rightmost

person. Furthermore, Fig. 5.6(i) shows how the proposed method is able to recover the

whole body pose by stacking all body parts, while in Fig. 5.6(h) the SBP+GMM-GC

method just detected the head of the left most user. In this pair of images also we can

see how our method is able to discriminate the different people appearing in an image,

segmenting as background the interspace between them. Although, it may cause some

loss, specially in the thinner body parts, like happens with the extended arm. Due to

space restrictions, a table with more examples of segmentation results can be found

in the supplementary material. Regards the dataset used, it is important to remark

the large amount of segmented bodies (more than 10.000) and their high variability in

terms of pose (performing different activities and interactions with different people),

size and clothes. The scale variations are learnt by H2 through spatial relationships

of body parts. In addition, although background is maintained across the data, H2 is

trained over the soft predictions from H1 (see the large number of false positive predic-

tions shown in Fig. 5.3), and our method considerably improves those person confidence

maps, as shown in Fig. 5.4.

5.4 Conclusions

We presented a two-stage scheme based on the MSSL framework for the segmentation

of the human body in still images. We defined an extended feature set by stacking a
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multi-scale decomposition of body part likelihood maps, which are learned by means of

a multi-class classifier based on soft body part detectors. The extended set of features

encodes spatial and contextual information of human limbs which combined enabled us

to define features with high order information. We tested our proposal on a large dataset

obtaining significant segmentation improvement over state-of-the-art methodologies.
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Original SBP+GMM-GC SBP+MSSL+GMM-GC

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 5.6: Samples of the segmentation results obtained by the compared approaches.
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6

Conclusions

This thesis focuses on the problem of sequential learning from a meta-learning perspec-

tive.

Chapter 1 introduces the concept of sequential learning and the motivations of this

thesis.

Chapter 2 reviews some approaches of sequential learning from different points of

view. These approaches mainly comes from machine learning and pattern recognition

fields. However, since one of the motivations is to use sequential learning in images

classification tasks, we have reviewed some related works appeared in computer vision

field.

As a result of the research in this topic, in this thesis the following contributions

are proposed:

• In Chapter 3 we present a novel framework for sequential learning problems.

Specifically, we generalize the stacked sequential learning framework (SSL) stress-

ing the key role of the neighborhood modeling, in order to apply it in problems

such as object recognition or human body parts segmentation. Thanks to the

inclusion of function J after first classifier, where the multi-scale decomposition

and sampling of predictions is performed, our approach (MSSL) is more efficient

and capable to capture longer distance interactions than the original SSL. The

method allows to have an explicit trade-off between the resolution of the interac-

tions we desire to model and the number of features; very detailed interactions

can be modeled in short distance or long distance patterns can be captured with

a coarser resolution using the same number of features in the extended training

set. We show that strategies mixing detailed interactions and long ranges can be

defined at the cost of adding more features. The proposed method has been tested
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on two different data sets, the first on a 1D correlation lattice and the second on

a 2D correlation lattice. We have compared our methodology with the graphical

model CRF. Our method has obtained better results in both datasets, assuming

non a priori knowledge of the structure of the labels. Even, our methodology is

more straight-forward than the graphical models, since the loss function depen-

dency is delegated to the base classifier. This means that the parametrization

of our method is only dependent on the base classifier, the number of scales in

the multi-resolution step and the number of sampled elements forming the ex-

tended data set. This last two parameters can be easily tuned depending on the

application dataset and the computation capacity available.

On going research in MSSL is towards to consider non-isotropic and/or non-linear

decomposition methods. Recently, Gatta and Ciompi (33) use scale-space Taylor

coefficients in order to model the neighborhood relationships, instead of using

multi-resolution decomposition. Meanwhile, we have already performed some

experiments applying wavelets and bilateral filters instead of multi-resolution de-

composition, but in the general case, the results have not been significantly better

than the ones obtained using MSSL.

• In Chapter 4 we develop some improvements over MSSL framework. Specifically,

we have developed a general and efficient extension of MSSL for the multi-class

case by integrating the ECOC framework in the base classifiers. We test our

multi-class methodology performing different experiments out from four databases

showing different kind of sequential relationships: Sensor motion data database,

FAQ database, IVUS image database and e-trims database. We test all the

databases with different configurations of our MSSL methodology, including a

feature-compression approach based on sub-lineal ECOCs. Finally, we compare

our results with Real Adaboost and CRF Multi-label optimization through Graph

Cut α-expansion methodologies.

As future work we going to experiment with other compression approaches, such

as compressed sensing or PCA, for the sake of reducing the extended set as much

as possible without losing accuracy.

• The last contribution of this chapter is an architecture specifically designed for

classification of different sized objects. The challenge in this problem comes by

the fact that the classifier has not been necessarily exposed to examples at the

different scales found in the testing images. We have used two images dataset for

testing our architecture: a data base of pictures of different sized horses and a
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data base of different types and sized flowers. Adaboost and CRF are also used

as baseline experiments in order to compare our achieved results.

As future work we consider a scale and rotation invariant architecture, shifting

not only the scales but also the sampled neighborhood patterns.

• Finally, in Chapter 5 we present an application of MSSL for human body seg-

mentation. We presented a two-stage scheme based on the MSSL framework for

the segmentation of the human body in still images. We defined an extended

feature set based on likelihood maps obtained from soft body part detectors.

These features encode spatial and contextual information of human limbs provid-

ing high order information to the second classifier. We tested our proposal on a

large dataset obtaining significant segmentation improvement over state-of-the-

art methodologies.

Our work in progress is to refine our body segmentation application in order to

perform accurate multi-limb body segmentation. This is, to perform correctly

segmentation of each part of the body (arms, legs, torso, head...) by using our

MSSL framework.
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