H:PBA
N~

Universitat
Oberta de
Catalunya

All rights reserved ©

7 UNIVERSITAToe
i+ BARCELONA

EVOLUTIONARY BAGS OF
SPACE-TIME FEATURES
FOR HUMAN ANALYSIS

Victor Ponce Lopez

PhD candidate in Mathematics and Computer Science

Advisors

Dr. Sergio Escalera Guerrero
Dr. Xavier Bar6 Solé

Dr. Hugo Jair Escalante

Faculty of Mathematics Barcelona, June 2™4 2016



_ Motivation

Humans are experts on recognizing objects and events in the world.

A cat
lying on
a bed witl
a laptor

We have taught machines how to perform as closest human-like

learning as we know at the moment.




Motivation

Abstraction to human behavioural cues
from multimodal data description.

Hypothesis:  Language is misconstrued if it is not seen as a
unity of speech and gesture.

D. McNeill (2012). How Language Began: Gesture and Speech in Human Evolution. Cambridge University Press.



Motivation

The composition of parts is what forms the whole object.

Object Bag of ‘words’

In the beginning God created
the heaven and the earth.

And the earth was without forim
and void; and darkness was
upon the face of the deep.

And the Spirit of God moved
upen the face of the waters.

And God said, Let there be

light: and there was light.

http://vision.stanford.edu http://www.python-course.eu
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_ Motivation

Evolving BoW representations.

v' Biologically inspired.
v Highly domain-adaptive.

v' Parallel processing.

http://mleg.cse.sc.edu 5
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_ Goals

* G1: Define BoVW-weighting schemes representations of
objects in data by means of genetic programming (GP)
optimization.

e G2: Learn multimodal BoVW for recognizing gestures.

* G3: Gesture detection through dynamic programming and
generative models.

* G4: Learning Bag of Sub-Gestures via evolutionary
computation.
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Evolved Spatio Evolved .
Conclusion

Visual Temporal  Dynamic Term-weighti ng SChemeS

* From text mining and information retrieval, the BoW representations aim at
mapping documents into a vectorial space that captures information about
the semantics and content of documents:

di — <.1:‘,*11i. e :,.?-:'f1 V|>
Yi,j : Scalar that indicates the importance of the term 7; for describing the
content of the i*® document*.
V : Set of different words in the corpus; vocabulary.

* The way of estimating X; j is given by the so called term-weighting schemes
(TWS) 2:

QO TDR: term-document relevance (local information):
= term-frequency (TF) is the most common, which indicates the number of times a
term occurs.
O TR:term relevance (global information):
= |nverse-document-frequency (IDF), which penalizes terms occurring frequently
across the whole corpus.

[1] Sivic, J. and Zisserman, A. (2003). Video google: A text retrieval approach to object matching in videos. In ICCV, volume 2, pages 1470-1477. 14
[2] Debole, F. and Sebastiani, F. (2003). Supervised term-weighting for automated text categorization. In SAC, pages 784—788, New York, NY, USA. ACM.
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\VTEL Temporal  Dynamic Towa rds BOVW

* In CV, a visual word is a prototypical visual pattern that summarizes the
information of visual descriptors ' extracted from training images:
(3D)HOG, HOF, SIFT, PLS, Voxel reconstructions, CNN ?2:

U An image is decomposed into a set of patches obtained from spatial sampling
or detecting points, clustered and represented by a vector indicating the
importance of visual words for describing its content.

« Effectiveness of BoVW representations depends on a number of factors:

O Detection of interest points, choice of the visual descriptors, clustering, and the
learning algorithm.

* Great advances have been obtained for incorporating spatio-temporal
information °.

[1] Zhang, J., Marszablek, M., Lazebnik, S., and Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study.
1JCV, 73(2):213-238.

[2] E. Simo-Serra, E. Trulls, L. Ferraz, |. Kokkinos, P. Fua, and F. Moreno-Noguer. Discriminative Learning of Deep Convolutional Feature Point Descriptors. ICCV 2015.

[3] Laptey, ., Marszalek, M., Schmid, C., and Rozenfeld, B. (2008). Learning realistic human actions from movies. In CVPR, pages 1-8. 15
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Visual = Temporal Dynamic Evolutiona ry Com pUtation

* Evolutionary algorithms (EA) have a long tradition in computer vision:

[ Genetic Algorithms (GA) was proposed as a search heuristic that mimics the
process of natural selection® for generating useful solutions to optimization and
search problems 2.

O In Genetic Programming (GP), nonlinear and complex data structures are used to
represent solutions, such as evolving interest-point detectors * for action
recognition *.

[1] J. H. Holland. University of Michigan Press, Ann Arbor. 1975. Adaptation in Natural and Artificial Systems.

[2] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 1989.

[3] Trujillo, L. and Olague, G. (2006). Synthesis of interest point detectors through genetic programming. In GECCO, pages 887—894, New York, NY, USA. ACM.

[4] Liu, L. and Shao, L. (2013). Learning discriminative representations from rgb-d data. In [JCAI. 16

[5] Liu, L., Shao, L., and Rockett, P. (2012). Genetic programming-evolved spatio-temporal descriptor for human action recognition. In BMVC, pages 18.1-18.12.
O
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Visual = Temporal Dynamic Evolutionary comPUtation

[1] J. Zhang, Z.-H. Zhan, Y. Lin, N. Chen, Y.-J. Gong, J.-H. Zhong, H.-S.-H. Chung, Y. Li, and Y.-H. Shi. (2011). Evolutionary Computation Meets Machine Learning: A Survey.

IEEE Comﬁutational Intelliﬁence MaﬁazineI vol. 6I ne 4I iﬁ 68-75. || i
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\VTE]L Temporal  Dynamic EVOIVi ng Tws

* TWS with EA has been studied within information retrieval, text
categorization and image representation.
» Exploring supervised TWS has not been deeply studied *:

= GP algorithmsto learn weighting schemes by combining a set of visual
primitives.

= Applicable for learning spatio-temporal representations.

[1] Tirilly, P., Claveau, V., and Gros, P. (2009). A review of weigthing schemes for bag of visual words image retrieval. Technical report, IRISA. 19



Evolved Spatio Evolved

Visual Temporal Dynamic Zouclizion EA for BOVW

BoVW is a widely adopted representation for describing the content of images and
videos in computer vision problems:

O Standard weighting schemes based on term frequency are effective and popular:

= Histogram that accounts for the occurrences of visual words.

O Explore the suitability of alternative TWS for image and video representation.

Propose an EA capable of automatically learning TWS:

L Explore the search space of possible TWS that can be generated by combining a set of
primitives with the aim of maximizing the classification/recognition performance:

= |mage categorization.

=  Adult image classification.

* |nsect and bird classification.

= Places-scene recognition.

=  Gesture and action recognition.

20
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\TE] Temporal  Dynamic weighting SChemeS

* Weighting schemes used in text mining and information retrieval:

Acr. Name Formula Description

B Boolean Xjj= 1{#(” d;)>0) Prescense/abscense of
terms

TF Term-Frequency xi j =#(ti,dj) Frequency of occur-
rence of terms

TF-IDF TF - Inverse Doc. Freq. x;j j =#(t;,d;) x log( dj]'?; 3 ) TF penalizing corpus-

g based frequency

TF-IG TF - Information Gain x; j =#(t;,d;) < IG(t}) TF times term informa-
tion gain

TF-CHI TF - Chi-square xi j =#(ti,dj) x CHI(tj) TF times ¥ term rele-
vance

TF-RF TF - Relevance Freq. x; j =#(t;,d;) xlog(2+ m ) TF times RF relevance

Xij : Scalar that indicates the importance of the term 7; for describing the
content of the i document.
N :Number of documentsin training dataset.
df(t;) : Document frequency of the term #;, i.e., the number of documents in
which term ¢; occurs.

[1] Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Inform. Process. Manag., pages 513-523.

[2] Debole, F. and Sebastiani, F. (2003). Supervised term-weighting for automated text categorization. In Proceedings of the 2003 ACM Symposium on Applied
Computing, SAC ‘03, pages 784—-788, New York, NY, USA. ACM. 21

[3] Lan, M., Tan, C. L., Su, J., and Lu, Y. (2009). Supervised and traditional term-weighting methods for automatic text categorization. In TPAMI, 31(4):721-735.
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Visual Temporal  Dynamic GP for 'Qarning Tws

e Automatically design weighting schemes by means of EA:

L Use Genetic Programming to learn how to combine a set of TR/TDR primitives
for every dataset in order to optimize classification performance.

Images BoVW representation Terminal set Genetic programming

| L_Mmm.ul. i i'Iﬂ‘ “ﬂ“m“i LL

e : | | Learning
e B : ‘ g D o R e Weighting .
S L “‘1 —_— f:m dL mj J& | > [l - > scheme Function set
ol b= bk e g -— Operator Name Arity
“ B + Addition 2
"MJM‘W _ 'll im L-J b - . = Substraction 2
- * Product 2
/ Division (protected) 2
: @ log, x Logarithm b-2 |
B = J=za2=c VX Square root 1
. - (;{ }k 1 = ¥2 Square power |
¢ Training ¢ ﬁ_é@
w o ~Tow IDF
D N
Test W = TF +[IDF? —(IGx CHI)]
Model learning Image representation Learned weighting scheme
and evaluation with learned TWS

22
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Visual Temporal  Dynamic Data - Sti“ images

[1] Fei-Fei, L., Fergus, R., and Perona, P. (2004). Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object
categories.In IEEE Proc. CVPRW.

[2] Deselaers, T., Pimenidis, L., and Ney, H. (2008). Bag of visual words for adult image classification and filtering. In ICPR. 23
[3] Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVIP, pages 2169-2178.
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Visual Temporal  Dynamic Data - sequences

Montalbano !

MSRDaily3D ?

[1] Escalera, S., Bard, X., Gonzalez, J., Bautista, M. A., Madadi, M., Reyes, M., Ponce-Lépez, V., Escalante, H. J., Shotton, J., and Guyon, I. (2014). ChaLearn looking at
people challenge 2014: Dataset and results. In ECCVW. 24
[2] Wang, J., Liu, Z., Wu, Y., and Yuan, J. (2012). Mining actionlet ensemble for action recognition with depth cameras. In CVPR, pages 1290-1297.
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The same evaluation protocol for every dataset:

O PHOW ! (Pyramid Histogram Of Visual Words) features used as visual descriptors.

Spatio
Temporal

Evolved

Conclusion

Dynamic

Experimental settings

O Training partitions used both to obtain the visual vocabulary and to learn the term-
weighting schemes with GP.

Learned the weighting schemes by using subsets of the training sets.

Image Categorization

Dataset Classes | |V| [ # Train | # Test | images|terms
Caltech-tiny 3 12000 75 75 1512000
Caltech-102 (13) 101 12000 | 1530 1530 1653000
Caltech-102 (30) 101 12000 | 3060 3060 330|3000
Birds 6 400 540 60 540/400
Butterflies 7 400 552 67 552|400
Action recognition
Dataset Classes V| | # Train | # Test im./terms
MSRDaily3D 12 600 192 48 192]600
Gesture recognition
Dataset Classes V| | # Train | # Test im./terms
Montalbano 20 1000 6850 3579 2055|600
Scene recognition
Dataset Classes V| | # Train | # Test im.|/terms
15 Scenes 15 12000 | 1475 3010 1475|2000
Pornographic image filtering
Dataset Classes V| | #Train | # Test im.|/terms
Adult 3 12000 | 6808 1702 6808|2000

[1] Bosch, A., Zisserman, A., and Munoz, X. (2007). Image classifcation using random forests and ferns. In ICCV.

25
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Visual Temporal  Dynamic Experimental Settings

* The same evaluation protocol for every dataset:

O PHOW ! (Pyramid Histogram Of Visual Words) features used as visual descriptors.

W Training partitions used both to obtain the visual vocabulary and to learn the term-
weighting schemes with GP.

= Learned the weighting schemes by using subsets of the training sets.

(.

Fitness goal: maximize the F1-measure under 5-fold cross validation.
* Training and test images are represented with the winner weighting schemes.

Learning from training images and performance of the model evaluated in test images.
Reported the average and standard deviation performance of 5 runs of the GP.

Run in all cases for 50 generations with a population of 500 individuals 2.
Default values were used for the remainder of GP parameters:

oo 0O

" Generational selection mechanism with elitism.
" Lexictour parent selection 3.
* Crossover and mutation probabilities.

[1] Bosch, A., Zisserman, A., and Munoz, X. (2007). Image classifcation using random forests and ferns. In ICCV.
[2] Langdon, W. B. and Poli, R. (2001). Foundations of Genetic Programming. Springer. 26
[3] Luke, S. and Panait, L. (2002). Lexicographic parsimony pressure. In Proceedings of GECCO, pages 829-836.
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Results

* Results obtained by the different weighting schemes (traditional, alternative-
supervised and learned) in all of the considered datasets:

O Average f1-measure performance in the test partitions.

Traditional Alternative-supervised Learned
Dataset / TWS | TF (baseline }» Bol. TF-IDF+ | TF-RF* [81] | TF-CHI* [33] | TF-1G* [33]]|| GP (ours)
Tiny 85.65 84.01 76.72 85.63 78.85 80.49 90.7571.56
101-15 52.26 58.43 48.08 52.30 52.00 51.43 61.0571.12
101-30 56.61 59.28 49.95 36.68 54.63 52.03 63.0471.02
Birds 44.68 48.53 30.55 44.68 44.6 43.95 52.9575.11
Butterflies 26.07 41.44 20.45 26.07 26.08 26.75 42.1273.07
Adult 52.53 58.35 55.39 52.53 46.39 4723 62.6872.08
15 scenes 59.12 61.26 36.51 39.12 55.02 55.07 63.4370.16
Montalbano 88.55 86.46 58.49 88.55 88.5 88.38 88.7970.12
MSRDaily3D 75.2274.2 68.076.22 74727447 | 75.05873.9 73.9475.65 73.7774.9 76.0174.01
Average 5434722.06 |56.91718.78 | 50.81722.38 | 54.33722.04 | 5246721.04 | 52.51721.11 | 61.45718.67
ID Dataset Learned TWS Formula
1 Caltech101-15 sqri((sqri(RFx TF)+log 2(RFx TF))) vV vVWa2 +log2(Wa)
2 Birds log2((FMeas x (CHI x log 2(TF x RF)))) log2(Wyg x (W3 x log2(Was )
3 MSRDaily3D ((TF x FN) x sqrt(T)) ((Wg x Wy ) x 1log2(+/Waa))
4 Adult (sqrt(IDF) < D) (vWs5 x D)
5 Montalbano log 2(log 2(CHI)) x sqrt(IDF) (log2(log2(W3)) x /Ws)
6 15-Scenes log 2((ProbR + TF x RF)) log2(Wig +Wao)

27
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Results

Range of improvement of the proposed method over the best traditional/alternative
weighting scheme per dataset in terms of absolute and relative differences.

Frequency of appearance of terminals into the
solutions found by the GP.

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Terminals

Scores

Absolute and relative improvements for the different
datasets, taking as reference the best
traditional/alternative weighting scheme for each dataset.

T
9 — S ............... SR LR L TREEEEERRETEEE - Absolute H
: : : I Relative

0 : :
Tiny 101-15 101-30 Birds Butterflies Adult Scenes  Montalbano MSRDaily3D

Dataset
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Terminal set Representation

Variable | Meaning
Wi N, Constant matrix, number of training documents.
W, I|V||, Constant matrix, number of terms.
W, CHI, Matrix containing in each row the vector of ¥~ weights for the terms.
Wi IG, Matrix containing in each row the vector of information gain weights for the terms.
Ws IF < 1DF | Matrix with the TE-IDF term-weighting scheme.
W TF, Matrix containing the TF term-weighting scheme.
Wy FGT, Matrix containing in each row the global term-frequency for all terms.
Wy TP, Matrix containing in each row the vector of true positives for all terms.
W F P, Matrix containing in each row the vector of false positives.
Wi T'N, Matrix containing in each row the vector of true negatives.
Wi FN, Matrix containing in each row the vector of false negatives.
Wia Accuracy, Matrix where each row contains the accuracy obtained when using the term as
classifier.
Wis Accuracy_Balance, Matrix containing the AC_Balance each (term, class).
Wia Bi-normal separation, BN S, An array that contains the value for each BNS per (term, class).
Wis DFreq, Document frequency matrix containing the value for each (term, class).
Wis FMeasure, F-Measure matrix containing the value for each (term, class).
Wi7 OddsRatio, An array containing the OddsRatio term-weighting.
Wiz Power, Matrix containing the Power value for each (term, class).
Wig ProbabilityRatio, Matrix containing the ProbabilityRatio each (term, class).
Wap Max_Term, Matrix containing the vector with the highest repetition for each term.
Wioy RF, Matrix containing the RF vector.
Was TF = RF, Matrix containing TF-RE

29
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Visuall " Temporal | Dynamic Multimodal representations

* Most approaches are based on classic computer vision techniques applied to
RGB data'. However, extracting discriminative information from standard
image sequences is sometimes unreliable.

[ Compact multi-modal devices allow 3D partial information to be obtained from
the scene ?: New descriptors combining RGB plus Depth (RGB-D) for HCI Apps:

= Inferring pixel label probabilities from learned offsets of depth features 3.

* As an extension of BoVW, these approaches attempt to benefit from the
multimodal fusion of visual and depth features.

* This information has been particularly exploited for human gesture
recognition, body segmentation and tracking.

[1] Tirilly, P., Claveau, V., and Gros, P. (2009). A review of weigthing schemes for bag of visual words image retrieval. Technical report, IRISA.
[2] HD. Yang, S. L. (2007). Reconstruction of 3d human body pose from stereo image sequences based on top-down learning. Pattern Recognition, 40(11):3120-3131.
[3] Shotton, J. et al. (2011). Real-time human pose recognition in parts from single depth images. In CVPR, pages 1297-1304. 31
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Visual | Temporal | Dynamic Gesture Representation

 BoVDW approach: Merging RGB + Depth information by means of late fusion.

) 2
Keypoint Keypoint BoVDW BoVDW
d‘(aée_;f’lg‘;“ —>| description Histogram Classification

~~~~~~

=
_______

o
Weee
weds

1 RGB D
=1 —me madef( ) hquery ))
VFH 5 CRH dpiss = (1= ¢)d"F 4 gd®

[1] Lapteyv, I. (2005). On space-time interest points. In JCV, 64(2-3):107-123.

[2] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. CVPR, 2:886—893.

[3] Laptey, I., Marszalek, M., Schmid, C., and Rozenfeld, B. (2008). Learning realistic human actions from movies. In CVPR, pp. 1-8. 32
4] Rusu, R., Bradski, G., Thibaux, R., and Hsu, J. (2010). Fast 3d recognition and pose using the viewpoint feature histogram. In IROS, pp. 2155 —2162.
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i ROy . Condsio Probabilistic Dynamic
Programming

* In the context of gesture recognition, it is common the use of methods based on
dynamic programming, which breaks down a complex problem into a collection of
simpler sub-problems.

M(i,j)=d(i, j)+min{M(i—1,j—1),M@i—1,j),M(i,j—1)}

fori=1:mdo

1 o ® 00 for j=1:c0do
Q={vi,v,...,vz} M(i,j) = oo
2 end end

M(’;)} for j=1:cdo

M(0,7)=0
end

if M(m, j) < 6 then
Q = {argminM (x")}
s XeN(x)

»€l,..,| st. M(m)>b) <86 < % return

end

* Generative models allow to deal with the high variability due to -~ — — ~
environmental conditions among different domains: '

O Wide range of human pose configurations, influence of background, continuity of human
movements, spontaneity of human actions, speed, appearance of unexpected objects, ;""
illumination changes, partial/self occlusions, different points of view... -/

[1] Parizeau, M. and Plamondon, R. (1990). A comparative analysis of regional correlation, dynamic time warping, and skeletal tree matching for signature verification.

IEEE TPAMI, 12(7). 33
[2] Reyes, M., Dominguez, G., and Escalera, S. (2011). Feature weighting in dynamic time warping for gesture recognition in depth data. ICCV Workshops, pp. 1182-1188.
[3] Zhou, F., De la Torre Frade, F., and Hodgins , J. K. (2013). Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE TPAMI, 35(3):582-596.
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* Generative models learned in PDTW handle the variance present in data.

DESCRIPTION
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IDLE GESTURE

ALIGNMENT

GESTURE SAMPLES
N

.gﬂ

SAMPLES

ALIGNED GESTURE

=

=

Gesture Segmentation

I-[GMM LEAHMNG]_P

PROBABILISTIC
DTW

P(qi) = e~ 34]

Z“x =)

() (e—pf)

P qlr-.- Zak P{QJ
k=1

—p)" ()" (gj—n))

D(qj. Ar) =exp™" @)

[1] Yu, Guoshen (2012). "Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity". IEEE Transactions on Image

Processing 21 (5): 2481-2499.
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\V/IE]] Temporal Dynamic Cossluzios Data - CGD

* Challenge Gesture Dataset (CGD) ! of 50,000 gesture video sequences.

O Single user in front of a fixed camera.
O Images are captured by the Kinect™ device providing both RGB and depth images.
O 20 development batches with a manually tagged gesture segmentation:

= 100 recorded gestures grouped in sequences of 1-5 gestures performed by the same user.
= Different lexicon of 8-15 unique gestures and just one training sample per gesture is provided,
categorized in 9 (10) classes:

* Body language gestures (scratching your head, crossing your arms, etc.).

» Gesticulations (performed to accompany speech).

» |llustrators (like Italian gestures).

*  Emblems (like Indian Mudras).

* Signs (from sign languages for the deaf).

» Signals (diving signals, mashalling signals to guide machinery or vehicle, etc.).
» Actions (like drinking or writing).

" Pantomimes (gestures made to mimic actions).

=  Dance postures.

* ~1800 Idle gesture in between (for temporal segmentation).

37
[1] Guyon, I., Athitsos, V., Jangyodsuk, P., and Escalante, H. J. (2014). The chalearn gesture dataset (CGD 2011). Machine Vision and Applications, 25(8):1929-1951.
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PDTW and BoVDW

Address the problem of continuous human gesture recognition:

(J Recognize idle (or reference) gestures performed between gestures.

Gesture Segmentation: Probability-based Dynamic Time Warping (PDTW).
Gesture Representation: Bag of Visual and Depth Words (BoVDW).

-~

J/

-

N

~
Idle gesture Idle gesture GMM Probablistic
description alignment learning DTW
Temporal gesture
segmentation
Keypoint Keypoint BoVDW BoVDW
detection description Histogram Classification
(STIP) (VFHCRH) 9

p.

Gesture classification

_/

[ The experiments are performed using the public dataset provided by the ChalLearn Gesture
Challenge *.

U Standard BoVW model and early fusion are compared to the proposed late fusion.

38

[1] Guyon, I., Athitsos, V., Jangyodsuk, P., and Escalante, H. J. (2014). The chalearn gesture dataset (CGD 2011). Machine Vision and Applications, 25(8):1929-1951.
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Visual Temporal | Dynamic Temporal Segmentation

Each idle gesture sequence is described using a grid approach of HOGHOF descriptor,
and a random projection for reducing dimensionality.
Ten-fold cross validation strategy using 180 idle gestures as validation data:

O Chosen DTW cost threshold 6 by maximizing the overlap.
L Chosen Gaussian components G for the GMM by means of 10-fold CV.
0 Baum-Welch algorithm for training an HMM:

= Vocabulary computed using k-means over idle gestures.
= Empirically set hidden states.

Recognition is performed with temporal sliding windows of different wide sizes,
based on the idle gesture samples length variability.

Overlap. Acc.
Probability-based DTW | 0.3908+ 0.0211 | 0.6781 + 0.0239
Euclidean DTW 0.3003 £+ 0.0302 | 0.6043 + 0.0321
HMM 0.2851 £0.0432 | 0.5328 £ 0.0519

39
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Visual Temporal | Dynamic Temporal Segmentation
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Conclusion

* Empirically set V, b, x by, x bg, and ¢ .
* Mean Levenshtein Distance (MLD)
over all gesture sequences.

BoVDW classification

RGB desc. | MLD || Depth desc. | MLD
HOG 0.3452 VFH 0.4021
* Late fusion of best descriptors HOF 04144 [ VFHCRH | 0.3064
HOG, HOF and VFHCRH: HOGHOF | 0.3314
2-LF MLD: 0.2714 ; 3-LF MLD: 0.2662
0.8
0.6 -
Y
0.2 _
0 B HOGHOF | |VFHCRH [ |L.F. HOGHOG/VFHCRH [ IL.F. HOG/HOF/VFHCRH [lll Baseline
0 2 4 6 8 10 12 14 16 18 20

Development Batch

41

[1] Guyon, I., Athitsos, V., Jangyodsuk, P., and Escalante, H. J. (2014). The chalearn gesture dataset (CGD 2011). Machine Vision and Applications, 25(8):1929-1951.
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Evolved

Dynamic Gesture & Action recognition

* Landmark tasks of the so called Looking at People field: the visual analysis of
humans .

* Exponential growth on research, with a variety of methods proposed from the
nineties, since the release of low-cost multimodal sensors 2.

* Traditional methods were based on temporal templates?, sequence alignment or
statistical sequential modeling. They approach the problem in a holistic way.

O Inspiration of part-based techniques: dynamic-poselets #, sub-gestures .

* Evolutionaryalgorithms have been also developed for key-frame extraction ©:

Bag of Key Poses (BoKP) Bag of Sub-Gestures (BoSG)

Learn subsets of frames Learn spatio-temporal units

Class-specific key-poses Inter-class subgestures (shared primitives)

[1] Moeslund, T., Hilton, T., Kruger, A., and Sigal, V. (2011). Visual Analysis of Humans, Looking at People. Springer.

[2] Mitra, S. and Acharya, T. (2007). Gesture recognition: A survey. Trans. on SMC-C, 37(3):311-324.

[3] Bobick, A. and Davis, J. (2001). The recognition of human movement using temporal templates. IEEE TPAMI, 23(3):257-267.

[4] Wang, L., Qiao, Y., , and Tang, X. (2014). Video action detection with relational dynamic-poselets. In ECCV.

[5] Malgireddy, et al. (2011). A shared parameter model for gesture and sub-gesture analysis. In Combinatorial Image Analysis, vol. 6636, pp. 483—-493. 43
[6] Chaaraoui, A. and Florez-Revuelta, F. (2014). Adaptive human action recognition with an evolving bag of key poses. IEEE TAMD, 6(2):139-152.
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Visual | Temporal | Dynamic Bag of Sub-Gestures

* Gesture & Action recognition, two widely studied tasks and topics in computer vision:

O Attempt to capture and recognize whole gestures (in a holistic approach).
[ Classical approaches are based on DTW* and HMM 2.

* Recent research is moving towards approaches that model the problem in terms of
gesture primitives (or subgestures) 3~>:

 The underlying assumption is that whole gestures are composed by primitives:

» Shared or not among gestures from different categories.

[ The hypothesis is that learning with primitives leads to better recognition performance.

* How to define/learn subgestures and how to perform inference models are still open questions.

* Describe a novel approach using subgesture modelling:

[ Learn subgestures by searching for temporal patterns that improve performance.
L EA with ad-hoc variations operators suitable for learning primitives.
[ Learning and inference referred to DTW and HMM using subgestures.

[1] Bobick, A. and Wilson, A. (1997). A state-based approach to the representation and recognition of gestures. IEEE TPAMI, 19(12):1325-1337.

[2] Wilson, A. and Bobick, A. (1999). Parametric hidden markov models for gesture recognition. IEEE TPAMI, 21(9):884—-900.

[3] Li, K., Hu, J., and Fu, Y. (2012). Modeling complex temporal composition of actionlets for activity prediction. ECCV, vol. 7572, pages 286—299. 44

[4] Malgireddy, M. R., Nwogu, |., Ghosh, S., and Govindaraju, V. (2011). A shared parameter model for gesture and sub-gesture analysis. In CIA, vol. 6636, pp. 483—493.
[5] Wang, L., Qiao, Y., , and Tang, X. (2014b). Video action detection with relational dynamic-poselets. In ECCV.
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Visual Temporal = Dynamic Training SUbgeStures

* Goal: find a subgesture set S = {s1,s2,...,s5¢} from XTI =l 30 xI)l that
maximizes recognition performances given a particular recognition method.

Given a Population, the Decode each Aligned
: . number of k clusters
whole continuous new unique Temporal
. . . i and number of .
training and validation and valid Clustering:
e segments
sequences individual Subgestures

k,segments « decode(I); XJ,, + getDataPartitions(X" ,segments); S « k-meansDTW ( XZ,.k)

Generative Model

1D Training 1D validation
sequences sequences

Dynamic Programming

Subgesture Class
Dissimilarities Representants

D « get Dissimilarities(S);' R « getResizedClassModels(X" ,S); D" « getU pdatedCosts(X" ,S); G DV « getU pdatedCosts(X "',S);]
1D Subgesture 1D validation Learn class-HMM
Models sequences

M « learnGM(D" | »);
M + getU pdatedCosts(R,S); 0 0

[ w € Model parameters ] [ w € Model parameters ]

O

CScore, w”* € evaluation function g(DV, w))

* Two-sided column blocks can be computed in parallel. =5
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Visual  Temporal = Dynamic Evolutiona ry optimization

r
Given a Population, the Decode each new number of k clusters Aligned Temporal

whole continuous training unique and valid and number of Clustering:

and validation sequences individual segments Subgestures
.

Given a Population, the 4 Decode each h

whole continuous new unique
training and validation and valid

sequences ) . individual )

@ Aligned
Temporal
Clustering:

. Subgestures

number of k clusters
and number of
segments

' , T
XI = X1 ) X2 : i Xk f R 2N —2ks

seg
* Initially, there is a probability s of randomly selecting each pair-wise segment.
* Constraints for the frame length of segments and number of clusters:

O Segments length within the range [1min, Mmax]) *-
 The number of generated segments is ks <N, each one in the range [k[},f{f], such that
ko <k <kg:
= Thatis, the number of clusters allowed is set depending on the generated segments.
=  The remaining 2N — 2kf empty segments are ignored in the fitness function.

51

TEEEEL L 52 = .
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U D
XLt ]

* The goal in the fitness function of the GA is to maximize the score given by the evaluation
function, so as to obtain a measure of performance of subgesture models.

47
[1] Zhou, F., De la Torre Frade, F., and Hodgins , J. K. (2013). Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE TPAMI, 35(3):582-596.
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Visual  Temporal = Dynamic Fitness function

Subgesture Dissimilarities Class Representants

r

T C=1g
Wij = DTW(S,‘,SJ') = m;'ng{z dp:Q, =< Vi,V2,..., Vg >} /\/\/\

- ~ 1
AN -
-
Wil Wiz ... Wi <) 11 |
DoWoWT. s W—I W21 W22 ... Wo 5,)22222222228888885555555555S5S
— \ L = —
Y / 1

Wi Wiz .. Wik e

2 C

\ .
-2S2=444444422222222222222222222

Kk updated cost vectors { )

L,

1 1

.= Sk N ]

1
K=
z;k=111111111111111111114444445

a8

Learn class-HMM

L

[ w € Model parameters ]

argmin
J L.

m

II-:I-:l-:l:hhhkkhkkkkkkkkkki!::i!#l
| ) € |
[1D Subgesture 1D validation ] U
J

1D Training
sequences

Models sequences
kScore, w”* € evaluation function g(DV, w))
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Visual  Temporal = Dynamic Fitness function

Subgesture Dissimilarities Class Representants

r

T C=1g
Wij = DTW(S,‘,SJ') = m;'ng{z dp:Q, =< Vi,V2,..., Vg >} /_\_/\/\

- ~ 1
AN -
-
Wit w2 ... Wy < 1 1
Do WWT. s W—I W21 W2 ... Wy (5222222222288888855555555555
= . 1 -
Y / -
Wer Wik2 o .. Wik o
2 C

2 |
-ZS2=“4‘44‘22222222222222222222

Kk updated cost vectors { )

< L.
g - -
5. = sx | 1
= : !
K= ,
Zs G,11111111111111111111444843424
k=
) ) Generative modelling:

'irgj;inin Dynamic Programming: DTW HMM learning m,_; 4
al and inference
JL d" e D"

d" e DY

Models sequences sequences ool

Learn class-HMM (Score, w” € evaluation function g(DV, a)))
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» Standard genetic operators are considered for selection, crossover,and mutation *.

O However, before mutation operator is applied each of the N segments has again a random

probability ps either to add if it is empty, or to delete if it already exists:
Q Offsprings require to ensure both that they are evaluable on the next generations and that

the new trends caused by genetic modifications are respected:

® Check and correct the segment boundaries and number of clusters by means of a
repair function:

(k) = k—ko _ if pk) <1 increase k 5 segments
P ks — ko Otherwise decrease k clusters.

» After learning the class-thresholds © = {6¢1,6,...,6%}, the evaluation function computes
the mean score of classifying each sequence given the learned model parameters ®™ :

O Dynamic programming:

= Compute classification rate, considering as detections those DTW costs under the class thresholds.

O Generative models:

= Compute classification rate, considering as detections those probabilities above the class
thresholds.
51

[1] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.
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MSRAction3D1

Ternnis serve

* Depth Cuboid Similarity Features (DCSF) 2.

* Depth and skeleton information.

* 20 actions by 16 subjects.
* Half-training (subjects 1,3,5,7,9) /
Half-testing (rest of subjects) 3.

Conclusion

Datasets

MSRDaily3D ?

Depth Cuboid Similarity Features (DCSF) 2.
RGB-D and skeleton information.

Considered 12 out of 16 actions and half-subject split 2.
16 actions of daily activities using 5-fold cross-validation *.

[1] Li, W., Zhang, Z., and Liu, Z. (2010). Action recognition based on a bag of 3D points. In CVPRW, pages 9-14.
[2] Xia, L. and Aggarwal, J. K. (2013). Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In CVPR, pages 2834—-2841.
[3] Padilla-Lépez, J. R., Chaaraoui, A. A., and Flérez-Revuelta, F. (2014). A discussion on the validation tests employed to compare human action recognition methods

using the MSR action3d dataset. CoRR, abs/1407.7390.
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[4] Wang, J., Liu, Z., Wu, Y., and Yuan, J. (2012). Mining actionlet ensemble for action recognition with depth cameras. In CVPR, pp. 1290-1297.
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* Framework implementedin *MATLAB/C++, including GA optimtool 2 and PMTK3 libs.

* Parameters of the method fixed to:

O P =0.2. npin = 5 and nyee = 25 3, population length / = 20 with 2 elitist members for
the next generations,and N = 500 start-end segments.

Q k) =3 minimum number of k clusters within the range [ko.k] .

0O Number of iterations of k-meansDTW ¢ = 20 to smooth its cost &(1 x k x n?) .

O Number of thresholdsto learn ® setto 7 = 20 ,

* DTW baseline consists of direct resizing all sequence examples of the same class with
respect to the max-length sequence to get the representantsr.—q_g.

* HMM baseline splits each sequence into 3 fixed parts of the same length for learning subgesture
class-models, where the number of clusters is the half of the total number of resulting segments.

! Library publicly available at https://github.com/vponcelo/Subgesture 53
[2] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.
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Results

MSRAction3D-HS MSRDaily3D-CV MSRDaily3D-HS
Method Accuracy | Method Accuracy | Method Accuracy
[168] (LOP+l.) | 88.2% [7T1](SOSVM) 68.3% [167] (LOP) 42.5%
[175] (DCSF) 89.3% [72] (SMMED) 713.20% [112] (DTW) 54%
[130] (HOPC) 01.64% [175] (DCSF) 83.60% [168] (MKL) 80.0%
[49] (PBR) 02.3% [175] (DCSF+5kl.) | 88.2 [91] (GP) 83.6%
[169] (MMTW) | 92.7% - - [168] (LOP+].) | 85.75%
Dynamic Time Warping
Baseline 83.76% Baseline 17.36% Baseline 70.20%
Evolved 00.89% Evolved 89.51% Evolved 88.16%
Hidden Markov Model
Baseline 70.85% Baseline 74.62% Baseline 69.29%
Evolved 95 % Evolved 91.39% Evolved 02.30%

Recognition results in the MSRAction3D and MSRDaily3D datasets for half-split
(HS) and cross-validation (CV), for the latter setting we report the 4 results available in
published literature.
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DTW & MSRDaily3D

Generation Generation Generation
flean scores throughout 110 generations fean scores throughout 110 generations flean population scores throughow 110 generations
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o
o o Dg A o
R o o 2 g
=2 O o (=]
3 05l 2 05 ’ I . s
5 o s T g
= =07 4 =
0 o
o0 120 140 160 180 200 220 ] 20 40 B0 go o 120 0 5 10 15 2 24
Mumber of segments Generation Population

DTW & MSRAction3D

=R A

Action 2:
‘Side-kick”




Evolved Spatio Evolved

. . Conclusion
Visual Temporal | Dynamic

Conclusions

65



Evolved Spatio Evolved .
Conclusion

\EIE] Temporal  Dynamic Conclusion - Part 1

Little research has been performed on TWS for computer vision. We introduced a
novel methodology for learning weighting schemes to boost the performance of
classification models relying on the BoVW:

O Among traditional and alternative weighting schemes, the Boolean one obtained the
highest performance.

0 Weighting schemes learned with our proposed approach outperformed consistently other
weighting schemes in the considered datasets.

= Schemes learned for some datasets do not generalize well in other datasets.

L Among all of the considered terminals, three weighting schemes were used most often by
solutions returned by the GP (TF, TF-IDF and TF-RF). However, the way in which the GP
combined such primitives resulted in much better performance.
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Visual Temporal Dynamic Conclusion -— part 2

BoVDW approach for human gesture recognition presented using multimodal RGB-D
images:

U A new depth descriptor VFHCRH has been proposed, outperforming VFH.

O Analyzed the effect of late fusion for combining RGB and Depth descriptors, obtaining
better performance in comparison to early fusion.

A Probabilistic-based DTW has been proposed to asses the temporal segmentation of
gesture sequences and to be able to deal with multiple deformations present in data:

O Different samples of the same gesture category modelled with Gaussian-based
probabilistic models, encoding possible deformations.

O Define a soft-distance based on the posterior probability of the GMM to embed
probabilistic models into the DTW framework.
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Visual Temporal Dynamic Conclusion -— Part 3

* Introduce a novel approach for learning dynamic gesture primitives for
gesture and action recognition.

* Evolutionary computation presents advantages when incorporating notable
gesture methodologies based on dynamic programming and generative
models in few generations.

* Results suggest that subgesture learning enhances the recognition of
traditional techniques.

68
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Visual Temporal  Dynamic Future work -_— Part 1

e Studying alternative methodologies for learning Term-Weighting Schemes:

1 Pose the problem as one of learning/optimizing the representation matrix,
where other EA could be used.

O Learning TWS for other domains, like audio, time series or accelerometer
data.

* Explore the use of Genetic Programming frameworks for deep learning-
based schemes.
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Visual Temporal = Dynamic Future WOrk -— Part 2

* Including samples with different points of view of the same gesture class
to analyze whether they fit using the proposed approaches.

* The definition of other powerful descriptors to obtain gesture-
discriminative features.

* The use of Recurrent Neural Networks and Temporal Convolutions to learn
spatio-temporal features using Deep Dynamic Neural Networks (DDNN) 1.

[1] D. Wu, L. Pigou, P.-J. Kindermans, N. Le, L. Shao, J. Dambre, and J.-M. Odobez. Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and 70
Recognition. TPAMI 2016.
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Visual Temporal  Dynamic Future WOrk — Part 3

* Explore alternatives to the temporal clustering such as subgesture ranking
to speed up the computational costs.

* Immediate work is to use representations learned with deep networks as
input features for the method.

* Model subgesture primitives as part of deep dynamic neural networks:

 Including them at the inner steps of the global optimization process made by
the fitness function of the Evolutionary Algorithm.

[ Having several independent architectures for training subgestures from
different data modalities.

[ Discovering subgestures through unsupervised deep learning and RNN *.

[1] L. Pigou, A. van den Oord, S. Dieleman, M. Van Herreweghe, and J. Dambre. Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture 71
Recognition in Video. arXiv:1506.01911, 2016.
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Publications

Research period: 2011 — 2016

Citations: 136; h-index: 6; i10-index: 5;
4 JCR journals (3 in Q1); 10 conference & workshop proceedings, 3 non-indexed
technical reports.

Detailed info at

Center

Killarney, Ireland

BMVC 2015

7 - 10 SEPTEMBER, SWANSEA, UK


http://sunai.uoc.edu/~vponcel/publications
http://sunai.uoc.edu/~vponcel/publications
http://sunai.uoc.edu/~vponcel/publications
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Projects

Detailed info at
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