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A novel three-dimensional measurement technique is proposed. The
methodology consists in mapping from the screen coordinates reported
by the optical camera to the real world, and integrating distance gradients
from the beginning to the end point, while also minimising the error
through fitting pixel locations to a smooth curve. The results demonstrate
accuracy of less than half a centimetre using Microsoft Kinect II.
Introduction: The problem of vision-based measurement calculation has
been dealt with through different perspectives and methodologies in the
literature. In what follows, a selection of the studies conducted in the
foregoing field is briefly reviewed so as to provide a background to the
approach proposed and implemented in this Letter. In [1], the focus is
specifically on finding the range for mobile robots through DSP
(digital signal processing) with the so-called ‘binocular stereo vision’.
The proposed methodology consists in capturing paired images of the
target, along with Gaussian filter and improved Sobel kernels, and then
determining its location through implementing feature-based local
stereo matching. As the final stage, for alleviating mismatching possibi-
lities, which would lead to more reliable performance, confidence, and
left–right consistency filters are applied. Moreover, so as to achieve real-
time control over the location detection algorithm, it is developed on the
basis of a DSP/BIOS (basic input/output system) operating system. All in
all, their suggested algorithm has claimed to be able to operate with more
than 99% accuracy for point-to-point distance range of 120 cm within
39 ms in the worst case, which could be considered efficient and reliable.
The perception of body shape has been investigated from another per-
spective in [2], which deals with the disorders, such as anorexia and
bulimia nervosa, caused, supposedly, by invalid perception of the body
shape and sizes, being considered difficult to represent numerically.
The foregoing study deems previous ones reported in the literature
inadequate in the sense of properly illustrating the trend of the changes
of the body shape while the level of fat is either increasing or decreasing.
More precisely, the body shape does not vary in such a way that could be
represented by simply stretching it in either of the directions consistently,
as the one entitled ‘distorting video technique (DVT)’; it rather demon-
strates different amounts and types of changes in each part, i.e. the body
change follows a specific pattern which is much more complex than
simple linear scaling. The foregoing study tries to come up with a
more realistic body-shape representation through taking actual biometric
information into account, and investigating the changes in the body parts
separately, which leads to flexibility in providing the opportunity to
manipulate them in the desired manner. One of the virtues of the latter
study is that one could calculate the perimeter–area ratio, and sub-
sequently, body mass index (BMI), which helps to evaluate the validity
of the user’s perception through comparison.

Similarly, Li et al. [3] deal with specific anthropometric body measure-
ments and ratios affecting the perception of the users of body fitness. The
main idea in the latter study is developing a home-based imaging system
for automatic extraction of anthropometric body measurements. The
work reported in [4] focuses on stereoscopy, promoting a strategy
helping to produce a visual illustration based on two separate images
taken at not exactly the same locations, which can be realised through
either making use of two cameras with a single lens each or employing
a stereo camera containing two juxtaposed lenses. The main functionality
of such an approach is to measure the distance between the camera and
the object under consideration. Obviously, while calculating the latter
values, physical parameters, including the focal lens and the distance
between the two cameras have to be taken into account.

In [5], the depth information obtained by the sensors is analysed for
extracting biometric soft indicators, such as lengths and girths.
Supervised training is considered while making use of multi-part pose clus-
ters. Afterwards, an iterative process is applied to match the three-
dimensional (3D) body shape descriptor model. The process obtains accu-
rate measurements and segmentation, which outperforms the random forest
detection [6] in the sense of demanding a smaller amount of training data.

From another perspective, Konovalov et al. [7] deal with the problem
of detecting hands based on RGB (red-green-blue)-depth information of
the upper part of the body for human–computer interaction purposes,
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and involves overcoming variability of the possible appearance of the
hand due to the high flexibility of the hand, especially at the wrist
part. The underlying assumption, which has been verified through con-
ducting several experiments, is that the hand landmarks are always
located in certain positions with constant geodesic distances from an
anatomical reference point, which is also automatically detected. The
methodology consists in segmenting the human body on the basis of
the depth information and afterwards obtaining a graph representation
including the geodesic paths originating from the aforementioned refer-
ence point, Gt = (Vt, Et), where Vt =B t denotes the vertices, and Et⊆
Vt × Vt stands for the edges, such that
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It should be noted that in the above formulation, ‖.‖ returns the infinity
norm of its vector component, and (i, j, k)T and (i′, j′, k′) denote the 3D
coordinates of the points pijk and pi′j′k′, respectively, in B t, which, if
being neighbours, are connected with the edge e = (p, p′)∈ Et, corre-
sponding to the weight w(e) = ‖p− p′‖2, on which basis, the geodesic
distance between the two points is defined as follows:

dG p, p′
( ) = ∑

e[EP p,p′( )
w e( ) (2)

which includes the edges along the shortest path between the points,
determined based on the min-path Dijkstra’s algorithm [8].

Proposed method: The proposed method requires a coordinate mapping
from screen coordinates to real-world coordinates. It can be achieved in
various ways: it is possible to use a depth camera that provides the
mapping, or it can be obtained using some form of 3D reconstruction
method based on stereo vision, structured lighting etc. From here on,
it is assumed that there exists a function f :ℕ2→ℝ3 that maps screen
coordinates to real-world coordinates:

f (x, y) = (X , Y , Z) (3)

where x, y∈ℕ are the screen coordinates and X, Y, Z∈ℝ are the corre-
sponding real-world coordinates.

For each measurement two points of screen coordinates are required:
a starting and an ending point, let us denote the starting point by Ps and
the ending point by Pe. These two points are obtained from the user
input. The most obvious measurement can be performed by finding
the Euclidean distance between the real-world points corresponding to
these two points:

dE(Ps, Pe) = ‖f (Ps)− f (Pe)‖ (4)

This distance is rarely correct; however, as the real distance depends on
the nature of the surface between these two points, the Euclidean dis-
tance would be correct only when the path from start to end along the
surface is a completely straight line. In reality, the distance should be
given by the following line integral:

d(Ps, Pe) =
∫
C
h(X , Y )ds (5)

where C is the geodesic path from f (Ps) to f (Pe) that is obtained by pro-
jecting the line segment PsPe on the real-world coordinate surface, and
h:ℝ2→ℝ is a function that gives the Z coordinate of the projected path
at the surface point (X, Y ).

The proposed algorithm approximates the true distance using the fol-
lowing method. The pixel locations are mapped to their corresponding
real-world coordinates. This situation can be represented by a weighted
graph where each node is connected to four nodes that were created
based on the real-world coordinates obtained by mapping the neighbour-
ing pixel locations to real-world coordinate space.

The main contribution of this Letter arises from the fact that, instead
of measuring 3D geodesic paths, as performed in [7], the shortest path is
computed by considering only X- and Y-coordinates, which, from the
mathematical point of view, means that the graph where the Dijkstra’s
algorithm [8] is applied is constructed as
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. More clearly, the underlying
notion is that the path obtained via the approach suggested in this
Letter is more realistic in the sense that it is the result of projecting
the path connecting the beginning and end points onto the surface,
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rather than simply considering a straight line drawn between them,
which is tantamount to excluding the Z-coordinate values from the cal-
culations and avoiding bypassing the convexities and concavities con-
structing the actual surface.

After obtaining the path, the algorithm starts to iterate through the
path and sums up the total Euclidean distance between all the iterated
points. Let pn denote the nth visited point. The Euclidean distance
from pn−1 to pn is added to a total sum of distances D. After iterating
all the pixels the total sum D is a close approximation of the real dis-
tance. The described approximation can be written as

D =
∑m
n=2

‖ pn−1 − pn‖ (6)

where m denotes the total number of visited points. The described
method works by following the approximate path between the starting
and the ending points. The path is then divided into several smaller
parts; each of those smaller parts is approximated using the Euclidean
distance. The final output of the algorithm is achieved by summing up
all the lengths of the smaller path segments.
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Fig. 1 Ball with markers used for measurements

Note that the accuracy of the whole system depends on correct denois-
ing of the iterated path coordinates. Often the Z-coordinates can fluctu-
ate between two similar values even in the case of a totally flat surface. It
might cause a big overestimation of the distance due to the nature of the
resulting path. To avoid that a strong averaging was used, so that the
shape of the path was retained and all smaller changes were successfully
removed.

Fig. 2 Illustration of some experimentation scenarios
Results: The proposed method was tested in several scenarios, one of
which was a large ball with marks on it, as shown in Fig. 1, and
some others are illustrated in Fig. 2. In the former, there are four
points marked on the ball and measurements were performed between
all of them. We refer to these four points by A, B, C, and D. The
results of the automatic measurements using the proposed algorithm
are compared with the measurements obtained by manual measurements
using a measuring tape. These results are shown in Table 1.

Table 1: Results of measurements
Points
 Proposed method (cm)
 Manual measurement (cm)
AB
 20.87979
 20.7
AC
 37.34988
 37.2
AD
 28.36199
 28.0
BC
 16.29063
 16.2
BD
 19.71188
 19.3
CD
 24.80985
 24.6
It can be seen that the measurement results of the proposed method
are very accurate and are close to the results that were obtained manu-
ally. The maximum difference was only 0.41 cm, while the average
difference was 0.23 cm. On average, the accuracy of the proposed auto-
matic measurement for different scenarios is 0.25 cm, as shown in
Fig. 1. Hence, it is concluded that the proposed method can be used
to measure distances along surfaces with high accuracy.

Conclusion: In this Letter, a novel 3D measurement technique has been
proposed. The proposed algorithm maps the screen coordinates to the
real-world coordinate and then integrates distance gradients from the
beginning to the end point. The error of fitting pixel locations to a
smooth curve is also minimised. The conducted experimental results
show an accuracy of less than half a centimetre for the proposed
technique.
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