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Motivation 

Humans are experts on recognizing objects and events in the world. 

We have taught machines how to perform as closest human-like 

learning as we know at the moment. 
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Motivation 

Abstraction to human behavioural cues  
from multimodal data description. 

Hypothesis:   Language is misconstrued if it is not seen as a 
unity of speech and gesture. 

D. McNeill (2012). How Language Began: Gesture and Speech in Human Evolution. Cambridge University Press. 
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Motivation 

The composition of parts is what forms the whole object. 

http://vision.stanford.edu 
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http://www.python-course.eu 

http://vision.stanford.edu/
http://www.python-course.eu/
http://www.python-course.eu/
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Motivation 
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Evolving BoW representations. 

 Biologically inspired. 
 

 Highly domain-adaptive. 
 

 Parallel processing. 

http://mleg.cse.sc.edu/
http://mleg.cse.sc.edu/


Goals 

• G1: Define BoVW-weighting schemes representations of 
objects in data by means of genetic programming (GP) 
optimization. 
 

• G2: Learn multimodal BoVW for recognizing gestures. 
 

• G3: Gesture detection through dynamic programming and 
generative models. 
 

• G4: Learning Bag of Sub-Gestures via evolutionary 
computation. 
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Towards BoVW 
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Evolutionary Computation 
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Evolutionary Computation 
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Evolving TWS 

[1] Tirilly, P., Claveau, V., and Gros, P. (2009). A review of weigthing schemes for bag of visual words image retrieval. Technical report, IRISA. 
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• BoVW is a widely adopted representation for describing the content of images and 
videos in computer vision problems: 

 

 Standard weighting schemes based on term frequency are effective and popular: 
 

 Histogram that accounts for the occurrences of visual words. 

 
 Explore the suitability of alternative TWS for image and video representation. 

 
 

• Propose an EA capable of automatically learning TWS: 
 

 Explore the search space of possible TWS that can be generated by combining a set of 
primitives with the aim of maximizing the classification/recognition performance: 

 

 Image categorization.  
 Adult image classification. 
 Insect and bird classification. 
 Places-scene recognition. 
 Gesture and action recognition. 
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• Weighting schemes used in text mining and information retrieval: 
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• Automatically design weighting schemes by means of EA: 
 

 Use Genetic Programming to learn how to combine a set of TR/TDR primitives 
for every dataset in order to optimize classification performance. 
 

Function set 
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• Results obtained by the different weighting schemes (traditional, alternative-
supervised and learned) in all of the considered datasets: 
 

 Average f1−measure performance in the test partitions. 
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• Range of improvement of the proposed method over the best traditional/alternative 
weighting scheme per dataset in terms of absolute and relative differences. 
 

Frequency of appearance of terminals into the 
solutions found by the GP. 

Absolute and relative improvements for the different 
datasets, taking as reference the best 

traditional/alternative weighting scheme for each dataset. 
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Multimodal representations 

31 

Spatio 
Temporal 

Evolved 
Dynamic 

Conclusion 
 

Evolved 
Visual 



Spatio 
Temporal 

Evolved 
Dynamic 

Conclusion 
 

Evolved 
Visual Gesture Representation 

• BoVDW approach: Merging RGB + Depth information by means of late fusion. 

[1] Laptev, I. (2005). On space-time interest points. In IJCV, 64(2-3):107–123. 
[2] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. CVPR, 2:886–893. 
[3] Laptev, I., Marszalek, M., Schmid, C., and Rozenfeld, B. (2008). Learning realistic human actions from movies. In CVPR, pp. 1–8. 
[4] Rusu, R., Bradski, G., Thibaux, R., and Hsu, J. (2010). Fast 3d recognition and pose using the viewpoint feature histogram. In IROS, pp. 2155 –2162. 

Viewpoint Feature Histogram and Camera Roll Histogram 
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Probabilistic Dynamic 
Programming 

• In the context of gesture recognition, it is common the use of methods based on 
dynamic programming, which breaks down a complex problem into a collection of 
simpler sub-problems. 
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• Generative models allow to deal with the high variability due to 
environmental conditions among different domains: 

 
 
 

 Wide range of human pose configurations, influence of background, continuity of human 
movements, spontaneity of human actions, speed, appearance of unexpected objects, 
illumination changes, partial/self occlusions, different points of view… 
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• Generative models learned in PDTW handle the variance present in data. 

[1] Yu, Guoshen (2012). "Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity". IEEE Transactions on Image 
Processing 21 (5): 2481–2499. 36 
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• Each idle gesture sequence is described using a grid approach of HOGHOF descriptor, 
and a random projection for reducing dimensionality. 

• Ten-fold cross validation strategy using 180 idle gestures as validation data: 
 

 Chosen DTW cost threshold     by maximizing the overlap. 
 Chosen Gaussian components G for the GMM by means of 10-fold CV. 
 Baum-Welch algorithm for training an HMM: 

 

 Vocabulary computed using k-means over idle gestures. 
 Empirically set hidden states. 

 

• Recognition is performed with temporal sliding windows of different wide sizes, 
based on the idle gesture samples length variability. 
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• Empirically set V,                       , and    . 
• Mean Levenshtein Distance (MLD)  
 over all gesture sequences. 

 
• Late fusion of best descriptors  
 HOG, HOF and VFHCRH: 
 
 2-LF MLD: 0.2714 ; 3-LF MLD: 0.2662  

[1] Guyon, I., Athitsos, V., Jangyodsuk, P., and Escalante, H. J. (2014). The chalearn gesture dataset (CGD 2011). Machine Vision and Applications, 25(8):1929–1951. 
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Bag of Key Poses (BoKP) Bag of Sub-Gestures (BoSG) 

Learn subsets of frames Learn spatio-temporal units 

Class-specific key-poses Inter-class subgestures (shared primitives) 
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• Goal: find a subgesture set                                 from                                       that 
maximizes recognition performances given a particular recognition method.  

Training subgestures 
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• Little research has been performed on TWS for computer vision. We introduced a 
novel methodology for learning weighting schemes to boost the performance of 
classification models relying on the BoVW: 
 
 

 Among traditional and alternative weighting schemes, the Boolean one obtained the 
highest performance. 
 

 Weighting schemes learned with our proposed approach outperformed consistently other 
weighting schemes in the considered datasets. 
 

 Schemes learned for some datasets do not generalize well in other datasets. 
 

 Among all of the considered terminals, three weighting schemes were used most often by 
solutions returned by the GP (TF, TF-IDF and TF-RF). However, the way in which the GP 
combined such primitives resulted in much better performance. 
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• BoVDW approach for human gesture recognition presented using multimodal RGB-D 
images: 

 

 A new depth descriptor VFHCRH has been proposed, outperforming VFH. 
 

 Analyzed the effect of late fusion for combining RGB and Depth descriptors, obtaining 
better performance in comparison to early fusion. 

 
 

 
• A Probabilistic-based DTW has been proposed to asses the temporal segmentation of 

gesture sequences and to be able to deal with multiple deformations present in data: 
 

 Different samples of the same gesture category modelled with Gaussian-based 
probabilistic models, encoding possible deformations. 
 

 Define a soft-distance based on the posterior probability of the GMM to embed 
probabilistic models into the DTW framework. 
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• Introduce a novel approach for learning dynamic gesture primitives for 
gesture and action recognition. 
 
 

• Evolutionary computation presents advantages when incorporating notable 
gesture methodologies based on dynamic programming and generative 
models in few generations. 
 
 

• Results suggest that subgesture learning enhances the recognition of 
traditional techniques. 
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• Studying alternative methodologies for learning Term-Weighting Schemes:  
 
 

 Pose the problem as one of learning/optimizing the representation matrix, 
where other EA could be used. 
 

 Learning TWS for other domains, like audio, time series or accelerometer 
data. 
 
 

• Explore the use of Genetic Programming frameworks for deep learning-
based schemes. 
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Publications 
Research period: 2011 – 2016 

 
Citations: 136; h-index: 6; i10-index: 5;  

4 JCR journals (3 in Q1); 10 conference & workshop proceedings, 3 non-indexed 
technical reports. 

 

Detailed info at http://sunai.uoc.edu/~vponcel/publications  
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Projects 
Detailed info at http://sunai.uoc.edu/~vponcel/research  

Applications in Restorative Justice,  
real-case conversations.  
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