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Learning Error-Correcting Representations for Multi-class problems 

• The quintessential goal of Artificial Intelligence is to build 
machines that are capable of intelligent behavior, by 
perceiving, interacting and learning from their environment. 

• Perceptual related tasks share at its core a decision making 
process. 

• Given some sensorial stimulus and previous experience, 
choose a single option amongst a defined set of possible 
decisions. 

• Most perception tasks can be interpreted as a classification-
categorization problems. 
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• Classification plays a central role in Computer Vision systems 
that teach computers how to make sense of images and videos. 

Learning Error-Correcting Representations for Multi-class problems 

Object Recognition 
Human Pose 
Estimation 

Scene 
Understanding 

Action Recognition 
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Learning Error-Correcting Representations for Multi-class problems 

•  The phenomenon of  data explosion in image/video 
databases is clearly perceivable. 

 

The Promise and Perils of Benchmark Datasets and Challenges. David Forsyth, Alyosha Efros, Fei-Fei Li, Antonio 
Torralba and Andrew Zisserman. Frontiers in Computer Vision Workshop, CVPR 2011. 
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Learning Error-Correcting Representations for Multi-class problems 

• This data explosion phenomenon calls for new developments 
in multi-class learning systems. 

• The holy grail of classification is a classifier system that is 
(regardless of the scale  of the problem) [1]: 
•  Accurate 
•  Fast 
•  Adaptive to data distribution 
 
 
 
 
 

[1] Polikar, R. (2006). Ensemble based systems in decision making. Circuits and Systems Magazine, IEEE, 6(3), 21-45. 5 



 

•  Classification in the traditional supervised setting: 
•  Learning + Prediction 

 
 

 
 
 

• With              we have binary (or one-class) classification: 
• SVMs w/o kernels (object recognition). 
•  Adaboost w/o cascading (face recognition). 
•  Random Forests (pose estimation). 
•  Nearest Neighbors (semantic hashing). 
•  Neural Networks (back to end CNNs). 

 

• While some algorithms naturally extend to             (i.e. RF or NN) 
others cannot be directly applied in the multi-class case. 

 
 

Learning Error-Correcting Representations for Multi-class problems 

PROBLEM 
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• Standard multi-class extensions of binary classifiers share the 
same spirit: 
• Train one classifier per class. 
• Choosing the classifier with highest score as the prediction. 

•  What if classifier misses its prediction?  
•  Should classifiers be trained on groups of classes? 

• Pros: 
• Balancing data on classifiers. 
• Leverage the loss in performance of noisy categories. 
• Recover from errors in classifiers!  

• Cons: 
• How to obtain the final prediction?  

 
 

 
 
 

Introduction III Learning Error-Correcting Representations for Multi-class problems 

PROBLEM 

Error-Correcting Output Codes 
(ECOC) 
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Learning Error-Correcting Representations for Multi-class problems 

OBJECTIVES 
• Develop multi-class classifiers that are accurate, fast and 

adaptive, within the framework of the Error-Correcting 
Output Codes: 
• Accurate: by using powerful binary classifiers. 
• Fast: minimizing the number of classifiers used. 
• Adaptive: exploiting multi-class data distribution. 

 
• Deepen into open questions which call for further study of 

Error-Correction capabilities of ECOCs. 
 

• Evaluate our approaches in several Multi-class classification 
tasks: 
• Localization sites of proteins,  Japanese vowel sounds, written letters, 

etc. 
• Face Recognition, Traffic sign recognition, symbol recognition, etc. 
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Learning Error-Correcting Representations for Multi-class problems 

1. Error-Correcting Output Codes. 
1. ECOC Introduction. 
2. ECOC Coding. 
3. ECOC Decoding. 
4. ECOC Properties. 

2. Learning ECOCs using Genetic Algorithms. 
1. Minimal Error-Correcting Output codes. 
2. On the design of an ECOC-compliant Genetic Algorithm. 

3. Learning ECOCs via Error-Correcting Factorization. 
1. Error-Correcting Capabilities. 
2. Error-Correcting Factorization. 

4. Conclusions. 
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Error-Correcting Output Codes 
(ECOC) 

Error-Correcting 
Output Codes 

Learning ECOCs using 
Genetic Algorithms 

Learning ECOC via Error-
Correting Factorization 

Conclusions 

10 



• The ECOC framework is a powerful tool to tackle multi-class 
classification problems. 
• Based on Error-Correcting principles of Communications 

Theory [1]. 
• Generalizes standard multi-class decompositions [2]. 
• Reduces both bias and variance errors [3]. 

 

•  This framework is composed of two different steps: 
• Coding: Decompose a given multiclass problem into a set 

of binary problems. 
• Decoding: Given a test sample, use a decoding measure to 

determine the prediction.  
 

[1] Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of artificial intelligence research, 263-286. 

[2] Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. The Journal of Machine Learning Research, 5, 101-141. 

[3] Kong, E. B., & Dietterich, T. G. (1995, July). Error-Correcting Output Coding Corrects Bias and Variance. In ICML (pp. 313-321). 

ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
ECOC ECOC-GA ECOC-ECF Conclusions 
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• At the coding step a decomposition of the       class problem 
into    binary problems is computed: 
 

 
• Rows of the matrix represent the codewords of the classes. 
• Columns of the matrix represent the binary problems to be 

learnt. 
 

ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
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• One vs. One and One vs. All. 
 
 
 

 
• Random (Dense and Sparse). 

 
 
 
 
 

• Problem dependent (Discriminative ECOC [1], Spectral ECOC [2], 
Genetic Algorithms [3]). 

[1] Pujol, O., Radeva, P., & Vitria, J. (2006). Discriminant ecoc: A heuristic method for application dependent design of error correcting output codes. Pattern Analysis 
and Machine Intelligence, IEEE Transactions on, 28(6), 1007-1012. 
[2] Zhang, X., Liang, L., & Shum, H. Y. (2009, September). Spectral error correcting output codes for efficient multiclass recognition. In Computer Vision, 2009 IEEE 
12th International Conference on (pp. 1111-1118). IEEE. 

ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
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• How to perform testing (decoding)? 

• Even though a classifier missed its prediction, we were able 
to recover the correct prediction. 
• Error-Correction!  

• Choices for       are unlimited [1]: 
• Hamming, Euclidean, Loss-based, probabilistic, etc. 

[1] Escalera, S., Pujol, O., & Radeva, P. (2010). On the decoding process in ternary error-correcting output codes. Pattern Analysis and Machine Intelligence, 
IEEE Transactions on, 32(1), 120-134. 

ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
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• There are some good practices to be followed when building  
the ECOC coding matrix [1]. 

•     must univocally  define all the classes in the problem (i.e. all the 
rows of the ECOC matrix must be different). 

• The binary problems should be uncorrelated in order to take profit 
from Error-Correcting principles. 

• Powerful (well tuned) binary classifiers should be used in order to 
obtain good classification accuracy. 

 
 
 
 
 
 

 
 
 
•     should maximize the minimum distance between rows to profit 

from Error-Correcting capabilities. 
[1] Zhao, B., & Xing, E. P. (2015). Sparse Output Coding for Scalable Visual Recognition. International Journal of Computer Vision, 1-16. 

ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
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• Formalize the constraints of an ECOC coding matrix [1]: 
 

1. The distance between any pair of rows should be greater or 
equal than 1. 
 
 

2. The distance between any pair of columns should be greater 
or equal than 1. 
 

 
1. A column and its negation are equivalent. 

[1] Bautista, M. Á., Escalera, S., Baró, X., & Pujol, O. (2014). On the design of an ECOC-Compliant Genetic Algorithm. Pattern Recognition, 47(2), 865-884. 

ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
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•  Error-Correction  is extremely important: 
 

• Number of binary classifiers that can miss without affecting 
the final prediction [1]. 

 
 

 
• Measured as a single scalar [1]. 

 
• Increasing it means that the number of classifiers (columns of 

ECOC matrix) will increase, and thus training complexity will 
increase. 

 

[1] Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of artificial intelligence research, 263-286. 

ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
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• ECOC codings define a super-linear number of classifiers. 
• In this dissertation we are interested in sub-linear designs. 
• Given the reduce number of classifiers used by sub-linear 

designs, they should exploit the multi-class data distribution. 

ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
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ECOC Coding ECOC Introduction ECOC Decoding ECOC Properties 
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• ECOCs are a powerful tool to deal with multi-class problems. 
 

• Several coding designs predefined, random and problem-
dependent. 
 

• Unlimited number of decoding designs. 
 

• Good practices of ECOC are redefined as constraints. 
 

• We define the ECOC of Minimal length. 
 

• Sub-linear ECOCs should be optimized to compensate for the 
reduced number of classifiers. 

 

SUMMARY 

ECOC-GA ECOC-ECF Conclusions ECOC 



Learning ECOCs using 
Genetic Algorithms 

(ECOC-GA) 

Error-Correcting 
Output Codes 

Learning ECOCs using 
Genetic Algorithms 

Learning ECOC via Error-
Correting Factorization 

Conclusions 

20 



Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 

• Exploit multi-class data distribution to find sub-linear ECOC 
designs with high performance. 
 

• What is the shortest code length that can be defined [1,2]? 
 
 
 
 
 

One vs. All 

Minimal ECOC 

[1] Bautista, M. A., Baró, X., Pujol, O., Radeva, P., Vitrià, J., & Escalera, S. (2010). Compact evolutive design of error-correcting output codes. In Proceedings of the 
Supervised and Unsupervised Methods and their Applications (SUEMA), European Conference on Machine Learning and Principles and Practice of Knowledge Discovery 
in Databases. 
[2] Bautista, M. Á., Escalera, S., Baró, X., Radeva, P., Vitriá, J., & Pujol, O. (2012). Minimal design of error-correcting output codes. Pattern Recognition Letters, 33(6), 
693-702. 21 
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• Optimize the ECOC matrix given the data distribution and the 
classifiers is a NP-complete problem [1].  
• The ECOC search space is extremely large. 

 
 
 
 

• The search space is not continuous (ECOC coding matrices 
are discrete). 

• The search space is not differentiable. 
 

• Genetic Algorithms (GA) are often applied in this setting with 
benefitial results. 

 

[1]Utschick, W., & Weichselberger, W. (2001). Stochastic organization of output codes in multiclass learning problems. Neural Computation, 
13(5), 1065-1102. Chicago  

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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• Genetic Algorithms are stochastic optimization methods 
based on Darwin’s Evolution Theory [1]. 

• The fitness of indivudals is improved over generations by 
using crossover and mutation operators. 

•  Our proposal [2,3]: 
•  Optimize the ECOC matrix using Genetic Algorithms: 

• Define how good an individual  is (fitness function): classification 
accuracy. 

• Define how to represent a solution as a binary string (encoding): already 
binary. 

• Optimize the parameters of binary classifiers (SVM-RBF) using 
Genetic Algorithms: 
• Define how good a solution is: classification accuracy. 
• Define how to represent a solution as a binary string: binary 

representation of            . 

•  Use standard crossover and mutation operators 
 
 

[2] Bautista, M. A., Baró, X., Pujol, O., Radeva, P., Vitrià, J., & Escalera, S. (2010). Compact evolutive design of error-correcting output codes. In Proceedings of the, 
European Conference on Machine Learning Workshops. 

[3] Bautista, M. Á., Escalera, S., Baró, X., Radeva, P., Vitriá, J., & Pujol, O. (2012). Minimal design of error-correcting output codes. Pattern Recognition Letters, 
33(6), 693-702. 

[1] Baluja, S., & Caruana, R. (1995, May). Removing the genetics from the standard genetic algorithm. In Machine Learning: Proceedings of the Twelfth 
International Conference (pp. 38-46). 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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• An ECOC individual is represented as a binary vector and 
evaluated by means of its classification error. 

• Iterative 2-step procedure: 
 
 
 
 
 
 
 
 
 
 
 

• Standard genetic operators are used: scattered crossover and 
gaussian mutation: 
• Scattered crossover: randomly selects a set of points for each parent. 
• Gaussian mutation: adds a random number taken from a Gaussian distribution 

with mean 0 to each entry of the parent vector. 
 

 

1) Optimize the SVMs parameters. 

2) Optimize the coding matrix  
      and return to step 1. 

11000101 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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• We compare our proposal with Binary Minimal ECOC, PBIL [1] 
Minimal ECOC, One vs. All, One vs. One, Discriminant ECOC [2] 
and Forest-ECOC [2] approaches. 

•  Experimental settings: 
• We generated        individuals per problem in the first 

generation. 
• We used SVMs with RBF kernel as our binary classifier. 

• Parameters were tuned using either GAs or PBIL for all 
methods, using two-fold cross-validation. 

• We used the Hamming Decoding distance. 
• We report the average classification accuracy over a 

stratified 10 fold-cross validation. 
•  A cache of dichotomizers is stored to leverage training time. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 

[2] Pujol, O., Radeva, P., & Vitria, J. (2006). Discriminant ecoc: A heuristic method for application dependent design of error correcting output codes. Pattern 
Analysis and Machine Intelligence, IEEE Transactions on, 28(6), 1007-1012. 

[3] Baró, X., Escalera, S., Vitrià, J., Pujol, O., & Radeva, P. (2009). Traffic sign recognition using evolutionary adaboost detection and forest-ECOC classification. 
Intelligent Transportation Systems, IEEE Transactions on, 10(1), 113-126. 

[1] Baluja, S. (1994). Population-based incremental learning. a method for integrating genetic search based function optimization and competitive learning (No. 
CMU-CS-94-163). Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer Science. 
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•  We evaluated experiments on 12 UCI datasets. 

•  We tackled 5 Computer Vision problems: 
•  Labeled Faces in the wild: 610 categories 
•  MPEG visual objects: 70 categories 
•  Traffic sign categorization: 36 classes 
•  ARFace dataset: 20 classes 
•  Old music scores: 7 classes 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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• Classification accuracies for each method. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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Binary Minimal GA Minimal PBIL Minimal OVA OVO DECOC 
Forest 
ECOC 

5,2 3,6 3 4,8 3,7 4,2 3,1 
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• Number of Support Vectors for each method. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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• Minimal ECOCs are suitable for multi-class classification, when 
the coding matrix is optimized using Genetic Algorithms. 

 

• With the minimal number of classifiers we obtain comparable 
or even better classification accuracies than state-of-the-art 
works. 

 

• To obtain a high performance we optimize the parameters of 
the binary classifiers using GAs. 

 

• Large-scale tasks can be tackled with Minimal ECOCs. 

SUMMARY 
Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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• Standard operators overlook individuals structure. 
• Generation of vast number of non-valid individuals makes 

the algorithm ineffective. 
 

• New proposal: ECOC-Compliant Genetic Algorithm 
• Redefine crossover and mutation operators in order to 

take into account ECOC properties. 
• Possibility of including new operators? 

•  Controlling the number of classifiers. 
•  Adding and removing classifiers when needed. 

• Operators should be fast and simple. 
 
  
 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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[1] Bautista, M. Á., Escalera, S., Baró, X., & Pujol, O. (2014). On the design of an ECOC-Compliant Genetic Algorithm. Pattern Recognition, 47(2), 865-884. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 

• General pipeline for the ECOC-Compliant Genetic Algorithm [1]. 
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•  ECOC-Compliant crossover operator. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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•  ECOC-Compliant mutation operator. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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•  ECOC-Compliant extension operator. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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•  We run experiments on 9 UCI datasets. 

•  We tackled 4 Computer Vision problems: 
•  MPEG visual objects: 70 categories 
•  Traffic sign categorization: 36 classes 
•  ARFace dataset: 20 classes 
•  Old music scores: 7 classes 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 

• We compare our proposal with Binary Minimal ECOC, Lorena et. 
al [1], Pedrajas et. al [2], One vs. All, One vs. One, Discriminant 
ECOC and Forest-ECOC approaches. 
 

• Experimental settings: 
•  We generated              individuals per problem. 
•  We used SVMs with RBF kernel as our binary classifier. 

• Parameters were tuned using Gas for all methods, using 
two-fold cross-validation. 

• We used the Loss-Weighted decoding. 
• We report the average classification accuracy over a 

stratified 10 fold-cross validation. 
 

•  A cache of dichotomizers is stored to leverage training time. 

[1] Lorena, A. C., & de Carvalho, A. C. (2006, October). Multiclass SVM design and parameter selection with genetic algorithms. In Neural Networks, 2006. SBRN'06. 
Ninth Brazilian Symposium on (pp. 131-136). IEEE. Chicago Lorena, Ana Carolina, and André CPLF d 

[2] Garcia-Pedrajas, N., & Fyfe, C. (2008). Evolving output codes for multiclass problems. Evolutionary Computation, IEEE Transactions on, 12(1), 93-106. 
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•  Classification accuracies for each method on UCI datasets. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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•  Number of support vectors for each method on UCI datasets. 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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• We propose to redefine the operators to take into account 
the properties of Error-Correcting Output codes. 
 

• The novel genetic operators avoid the generation of non-
valid individuals. 
 

• To obtain a high performance we optimize the parameters of 
the binary classifiers SVM-RBF using GA. 
 

• Results show that we obtain comparable or even better 
results than state-of-the-art ECOC design while reducing 
drastically the number of Support Vectors. 

 

SUMMARY 

Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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• Genetic Algorithms can be powerful tools to optimize ECOC 
coding matrices. 
 

• Avoid the generation of non-valid individuals. 
 

• The training computational cost can be leveraged using simple 
speed up tricks. 
 

• The Error-Correcting properties of an ECOC cannot be 
exploited by the proposed GAs. 

CONCLUSIONS 
Experimental results Minimal ECOC ECOC-Compliant GA Experimental results 
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Learning ECOCs via Error-
Correcting Factorization 

(ECOC-ECF) 

Error-Correcting 
Output Codes 

Learning ECOCs using 
Genetic Algorithms 

Learning ECOC via Error-
Correting Factorization 

Conclusions 
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• In this dissertation we aim to deepen into open questions 
which call for further study of Error-Correction capabilities 
of ECOCs: 

1. How do Minimal ECOC matrices behave?   
2. Is Error-Correction distributed evenly on all classes?  
3. Can problem-dependent designs profit from the 

distribution of Error-Correcting capabilities?  
4. Is it better to allocate Error-Correction to classes prone 

to error or to classes not prone to error?  
5. Is there a problem-dependent definition of the 

minimum number of classifiers needed for an ECOC 
matrix?  

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 

42 
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• Error-Correction capability of an ECOC is key: 
• It measures the number of binary classifiers that can miss its 

prediction without affecting the final multi-class prediction. 
 

 
 

• The correcting capability is measured as a single scalar for the whole 
ECOC matrix in state-of-the-art works. 

• A single scalar does not provide information about how the Error-
Correction is distributed. 

• We can compute the pair-wise distance matrix between codewords, 
aka the Separability Matrix. 

 
 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• Analyzing the pair-wise distance enables a deeper 
understanding of how the correction is distributed among 
classes (how separated codewords are). 

 

• Every ECOC matrix has its pair-wise distance matrix. 
 
 
 
 

 
 
 
 
 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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•  Distance (Design) matrix  ECOC? 
• We define     as a design matrix that encodes the distances 

between pairs of codewords of a desired ECOC. 
 

 
 

 
 
 
 
 

 
 

• Extract    from multi-class data is easy (e.g heuristiscs like 
Mahalanobis distances between classes.) 

• Information of experts can be easily coded. 
• Analyzing       can assist to solve the number of classifiers problem. 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• Motivation: 
• Is it possible to find an ECOC such that it follows the 

distances denotes in a design matrix? 
• What conditions should hold for an ECOC to encode an 

arbitrary design matrix? 
 
 
 

• However the     distance can be seen as: 
 
 
 
 

• We can work with the inner product equivalently.  
• Factorize the design matrix! 

 
 
 
 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• A visualization of the problem. 
 
 
 
 
 
 
 

 
 

• What is the number of classifiers needed to minimize the 
norm? 

 
 

F 

2 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• Formulating the Error-Correcting Factorization (ECF) [1]: 
 
 
 
 
 
 
 
 
 

• Non-convex! 
• Quadratic term makes the objective function non-convex. 
• Discrete constraint makes the problem NP-Complete. 

• Good news: 
• Discrete constraint can be relaxed                           . 
• Coordinate Descent has been successfully applied in non-convex 

problems (convergence to stationary points if problems are uniquely 
solved) [2]. 

 
[1] Bautista, M. A., Pujol, O., de la Torre, F., & Escalera, S. (2015). Error-Correcting Factorization. arXiv preprint arXiv:1502.07976. Under review at TPAMI 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 

[2] Grippo, L., & Sciandrone, M. (2000). On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Operations Research 
Letters, 26(3), 127-136. 48 
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• Codeword descent approach for ECF[1]: 
 

• Optimize the i-th codeword of       while fixing the rest of the rows. 
 
 
 
 
 
 
 

• Terms not involve the i-th codeword can be drop, reducing the ECF 
problem to least squares: 

 
 
 
 

 

• Least-squares can be solved uniquely (when not overdetermined), 
thus the algorithm is guaranteed to converge to stationary point. 

 
 

 [1] Bautista, M. A., Pujol, O., de la Torre, F., & Escalera, S. (2015). Error-Correcting Factorization. arXiv preprint arXiv:1502.07976. Under review at TPAMI 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• We tested ECF on 8 UCI datasets and a Toy (synthetic) problem 
of 14 classes. 

• We also choose 2 Vision problems: 
• Traffic sign categorization: 36 classes 
• ARFace dataset: 20 classes 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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Error-Correcting Factorization 77.49% Dense Random 66.45% One versus All 49.53% 

• Methods: 
• ECF-H, where Error-Correction is allocated to classes prone to error. 
• ECF-E: Error-Correction is allocated to classes not prone to error. 
• OVA, OVO, Random ECOC (RAND), Dense Random (DR), Spectral ECOC (S-

ECOC)[1], Relaxed Hierarchy (R-H) [2]. 

• Binary classifier: 
• SVM-RBF with parameters optimized using grid-search. 
• Reported accuracy are the average over a 10-fold stratified cross-

validation. 

• Toy Problem 
 

[2] Gao, T., & Koller, D. (2011, November). Discriminative learning of relaxed hierarchy for large-scale visual recognition. In Computer Vision (ICCV), 2011 IEEE 
International Conference on (pp. 2072-2079). IEEE. 

[1] Zhang, X., Liang, L., & Shum, H. Y. (2009, September). Spectral error correcting output codes for efficient multiclass recognition. In Computer Vision, 
2009 IEEE 12th International Conference on (pp. 1111-1118). IEEE. 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• Classification accuracy as a function of the relative complexity. 
 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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ECF-H ECF-E S-ECOC R-H RAND DENSE OVO OVA

• Classification accuracy as a function of the number of classifiers. 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• Comparing ECF-H, ECF-E and OVA with the top performer. 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• Proportion of times a method is the top performer. 
Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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• We propose a generalized framework to build ECOC matrices 
that follow a certain error-correcting criterion design.  
 

• The Error-Correcting Factorization is formulated a 
constrained Coordinate Descent. 

 

• We allocate the correction capability of the ECOC to those 
categories which are more prone to confusion. 

 

• Experiments show that we obtain higher accuracies than state 
of the art methods with more efficient models.  

 

Separability Matrix Error-Correcting Cap. Error-Correcting Fact Experimental results 
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Correting Factorization 
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• In this dissertation we have proposed approaches for 
optimizing ECOC classifiers based on various optimization 
methods. 

1. Accurate: by using powerful binary classifiers. 
2. Adaptive: exploiting multi-class data distribution. 
3. Fast: minimizing the number of classifiers used. 

 
 
 
 

 
 
 
 
 

• We have proposed a novel representation of Error-Correction 
for an ECOC, enabling us to allocate Error-Correction in a 
flexible manner. 
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• We have tackled open questions regarding Error-Correction 
capabilities of ECOCs. 
 

• How do sub-linear ECOC matrices behave?   
 

• Is Error-Correcting distributed evenly on all classes?  
  
• Can problem-dependent designs profit from the 

distribution of Error-Correcting capabilities?  
 

• Is it better to allocate Error-Correction to classes prone 
to error or to classes not prone to error?    
 

• What is the minimum problem-dependent number of 
classifiers needed for an ECOC matrix?   
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• We have evaluated the proposed approaches in several 

Multi-class classification tasks: 
• UCI datasets: Localization sites of proteins, Japanese vowel sounds, 

written letters, etc. 
• Computer Vision datasets: Face Recognition, Traffic sign recognition, 

symbol recognition, etc. 
 
 
 
 
 
 
 

• Our approaches have outperformed state-of-the-art when 
analyzing accuracy as a function of the complexity. 
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