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Abstract 

With the revolution of digital medical imaging and the increasing computational power, the 
field of quantitative medical image analysis emerged. By programming a computer to detect 
patterns of interest in medical images and derive clinically meaningful numerical indicators 
from them, this field shows promising potential for healthcare and medical research 
systems. 

In this thesis, the design and implementation of computer-based quantification techniques in 
nuclear medicine and neuroradiological images led to several contributions in this field.  
These image-derived indicators contributed to complement the visual diagnosis and to 
further understand the pathophysiology of important health issues such as breast cancer, 
non-Hodgkin lymphoma, pyelonephritis, Alzheimer’s disease, Parkinson’s disease and 
cannabis abuse. 
 
Resum 

Amb la revolució de la tecnologia digital d’obtenció d’imatges radiològiques  i l’increment 
de la potència computacional, el camp de la quantificació d’imatges mèdiques ha sorgit. El 
fet de poder programar un ordinador per a que detecti patrons d’interès en imatges 
radiològiques i pugui derivar-ne d’aquests indicadors numèrics amb valor clínic fa que, sens 
dubte, aquest àmbit de coneixement tingui un gran potencial en entorns mèdics i de recerca. 

En aquesta tesi es presenten un conjunt de contribucions científiques en aquest context. En 
particular, es descriu el disseny i la implementació d’una sèrie d’estratègies computacionals 
de quantificació d’imatges de medicina nuclear i neuroradiologia.  A continuació es detalla 
com aquestes tècniques han demostrat ser d’utilitat per a l’estudi de malalties molt 
rellevants en l’actualitat com són el càncer de mama, el limfoma no-Hodgkin, la 
pielonefritis, la malaltia d’Alzheimer, la malaltia de Parkinson i l’abús de cànnabis. 

Resumen 

Con la revolución  de la tecnología digital de obtención de imágenes radiológicas y el 
aumento de la potencia computacional, el campo de la cuantificación de imágenes médicas 
ha emergido. El hecho de poder programar un ordenador para que detecte patrones de 
interés en imágenes radiológicas y pueda derivar de ellos una serie de indicadores 
numéricos con valor clínico hace que, sin duda, este ámbito de conocimiento tenga un gran 
potencial en el entorno médico y de investigación. 

En esta tesis se presentan un conjunto de contribuciones científicas en este contexto. En 
particular, se describe el diseño y la implementación de una serie de estrategias 
computacionales de cuantificación de imágenes de medicina nuclear y neuroradiología.  A 
continuación se detalla cómo estas técnicas han demostrado ser de utilidad en el estudio de 
patologias muy relevantes en la actualidad como son el cáncer de mama, el linfoma no-
Hodgkin, la pielonefritis, la enfermedad de Alzheimer, la enfermedad de Parkinson i el 
abuso de cánnabis. 

 



3 
 

A la meva mare i,  

especialment,  

al meu pare. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

“In theory, there is no difference between theory and practice. But, in 
practice, there is.” 

  Attributed to multiple people. It’s so 
true that it doesn’t matter who said it.  
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II. Thesis introduction, motivation and background 

Digital medical imaging has been one of the revolutions in medicine of the last two 
decades. Medical specialists currently have available a wide range of imaging 
modalities that have raised the diagnostic quality and follow-up evaluation of many 
pathologies. 

Most medical images used in clinical practice are visually evaluated by the trained 
physician in order to detect and characterize the presence of a particular pathology of 
interest. While in most cases this procedure is assumed to obtain the best accuracy, it 
has several imitations. First, the diagnostic performance is highly dependent on the 
physician’s expertise. Second, the diagnostic product is generally categorical (i.e. 
positive/negative/inconclusive) and descriptive, lacking a quantitative modeling of the 
characteristics underlying a disorder.  Finally, some image modalities cannot be directly 
evaluated visually due to their technical nature (e.g. resting-state cerebral functional 
magnetic resonance imaging), requiring image-derived quantitative indicators to be 
properly assessed.  

To overcome these limitations and given the increasing computational power of modern 
technology, the automatic computation of quantitative indicators in medical images that 
could complement the visual evaluation by the trained physician is emerging as an 
important research area.  Notably, the information from this type of indicators would be, 
by definition, observer-independent and quantitative. 

Therefore, for each medical scenario and image modality of interest, the challenge of 
designing the best computational image-quantification strategy capable of obtaining 
new indicators that could improve diagnostic accuracy, prognosis estimation or disease 
understanding is clearly appealing to the medical community. 

The possible incorporation of this type of indicators in healthcare centers would have 
major advantages at several levels. At the clinical level, if the image-derived 
quantitative indicators aided in the interpretation of complex radiological patterns by 
providing relevant observer-independent diagnostic information, they would contribute 
to a better overall diagnostic accuracy, especially in situations where there is limited 
physician expertise on this task. At the management level, if the availability of such 
indicators contributed to accelerate the determination of radiological conclusions, an 
increase in diagnostic throughput would be obtained, thus providing significant 
management and economic benefits to the health institution. 
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III. Objectives 

The main objective of this thesis is to provide scientific contributions to the field of 
automatic medical image quantification for clinical or research applications. Among the 
large number  of medical imaging modalities and clinical contexts, this thesis will only 
focus on the computation of quantitative indicators from the following image 
modalities: FDG-PET scans (whole-body and cerebral), renal DMSA-scans, T1-
weighted magnetic resonance imaging (cerebral), and cerebral event-related functional 
magnetic resonance imaging. Details about these image modalities are given throughout 
this section. 

The indicators computed from these images were designed to contribute to application-
specific scenarios in several medical domains, including tumor burden evaluation, 
structural kidney damage quantification, neurodegenerative disease characterization and 
drug-induced brain activation analysis. 

In this section, each of these image quantification contexts is described and the original 
research papers derived from them are mentioned, whereas the next section will 
summarize its main results and discussions. 

The first automatic image quantification scenario of this thesis was related to tumor 
burden characterization in oncological whole-body FDG-PET scans.  This type of scan 
is a valuable nuclear medicine test where a whole-body image of the subject is obtained, 
showing the uptake distribution of a glucose-analog radioactive tracer. The diagnostic 
power of this imaging technique relies on the fact that elevated tracer uptake (a proxy 
for high metabolic activity) in certain anatomical locations may indicate the presence of 
a tumor. 

In this first image analysis context, the main objective was to obtain a numerical 
indicator from FDG-PET scans that was able to model underlying tumor properties (i.e. 
volume, metabolic uptake and spread) in a quantitative and expert-independent manner 
(Fig.1). 

 

Fig.1 First scenario: automatic computation of an efficient image-derived tumor burden indicator (TBI) in 
whole-body FDG-PET scans to model quantitatively the spectrum of tumor states in the population. Red 
arrows indicate the presence of tumor volume in that anatomical region.  

From the technical point of view, a key step needed to automatically compute this type 
of indicator is that a computer algorithm should be able to detect and segment the tumor 
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volume of any given whole-body FDG-PET scan. Given the substantial variability of 
the human anatomy and physiological tracer uptake of the population in this context, 
this poses per se a major computational problem.  

Therefore, the first contribution (article [1]) sought to apply state-of-the-art machine 
learning and computer vision algorithms to automatically detect and segment tumor 
volume in this type of scans. Then, having the tumor volume segmented from the 
images either by using automatic or expert-guided segmentation techniques, the 
scenario of computing accurate numerical indicators that would be able to model the 
underlying tumor characteristics was addressed in article [2]. Both of these works used 
a cohort of breast cancer patients where novel quantitative indicators could contribute to 
obtain image-derived prognostic indicators of the disease.    

In the same image modality context but addressing a different clinical scenario, the 
computation of quantitative indicators modeling the tumor response in time from a pair 
of pre- and post- treatment FDG-PET scans was addressed; both at the technical and 
clinical levels (articles [3] and [4]). In this case, a cohort of non-Hodgkin lymphoma 
patients with a pair of time-consecutive FDG-PET scans was used to derive new 
indicators to quantify the tumor progression or response.  

The second image quantification context sought to detect and characterize structural 
renal damage in DMSA scans. This type of scan is also a nuclear medicine image where 
the radiotracer used shows the distribution of the DMSA molecule within the kidneys. 
This distribution is of particular diagnostic interest since healthy kidney tissue would 
tend to show high tracer uptake, whereas damaged kidney regions would show less or 
no tracer uptake.  

The automatic computation of numerical indicators in this type of image (Fig.2) led to 
the contribution presented in article [5], where a pediatric cohort of patients with 
structural kidney damage was used to obtain image-derived quantitative indicators of 
the underlying renal pathology. 

 

Fig.2 Second scenario: automatic computation of an image-derived efficient structural renal damage indicator 
(SRDI) in DMSA scans to model quantitatively the underlying pathology. Red arrows indicate structural renal 
damage in those kidney areas.  

 

The third image analysis scenario aimed to quantify the metabolic activity from 
cerebral FDG-PET scans (described above) in a set of key brain areas related to 
dementia such as the temporal lobe (Fig.3). In this case, the relationship between such 
imaging indicators, the APOE genotype (the best-known genetic risk factor for 
Alzheimer’s disease) and gender in healthy controls was investigated in article [6].  
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Fig 3 Third scenario: automatic computation of an efficient temporal lobe metabolism indicator (TLMI) in 
cerebral FDG-PET scans to model quantitatively the underlying pathophysiology of Alzheimer’s disease. Pink 
arrows illustrate the metabolic activity of a region in the left temporal lobe.  

 

The fourth and fifth image quantification contexts were performed on cerebral T1-
weighted magnetic resonance maging (MRI) scans. By applying a combination of 
magnetic fields and radio frequency pulses to the brain, tissues with different properties 
generate different signals that can be detected and processed, obtaining a structural 
brain image where gray matter, white matter, and cerebrospinal fluid can be 
distinguished.  

The amount and distribution of gray matter in the brain is key to correct brain 
functioning.  An accurate measure of the integrity of gray matter within the cerebral 
cortex (responsible for cognition and memory among other important functions) is 
cortical thickness, defined by the distance between the white matter and pial surfaces. 
For subcortical brain structures such as the basal ganglia, gray matter volume can be 
computed by direct segmentation of the volumetric image. 

Cortical atrophy (i.e. reduction of cortical thickness) is one of the hallmarks of 
Alzheimer’s disease, whereas alterations in the gray matter volume of the basal ganglia 
are associated with movement disorders (Fig. 4).  

The work described in article [6] also addressed the quantification of cortical thickness 
in key areas of the cerebral cortex to also analyze the influence of APOE and gender on 
brain atrophy associated with the Alzheimer’s disease. 

Quantification of gray matter volume in a specific region of the basal ganglia known as 
the nucleus accumbens (a key node of the brain’s reward circuit) was performed in 
Parkinson’s disease patients with apathy. This aimed to provide a neuroanatomical basis 
for this behavioral manifestation, which plays an important role as a marker of disease 
progression (article [7]).   
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Fig. 4. Fifth scenario: automatic computation of a striatal gray matter volume indicator (SGMVI) in T1-MRI 
images to model quantitatively the underlying pathophysiology of Parkinson’s disease. Red arrows illustrate 
the gray matter volume of a portion of the left caudate nucleus.  

The sixth and last image analysis scenario was related to the quantification of 
functional magnetic resonance (fMRI) images. Neuronal activation requires energy, and 
therefore the vascular system provides nutrients and oxygen to those neurons that have 
increased activation. This regional change of the vascular content and flow in the 
regions where there is a high neuronal activity can be detected using Blood-oxygen-
level dependent (BOLD) MRI signal.  

By acquiring a set of BOLD fMRI images for a period of time, the brain activity during 
specific events can be recorded. If a particular task is performed during the acquisition, 
the activation of a particular brain region of interest related to that specific task can be 
computed (Fig.5).  

In article [8], cortical and hippocampal activation during a false memory rejection task 
was quantified from the BOLD images in a set of cannabis users and healthy controls. 
Areas of differential activation between groups were identified. Activity in these brain 
regions were correlated with individual values of lifetime cannabis use. Results 
identified novel memory impairments in users and increased our understanding of the 
deleterious impact of cannabis on cognition. 

 

Fig. 5. Sixth scenario: automatic computation of a task-related hippocampal activation indicator (TRHAI) 
from event-related fMRI images to quantitatively model the possible memory alterations in cannabis users.  
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IV. Summary of the contribution’s results and discussion 

In this section, a brief summary of the main results and discussion of each of the works 
introduced in the previous section is presented. 

 

Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A 
Supervised Learning Approach.  F. Sampedro, S. Escalera, A. Domenech,I. Carrio. J. 
Med. Imaging Health Inf. 5, 192-201,2015. 

In this work the application-specific problem of automatic detection and segmentation 
of tumor volume in whole-body FDG-PET/CT scans was addressed.  

The visual inspection by the medical specialist of whole-body FDG-PET/CT scans is a 
valuable diagnostic tool in oncological scenarios. Furthermore, the possibility of 
quantifying a set of tumor properties (such as its total volume or metabolic uptake) 
using expert-guided segmentation tools offers additional clinical value. However, this 
expert-guided segmentation process is highly time-consuming and expert-dependent. 
This work addressed the need to automate this task and proposed a computational 
system to do so. 

By applying state-of-the-art machine learning techniques (Multiscale-Stacked 
Sequential Learning), an automatic FDG-PET tumor segmentation system was obtained. 
Machine learning techniques are a type of artificial intelligence algorithms that learn 
how to accomplish a particular task if they are provided with a set of training examples. 
In this case, expert-guided tumor segmentations of 100 breast cancer FDG-PET scans 
were used to let the system learn a set of segmentation rules. 

The segmentation results of the automatic system achieved, at the pixel/voxel level, on 
average 49% sensitivity, 99% specificity and 39% Jaccard Overlap Index (a measure of 
comparison of automatic vs. expert-derived segmentation results). Furthermore, the 
total tumor volume of the breast cancer scans was computed from both expert-guided 
and automatic segmentation outputs, showing a correlation of 73%. 

Conceptually, these results show that the obtained automatic segmentation system 
successfully detected and segmented only very clear and reasonably-sized tumor regions 
within the scans. They also suggest that even though the automatic segmentation 
accuracy at the pixel-level may not be equivalent to that obtained by the manual 
segmentation performed by a trained physician, at the global indicator level (such as the 
whole body total tumor volume), the automatically-computed indicators would have 
potential diagnostic value within the clinical environment. 
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Obtaining quantitative global tumoral state indicators based on whole-body PET/CT 
scans: a breast cancer case study. F.Sampedro, A. Domenech, S.Escalera. Nuclear 
Medicine Communications 35(4),362-371, 2014. 
 

In this work, the need to find a set of quantitative indicators derived from the image 
analysis of whole body FDG-PET/CT scans aiming to model properly the global 
oncological state of the patient was addressed. 

A set of 100 breast cancer FDG-PET/CT scans were classified according to their  global 
oncological state following visual evaluation by a consensus of nuclear medicine 
physicians. A set of quantitative indicators derived from the tumor segmentation of the 
images was then computed, both using completely automatic and expert-guided 
approaches. The performance of these indicators at modeling the patient’s underlying 
oncological state as classified by the expert’s visual inspection was measured.  

The performance results of the commonly used indicators in clinical practice including 
whole-body metabolic tumor volume (WBMTV), maximum/mean metabolic activity of 
the tumor (SUVmax/SUVmean), and a combination of both (Total Lesion Glycolysis) 
achieved performances ranging from 49% to 79% (in a measure of correlation with the 
expert’s classification).  
 
None of these indicators take into account the spread of the tumor across the patient’s 
body (i.e. the number of anatomical structures where the tumor is present). This work 
proposed to include that information into the computation of the indicators, obtaining 
new indicators that improved performance from 80 to 87%. These results were obtained 
using expert-guided tumor segmentations. Using a completely automatic approach, the 
best performance result was 64%. 
 
Taken together, this work contributed to show that image-derived FDG-PET global 
quantitative indicators can prove useful in clinical nuclear medicine and oncological 
scenarios. Furthermore, the incorporation of tumor spread measures in the computation 
of such indicators improved its performance at modeling the underlying oncological 
state. Finally, a substantial performance difference between the expert-guided and the 
completely automatic computation of the indicators was observed, suggesting that there 
is room for improvement in this research line. 
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A computational framework for cancer response assessment based on oncological 
PET-CT scans. F. Sampedro, S.Escalera, A.Domenech, I.Carrio. Computers in 
Biology and Medicine 55, 92-99, 2014. 
 

In the following two works, a different clinical scenario within the whole-body PET-CT 
image analysis context was addressed: the quantification of oncological state changes 
over time.  

This first contribution focused exclusively on the design and implementation of a 
computational framework aimed to correctly identify the most common clinical cancer 
evolution scenarios (i.e. progression, partial response, total response, mixed response, 
and relapse) from a pair of time consecutive PET-CT scans of the patient. This task, 
visually performed by nuclear medicine physicians in clinical practice (suffering from 
the common expert-dependence and qualitative diagnostic product limitations), poses a 
challenging problem within a computational environment. 

Performance results at predicting the cancer evolution scenario in a set of 100 non-
Hodgkin lymphoma (NHL) patients achieved up to 90% of accuracy when using expert-
guided image-derived tumor segmentations and 70% accuracy when using a completely 
automatic approach. These results suggest that computing a set of image-derived 
quantitative indicators of cancer dynamics is only reasonable if expert-derived tumor 
segmentation information is available. 

 

Deriving global quantitative tumor response parameters from 18F-FDG PET-CT 
scans in patients with non-Hodgkin’s lymphoma. F.Sampedro, A.Domenech, 
S.Escalera, I.Carrio. Nuclear Medicine Communications 36 (4), 328-333, 2015. 
 
Based on the results of the previous study, this work focused on the actual computation 
of image-derived quantitative indicators designed to model the magnitude of cancer 
response or progression conditions.  

A set of 89 pairs of time consecutive PET-CT scans presenting NHL were classified by 
a consensus of nuclear medicine physicians into progressions, partial responses, mixed 
responses, complete responses, and relapses. The cases of each group were ordered by 
magnitude following visual analysis. Thereafter, a set of quantitative indicators 
designed to model the cancer evolution magnitude within each group were computed 
using expert-guided and automatic image-processing techniques. Performance 
evaluation of the proposed indicators was measured by a correlation analysis with the 
expert-based visual analysis.  
 
The set of proposed indicators achieved the following correlation results in each group 
with respect to the expert-based visual analysis: 80.2% in progressions, 77.1% in partial 
responses, 68.3% in mixed responses, 88.5% in complete responses, and 100% in 
relapses. In the progression and mixed response groups, the proposed indicators 
outperformed the common indicators used in clinical practice (i.e. changes in WBMTV, 
SUVmax, SUVmean, and total lesion glycolysis) by more than 40%. These results were 
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obtained using expert-guided tumor segmentations. In this scenario, the automatic 
approach obtained very poor performance results (<30%).  
 
These results show that the computation of global indicators of NHL response using 
PET-CT imaging techniques offers a strong correlation with the associated expert-based 
visual analysis, motivating the future incorporation of such quantitative and highly 
observer-independent indicators in oncological decision making or treatment response 
evaluation scenarios. However, a robust automatic approach to the computation of such 
indicators is still to be obtained. 
 
 
Computing quantitative indicators of structural renal damage in pediatric DMSA 
scans. Rev Esp Med Nucl Imagen Mol, In Press, 2016. 

The aim of this work was to propose, implement and validate a computational DMSA 
quantification framework for the computation of image-derived indicators that seek to 
model the underlying structural renal damage in a quantitative and observer-
independent manner. 

With this objective in mind, a set of image-derived quantitative indicators based on the 
relative lesion’s size, intensity and histogram distribution was computed from a set of 
16 pediatric DMSA-positive scans and 16 matched controls, using both expert-guided 
and automatic approaches. A correlation analysis was conducted to investigate the 
association of these indicators with other clinical data of interest in this scenario, 
including C-reactive protein (CRP), leukocyte count, vesicouretral reflux, fever, relative 
perfusion, and the presence of renal sequelae in a 6-month follow-up DMSA scan.  

A fully automatic lesion detection and segmentation system successfully classified 
DMSA-positive scans from negative scans (AUC=0.92, sensitivity=81% and specificity 
=94%). The image-computed relative lesion size correlated with the presence of fever 
and CRP levels (p<0.05), and a measure derived from the histogram distribution of the 
lesion gave significant performance results in detecting  permanent renal damage 
(AUC=0.86, sensitivity=100% and specificity=75%). 

These results suggest that the proposal and implementation for the first time of a 
computational framework to quantify structural renal damage from DMSA scans shows 
promising potential to complement visual diagnosis and non-imaging indicators.  
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APOE-by-sex interactions on brain structure and metabolism in healthy elderly 
controls. Sampedro F, Vilaplana E, de Leon MJ, Alcolea D, Pegueroles J, Montal V, 
Carmona-Iragui M, Sala I, Sánchez-Saudinos MB, Antón-Aguirre S, Morenas-
Rodríguez E, Camacho V, Falcón C, Pavía J, Ros D, Clarimón J, Blesa R, Lleó A, 
Fortea J; Alzheimer’s Disease Neuroimaging Initiative. Oncotarget. 05 Sep 
9;6(9):666-74. 

In this work, the objective was to obtain image-derived quantitative indicators of 
hypometabolism and atrophy in some key areas of the brain related to Alzheimer’s 
disease (AD), and relate them to a set of well-known risk factors of the disease. 

In particular, the computation of glucose uptake and cortical thickness indicators within 
the brain’s temporal lobe in a particular population of interest was addressed in order to 
understand a specific phenomenon observed at the clinical level related to the APOE4 
genotype. 

The APOE4 variant is the largest known genetic risk factor for late-onset sporadic AD. 
Epidemiologically, it has been shown that the APOE4 effect on Alzheimer Disease risk 
is stronger in women than in men. However, the underlying neural mechanisms of this 
observation had not been established. In this study, the APOE-by-sex interaction on 
brain metabolism, brain structure, and other indicators of interest such as cerebro-spinal 
fluid (CSF) was addressed.  

This analysis was conducted in a sample of 328 healthy elderly controls from the 
Alzheimer’s Disease NeuroImaging initiative database. Focusing on the brain 
metabolism and structure interaction results, sex stratification showed that female 
APOE4 carriers presented widespread brain hypometabolism and atrophy with respect 
to non-carriers. In contrast, APOE4 male carriers showed only a small region of 
hypometabolism and no atrophy with respect to non-carriers. This significant 
hypometabolic and atrophy pattern difference was especially prominent in the temporal 
lobe, a key brain region involved in AD (p<0.001). 

These results suggest that the impact of APOE4 on brain metabolism and structure is 
strongly modified by sex, providing a biologically plausible explanation to the clinical 
observations. This finding should be taken into consideration in the interpretation of 
image-derived metabolic indicators commonly used in the clinical management of AD. 

Non-demented Parkinson’s disease patients with apathy show decreased grey matter 
volume in key executive and reward-related nodes. Brain Imaging and Behavior, In 
Press, 2016 

In this work, the gray matter volume (GMV) quantification of a set of Parkinson’s 
disease (PD) T1-MRI images contributed to understanding the neuroanatomical basis of 
apathy in this disease.  

For this purpose, two groups of 18 PD patients with available T1-MRI scans were 
identified. Both groups were equivalent in terms of sociodemographic characteristics, 
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disease stage and treatment type. The groups only differed in the manifestation of 
apathy.   

The quantification of GMV in cortical and subcortical structures showed that the 
apathetic group had reduced GMV in the nucleus accumbens (p<0.005), a key node of 
the brain’s reward circuit, possibly explaining the motivational deficit observed in 
apathetic patients. Apathetic patients also had reduced GMV in regions involved in 
executive functions such as the orbitofrontal cortex (p<0.005). Moreover, the patients’ 
GMV at those regions correlated with their cognitive performance (p<0.001). 

These results suggest apathy as a marker of more widespread brain degeneration in 
Parkinson’s disease. 

Telling true from false: Cannabis users show increased susceptibility to false 
memories. J. Riba, M. Valle, F. Sampedro, A. Rodríguez-Pujadas, S. Martinez-Horta, 
J. Kulisevsky, A.Rodriguez-Fornells. Molecular Psychiatry (2015) 20, 772–777. 

In this work the computation of event-related brain activation indicators was addressed. 
In particular, a group of 16 heavy cannabis users (which abstained from the drug at least 
4 weeks prior to this study) and their matched controls performed a memory task within 
a functional magnetic resonance imaging (fMRI) scan. 

The task performed within the fMRI station implemented a well-established method, the 
Deese-Roediger-McDermott paradigm, used to experimentally induce memory illusions 
or “false memories”. In this task, “lure” stimuli have to be adequately identified and 
rejected by the participant.  

Notably, cannabis users performed significantly poorer than the controls in this task: the 
number of incorrectly identified lure stimuli was higher in the cannabis-using group 
(p<0.01).  

In order to obtain the neural correlates of this observation, quantitative indicators of 
brain activation during the task were computed in specific brain areas. Cannabis users 
showed widespread cortical hypoactivation following lure stimuli rejection. The brain 
areas involved were located in the frontal and parietal cortices and in the medial 
temporal lobe in a region including the hippocampus.  These areas are known to be 
involved in executive control, attention and memory processes.  

The fact that the hippocampal activation was significantly lower in the cannabis users 
(p<0.001) indicate a possible memory alteration. Importantly, the hippocampal 
activation in this group was inversely correlated with the lifetime amount of cannabis 
used by the subjects (p<0.01), further supporting the association of the brain’s 
hypoactivation and the drug use.  

These findings suggest that cannabis users have an increased susceptibility to memory 
distortions even when abstinent and drug-free, suggesting a long-lasting compromise of 
memory and cognitive control mechanisms involved in reality monitoring. 



19 
 

V. General conclusions and final remarks 

 

This thesis presents a set of contributions to the field of automatic and quantitative 
analysis of digital medical images in nuclear medicine and neuroradiology. This 
expanding field aims to provide better diagnostic accuracy and help to detect subtle 
anatomical, physiological or pathological changes in clinical groups that may contribute 
to our understanding of disease etiologies. 

On one hand, this work contributed to increasing the diagnostic potential of breast 
cancer and non-Hodgkin lymphoma FDG-PET scans through the design and 
computation of a set of novel image-derived quantitative indicators of tumor burden. In 
addition, quantitative analysis of pediatric DMSA scans helped to develop new 
indicators of structural renal damage. 

On the other hand, the application-specific quantification of cerebral FDG-PET and T1-
MRI scans contributed to the understanding of the pathogenesis of Alzheimer’s and 
Parkinson’s diseases, whereas the quantification of event-related fMRI images 
identified a novel memory deficit associated to cannabis use. 

Taken together, these contributions illustrate the potential value of the design and 
implementation of ad-hoc automated quantification strategies of medical images. The 
availability of new imaging modalities sparks the search for optimal image-derived 
quantitative indicators that model each particular clinical context of interest. Such 
indicators can be used either to complement visual diagnosis or to aid in the 
comprehensive characterization of the underlying pathology. 
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Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information
in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time
consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach
to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then,
a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is
defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential
Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49%
sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both
at the clinical and technological level.

Keywords: PET/CT, Whole Body, Tumor Segmentation, Supervised Learning, Contextual Classification.

1. INTRODUCTION
18F-FDG PET/CT (Fluorodeoxyglucose Positron Emission
Tomography–Computed Tomography) is a nuclear medicine
imaging technology widely used in cancer management. Its
outputs are two registered 3D volumes: a PET scan, with low
resolution, containing patient’s metabolic information in SUV
(Standard Uptake Value) units,15 and a CT scan, with higher reso-
lution, containing patient’s anatomical information in Hounsfield
(HU) units (Hoffer).

FDG-avid tumors show higher than normal SUV values in
non-physiological locations. Given the low resolution of the PET
scan, the CT scan is used to precisely locate any suspicious
high metabolic activity within its anatomical context. Whole-
body PET/CT scans are a valuable diagnostic and prognostic tool
since they allow medical experts to evaluate the patient’s global
cancer stage, as well as to write a detailed descriptive report for
each patient based on the observed findings.

Quantitative tumor information (Metabolic Tumor Volume,
SUVmax, SUVmean, Total Lesion Glycolysis) obtained from
PET scans has also proven to be useful in the clinical scenario,
especially in follow-up scenarios.21�29 In order to obtain these
numerical parameters, “tumoral voxels” must be segmented from
the PET volume (Fig. 1), identifying the patient’s whole body

∗Author to whom correspondence should be addressed.

metabolic tumor volume (WBMTV). In the clinical practice, this
task is currently performed manually by trained physicians who,
for each tumor lesion, run any convenient semi-automatic seg-
mentation algorithm available (region growing, level-set or adap-
tive thresholding, among others) seeking for the correct region
isolation.26

This process suffers from two main limitations. First, it is a
time-consuming task, especially when working with advanced
cancer stage patients, where the tumor has spread all over the
whole body. Second, it suffers from inter-and intra-observer vari-
abilities: aside from human related errors and variabilities, the
fact of using different software tools, different semi-automatic
segmentation algorithms or different initialization parameters for
the same algorithm is likely to introduce non-desirable variations
in the segmentation results.

In order to overcome these limitations, in this work we propose
the implementation of a completely automatic whole-body PET
tumor segmentation system. The proposed system will analyze
the anatomical, physiological and physiopathological context of
any given whole-body PET scan from breast cancer patients in
order to be able to automatically identify, locate and segment the
set of tumoral voxels present in it.

In order to deal with this task, a supervised learning framework
is proposed, designed, implemented and validated on a 200
PET/CT ground truth dataset. The system is built using a
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Fig. 1. Maximum intensity projections (MIP) of a sample PET scan (left)
and its corresponding tumoral volume segmentation (right).

convenient set of voxel features, a cascade of AdaBoost classi-
fiers and a 3D contextual information framework based on a mod-
ified proposal of Multi-scale stacked sequential learning strategy.
The proposed system shows high performance results both at the
clinical and technological level.

The rest of the paper is organized as follows. Section 2
describes the related work on this topic. Section 3 describes
the dataset used in the design and validation of the pro-
posed system. Section 4 fully describes the analysis, design
and implementation of the proposed supervised learning sys-
tem. Section 5 describes the system’s performance results.
Finally, Section 6 points out some conclusions and future
work.

2. RELATED WORK
To the best of our knowledge, the particular problem of automatic
whole body PET/CT metabolic tumor volume segmentation has
not been addressed by the scientific community. The most similar
work to ours is probably the one published by Guan et al. where
the authors propose the automatic hot spot detection and seg-
mentation in PET images. However, not all tumor lesions appear
as a hot spot in PET scans, and not all hot spots are related to
tumor lesions (e.g., inflammation lesions, thyroids uptake, etc.).
Furthermore, its proposed method based on unsupervised learn-
ing is highly restricted since it assumes homogeneity of tumoral
lesions. Finally, the authors do not provide an exhaustive valida-
tion of the proposed system neither at the technological nor at
the clinical level in a large set of real PET/CT data.

Several related scenarios have been addressed in this research
field, mainly concerted on expert-guided semi-automatic PET
tumor segmentation and the application of supervised learning
strategies in PET/CT imaging.

Regarding expert-guided semi-automatic PET tumor volume
segmentation, a number of works have been done aiming to
optimize tumor segmentation results starting from the expert
defined initial boundary and predefined algorithm parameters.
Alternatives include GraphCuts,1 spectral clustering,28 adaptive
thresholding,20 gradient-based methods,27 fuzzy clustering based
methods3 and iterative thresholding methods.25

Machine learning methods, although not aimed at this
particular application, have been also applied in PET tumor seg-
mentation. In Ref. [11] the authors apply a learning method-
ology framework using Support Vector Machines to assist in
the threshold-based segmentation of non-small-cell lung can-
cer tumors in thorax PET/CT imaging for use in radiotherapy
planning.

A key point to mention in this supervised learning sce-
nario is the utmost importance of voxel contextual information.
That is to say, the tumoral condition of a given voxel is strongly
dependent on the characteristics of the surrounding voxels. Sev-
eral strategies have been introduced in this field, including
graphical models,13�14�19�24 super-pixel methods4�7�9 or contextual
priming.23

However, most of these previous approaches requires a pre-
stablished prior distribution of spatial properties or the need to
consider homogeneous features of neighboring voxels. In our
case, tumor lesions cannot be defined to appear spatially dis-
tributed with a consistent distribution neither to maintain similar
homogeneous properties. Given this fact, we extract a set of het-
erogeneous multi-modal features and define a contextual learning
approach based on discriminative classifiers, which will be able
to learn those relevant features and spatial relations present in
the training set. For this task, we focus on the Stacked Learning
framework5 and in particular, in the Multi-scale stacked sequen-
tial learning (MSSL) alternative presented in Ref. [6]. In that
work, the authors extend the Stacked Sequential Learning to
include in the feature vector of 2D samples the label predictions
in the neighborhood of image pixels at different scales, outper-
forming state-of-the-art approaches for 2D image segmentation.
With the same aim, in this work we present an adapted definition
of MSSL in the 3-Dimesional space.

3. MATERIALS
A total of 200 whole-body FDG-PET/CT studies (correspond-
ing to different patients) were obtained from the Philips PET/CT
Gemini TF machine located at the nuclear medicine department
in the Hospital de Sant Pau (Barcelona, Spain). Half of them
(100) correspond to perfectly healthy (control) patients, and the
other half (100) correspond to breast cancer patients in some can-
cer stage, ranging from low to very severe condition (following
an approximate uniform distribution, Fig. 2).
Each study contains two co-registered volumes (PET and CT)

in DICOM format. From the DICOM metadata, SUV values for
PET voxels and HU values for CT voxels can be computed. A
PET voxel corresponds to 64 mm3 and a CT voxel to 2 mm3.
Volume dimensions are 144× 144×Np for PET volumes and
512× 512×Nc for CT volumes (Np and Nc being the number
of slices for each volume). Np and Nc are generally related with
a ratio of Nc/Np= 2�66. However, the actual number of slices is
dependent on the volume of interest selected by the acquisition
technician, varying with the patient’s height and the anatomi-
cal limits of interest (typically either from neck to middle-thigh
or from the top of the skull to the feet). Patient’s position dur-
ing acquisition is also variable, mainly related to arm positions
(Fig. 2).
Ground Truth in PET tumoral volume segmentation for each

breast cancer patient was carried out by three independent
nuclear medicine experts (E1, E2, E3). Mean segmentation over-
lap between the three datasets, computed using the Jaccard
Index,22 was 0�76± 0�07, 0�84± 0�04, 0�78± 0�05 (E1 vs. E2,
E1 vs. E3, E2 vs. E3) indicating a high inter-rater reliability. The
final Ground Truth dataset was obtained using a majority vote
for each voxel from the three raters. Figure 2 shows some ground
truth sample segmentations.
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Fig. 2. Sample ground truth PET volumes. Maximum intensity projection is
shown for four different patients (top row). Note the high variability in patient’s
position, number of slices, and pathological condition (healthy, low, middle
and high). Ground truth tumoral segmentation for each patient is shown in
the bottom row.

4. METHODS
Our supervised learning framework design strategy for multi-
modal PET 3D tumor segmentation is described as follows. First,
a novel voxel feature set is proposed to model the tumoral and
physiological conditions within a PET volume. Then, a contex-
tual framework is proposed so that the learning process can take
into consideration the 3D context information of a voxel at dif-
ferent spatial scales. Finally, the learning algorithm choice and
its implementation are described.

Fig. 3. (a) Sample sagittal slice of the patient selected to build the atlas, anatomical level division and normalized x, y , and z coordinates of the same atlas
slice. (b) Sample sagittal slice of a test patient with the fitted atlas overlaid on it (sagittal, coronal and axial views) and (c) a smaller patient atlas fit (note the
reslicing in the coregistration process).

4.1. Voxel Feature Set Proposal
For a PET voxel to be considered tumoral, a set of medical con-
ditions must hold. Thus, clinical knowledge on tumoral volume
detection was provided by nuclear medicine experts in order to
aid in the feature set design:
(1) Generally, it can be assumed that for a voxel to be tumor-
related it must have at least 1.2 in SUV.
(2) Within a whole body PET volume, a big number of voxels
with high SUV values corresponding to physiological (i.e., nor-
mal) metabolic activity exists. Examples include the heart, the
brain, the bladder, the kidneys and the lower gastrointestinal tract.
The liver and the thyroid gland may show physiologically moder-
ate uptake but can be pathological if very high SUV focal activity
is present. Radiotracer injection point, generally located at the
forearm, usually show intense physiological activity.
(3) Less common physiological conditions include muscular and
brown fat uptake (showing higher than normal SUV). A hint on
detecting these phenomena is the presence of a diffuse and sym-
metric pattern with respect to the middle-vertical axes (from the
neck to the bladder). Hormonal cycles may show variable uptake
in breasts and gonads.
(4) The HU value of a voxel given by the CT data is related to
the tissue type present at that point. Note that it is not related to
the anatomical location or organ where that voxel belongs. For
example, a voxel in the biceps, the heart or the calf may have the
same HU value (corresponding to the muscle tissue). If the CT
scan was obtained using any contrast material,12 HU values in
some anatomical structures may differ from a non-contrast scan.

In order to transform this medical knowledge into quantitative
information, a set F of 30 features (F 1� � � � � F 30) for each PET
voxel is described as follows (note that all voxels with less than
1.2SUV value can be discarded for any processing and consid-
ered non-tumoral straight away).

Voxel SUV value and mean HU are recorded (F1 and F2).
Mean SUV and HU values on the surrounding of the voxel are
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also an interesting value for metabolic and anatomical informa-
tion, so they are recorded for cubical contexts centered at the
voxel of sides 3, 5, 9 and 15 (which correspond to cubic regions
of about 0.1, 1, 2 and 3 cm3 side within the patient’s body);
obtaining a total of 8 new features (F 3� � � � F 10).

Anatomical location of the voxel within the patient’s body is
also an important variable. Voxel coordinates c= �x� y� z� of the
volume model are not a good choice since PET volumes have
variable number of slices, orientation, and include a different por-
tion of the patient’s body. Thus, a set of normalized coordinates
are needed. To deal with this problem, an “anatomical origin of
coordinates” is required. Every voxel of a patient’s PET volume
should be indexed to a common anatomical reference point. A
stable choice for this “anatomical origin of coordinates” is the
lower point of the patient’s bladder. Bladder is a medium sized
organ that shows a very high SUV value in PET scans. Brain and
heart could be alternatives, but the brain is not always present
the PET scan and the heart does not always show high uptake
(see Fig. 2).

An ad-hoc algorithm for bladder location was developed. It
is based on finding the most down-centered medium-sized con-
nected component with very high SUV value (75% of maximum
SUV in the volume). That connected component has a very high
chance of being the patient’s bladder. The lower (minimum z

coordinate) point of this connected component is defined as the
patient’s anatomical origin of coordinates Ao = �a1�a2�a3�. This
method has achieved over 99% accuracy, failing in only 3 cases
out of 450 PET test volumes, which were later discarded from
further processing.

Although bladder anatomy and physiology show differences
among patients, the authors consider this origin of coordinates
a robust approximation to a common anatomical location of any
PET volume (Fig. 4). Therefore, any voxel coordinates should
be centered with respect to Ao, giving the new coordinates
c′ = �a1 − x�a2 − y�a3 − z�. Also, in order to normalize dis-
tance between points in very different anatomies, the coordinates
should be normalized by the patient’s body surface area bsa
(Mosteller). Thus, the final normalized coordinates of the voxel
are given by CN = c′/bsa, which contribute to 3 new features in
the voxel’s feature set (F 11� F 12� F 13).

Once a set of normalized coordinates within the patient’s
anatomy have been computed, a set of global coordinates are
proposed. Its main goal is to give some insight into questions
such as “is the voxel near the head? Is it near the thorax? Is it
near the lower gastrointestinal tract? Is it in any patient’s leg?
etc.”

A common approach to obtain this kind of information is to fit
an atlas to the volume under study. Therefore, an ad-hoc whole
body PET atlas was build based on an average sized patient in the
most common acquisition position. Since whole body anatomy
is extremely variable, the only labels that were included in the
atlas were: head and neck, from neck to heart, from the heart to
the kidneys level, from the kidneys level to the bladder and from
the bladder to the knees. Continuous atlas information was also
recorded for each atlas voxel in the form normalized 3D coordi-
nates (within the [0�1] range) with respect to the upper left vertex
of the atlas minimum bounding box. This proposed atlas is then
registered to the given PET volume (Fig. 3) using normalized
mutual information,18 obtaining four new features for each PET
voxel (F 14� F 15� F 16� F 17).

Fig. 4. Sample PET scans of a patient with brown fat uptake. Anatomical
origin or coordinates (A0) (1), middle-head point (2), sample voxel (3) and
its symmetric counterpart (4) with respect to the sagittal plane given by (1)
and (2). Note that the high symmetry measure between (3) and (4) is able
to model the underlying brown fat (i.e., non-tumoral) uptake ocurring those
regions.

Another common characteristic of some type of tumor lesions
in PET scans is its focal activity, related with a metabolic “hot
spot”2 appearance within the volume. In order to try to include
this phenomena for each voxel as a feature, the size of the con-
nected component where a voxel belongs to within its thresh-
olded PET volume at 1.2SUV was recorded (F18).
In order to define a symmetric metric, the symmetry plane must

be defined and computed. Within this medical context, symmet-
ric muscular or brown fat uptake is defined with respect to the
central sagittal plane of a patient’s body. Given that the plane
orientation is known (sagittal), two central points are needed to
completely define it. One of them is the already computed Ao,
approximately located at the low-center of a patient’s body. The
other could be the head mid-point, easily computed taking the
average of the middle points of the central connected component
of the first slices of any whole-body CT volume (Fig. 4). Now, the
symmetry plane equation can be computed and, for each voxel, its
symmetric voxel with respect to that plane can be located. Finally,
a quantitative measure on the symmetric counterpart of any voxel
activity is obtained computing subtracting the mean SUV value
on a 3× 3× 3 cube centered at that voxel and the corresponding
value on the same cube type centered at the voxel’s symmetric
counterpart (F19).
Recording local heterogeneity information is also useful in a

segmentation learning framework. Thus, the 3D gradient vec-
tor and its magnitude are computed for any PET and CT voxel
(F 20� � � � � F 27).
Binary information regarding patient’s sex and the use of con-

trast material in the CT scan is also included, which is found in
the DICOM metadata (F 28� F 29).
Finally, the patient’s arms position at the time of the scan

(upwards or downwards) is derived using a simple ad-hoc algo-
rithm based on counting the number of connected components
in a thresholded, smoothed and dilated version of the top scan
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Fig. 5. Arm position detector. MIP projections (a), (d), one of the patient’s
firsts resized axial CT slice thresholded (b), (e) and a smoothed, dilated and
thresholded version of it (c), (f). Counting the number of connected compo-
nents in these last images indicates whether the patient’s has got its arms
upwards or downwards.

slices: if there is only one component (the head), the patient has
its arms down and it there are three components (arms and head)
she has its arms up (Fig. 5). This method has achieved over 99%
accuracy, failing in only 6 cases out of 450 PET test volumes.
This last binary feature (F30) is relevant since the radiotracer
injection point, located at a forearm, is an important potential
false-positive source of error, and the learning system should
know whether that source is located at the head level or at the
hip level.

The summarized list of features computed for each voxel from
the different image modalities are summarized in Table I.

4.2. A 3D Contextual Learning Framework
Once all voxel features are computed for each PET scan in the
data set, the training matrix X (of size 15719349×30 in our case)
can be obtained and a base classifier model C can be trained with
any supervised learning algorithm h using the voxel’s Ground
Truth labels (g):

C = h�X�g�

Then, this classifier can be tested on the dataset, obtaining for
each voxel a predicted binary classification label y on its tumoral
condition. As it has been mentioned before, if a voxel has been
classified as tumoral, its neighborhood voxels are more likely to
be classified as such than the others. The goal of the proposed 3D
Multiscale Stacked Sequential Learning (MSSL) is to augment
the feature set of each voxel with contextual information from
the base classifier predictions at neighboring voxels in order to
train a new classifier that would be able to learn the application’s
context rules and outperform its global segmentation results.

In particular, the original feature set will be extended with a set
of contextual parameters (Z) using the base classifier predictions
(y) in several 3D context scales (S). Then, a new classifier C ′

will be trained using the extended training matrix X′ obtaining
the final contextual classifier. This approach is summarized in
Figure 6.

Table I. Voxel feature set design summary.

Feature groups Description

F 1 � � � F 10 SUV and HU values at the voxel and its neighborhood lattices.
F 11 � � � F 13 Voxel’s local anatomically normalized coordinates.
F 14 � � � F 17 Voxel’s global anatomical location approximation.
F 18 � � � F 19 Voxel’s hot spot belonging and symmetry information.
F 20 � � � F 27 Voxel’s PET and CT volume gradient information.
F 28 � � � F 30 Binary information regarding the patient’s sex, CT type and arms position.

Fig. 6. 3DMSSL approach in building a contextual classifier (C′) extending
the original feature set X with a set of contextual parameters (Z) computed
using a context function (J) that uses the prediction labels (y ) of a base
classifier (C) in different context scales (S) for each voxel.

In order to deal with this task, the first step is to define appro-
priate neighborhood dimensions and structure (S) for each voxel.
Cubic neighborhoods of size 3, 5, 9 and 15 voxels have empir-
ically shown good performance results. It could be stated that
Gaussian neighborhoods should be more suitable for this appli-
cation, since human anatomy does not contain straight borders.
However, using cubic boundaries would facilitate the incorpo-
ration of parallel computation techniques in this computing-
intensive scenario.

Once the neighborhood scales are defined, the contextual infor-
mation to be recorded for each neighborhood scale should be
defined (J ). The following set of contextual parameters (Z) for
each scale, based on the information given by the predicted labels
y of the base classifier (C), is proposed:

Z1S=
#voxels in scale S classified as tumoral by C

#total voxels in S

Z2S= #voxels in scale S classified as nontumoral by C
#total voxels in S

Z3S = #voxels in scale S not included in the training process of C
#total voxels in S

Note that Z3 is included since all voxels with less than 1.2 SUV
are discarded for the learning process. Then, the original feature
set for each voxel is extended with these contextual parameters:

F ′ = F U�Z1s�Z2s�Z3s�∀S

which in practice corresponds to appending 12 features (4 scales,
3 parameters) to each original voxel’s feature set (F 31� � � � � F 42)
obtaining an extended training matrix (X′). Finally, the contextual
classifier C ′ is trained on the new training data X′:

C ′ = h�X′� g�

which will be used as the final classifier system for
our automatic whole body PET tumor segmentation system
proposal.

4.3. Learning Algorithm Choice and Implementation
Finally, the supervised learning algorithm (h) choice and imple-
mentation will be discussed.
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Given the large amount of data to be processed within the
learning framework (nearly half a million voxels per patient to
be processed), a cascading strategy is required. Since the training
set is large, there is a big number of training patterns and we are
faced with a two-class problem (a voxel is either tumoral or not),
the authors have chosen a Cascade of classifiers as the learning
framework.30 The learning algorithm chosen as building block
in the cascade of classifiers is the Discrete Adaboost classifier
with decision stumps. The selection of this alternative classifier
is two-fold. First, it performs feature selection within the learning
process, which allows studying the discriminative power of each
feature in the classification rule, which is a desirable behavior
given the clinical context. And second, it does not require any
hyper parameter tuning a part from the number of iterations,
which can be set sufficiently high in the first place, resulting in
a faster training stage in comparison with other state of the art
approaches.

The final implementation scheme is shown in Figure 7.
Given the large number of non-tumoral training entries, a sin-
gle AdaBoost classifier cannot be trained using the whole dataset
due to computational resource limitations. Instead, the training
set is initially divided in the set of tumoral entries T (with a total
of 190537 entries) and a subset of the non-tumoral entries with
the same size as T �H0�. A first classifier C1 is trained with this
data using an AdaBoost learning block. After testing this classi-
fier with its training entries, true negatives instances are rejected
from further processing since they have been correctly classified
by this cascade level. False positive, false negative and true posi-
tive instances are pipelined to the next block level in conjunction
with a new subset of non-tumoral entries that are misclassified by
the previous levels (HFN1

) in order to train the second level clas-
sifier �C2�. This process is repeated until all non-tumoral entries
are considered in any level. To avoid noise overfitting, it is rec-
ommended to discard a small fraction of false positive entries in
a subset of cascade levels.

Once the cascade of AdaBoost classifiers has been trained, the
testing procedure for any given voxel entry is accomplished in
the following manner: if classifier C1 predicts it as a non-tumoral
voxel, it is finally classified as such without further processing.
Otherwise, the entry is tested on the next level classifier �C2�.
This procedure is repeated until the entry is either classified as
non-tumoral by any cascade level or the end of the cascade is
reached, in which case the entry is classified as tumoral.

For each cascade level Ci, the AdaBoost classification parame-
ters are computed, which include a set of feature weights that are
used to compute the voxel’s classification value, and a threshold

Fig. 7. Supervised learning framework a cascade of adaboost classifiers.
Training (top) and testing (bottom) phases.

Fig. 8. Sample validation process. Without loss of generality, when the val-
idation parameter (p) is varied from 0 to 1, a decreasing in mean FP rate
and an increasing in mean BC overlap of the validation set (up to a local
maximum) is observed.

that will be applied to it to obtain the final voxel class (either
tumoral or non-tumoral). Since on average there is only one
tumoral voxel entry for each 120 non-tumoral voxel entries, the
training procedure is biased to produce a high false positive rate.
To overcome this limitation, a validation stage is designed

as follows. For each classifier, the difference between the mean
tumoral and non-tumoral voxel classification values is com-
puted (DL). Then, a fraction p of DL is added to the classifier’s
threshold in order to increase its strictness and decrease its false
positive rate. When performing a p sweep in the range 0 to 1
and checking the classifier’s performance in a separate validation
set, a local maximum in mean Jaccard overlap Index in the set of
breast cancer PET volumes is always observed (Fig. 8). There-
fore, the optimal validation parameter pmax is recorded and all
cascade classifier thresholds are modified with an additive term
pmax ·DL.

5. RESULTS AND DISCUSSION
In this section, the proposed system results are described both at
the technological and clinical level. First, performance results of
the learning framework are presented. Then, a comparison with
a justified alternative to the proposed system is shown and the
clinical relevance of the system is illustrated.
Performance of the proposed learning scheme is addressed

using a 10-fold cross-validation approach in the test phase. From
the 200 patient’s PET/CT studies original dataset, for each learn-
ing round, 10% (20 patients, 10 breast cancer patients and 10
control patients) are used as a test set and 90% (180 patients) as
training and validation set, of which 5% (9 patients) are used as
validation set and the remaining 171 patients as training set.
Performance results in the test set are computed using the

mean overlap (mOV) metric for segmentation accuracy and the
mean sensitivity and specificity for generic classifier accuracy.
The overlap metric (based on the Jaccard Index) is particularly
suitable for this application since it is and standard and rigorous
evaluation of volume segmentation that penalizes both under and
over segmentation estimations.
Note that for any GT control patient, its overlap parameter

with the classifier output is either 0 or 1, being 1 only when the

197



Delivered by Publishing Technology to: Nanyang Technological University
IP: 67.217.217.86 On: Mon, 12 Oct 2015 21:05:51

Copyright: American Scientific Publishers

R ES E A R CH AR T I C L E J. Med. Imaging Health Inf. 5, 192–201, 2015

Fig. 9. Global performance results of the base and contextual classifiers.

outputs classifier has no false positive voxel; a single classifier’s
false positive voxel on a control patient would give 0 overlap.
Since half of the test patients are control patients, this phenomena
will alter the mean overlap metric in an unstable manner. A more
convenient mean overlap performance is obtained if overlap is
only computed on breast cancer patients (mBCOV). Then, the
performance on the control patients can be analyzed using the
sensitivity and specificity parameters.

Performance results at the voxel level obtained by the base
(C) and contextual (C ′) classifiers are shown in Tables II and III.
Figure 9 summarizes the global classifiers’ test performance.

Note the significant improvement of the contextual classifier
with respect to the base classifier (nearly 20% in mean over-
lap, paired t-test p < 0�03). The higher specificity than sensi-
tivity result is coherent with the average presence of one voxel
tumoral entry for each 120 non-tumoral entries during the learn-
ing process.

The combination of a high mean overlap (39%) achievement
for this scenario and nearly mean 50% sensitivity points out that
the learning system is actually detecting most of tumor lesions
but doing a very strict segmentation of them, classifying a high
percentage of its boundary voxels as false negative. However,
the authors consider that this problem could be addressed with
appropriate post processing techniques (such as region-growing
or 3D morphology) aiming to obtain much better overall results.
It could be stated that the proposed learning framework princi-
pal’s target is to detect any tumoral region within a whole-body
PET volume, and successful results in this respect have been
shown.

Table II. 10-fold cross-validation base classifier (C) results.

Round mOV (%) mBCOV (%) Sensitivity (%) Specificity (%)

1 23.00 46.00 80.84 99.99269
2 25.15 40.29 60.12 99.99781
3 14.01 28.02 30.47 99.98914
4 37.98 15.97 8.72 99.99896
5 20.02 30.05 16.67 99.99608
6 24.51 39.02 46.99 99.99709
7 32.84 25.69 6.79 99.99787
8 13.28 26.57 33.19 99.99453
9 28.88 37.76 56.45 99.99505
10 21.43 42.85 47.80 99.99630
Mean 24±7 33±9 38±24 99�995±0�003

Table III. 10-fold cross-validation contextual classifier (C′) results.

Round mOV (%) mBCOV (%) Sensitivity (%) Specificity (%)

1 35.80 51.60 94.13 99.98736
2 21.95 43.91 81.26 99.99270
3 13.44 26.88 41.23 99.98801
4 47.53 45.05 42.99 99.98946
5 30.29 40.58 20.02 99.99728
6 50.19 30.38 40.90 99.99834
7 47.75 35.49 27.41 99.99611
8 13.94 27.87 26.65 99.99669
9 24.06 48.12 75.90 99.99033
10 40.99 41.99 38.92 99.99844
Mean 32±13 39±8 49±25 99�993±0�004

Several learning process performance results are worth men-
tioning. Figure 10 shows the classifier’s performance evolution
at each level of the cascade process for the base and contextual
classifiers considering the mean of training, validation, and test
data set performances. Note that the contextual classifier needed
much less number of cascade levels (10) with respect to the base
classifier (21) for achieving better segmentation results, which
indicates that the contextual information provided by the base
classifier contributed significantly in the increase of overall learn-
ing framework performance.

In order to analyze the relevance of each selected feature
during the learning process, Figure 11 shows the mean relative
feature weight values estimated using the set of AdaBoost confi-
dence parameters computed at each cascade level in the learning
process.

The most relevant features from the base feature set are the
mean SUV and HU values in the lowest scale, fitted atlas coor-
dinates and PET and HU gradient magnitudes. These results are
supported at clinical level since these features are the most con-
sidered by nuclear medicine physicians in clinical PET tumoral
volume detection. Not surprisingly, less relevant features are
related to global binary information such as the patient’s gender,
CT type and arms position. Contextual features relevance dur-
ing the contextual learning process is high and notably variable
across scales (S1, S2, S3, S4) and parameters, which is coher-
ent with the classifier’s effort to learn the complex whole body
human anatomy and physiology in different scales.

Visual classifiers’ results to be compared with Figures 1–2
ground truth segmentation are shown in Figure 12, Where one
can see how the proposed systems obtains a good approximation
of the real tumoral volume segmentation. Also note the contex-
tual classifier outperformance with respect to the base classifier
in most tumor lesion segmentations.

Using a fully-MALTAB implementation of the proposed learn-
ing framework, computation time for the training phase was
about 28 hours. Given a test whole body PET volume, the total
computation time including voxel feature computation and its
posterior classification is about 7 minutes in a 64 bit Intel(R)
Core™ i5 CPU (750@2.67 GHz 2.67 GHz) with 8 GB RAM and
Windows 7 OS.

Regarding the clinical impact of the proposed tool, note that
the clinical use of the obtained whole body metabolic tumor vol-
ume segmentation relies on the a posteriori computation of a
set of prognostic parameters from it.21�29 A common prognostic
parameter that have proven useful in cancer management is pre-
cisely the total whole body metabolic tumor volume (WBMTV),
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Fig. 10. Base (a) and contextual (b) classifiers’ performance evolution at each cascade level of the learning process.

Fig. 11. Relative feature weights. Base classifier (blue, first level of the
learning process), contextual classifier (red, second level of the learning pro-
cess with the extended contextual feature set).

Fig. 12. Base classifier results on patients of Figures 1–2 (first row), contextual classifier results (second row). Ground truth data for these samples is shown
in Figures 1 and 2, respectively.

as shown in Ref. [17], trivially computed counting the total num-
ber of tumoral voxels of the PET volume and converting to vol-
ume units such as cm3.
Therefore, a relevant clinical performance parameter is the

correlation obtained at comparing the WBMTV values obtained
from the expert-guided tumor segmentation masks and the pro-
posed automatic segmentation framework. A Pearson correlation
coefficient of 73% is obtained.
Finally, a comparative analysis of our proposed system with

another completely automatic approach to WBMTV computation
is carried out. A rather naïve alternative is based on a direct
thresholding masking of the PET volume. Clinically, it has been
stated that although it is variable according to tumors, a 3.0
threshold on SUV value is a general cut-off set for differentiating
between malignant and benign lesions.17 Thus, direct threshold-
ing on 3.0 SUV value can be used as a naïf automatic whole body
metabolic tumor volume segmentation system. Note however the
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Fig. 13. Correlation between GT WBMTV and its automatic approximations
using the proposed supervised learning framework (73%) or direct thresh-
olding in 3.0 SUV value (64%). Note that only breast cancer patients are
included and patient numbers are sorted by GT WBMTV in ascending order.

big limitation of this methodology, which will considerer any
physiological uptake higher than 3.0 (brain, heart, bladder, kid-
neys, etc.) as tumoral volume. Performance results of this alterna-
tive show notably poorer results (5±2% mean overlap, 10±4%
mean BC overlap, 72±18% sensitivity and 99�86±0�03% speci-
ficity). Correlation with the WBMTV parameter calculation also
shows worst results (64%), as shown in Figure 13.

6. CONCLUSIONS AND FUTURE WORK
In this paper, a supervised learning framework has been proposed
for solving the whole-body breast cancer PET/CT metabolic
tumor volume segmentation problem. Our approach is based
on training a cascade of AdaBoost classifiers and a 3D con-
textual learning framework from a set of automatically com-
puted multi-modal PET/CT features. Given the complexity of the
addressed problem, system’s performance has shown good results
at the technological level (49% sensitivity, over 99.99% speci-
ficity and 39% overlap) and at the clinical level (73% correlation
in metabolic tumor volume calculation with respect to medical
experts).

Future work for this project include extending the training
dataset to increase performance results, testing the framework on
different cancer types in order to try to obtain a general PET/CT
metabolic tumor volume segmentation tool (which would be
valuable in nuclear medicine departments), the proposal of post
processing techniques to improve the overall segmentation accu-
racy, improving computation time using parallel and GPU tech-
niques in a C++ environment and checking for online learning
alternatives. An incorporation protocol of the proposed system
within the clinical scenario is also required, which will require
its integration with the hospital’s picture archiving and commu-
nication system (PACS), the implementation of a user-friendly
graphical user interface and the incorporation of a semi-automatic
segmentation module to allow the medical expert to correct the
system’s automatic segmentation proposals.
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ported by the Spanish government FPU (Formación del Profeso-
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Obtaining quantitative global tumoral state indicators
based on whole-body PET/CT scans: a breast cancer
case study
Frederic Sampedroa, Anna Domenechc and Sergio Escalerab,d

Objectives In this work we address the need for the

computation of quantitative global tumoral state indicators

from oncological whole-body PET/computed tomography

scans. The combination of such indicators with other

oncological information such as tumor markers or biopsy

results would prove useful in oncological decision-making

scenarios.

Materials and methods From an ordering of 100 breast

cancer patients on the basis of oncological state through

visual analysis by a consensus of nuclear medicine specialists,

a set of numerical indicators computed from image analysis of

the PET/computed tomography scan is presented, which

attempts to summarize a patient’s oncological state in a

quantitative manner taking into consideration the total tumor

volume, aggressiveness, and spread.

Results Results obtained by comparative analysis of the

proposed indicators with respect to the experts’ evaluation

show up to 87% Pearson’s correlation coefficient when

providing expert-guided PET metabolic tumor volume

segmentation and 64% correlation when using completely

automatic image analysis techniques.

Conclusion Global quantitative tumor information

obtained by whole-body PET/CT image analysis can prove

useful in clinical nuclear medicine settings and oncological

decision-making scenarios. The completely automatic

computation of such indicators would improve its impact

as time efficiency and specialist independence would be

achieved. Nucl Med Commun 35:362–371 �c 2014 Wolters

Kluwer Health | Lippincott Williams & Wilkins.
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Introduction and related work
18F-fluorodeoxyglucose (18F-FDG) PET/computed tomo-

graphy (PET/CT) has become a standard imaging

method for the staging, restaging, and monitoring of

treatment response in a variety of tumors. By injecting

the 18F-FDG radiopharmaceutical into the patient, a

metabolic image of the whole body, measured in standard

uptake value (SUV) units, is acquired. This metabolic

image is obtained in combination with a coregistered CT

scan that provides higher anatomical resolution (in

Hounsfield units, HU).

Whole-body (WB) PET/CT scans are a valuable tool for

cancer detection and can be used to evaluate the spread

of cancer throughout the patient’s body [1,2]. The

current analysis of WB PET/CT scans is mainly visual;

nuclear medicine physicians build a descriptive report

about their findings regarding the possible location of

cancer and its metastases.

Local quantitative tumor lesion information, such as its

mean and maximum uptake value (SUVmean, SUVmax)

and diameter, is usually included in the report. Global

quantitative information, such as the whole-body meta-

bolic tumor volume (WBMTV) and total lesion glycolysis

(TLG), is usually not included in the report, although

they have been proven to be clinically relevant as

independent prognostic markers [3–7]. This may be

partly because the measurement of these parameters,

which currently requires an expert-guided manual or

semiautomatic tumor segmentation from the PET scan,

is highly time consuming and therefore not practical in a

clinical setting. It may also be because the usefulness of

this time-inefficient measurement has not been fully

determined [7].

In this work we address the computation of global

quantitative indicators from WB PET/CT scans that

reflect the patient’s oncological state. This type of

indicator is referred to as PET Global Oncological State

Indicator (PGOSI) hereon. Here, we consider that the

oncological state of a patient is deduced in a qualitative

manner from the expert-based visual analysis of WB PET

images and is related to the quantity of tumor present in

the body as well as its aggressiveness and spread. Clinical

nuclear medicine experts agree on the need for such a

quantitative indicator that, when combined with com-

plementary oncological indicators such as tumor markers
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0143-3636 �c 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins DOI: 10.1097/MNM.0000000000000067

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

mailto:fredsampedro@gmail.com


or biopsy results, would prove a valuable tool for

oncological decision making [1,2]. WBMTV and TLG

can be considered examples of PGOSI. Some conceptual

limitations of these indicators as well as new indicator

proposals that try to overcome them are presented in the

subsequent sections.

In this scenario, defining a gold standard for assessing the

performance of any proposed PGOSI is a complex task. It

could be argued that an appropriate choice would be to

compare the PGOSI results with other oncological clinical

variables such as biopsy results, TNM staging [8], tumor

markers, or N-year survival rates. However, we consider

that none of these variables appropriately model what our

PGOSI proposal is intended for: biopsy results are only

conclusive about a single anatomical location and do not

relate directly to the total tumor quantity and spread

within the patient’s whole body; TNM staging does give

an insight into the tumor quantity and spread but in a

categorical manner, and hence it could be argued that two

patients may possess slightly different oncological states

albeit belonging to the same TNM category; tumor

marker results may be independent of PET/CT observa-

tions depending on the type of tumor and its stage, and

N-year survival rates may not be appropriate for

comparison with PGOSI results as patients may undergo

different treatments and suffer from other nononcological

pathologies.

Note that in the related scenario of PET follow-up

evaluation, in which two time consecutive PET/CT scans

are compared to address therapy response, treatment

outcome parameters can be successfully used as the gold

standard to address the performance of the proposed

quantitative indicators obtained by the pair of PET/CT

scans [9,10]. However, the current work focuses on a

single PET/CT scan analysis to provide relevant oncolo-

gical prognostic quantitative indicators.

Therefore, the authors consider that an appropriate

information source for assessing the performance of the

proposed PGOSIs is a specialist-based visual PET

evaluation of each patient’s oncological state from a

consensus of independent experts in the field. In this

work, we present a set of quantitative PGOSIs and test

their impact at the clinical level by comparing their

performance with the corresponding qualitative evalua-

tion carried out by nuclear medicine specialists. We

emphasize on the time-efficiency aspect of PGOSI

computations by comparing expert-guided semiautomatic

strategies and completely automatic approaches.

Materials and methods
The proposed framework for the performance assessment

of PGOSI candidates in breast cancer patients is as

follows. A set of 100 WB PET/CT scans corresponding to

breast cancer patients with different tumor stages were

acquired from the Nuclear Medicine Department at

Hospital de Sant Pau (Barcelona, Spain) following all

international PET/CT imaging acquisition protocols.

These patients were grouped into four categories

according to their tumoral state by the consensus of

three independent nuclear medicine physicians as shown

in Fig. 1, following visual inspection criteria. As the role of

the proposed PGOSIs would have a major clinical impact

on the prognosis and management of early-stage cancer

patients [11], a larger number of patients in this stage

were acquired.

Also, semiautomatic segmentation of metabolic tumor

volume obtained from all WB PET scans was carried out

by three independent nuclear medicine physicians, which

yielded three independent segmentations (S1, S2, and

S3) of all patients in order to test the efficacy of any

PGOSI proposal in this procedure (Fig. 2). The

segmentation was accomplished using a specific-purpose

WB PET segmentation software tool.

To be able to test the performance of any given PGOSI

proposal, the set of 100 patients was ordered according to

their oncological state upon agreement among three

independent nuclear medicine experts. The set of

clinical variables that were taken into consideration by

the experts during the ordering procedure were:

(1) C1: Total tumor volume.

(2) C2: Global aggressiveness of the tumor.

(3) C3: Spread of the tumor – that is, number of organs

affected by the tumor and the number of metastases.

Now, given a PGOSI calculation proposal, once computed

to the whole set of breast cancer patients, an ordering

Fig. 1
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of patients according to their PGOSI value can be

obtained. The performance (related to clinical impact) of

the proposed PGOSI can be addressed by computing the

correlation value between the experts’ patient ordering

and the proposed PGOSI ordering. Figure 3 shows an

ordering example of a subset of the breast cancer

patients, as well as the corresponding schematic drawings

that have been used throughout this paper to illustrate

the set of PGOSI proposals and their performance.

The set of PGOSI proposals in this work is detailed as

follows. First, it should be noted that, in order to

maximize performance, any PGOSI proposal should seek

to quantitatively represent the clinical variables that

define a patient’s tumoral state (C1, C2, and C3).

Second, an important property of any PGOSI should be

its level of independence from any specialist evaluation,

in the sense that an ideal PGOSI should be automatically

computed from any given WB PET/CT scan. However,

current technology is unable to automatically identify and

segment the entire tumoral volume in a given WB PET/

CT scan in a reliable manner (although encouraging

results have been shown recently in this respect [12]).

Thus, in this work we conduct a comparative analysis of

the performance of the PGOSI proposals when they are

computed in a completely automatic manner or after

providing an expert-guided semiautomatic tumor seg-

mentation mask. In doing this, we assume that techno-

logical advances will at some point bring both

performances to the same level.

The set of existing clinically justified PGOSI proposals

that are related to C1 and C2 have been already

mentioned (SUVmax, SUVmean, WBMTV, and TLG).

The SUVmax and SUVmean of the patient’s whole-body

tumor volume try to measure the cancer aggressiveness

but miss the information related to the actual tumor

quantity that is present within the patient’s body. In

contrast, WBMTV does measure the cancer quantity but

fails to model its aggressiveness. TLG takes into account

both the quantity and aggressiveness of the patient’s

cancer, but fails to reveal its spread (C3). The limitation

of this set of PGOSIs is illustrated in Fig. 4.

To overcome these limitations, a new set of PGOSIs is

proposed and described as follows. A key issue to be

addressed is how to quantify the cancer spread through-

out the patient’s body (C3) and compare it with that of

other patients, assuming that all of them have the same

tumor quantity and the same mean aggressiveness. In

particular, a major goal is to be able to distinguish

between both tumoral conditions seen in Fig. 4d.

A first alternative would be to compute the number of

connected components (NCC) [13] from the PET tumor

segmentation mask, which will be related to the number

of tumor lesions within the patient’s body. This

parameter would give a clue about the cancer spread

but suffers from some limitations in the special case of a

relatively condensed group of tumor lesions, wherein it

could be argued that the overall cancer spread would be

inferior and therefore the PGOSI value would be so. This

limitation is shown in Fig. 5.

To avoid this problem, the NCC value could be combined

with the average distance between components, which

can be computed by averaging the distance (measured in

millimeters, for instance) between the middle points of

all connected components. Setting up a new parameter

Fig. 2

Sample metabolic tumor volume segmentation carried out by a nuclear medicine expert.
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based on the product of NCC and average distance

between components (aNCC) overcomes the NCC

limitation, but produces another limitation related to

the average operation, as illustrated in Fig. 6.

One could try to extend this reasoning by introducing the

SD between the middle points of the connected

components as a new parameter to be taken into account.

However, it rapidly becomes clear that what is needed is a

new parameter that approximates the number of organs

where the cancer is present within the patient’s body.

Note that this parameter, referred to as NORG, would

overcome the limitations of NCC and aNCC (Fig. 7).

To deal with this task, the following algorithm for

obtaining an approximation of the number of affected

organs (NORG) is proposed. We start by setting NORG

at 0. Then, for each connected component of the PET

tumoral segmentation mask, if it has an average HU value

significantly different from that of all other connected

components or if its middle point is significantly far away

from the rest of the connected components, we increase

its value by 1. When terminated, an approximation of the

actual number of organs or distinct anatomical locations

where the tumor is present is obtained. This method has

shown a positive correlation of 41% when compared with

the NORG value for the 100 breast cancer patients

with the actual number of affected organs identified by

the medical experts for each patient (where ganglionar

adenopathies were considered a single organ except if

there existed superior and inferior instances). This result,

which is superior to the NCC (31%) or aNCC (33%)

correlation, is considered appropriate for quantitatively

modeling the patient’s cancer spread.

Once a set of several quantitative variables that try to

measure the cancer spread has been introduced, to obtain

a robust PGOSI proposal, the data obtained from it

should be combined with the variables that are related to

tumor quantity and aggressiveness.

A first step consists of combining the tumor quantity and

aggressiveness indicators. TLG has already been pro-

posed for this task, but the authors consider this

parameter highly dependent on the segmentation proce-

dure (as it directly includes the WBMTV) and does not

consider the distribution of SUVs across all tumor regions

(as it includes only the SUVmean).

Fig. 3

Experts’ patient ordering in ascending tumoral grade based on clinical visual and semiquantitative variables (top). Schematic illustrations that model
the corresponding tumor distribution within each patient’s body (bottom) and its aggressiveness (represented by its grayscale intensity: the darker
the higher).
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Thus, a new parameter for this measurement is

introduced as the sum of all SUVs of the tumor

segmentation mask voxels. We consider this number to

be less sensitive to the chosen segmentation method as

the boundary voxels in tumor lesions (which is generally

responsible for the difference among segmentation

methods) will contribute less to the final parameter

value, as they tend to have a lower SUV. Also, taking the

sum and not the average of all tumor SUVs will provide a

better sense of distribution of its aggressiveness. This

parameter is then normalized by voxel size (in mm3) and

the patient’s body surface area, which can be easily

obtained from the DICOM scan metadata. We will refer

to this described parameter as nTSUV.

Before addressing the performance results of the set of

PGOSI proposals, note that its derivation and analysis

have been highly simplified, in the sense that in some

PET/CT scans its values could be substantially altered by

physiological and pathological phenomena. For instance,

SUVmax and SUVmean may be altered because of muscular

uptake (Fig. 8a) or partial volume effects if the lesions are

located near brown fat uptake (Fig. 8b) [14]. Also,

segmenting false-positive or false-negative 18F-FDG

uptakes (e.g. inflammation) could alter most of the indi-

cators, especially the WBMTV value (and even the spread

indicators if a false lesion is significantly isolated from the

Fig. 5

Limitation of the NCC as a measure of cancer spread. Assuming the
same tumoral volume and SUVmean, the NCC parameter is able to
distinguish between a single big lesion and a set of smaller lesions, but
does not give a clue about their spatial distribution, leading to possible
clinical miss-ordering. NCC, number of connected components;
SUV, standard uptake value.

Fig. 6

Limitation of the aNCC parameter as a measure of cancer spread.
Although it succeeds at distinguishing between common spread
differences, the average distance measure could lead to some miss-
orderings, as it could be argued that the last tumoral state would be
inferior to the third (where the tumor has reached a larger number
of distinct anatomical locations).

Fig. 7

The NORG parameter as a good conceptual indicator of cancer spread
across the patient’s body.

Fig. 4

(a)

(c) (d)

(b)

Conceptual limitations of common follow-up indicators when used
as a PGOSI. The patients’ schematic illustrations are based on those
defined in Fig. 3. For each case, the equals sign illustrates that
the same PGOSI value would be obtained in both patients [(a) SUVmax;
(b) SUVmean; (c) WBMTV; (d) TLG], albeit possessing an arguably
different oncological state. PGOSI, PET Global Oncological State
Indicator; SUV, standard uptake value; TLG, total lesion glycolysis;
WBMTV, whole-body metabolic tumor volume.
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rest). Finally, the NCC, aNCC, and NORG parameters

may not accurately model what they are intended for in

advanced tumoral states, as seen in Fig. 8c and d. Since

the experts’ visual evaluation is not conditioned on these

quantitative parameter variabilities, this could reflect a

first limitation of the proposed PGOSI framework.

In the next section, an exhaustive performance analysis of

a set of PGOSI proposals is presented. All PGOSI

proposals were obtained by combining the previously

described parameters, which seek to quantify the

qualitative information that the medical experts use to

evaluate the patients’ global oncological state from WB

PET/CT scans.

Results and discussion
In this section, performance results of a set of PGOSI

proposals in terms of the Pearson correlation coefficient

of the experts’ ordering of the 100 breast cancer patients

and the ordering obtained from the computation of each

PGOSI are addressed.

Table 1 shows the correlation results of a set of PGOSI

proposals. Performance using either manual (i.e. expert

guided) or automatic tumor segmentation techniques is

presented. For the manual segmentation scenario, to

evaluate the segmentation independence of all PGOSI

proposals, performance results are computed in three

different tumor segmentation masks segmented by

three independent nuclear medicine physicians (S1, S2,

and S3). Completely automatic tumor segmentation

strategies include the machine learning framework

(MLF) described by Sampedro et al. [12] and a naı̈ve

direct thresholding method at an SUV of 3.0 [15].

First, note the performance results of the state-of-the-art

indicators. As predicted in the previous section, the

SUVmean (48%) and SUVmax (60%) do not model a

patient’s global tumoral state precisely. The WBMTV and

TLG parameters, as expected, give much better results

(80%). These results are consistent with those obtained

in clinical studies [16–18]. It is to be noted that our

proposed nTSUV indicator gives the same correlation

performance (80%) but is up to three times more

Table 1 Performance results using Pearson’s correlation coefficient of a set of PET Global Oncological State Indicator proposals

Manual segmentation Auto segmentation

PGOSI S1 S2 S3 Mean SD MLF Threshold

SUVmean 0.4929 0.4698 0.4945 0.4857 0.0138 0.3319 0.2492
SUVmax 0.5965 0.6142 0.6142 0.6083 0.0102 0.4502 0.2487
WBMTV 0.7997 0.8124 0.8040 0.8054 0.0064 0.5664 0.3154
TLG 0.7934 0.8015 0.7944 0.7964 0.0044 0.5730 0.2733
nTSUV 0.8024 0.8074 0.8026 0.8041 0.0028 0.5759 0.2562
nTSUV*NCC 0.8581 0.8561 0.8528 0.8557 0.0027 0.6214 0.2567
nTSUV*aNCC 0.8429 0.8392 0.8384 0.8402 0.0024 0.6114 0.2563
nTSUV*NORG 0.8712 0.8597 0.8642 0.8650 0.0058 0.6351 0.2578

Maximum correlation values are highlighted in bold.
MLF, machine learning framework; PGOSI, PET Global Oncological State Indicator; SUV, standard uptake value; TLG, total lesion glycolysis; WBMTV, whole-body
metabolic tumor volume.

Fig. 8

A sample of patient’s physiological and pathological states that could alter any PGOSI performance. (a) muscular uptake, (b) brown fat uptake,
(c and d) advanced tumoral stage. PGOSI, PET Global Oncological State Indicator.
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independent of the manual segmentation used, which is

consistent with its design and proposal.

Therefore, the authors consider that the indicator that

best models the quantity and aggressiveness of the tumor

is the nTSUV. Now, this parameter should be combined

with the spread indicators NCC, aNCC, and NORG to

improve the performance results. As can be observed, a

significant improvement of 6% correlation was achieved.

Although no significant difference is shown regarding the

use of NCC, aNCC, and NORG, the best performance

results were obtained by combining nTSUV and NORG,

which is consistent with the derivation presented in the

previous section.

Regarding the results obtained using a completely

automatic segmentation scenario, because of the high

complexity of the problem, significantly lower correlation

results were obtained. Very poor correlation (< 32%) was

obtained using the direct thresholding method, which is

consistent with the fact that this method would consider

any voxel with an SUV greater than 3.0 as tumoral,

including physiological uptakes in the brain, heart,

kidneys, and bladder. Moderate but significant correlation

results were obtained using the MLF method (63%),

which were remarkably higher than those of some state-

of-the-art indicators such as SUVmean and SUVmax. It is

noteworthy that this methodology, despite showing about

20% worse performance than the best manual segmenta-

tion alternative, is much more time efficient and does not

suffer from variabilities due to different segmentations

obtained by different experts or software tools.

Figure 9 shows the state-of-the-art visual correlation

results between the experts’ ordering and each PGOSI

using manual segmentation (S1). Figure 10 shows the

corresponding results of the nTSUV*NORG PGOSI

using either manual segmentation (S1) or automatic

segmentation (MLF).

Another way of evaluating the performance of the

nTSUV*NORG PGOSI could be by computing its mean

number of position errors from the experts’ ordering.

Using manual segmentation, the value obtained was

11.3±10.2, which means that on average the ordering

resolution of this indicator is 11 positions. If one

considers a plausible 5% of outliers due to either

segmentation or experts’ ordering errors, this number

reduces to 9.8±7.9. Considering that during the ordering

process the nuclear medicine physicians agreed that there

would be a mean 5–6-position variance if the ordering was

carried out independently instead of by consensus, this

result can be considered noteworthy. Using automatic

segmentation (MLF), the results were 17.9±17.0 and

15.3±13.1 (if a 5% outlier is assumed).

In clinical practice, the impact of the proposed PGOSI

can be addressed by establishing a numeric indicator

Fig. 9
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range for each of the four groups of patients based on

oncological state (low, moderate, high, very high). In this

case, for 90% of patients in the low group, the

nTSUV*NORG value range was 21.52–5157.77; for 40%

of patients in the medium group the range was

5249.52–16486.45; for 65% of patients in the high group

the range was 17852.39–138386.08; and for 71% of

patients in the very high group the range was

210293.92–7882691.02. These results are consistent with

the difficulty of distinguishing between medium and high

oncological states in a quantitative manner with a

relatively small patient sample.

For the sake of completeness, Table 2 shows the

performance of another set of PGOSI proposals based

on the combination of other relevant indicators that have

been described in this work. Although none of them

achieved the performance of nTSUV*NORG, very similar

performance results and tendencies were seen, which

confirms that when WBMTV or TLG is combined with

cancer spread indicators, a significant performance

improvement is obtained.

Finally, a small illustrative test to validate the potential

value of the proposed scoring system was conducted.

First, the PET/CT scans of five patients (independent

from the ones used in the previous analysis) with a very

similar oncological state (i.e. in the same stage) were

given to three independent nuclear medicine specialists

to be ordered according to oncological state. As expected,

the ordering varied among the specialists, and there-

fore the possible ordering obtained by consensus among

all of them may be weak. Then, in the same setting,

a new independent set of five patients in a very

similar oncological state was selected. Now, however,

not only images but also some of the PGOSI values for

each patient (in particular, the WBMTV and nTSUV*
NORG values) were provided to the specialist. A

substantial agreement in the ordering by the three

specialists compared with the previous scenario was

Table 2 Performance results using Pearson’s correlation coefficient of a set of PET Global Oncological State Indicator proposals

Manual segmentation Auto segmentation

PGOSI S1 S2 S3 Mean SD MLF Threshold

NCC 0.8251 0.8210 0.8255 0.8239 0.0025 0.6430 0.0012
aNCC 0.7639 0.7891 0.7753 0.7761 0.0126 0.5614 0.0025
NORG 0.8083 0.7994 0.8177 0.8085 0.0092 0.6526 0.0034
WBMTV*NCC 0.8476 0.8471 0.8523 0.8490 0.0029 0.6136 0.3174
WBMTV*aNCC 0.8370 0.8326 0.8346 0.8347 0.0022 0.6094 0.3152
WBMTV*NORG 0.8592 0.8498 0.8571 0.8554 0.0049 0.6300 0.3154
TLG*NCC 0.8519 0.8520 0.8512 0.8517 0.0004 0.6163 0.2713
TLG*aNCC 0.8420 0.8351 0.8340 0.8370 0.0043 0.6091 0.2742
TLG*NORG 0.8661 0.8524 0.8565 0.8583 0.0070 0.6334 0.2733

MLF, machine learning framework; NCC, number of connected components; PGOSI, PET Global Oncological State Indicator.

Fig. 10
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observed, which would induce a more robust ordering by

consensus.

In summary, the presented results show how quantitative

indicators that model the patient’s oncological state from

a WB PET/CT scan can be obtained such that there

is significant agreement with the corresponding

human-expert visual analysis. This fact represents an

important contribution, as numerical indicators are

known to be much more convenient in decision-making

scenarios because of their robustness and human

independence.

Conclusion
In this work we have presented a number of quantitative

indicators computed from WB PET/CT scans that

seek to model the global oncological state of a given

patient. The design and performance of the proposed

indicators have been addressed through a qualitative

evaluation of a set of 100 breast cancer patients from

a consensus of three nuclear medicine physicians.

In this process, the specialists took into consideration

visual and semiquantitative parameters related to the

patient’s tumor volume, aggressiveness, and spread.

Therefore, the set of proposed quantitative indicators

have been designed to model these tumor properties

through the computational image analysis of the

metabolic tumor volume segmentation of a WB PET

scan, aiming to maximize independence from specialist

evaluation.

Performance results based on the correlation between the

ordering by global tumoral state of the 100 breast cancer

patients performed by the consensus of experts and the

proposed quantitative indicators have shown up to 87%

correlation using expert-guided PET tumor volume

segmentation and 64% using a completely automatic

segmentation framework.

The authors consider that the results of this work

have contributed to support the need of a quantitative

oncological summary of a WB PET/CT scan, which

would prove helpful in oncological decision-making

scenarios when combined with other cancer indicators.

Future work includes performing case studies in

different cancer types in which PET evaluation plays a

significant role (e.g. lymphoma, sarcoma, or ovarian

cancer), as well as keeping track of automatic PET

tumor segmentation technologies to obtain a reliable,

time-efficient, and expert independent indicator compu-

tation system.

Finally, all the described framework and results will need

to be validated in large cohorts in long-term studies to

fully determine whether the proposed indicators are

useful in oncological and nuclear medicine settings to

address the prediction of the patient’s outcome and

treatment response.
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a b s t r a c t

In this work we present a comprehensive computational framework to help in the clinical assessment of
cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design
and implementation of a supervised machine learning system to predict and quantify cancer progression
or response conditions by introducing a novel feature set that models the underlying clinical context is
described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in
comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a
completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET
tumor segmentation masks.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

18F-fluorodeoxyglucose (18F-FDG) positron emission tomogra-
phy (PET) has become a standard imaging method for the staging,
restaging, and monitoring of treatment response in a variety of
tumors. By injecting the 18F-FDG (fluorodeoxyglucose) radiophar-
maceutical to the patient, a metabolic activity volume, measured
in SUV (standard uptake value [1]) units, is acquired. FDG-avid
tumors such as lymphoma, sarcoma, breast cancer or ovarian
cancer show higher than normal SUV values in non-physiological
locations, leading to a more accurate diagnosis than MR (magnetic
resonance) imaging or CT (computed tomography) in some onco-
logical scenarios [2]. Current technology offers integrated PET-CT
and more recently PET-MRI scanners, which provide co-registered
PET and CT/MR scans of the patient [3].

This technology has proven especially useful in patient's global
cancer response assessment [4,5], where a comparative analysis
between two time consecutive whole body PET-CT scans can
provide an accurate insight of the morphological and physiologic
cancer evolution trends. Generally, nuclear medicine physicians
assess a patient’s cancer progression or response (Fig. 1) condition
following a trained visual analysis of both scans.

By segmenting the tumor volume from the PET scans, changes in
metabolic tumor volume (MTV) and its metabolic activity (typically
modeled by its mean or maximum SUV values) have shown to be a
valuable quantitative indicator of the cancer evolution stage, as
described in Refs. [6,7]. However, these studies focus on a particular
subset of cancer scenarios, where typically only one significant tumor
lesion is analyzed, and changes in the tumor spread over time are not
taken into consideration. Sampedro et al. recently showed in [8] that
the cancer spread information should be taken into consideration in
the quantitative analysis of the oncological state from PET scans.

Note that as obtaining an accurate expert-guided tumor segmenta-
tion of whole body PET scans is highly time-inefficient in the clinical
day-to-day setting, sometimes a very rough approximation of the
volume and activity of each tumor lesion is obtained by placing a user-
variable radius sphere on top of the lesion and reading its diameter
(commonly in mm) and the mean and maximum metabolic activity
values (SUVmean, SUVmax) within the sphere’s volume.

In this work we introduce a computational framework for the
analysis of the cancer time evolution based on two time con-
secutive PET-CT scans. The aim of this system is to aid in the
decision making process regarding the cancer progression or
response condition by providing supporting quantitative informa-
tion from image analysis and machine learning techniques.

Despite being a highly challenging computational scenario (as
shown in subsequent sections), nuclear medicine experts agree on
the need of such a computational system that could provide objective
and quantitative information to support the visual analysis, which is
well-known to suffer from inter- and intra-observer variabilities [9].
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To the best of our knowledge, the computational modeling of
the described scenario has not been addressed by the scientific
community. Although nuclear medicine software stations include
several tools to carry out expert-guided PET segmentation and allow
the direct superimposition of segmentation masks from one PET scan
to another, they lack a comprehensive computational decision making
and quantitative framework analogous to the one proposed in
this work.

The rest of the paper is organized as follows. Section 2 describes
the materials used for the validation of the proposed system. Section 3
presents an in-depth characterization of the methodology proposed
for the implementation of the computational framework. Section 4
shows the results of the proposed system (using semi-automatic and
automatic configurations) and discusses its possible applications in the
clinical setting. Finally, Section 5 concludes the paper and points out
some future work required to fully validate the proposed system in the
clinical domain.

2. Materials

A total of 200 whole body FDG PET-CT scans were obtained from
the Philips PET-CT Gemini TF machine located at the nuclear
medicine department in the Hospital de Sant Pau (Barcelona,
Spain). Each scan contains two co-registered volumes (PET and
CT) in DICOM (Digital Imaging and Communications in Medicine)
format. From the DICOM metadata, SUV values for PET voxels and
HU (Hounsfield units [10]) values for CT voxels can be computed. A
PET voxel corresponds to 64 mm3 and a CT voxel to 2 mm3. Volume
dimensions are 144�144�Np for PET volumes and 512�512�Nc
for CT volumes (Np and Nc being the number of slices for each

volume). Np and Nc (ranging from 192 to 213 and 511 to 623,
respectively) are related with a ratio of Nc/Np¼2.66. However, the
actual number of slices is dependent on the volume of interest
selected by the acquisition technician, varying with the patient’s
height and the anatomical limits of interest (typically either from
neck to middle-thigh or from the top of the skull to the feet). The
patient’s position during acquisition is also variable (mainly related
to arm positioning).

These 200 scans correspond to 100 patients with Non-Hodgkin
lymphoma or breast cancer (where the proposed framework
would be of much clinical interest), each one having two time
consecutive scans (T and Tþ1) with which oncological evolution is
addressed. The time elapsed between scans is typically between
3 and 8 months, depending on external clinical factors such as the
type of treatment received and other clinical and logistic variables.

The ground truth information regarding clinical condition for each
case was given following a consensus of three independent nuclear
medicine physicians (53 cancer progression and 47 cancer response
conditions). The same consensus also agreed conceptually about the
existence and location of tumor lesions in all PET scans. Subsequently,
each physician segmented a random third of the scans, therefore
providing the expert-guided tumoral segmentation masks of 200 PET
scans. Note that in an analogous context, Sampedro et al. [11] showed
good inter-observer segmentation overlap degree in segmenting
oncological PET scans, and therefore this issue is not considered in
this work.

The disease extent was variable across subjects, ranging from a
single small tumor lesion to a highly spread metastatic tumor.
However, the majority of the cases (approximately 80%) showed
multiple tumor lesions (analogous to the scans in Figs. 1a and 2),
where the decision making process becomes more difficult in clinical

Fig. 1. Sample cancer progression (a) and response (b) conditions as shown by two time consecutives PET scans. Maximum intensity projections (MIP) of the PET volumes
are displayed.

Fig. 2. Whole body FDG-PET MIP projections of a patient (left) and its corresponding tumor volume segmentation carried out by a nuclear medicine physician (right).
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practice and automatic segmentation techniques would be valuable, as
the semi-automatic approach would be highly time-consuming.

3. Methods

In this sectionwe first present the proposed computation model of
the stated clinical scenario at a system level and then describe its
implementation based on a supervised machine learning framework.

3.1. Computational model and system design

In general, there exist several clinical scenarios that may be
present when analyzing the cancer evolution condition from a
particular pair of time consecutive PET scans, which base cases are
summarized in Fig. 3.

The most common cases are also the most intuitive, which are
shown in Fig. 3a–c. As an example, the cancer progression shown
in Fig. 1a can be modeled as a combination of the progression
conditions in Fig. 3a, b and d, as in time Tþ1 the tumor lesions
that were present at time T increased in size and metabolic activity
and new lesions appeared throughout the subject’s body.

Analogously, the cancer response condition shown in Fig. 1b can
be associated with a combination of Fig. 3a and b conditions, as
the tumor shrank in size and decreased in SUV value. Finally,
examples of Fig. 3d and e conditions are shown in Fig. 4.

Once the clinical cases that are used to identify a cancer progres-
sion or response condition have been modeled, the clinical problem
can be simplified to a pattern recognition problem where a binary
decision has to be made, providing as input two time-consecutive PET
scans from the same patient. Fig. 5 shows the block diagram of the
proposed fully automatic computational system to address this
problem.

Two modules are required to successfully identify the cancer
evolution condition from a pair of PET-CT scans. First, the tumor
segmentation masks need to be obtained by an Automatic Tumor
Segmentation module which, as will be described in Section 3.2
represents a challenging computational problem and therefore can
be identified as a performance bottleneck of the problem. Second,
an automatic decision making module is responsible for recogniz-
ing the clinical patterns illustrated in Fig. 3 (or a combination of
thereof) and output the predicted cancer evolution condition. Note
that the incorporation of an additional module to quantify the
“intensity or severity” (in terms yet to be defined) of a particular

Fig. 3. Illustrations of the typical cancer evolution scenarios in nuclear medicine. When a single tumor lesion is present, its change in volume or intensity in time define its
progression or response condition (a, b, c). In the multi-lesion case, the spread of the cancer into new anatomical locations (regardless of the volume change) or the intensity
increase in any of the lesions is clinically associated with a progression scenario (d, e). Intensity of the tumor lesion is represented by its color intensity (pink-low, red-high).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Real examples of the cancer evolution conditions illustrated in Fig. 3d (a) Fig. 3e (b). Note the appearance in (a) of new tumoral lesions in time Tþ1 with respect
to T and how in(b) most lesions decrease in intensity but the one pointed by the open arrow shows an increase.
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cancer progression or response would raise the potential clinical
value of the system. However, the sole computational ability to
accurately predict the type of cancer evolution represents a
challenging enough problem to be addressed in this work.

Given the high complexity of the problem under consideration,
the proposed system, albeit proving time-efficient and objective
information, may produce a significant amount of incorrect results
at any level (both within the ATS and ADM modules). Therefore, a
semi-automatic approach where an expert may validate the
process carried out by the computational system at any level
may be a reasonable setting, as the accuracy of the overall
framework would increase and the expert may receive clinically
relevant quantitative information from the system modules.

3.2. System implementation: A supervised machine learning
framework

In this subsection the implementation of the system blocks in
Fig. 5 is presented. A key point to note is the high complexity of
the whole system. On one hand, the ATS system should be able to
discriminate between tumoral and physiological volumes within
any whole body PET scan, which requires the correct identification
of the heart, bladder, kidneys and brain among others, which can
show substantial differences in morphology and intensity patterns
between a healthy infant and an eldest person with an advanced
oncological state. On the other hand, the ADM system can be faced
with a huge variety of cancer evolution patterns, from which it is
responsible for the identification of some of the conditions
illustrated in Fig. 3. Furthermore, there is no general agreement
on the magnitude of an SUV change to be considered as significant
to model a progression or a response (Fig. 3b and c), that is, a small
change in SUVmean between 1% and 10% may not be considered
enough for discrimination. As the whole decision making process
carried out by the medical experts relies on a combination of
mainly visual analysis features, the implementation of a direct and
analytical mathematical model would be too restrictive.

These properties of the computational setting lead to the adoption
of a supervised machine learning based solution for both system
blocks. An ATS system was already designed and implemented in
Sampedro et al. [11] where the authors deal with all the specific
challenges of the problem by building an ad-hoc PET voxel feature set
that given enough training data can recognize most pathological and
physiological patterns (from specific organ normal uptake to other
phenomena such as muscular uptake, brown fat uptake or inflamma-
tion). In short, in [11] the authors proposed an ATS system derived
from modeling a set of clinical facts that are related to the presence of

tumor tissue in a computational PET voxel feature set and obtained an
expert-guided training set of PET volumes which was used to train a
supervised learning classifier capable of providing a tumor segmenta-
tion mask proposal from any given whole body PET scan. Note that
this alterative offers conceptual advantages to the few other existing
fully automatic whole body PET tumor segmentation techniques,
which assume tumor homogeneity and “hot spot” structure [19]. In
this work we will use this system as a black box module for the
automatic extraction of the PET tumoral segmentation masks.

Therefore, the remaining portion of this subsection will present in
depth the design and implementation of our ADM system. First, given
that it will be based on a machine learning scheme, an ad-hoc feature
set must be obtained from the ADM input data (both T and Tþ1 PET
tumor segmentation masks). The main design goal of this feature set is
to maximize its capacity to model appropriately the underlying
scenario and therefore help the supervised learning algorithms to
accurately detect the desired patterns and correctly discriminate
between a cancer progression and response condition.

The chosen feature set is described next. On one hand, consider
a base case with the presence of a single tumor lesion in both T
and Tþ1 scans (Fig. 3a–c). In this scenario, changes in total tumor
volume (ΔVT) and its SUVmean (ΔSUVmean) are probably the most
relevant descriptors of the underlying phenomena. We have also
considered the incorporation of the change in SUVmax (ΔSUVmax)
as an appropriate descriptor, as it has proven to be a relevant
indicator in the clinical literature [12] and at the computational
level could account for the alteration of the ΔSUVmean indicator
due to segmentation variations between both masks.

On the other hand, it is clear that additional descriptors are
needed to model the cases illustrated in Fig. 3d and e. To do so, the
multi-lesion scenario must be addressed. First, in order to do it
within an image processing framework, the number of connected
components (NCC) in the segmentation mask is used to model the
number of tumor lesions present within the patient’s body at any
time as described in [8]. Then, the change in NCC between time T
and Tþ1 masks (ΔNCC) is introduced as a descriptor in the feature
set. A particular limitation is that although this is probably the
most sensible approach, the NCC parameter can be “noisy”, mean-
ing that a particular single lesion may be segmented in different
connected components depending on the segmentation method
employed (especially if using threshold-based methods).

Note that although the ΔNCC parameter provides useful informa-
tion for the decision making process regarding the global change of
tumor lesions in time, it is still not enough to model the evolution
cases illustrated in Fig. 3d and e (i.e., a negative or nil ΔNCC can still
reflect a progression condition). To overcome this final limitation, two

Fig. 5. Computational framework block diagram. WB PET-CT: whole body PET-CT scan, ATS: automatic tumor segmentation, TVSM: tumor volume segmentation Mask, ADM:
automatic decision making.
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additional features are added to the final descriptor. The first is
responsible of modeling the appearance of new tumoral lesions in
time Tþ1 with respect to time T, that is the detection of the tumor
volume that spread to a different anatomical location in time (VN). The
computation of VN is not direct. First, in order to spatially compare
both segmentation masks in a robust manner, they must be coregis-
tered in space, since the patient’s position and physical shape (severe
loss weight is a common cancer symptom) may have considerably
changed in both PET scans. In particular, we use the Normalized
Mutual Information (NMI) technique to perform this operation (Fig. 6).

Second, both coregistered masks are smoothed (and rebinar-
ized) in order to compensate for small segmentation artifacts and
to be able to robustly compare the voxel wise overlaps between
specific connected components from both masks. Let the resulting
masks be ST and STþ1. Since they are both binary (logical) 3D
matrices, the following element-wise operation can be computed:

MN ¼ STþ1 \ :ST

Now, the MN can be used to detect the set of new tumoral
lesions and compute its volume. However, a last processing step
should be carried out in order to avoid taking into account the
positive voxels in MN that are “semantically wrong”, meaning that
they are actually associated to a shared tumor lesion but appear in
MN due to segmentation differences, slight changes in lesion
morphology across time or coregistering effects (Fig. 6 right).
Therefore, they need to be excluded in the computation of VN. To
accomplish this, Algorithm 1 is applied.

VN¼0
For each non-zero voxel v in MN:

Compute the connected component of the STþ1 mask
where v belongs. Let cTþ1 be its corresponding binary mask.

Compute the connected component of the ST mask that
has the closest voxel (in (Euclidean distance) to v. Let cT be its
corresponding binary mask.

Compute the Jaccard overlap index between both
connected components:

J ¼ CTþ1 \ CT

CTþ1 [ CT

If JoD (a predefined threshold):
VN¼VNþ1

Algorithm I. Computation of VN.

The last feature to be included is intended to model the most
subtle clinical evolution scenarios, illustrated in Fig. 3e and b. For that

purpose, local increasing of tumor intensity at the lesion level in time
Tþ1 with respect to time T are detected and quantified in the
descriptor AN. To accomplish that, we consider the intersection mask:

I¼ STþ1 \ ST

Then, consider the masked PET volumes by I, PT and PTþ1, in
SUV voxel units. We define the logical volume:

H¼ PTþ1 4αPT

which accounts for the tumor voxels that shown a significantly
higher (controlled by α) intensity in time Tþ1 with respect to T.
Finally, AN is defined as the number of non-zero entries in H.

To sum up, the feature set of the supervised learning-based
ADM system is shown below:

F ¼ ΔVTf ; ΔSUVmean; ΔSUVmax; ΔNCC; VN ; ANg

Note that if the system is used in semi-automatic mode, meaning
that the medical expert are assessing and correcting the computations
performed by the system modules, the presentation of the particular
feature vector as well as all the intermediate volume masks (especially
MN and H), can provide relevant quantitative information to comple-
ment the expert’s visual analysis process.

Once our proposed feature set has been defined, the choice of
the supervised learning algorithm of the ADM system is addressed.
First, note that this particular learning problem is challenging, not
only due to the high variability of the input and the subtle
evolution scenarios to be detected, but also because of the small
and subjective training set available (since PET scans are costly and
the ground truth information is derived mainly from an expert’s
visual analysis).

Therefore, a range of learning algorithms is applied to seek for the
best supervised learning strategy within this scenario (following the
no free lunch theorem [13]). The set of chosen learning algorithms is
the following: Naïve Bayes classifier (given the high independence of
the individual features), kNN, decision trees (to try to capture a
clinically relevant decision rule) [16], neural networks [17], logistic
regression (to obtain an output probability instead of binary decision)
[14], and state of the art radial basis function SVM [15] and Discrete
AdaBoost [14] approaches.

All the required hyperparameters (k from kNN, SVM RBF
parameters, number of units/layers of the neural network, number
of decision stumps for Adaboost, etc) where chosen using a nested
leave-one-out cross validation scheme within the training data,
and the external leave-one-out was used at the test phase.

4. Results and discussion

In this section we present the performance results of the
proposed system and discuss its implications both at the clinical
and technological levels. Two main system usage modes are
distinguished, one where the system runs in a completely auto-
matic manner having only as input the pair of time consecutive
PET-CT scans of a given patient, and another where the PET tumor
segmentation masks carried out by medical experts are also
provided as input to the system.

In the first case, the ATS module plays a major role in the
overall system performance. As it was mentioned, in this work we
use the ATS system trained on 200 independent PET-CT scans
described in [11] as a black box module to automatically segment
the tumor volume from a give PET-CT scan. For each of the 100
cancer evolution cases described in Section 2, physicians provided
the expert-guided PET tumor segmentation masks, allowing us to
evaluate the ATS module segmentation performance.

Fig. 6. Illustration of the coregistering process needed to spatially compare the T
and Tþ1 segmentation masks in a robust manner. NMI: normalized mutual
information.
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As expected, the segmentation accuracy results at the voxel level
are quite low: mean Jaccard overlap index of 0.1870.21, mean
sensitivity (ratio of correctly classified tumor voxels and the sum of
correctly classified tumor voxels and incorrectly classified tumor
voxels) of 0.2370.28 and mean specificity (ratio of correctly
classified non-tumor voxels and the sum of correctly classified
non-tumor voxels and incorrectly classified non-tumor voxels) of
0.999870.0005, with a clear tendency to prioritize false negative
over false positive decisions (which was intended by the authors as is
sensible given the clinical context). However, a more relevant
performance indicator of the ATS module is its relative (rather than
absolute) discrimination power between the quantities of tumor
present in different PET scans. In this respect, our ATS module shows
a 71% Pearson correlation coefficient when comparing the total
tumor volume of the expert-guided and automatic PET segmentation
masks, which is clearly superior to other completely automatic
segmentation strategies such as direct thresholding [8] (49%).

Once the system has access to both time T and Tþ1 PET tumor
segmentation masks (either from the ATS module or provided by the
medical experts), the ADM module executes. The dataset available to
address its performance is built from the computation of the six
features described in Section 3.2 for each of the 100 cancer evolution
cases (where D and α where empirically set to 0.05 and 1.2,
respectively). This 100�6 matrix, in conjunction with the ground
truth cancer evolution condition (progression or response) for each
case is then provided to the set of supervised learning algorithms
within a nested leave-one-out cross-validation scheme described in
Section 3.2. The tendency of the mean values of the learning algorithm
parameters across the cross-validation phase were k¼3 in kNN, 20
weak classifiers in AdaBoost, C¼1 (box constraint) and σ¼0.05
(scaling factor in the radial basis function kernel) in SVM, and three
layers in NN.

Performance results are shown in Table 1. In this context, accuracy
is defined by the fraction of correctly classified evolution cases,
sensitivity as the ratio of correctly classified progression cases and
the sum of correctly classified progression cases and incorrectly
classified response cases, and specificity as the ratio of correctly
classified response cases and the sum of correctly classified response
cases and incorrectly classified progression cases.

As it can be observed, a substantial performance gap is
observed between the automatic and semi-automatic approach,
which is associated with the limitations of the ATS module to
provide a correct tumor segmentation mask. As an example,
consider the cancer progression shown in Fig. 7.

Clearly, the set of features computed from the automatic segmen-
tation masks will be altered due to the errors made by the ATS block
and, although these errors may have some patterns (typical errors
include the wrong detection of the heart, bladder or kidneys), the
learning algorithms may not be able to resolve them when obtaining
the classification rule.

Finally, in order to address the convenience of the proposed
ADM feature set, the relevance of each feature within the decision
making process in the two learning algorithms that achieved the
best performance results is shown in Fig. 8. Note that both results
are perfectly consistent with the underlying clinical scenario,
where the total volume change (ΔVT) is clearly the most relevant
visual indicator and the change in the number of lesions (modeled
by ΔNCC) is only relevant if some of the lesions are actually new in
time Tþ1 (which is already modeled by VN).

These results contribute to both computed aided diagnosis and
quantitative longitudinal analysis in the medical imaging field. The
derivation of quantitative indicators from segmentation procedures to
monitor clinically relevant information is common in a number of
medical imaging modalities (see [20–22] for examples in MRI, CT, and

Table 1
Accuracy (Acc), sensitivity (SN) and specificity (SP) results of the ADM system at predicting the cancer progression or response condition. Manual (M) or Auto (A) refer to the
use of the expert-guided or ATS segmentation masks, and train (Tr) or test (Te) refer to the accuracy obtained in the training or test phases. NB: Naïve Bayes, NNet: neural
networks, LReg: logistic regression, DT: decision tree, SVM: RBF support vector machine, kNN: k-nearest neighbors, AB: discrete AdaBoost.

NB NNet LReg DT SVM kNN AB

Acc SN SP Acc SN SP Acc SN SP Acc SN SP Acc SN SP Acc SN SP Acc SN SP

MTe 0.77 0.68 0.89 0.8 0.81 0.79 0.83 0.86 0.78 0.85 0.83 0.87 0.85 0.88 0.80 0.86 0.83 0.90 0.90 0.89 0.91
MTr 0.78 0.69 0.90 0.87 0.89 0.85 0.85 0.88 0.80 0.96 0.95 0.97 0.85 0.88 0.80 0.87 0.84 0.89 1.00 1.00 1.00
ATe 0.57 0.34 0.90 0.53 0.54 0.51 0.68 0.77 0.53 0.70 0.69 0.71 0.70 0.71 0.68 0.62 0.64 0.58 0.54 0.51 0.58
Atr 0.58 0.35 0.90 0.70 0.72 0.69 0.71 0.79 0.58 0.88 0.88 0.88 0.74 0.74 0.74 0.76 0.76 0.76 1.00 1.00 1.00

Fig. 7. Illustrative example of the limitations of the ATS system and its possible effects in the ADM performance results. The same cancer progression is shown with the
expert-guided tumoral segmentation masks (a) and its corresponding ATS alternatives (b).
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cerebral FDG-PET). Computer aided diagnosis systems and the use of
machine learning techniques in them are also emerging within the
field [23,24]. In this work, by introducing the proposed framework, we
extended the range of applications of these computational techniques
in the assessment of cancer evolution in oncological PET-CT scans.

5. Conclusions and future work

We described a common clinical diagnostic scenario in nuclear
medicine imaging, the cancer evolution assessment (its progression or
response stage) via a pair of time consecutive PET-CT scans, and
proposed a computational framework to complement the expert’s
visual analysis with relevant quantitative and subject-independent
information within this diagnostic context.

Since modeling this particular clinical scenario following the high
level expert’s knowledge and reasoning from a computational point of
view represents a challenging problem, a supervised machine learning
framework has been proposed. A trade-off is observed between the
use of a completely automatic (and therefore time-efficient and
subject independent) approach with a performance accuracy of 70%
at detecting the correct cancer evolution condition (taking as a
reference the expert’s visual analysis), and a semi-automatic approach
where the system is provided with the PET tumoral segmentation
masks carried out by the trained physicians, which show up to 90%
performance. In any case, the set of numerical indicators used as
feature set within the machine learning framework or the numerical
outputs of the trained classifiers may provide the expert with relevant
quantitative information, contributing to improve the overall diagnos-
tic accuracy in the clinical setting.

Future work includes, at the clinical level, the incorporation and
long term validation of the proposed system in the day-to-day medical
practice as well as the introduction of a new quantification module to
model the overall intensity of a particular cancer progression or
response condition, which would become a very useful tool to help
in oncological treatment response analysis and management. At the
technological level, we plan on reducing the computation time of the
system using GPU-based parallelization techniques as well as dealing
with the multi-class problem of recognizing each of the evolution
patterns instead of the general response/progression state by introdu-
cing successful multi-class frameworks such as error-correcting-
output-codes [18].
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Deriving global quantitative tumor response parameters from
18F-FDG PET-CT scans in patients with non-Hodgkin’s
lymphoma
Frederic Sampedroa, Anna Domenechc, Sergio Escalerab,d and Ignasi Carrióc

Objectives The aim of the study was to address the need for
quantifying the global cancer time evolutionmagnitude from a
pair of time-consecutive positron emission tomography-
computed tomography (PET-CT) scans. In particular, we focus
on the computation of indicators using image-processing
techniques that seek to model non-Hodgkin’s lymphoma
(NHL) progression or response severity.

Materials and methods A total of 89 pairs of time-
consecutive PET-CT scans from NHL patients were stored
in a nuclear medicine station for subsequent analysis.
These were classified by a consensus of nuclear medicine
physicians into progressions, partial responses, mixed
responses, complete responses, and relapses. The cases
of each group were ordered by magnitude following visual
analysis. Thereafter, a set of quantitative indicators
designed to model the cancer evolution magnitude within
each group were computed using semiautomatic and
automatic image-processing techniques. Performance
evaluation of the proposed indicators was measured by a
correlation analysis with the expert-based visual analysis.

Results The set of proposed indicators achieved Pearson’s
correlation results in each group with respect to the expert-
based visual analysis: 80.2% in progressions, 77.1% in
partial response, 68.3% in mixed response, 88.5% in
complete response, and 100% in relapse. In the progression
and mixed response groups, the proposed indicators

outperformed the common indicators used in clinical
practice [changes in metabolic tumor volume, mean,
maximum, peak standardized uptake value (SUVmean,
SUVmax, SUVpeak), and total lesion glycolysis] by more
than 40%.

Conclusion Computing global indicators of NHL response
using PET-CT imaging techniques offers a strong
correlation with the associated expert-based visual
analysis, motivating the future incorporation of such
quantitative and highly observer-independent indicators
in oncological decision making or treatment response
evaluation scenarios. Nucl Med Commun 36:328–333
Copyright © 2015 Wolters Kluwer Health, Inc. All rights
reserved.
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Introduction
Fluorine-18 fluorodeoxyglucose (18F-FDG) positron

emission tomography-computed tomography (PET-CT)

has become a standard imaging method for the time

monitoring of treatment response in a variety of tumors

[1–3]. From a pair of time-consecutive whole-body PET-

CT scans nuclear medicine physicians assess a patient’s

cancer progression or response condition following a

trained visual and semiquantitative analysis of both images.

Thereafter, generally, a categorical and qualitative diag-

nosis is provided, such as ‘good response’, ‘slight progres-

sion’, or ‘strong relapse’. Although this type of information

is generally enough in the clinical routine, it lacks observer

independence and does not provide a continuous response

scale to accurately compare between cases.

In this work we address the need and computation of

observer-independent global quantitative tumor response

indicators from a pair of time-consecutive PET-CT scans.

This complementary information to the physician’s visual

analysis would prove especially useful in comprehensive

oncological treatment response evaluation and compar-

ison scenarios, as well as in the context of studying pos-

sible cancer evolution differences related to particular

clinical profiles.

This issue has been partially addressed in the literature in

the form of relating time changes in local tumor meta-

bolic activity or volume with surgical outcome parameters

[4–8]. Although this methodology is well suited to

recognize the value of quantifying PET-CT images, it

does not provide a sound framework for designing and

evaluating the proposed global response indicators due to

several reasons.

First, changes in cancer spread are not taken into con-

sideration, which, as derived from Sampedro et al. [9] and
described later in this paper, play a key role in measuring

the cancer progression or response magnitude. Second, it

Original article

0143-3636 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved. DOI: 10.1097/MNM.0000000000000256

mailto:fredsampedro@gmail.com


Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of the article is prohibited.

is important to note, in the general case, the lack of a

well-defined gold standard indicator to compare the

proposed global response indicators. In particular, non-

Hodgkin’s lymphoma (NHL) response or progression

magnitude is not well described by any clinical con-

tinuous parameter. Even if the international prognostic

index is considered the current prognostication system

for NHL, prognostic heterogeneity is suggested to exist

among the patients within the same international prog-

nostic index risk group [9–11]. In such a scenario, the

performance of the proposed indicators can be addressed

by using the information resulting from an expert-based

ordering by magnitude of the cases where the indicator

performance is to be measured, as shown in [3].

Thus, in this work, we start from an ordered set of NHL

response/progression cases based on its magnitude

(derived by the visual analysis of a consensus of experts

focusing on time changes in tumor volume, aggressive-

ness, and spread). Then, from its associated pair of PET-

CT scans, we propose and compute a set of global

response/progression indicators by quantifying time

changes in the segmented metabolic tumor volumes (also

provided by nuclear medicine physicians). Indicator

performance is addressed by a correlation analysis with

the initial expert-based ordering. Aiming to maximize

observer independence in the indicator computations,

the possibility of using completely automatic PET tumor

volume segmentation techniques is also addressed.

Materials and methods
A set of 178 whole-body FDG-PET/CT scans corre-

sponding to NHL lymphoma patients were acquired

from the Phillips Nuclear Medicine workstation at

Hospital de Sant Pau (Barcelona, Spain) following all

international PET/CT imaging acquisition protocols [12].

From its digital imaging and communications in medicine

(DICOM) files, two coregistered three-dimensional

volumes were obtained for each scan: a PET volume,

in standardized uptake value (SUV) [13] units, and a CT

volume (in Hounsfield units) [14]. They corresponded to

89 pairs of time-consecutive scans of the patients. The

time elapsed between scans varied depending on the

clinical management of each patient, with a median of

3.2 months and an interquartile range of 2 months.

Classification of each cancer evolution condition was car-

ried out by a consensus of three independent nuclear

medicine physicians into progression (31), partial response

(28), mixed response (nine), complete response (13), or

relapse (eight). The classification criteria were based on

changes in tumor volume, aggressiveness (represented by

its metabolic activity through its SUV), and spread, as

illustrated in Fig. 1. Figures 2 and 3 show examples of real

cases of each cancer evolution condition.

Note that the cases illustrated in Fig. 1 represent the

canonical cancer evolution conditions; that is, in practice,

real cases may be combinations of those cases. For

instance, a progression case can be presented both with

an increase in tumor volume (or uptake) and with the

appearance of new lesions, a response case with both a

decrease in volume and uptake, or a mixed response case

with both increases and decreases in volume and uptake

of the persisting tumor lesions.

Then, the cases of each group are ordered by its mag-

nitude according to the following visual criteria. For

progression cases, relative increases in volume or

aggressiveness in the existing tumor lesions are con-

sidered less severe than the appearance of new tumor

lesions in adjacent or distant anatomical locations,

respectively. However, all these variables interact, in the

sense that strong volume increases of existing lesions

may be considered more severe than the sole appearance

of small adjacent new lesions. The ordering of partial

responses is analogous, but considering the relative

volume, aggressiveness, and spread it decreases

(emphasizing the global tumor size reduction). From an

imaging point of view, the ordering of relapses and

complete responses is analogous to that of progressions

and partial responses without any tumor presence in one

of the scans. Mixed responses are ordered considering

the overall balance of tumor volume and uptake increases

and decreases of the existing tumor lesions. Figure 3

shows an ordering example of a subset of the progressions

and partial responses considered in this study.

The main goal of this work was to analyze the best global

quantitative indicators that model each of the cancer

evolution groups so as to obtain a continuous analog of

the visual qualitative assessment. The performance of

each proposed indicator will be addressed by comparing

(using the Pearson correlation coefficient) the ordering

provided by the medical experts with the order obtained

by the indicator of the same cases.

On the design of such global indicators, the ones more

commonly used in clinical practice are first considered.

Conceptually, in the presence of more than a single

tumor lesion or highly heterogenous tumor tissue (e.g.

the presence of necrotic tissue in any of the scans), global

changes in SUVmean, SUVmax, or SUVpeak [4,13,15,16]

will not appropriately model the strength of the pro-

gression or response condition, as they are unable to

model volume increases or the appearance of new tumor

lesions. In contrast, global changes in whole-body meta-

bolic tumor volume (WBMTV) or total lesion glycolysis

(TLG) [15] offer a better overall description of the

magnitude of the cancer evolution. However, they still

suffer from conceptual limitations: consider the cases

modeled in Fig. 1d and in particular the top right pro-

gression case in Fig. 3. In such a case, these indicators

may not even be valuable, as the global WBMTV has in

fact decreased in time while the case is considered a

strong cancer progression.
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Therefore, we propose a new set of indicators that seek to

model more accurately the global progression or response

magnitude. With an eye to future technological advances,

we focus only on quantitative indicators that can be

computed from the PET three-dimensional tumor seg-

mentation masks of both time-consecutive scans. These,

in the future, may be obtained accurately in an automatic

manner using recent advances in machine learning-based

segmentation techniques [17], thus obtaining full obser-

ver independence in the whole process. Nevertheless, as

current automatic segmentation methods do not achieve

the required accuracy to compute reliable indicators in

this scenario [17], we focus on the use of expert-guided

semiautomatic tumor segmentation masks that, although

introducing a slight observer dependence and a highly

time-consuming step, provide accurate and reliable esti-

mators of the underlying phenomena. Figure 4 illustrates

this reasoning.

The key clinical variable that the new set of indicators

need to model are changes in cancer spread, which are

not modeled by the common indicators described before.

A first piece of information in this respect is the change in

the number of tumor-related lesions. These can be

modeled computationally by the change in the number of

connected components (ΔNCC) between the pair of

PET tumor segmentation masks, as from an image-

processing point of view a connected component [18]

Fig. 1

Response (partial)
Response (partial)

Response (complete)

Response (mixed)

Response (mixed)

Progression

Progression

Progression

Progression

Progression (relapse)

(a) (b) (c)

(d) (e)

Illustrations of the typical cancer evolution scenarios in nuclear medicine. When a single tumor lesion is present, its change in volume or intensity in
time defines its progression or response condition (a–c). In the multilesion case, the spread of the cancer into new anatomical locations (regardless of
the volume change) is associated with a progression scenario (d), whereas the intensity increase in any of the lesions is clinically associated with a
mixed response scenario (e). Intensity of the tumor lesion is represented by its grayscale intensity.

Fig. 2

Clinical examples of complete response (a), relapse (b), and mixed response (c). The thick arrows represent the direction of time. Each PET scan is
visualized using its maximum intensity projection.
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in the tumor segmentation mask can be associated with a

single tumor-related lesion [19]. Although clearly a high

ΔNCC in magnitude will be likely associated with the

strength of the cancer evolution, this parameter suffers

from noisy behavior due to possible segmentation inac-

curacies [19] and does not quantify the actual volume of

the new tumor lesions. Furthermore, it will not recognize

the cancer progression scenario illustrated in Fig. 1d, in

which, even though a decrease in NCC (i.e. number of

tumor lesions) is observed, an underlying progression

condition could be present.

To overcome those limitations, another clinically relevant

parameter is computed, denoted as VN. VN is designed to

quantify the amount of new tumor volume that appeared in

the second scan with respect to the first. VN does not include

volume increases of the existing lesions; that is, it only adds

up the volume of tumor lesions that appeared in new ana-

tomical locations, thus quantifying the spread strength. Note

that this indicator will effectively recognize and quantify the

progression cases illustrated in Fig. 1d. The computation of

VN from the pair of time-consecutive PET tumor segmen-

tation masks is nontrivial and described in [20]. In short,

both PET scans are realigned and new tumor lesions are

detected and quantified from the subtraction of the rea-

ligned segmentation masks.

Also, as has been mentioned, the appearance of tumor

lesions in new organs or distant anatomical locations is

considered to worsen the cancer progression condition.

Fig. 3

Ordering of a subset of progression (top) and partial response (bottom) cases of this study.

Fig. 4

Cancer progression example (a) and its associated expert-guided (b) and automatic (c) three-dimensional tumor segmentation masks. Note how the
presence of errors in automatic segmentation masks may lead to conclude about a false global decrease in WBTMV (c) in an actual volume increase
scenario (b). WBTMV, whole-body metabolic tumor volume.
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To model this effect, we introduce the number of sig-

nificantly new tumor lesions (nSNTL) parameter and

approximate it computationally in the following manner.

As the set of new tumor lesions of the tumor segmenta-

tion mask from the second scan is obtained during the

computation of VN, the remaining task is to identify and

count which of those lesions (i.e. connected components

in the mask) can be classified as belonging to a new

organ or being sufficiently distant from the lesions of the

first scan. For that, one of these two conditions must

hold: either the mean Hounsfield unit value of a given

lesion is significantly different (P< 0.05) from that

of all the lesions in the first scan, or it is significantly

distant (>1% of the patient’s body surface area [21])

from them.

Finally, an indicator that aids in quantifying the

magnitude of mixed responses is presented, denoted as

AN. AN is designed to quantify the amount of tumor

volume that increased its activity by more than 20% in

the second scan relative to the amount of tumor volume

in the first scan. Again, the computation of AN from the

pair of tumor segmentations masks is nondirect and

described [20].

Results
Table 1 shows the performance results, in this context, of

the common indicators used in clinical practice. Strong

correlations are only observed in partial response, relapse,

and complete response cases.

Table 2 shows the performance results obtained by

combining them with the proposed alternative indicators

described in the previous section. Substantial perfor-

mance increases are shown in progression and mixed

response cases. No strong correlation was observed in any

scenario if using automatic segmentation procedures.

Finally, although the indicators presented in Table 2 are

the ones that obtained the best performance results on

our particular data set, very similar results were obtained

when using ΔTLG instead of ΔWBMTV (79.6% corre-

lation in progression cases, 76.7% in partial responses,

and 90.5% in relapses). Also, the complete response cases

were also modeled accurately by ΔWBMTV and ΔTLG

(both showing 83.5% correlation).

Discussion
Several noteworthy conclusions can be drawn from our

results. First, note that the conceptual limitations of this

set of indicators described in the previous section are

empirically observed in our data set. Second, the for-

mulas of the indicators that best model the cases in the

data set are a highly consistent mathematical repre-

sentation of the physician global visual analysis criteria.

Third, a substantial performance increase is shown in the

progression and mixed response scenarios with respect to

the indicators in Table 1, which demonstrates the rele-

vance of the new set of proposed indicators in modeling

real NHL evolution cases. Also, the stable results

observed in the rest of the scenarios are also coherent, as

the change in the overall tumor size and extension

(modeled by ΔWBMTV or including the tumor activity

information using TLG) is clearly the most important

visual criterion in those cases. Fourth, the most difficult

(e.g. the one with more discrepancies in the consensus of

physicians performing the visual analysis) NHL evolu-

tion scenario to order by magnitude was the mixed

response, which also showed the worse indicator corre-

lation results. Finally, fifth, as mentioned in the Materials

and methods section, current completely automatic

tumor segmentation techniques are not capable of

offering reliable parameters in this clinical context.

We also considered the possibility of including the time

elapsed between scans as another factor in the indicator

formulas, as clearly the same cancer progression or

response could be considered ‘stronger’ if it was pro-

duced in a shorter period of time. However, we consider

that the evaluation of this parameter, in conjunction with

other clinical variables such as the specific treatment

design of each patient, should be carried out at the

oncological management level and not included in the

nuclear medicine PET/CT diagnostic quantification fra-

mework. Similarly, we only considered mathematical

combinations of the proposed indicators that had a sen-

sible clinical basis, and left as future work a possible in-

depth analysis on fitting parametrical statistical models to

the proposed combined indicator formulas to study the

possible asymmetric weight distribution of each

indicator.

Finally, we consider that the incorporation of this type of

quantitative parameters in nuclear medicine diagnostic

frameworks could increase its overall potential. However,

a large amount of future work remains. On one hand,

expert-guided semiautomatic segmentation of whole-

body PET scans is a highly time-consuming task and

therefore is typically unfeasible in the clinical routine. In

this work we showed that current completely automatic

segmentation techniques are unable to provide reliable

indicators in this diagnostic context, motivating the

initiation of further research in this area. In contrast, the

incorporation of this type of indicators at the oncological

management level would require a previous in-depth

Table 1 Pearson’s correlation results of the common indicators
used in clinical practice with respect to the expert-based visual
ordering

Correlation (%) ΔWBMTV ΔSUVmean ΔSUVmax ΔSUVpeak ΔTLG

Progression 32.3 5.7 4.2 13.8 30.7
Partial response 76.9 48.1 59.6 43.7 73.8
Mixed response 8.3 20.0 13.3 26.7 25.0
Relapse 100 54.8 90.5 78.6 90.5
Complete response 88.5 44.0 64.8 80.8 83.5

max, maximum; SUV, standardized uptake value; TLG, total lesion glycolysis;
WBMTV, whole-body metabolic tumor volume.
Δ Relative change.
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analysis of its exact role as well as its possible limitations

in the clinical context, including its performance eva-

luation within alternative gold standard frameworks.

Conclusion
Addressing the need for obtaining a global continuous

and observer-independent representation of the cancer

evolution magnitude from a pair of whole-body PET-CT

scans, in this work we proposed a set of global indicators

of NHL response computed through imaging techniques

that offered strong correlation results with the associated

expert-based visual analysis.
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Objectives:  The  proposal  and  implementation  of  a computational  framework  for  the quantification  of
structural  renal  damage  from 99mTc-dimercaptosuccinic  acid  (DMSA)  scans.
The aim  of this  work  is  to propose,  implement,  and  validate  a computational  framework  for  the  quantifi-
cation  of structural  renal  damage  from  DMSA  scans  and  in  an  observer-independent  manner.
Materials and  methods:  From  a set of 16  pediatric  DMSA-positive  scans  and  16  matched  controls  and
using  both  expert-guided  and  automatic  approaches,  a set  of  image-derived  quantitative  indicators  was
computed  based  on the  relative  size,  intensity  and  histogram  distribution  of  the  lesion.  A  correlation
analysis  was  conducted  in order  to  investigate  the  association  of these  indicators  with  other  clinical  data
of  interest  in  this  scenario,  including  C-reactive  protein  (CRP),  white  cell  count,  vesicoureteral  reflux,
fever,  relative  perfusion,  and  the  presence  of renal  sequelae  in  a 6-month  follow-up  DMSA  scan.
Results: A fully  automatic  lesion  detection  and  segmentation  system  was  able  to  successfully  classify
DMSA-positive  from  negative  scans  (AUC  = 0.92,  sensitivity  = 81%  and  specificity  =  94%).  The  image-
computed  relative  size  of  the  lesion  correlated  with  the  presence  of  fever  and  CRP  levels  (p  <0.05),  and
a  measurement  derived  from  the  distribution  histogram  of  the  lesion  obtained  significant  performance
results  in  the  detection  of  permanent  renal  damage  (AUC  = 0.86,  sensitivity  = 100%  and  specificity  =  75%).
Conclusions: The  proposal  and  implementation  of  a  computational  framework  for  the  quantification  of
structural  renal  damage  from  DMSA  scans  showed  a promising  potential  to complement  visual  diagnosis
and  non-imaging  indicators.

©  2016  Elsevier  España,  S.L.U.  y  SEMNIM.  All  rights  reserved.

Cómputo  de  indicadores  cuantitativos  de  daño  renal  estructural  en  imágenes
DMSA  pediátricas

alabras clave:
MSA
año  renal
nálisis de imagen
nálisis  cuantitativo

r  e  s  u  m  e  n

Objetivos:  En  el  presente  trabajo  se propone,  implementa  y  valida  un  entorno  computacional  de cuantifi-
cación  de imágenes  con 99mTc-ácido  dimercaptosuccínico  (DMSA)  con  el  objetivo  de  obtener  indicadores
cuantitativos  del daño  renal  subyacente.  Estos  indicadores  se validan  en un  contexto  de  imágenes  DMSA
pediátricas,  dada  su  relevancia  en  el diagnóstico  de  pielonefritis  aguda  y  cicatrices  renales.
Materiales y  métodos:  Partiendo  de un  conjunto  de  16  imágenes  DMSA  positivas  para  daño  renal  y  16
controles  apareados  por  edad  y sexo,  se proponen  y calculan  una  serie  de  indicadores  cuantitativos  basa-
dos  en el  área  relativa  lesionada  y la distribución  de  su histograma.  Se  implementan  aproximaciones
manuales  y  automáticas  para  dicho  cómputo.  Los indicadores  obtenidos  se correlacionan  con  otras  vari-
ables  clínicas  de  interés  en  este  contexto,  como  la proteína  C  reactiva,  la  cuenta  leucocitaria,  el reflujo
Please cite this article in press as: Sampedro F, et al. Computing quantitative indicators of structural renal damage in pediatric DMSA
scans. Rev Esp Med  Nucl Imagen Mol. 2016. http://dx.doi.org/10.1016/j.remn.2016.06.010

vesicouretral,  la  fiebre,  la  perfusión  relativa,  y la  presencia  de  secuelas  renales  en  la  imagen  DMSA  a los
6  meses  de  seguimiento.
Resultados:  El  sistema  implementado  de  detección  y cuantificación  de  lesiones  renales  obtuvo  un
rendimiento  significativo  discriminando  las  imágenes  DMSA  positivas  de  las  negativas  (AUC  = 0,92,  sensi-
bilidad  =  81%  y especificidad  = 94%).  El  indicador  de  área relativa  de  la  lesión  correlacionó  con  los  niveles  de
proteína  C  reactiva  y la  presencia  de  fiebre  (p<0,05).  Finalmente,  un  indicador  derivado  de  las  propiedades
del  histograma  de  la  lesión  obtuvo  un  rendimiento  significativo  en  la  detección  de  la  presencia  de  secuelas
renales  (AUC  = 0,86,  sensibilidad  =  100%  y  especificidad  =  75%).
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Conclusiones:  La propuesta  e implementación  de  un entorno  computacional  para  la obtención  de  indi-
cadores cuantitativos  a partir  de  imágenes  DMSA  muestra  un  potencial  prometedor  para  complementar
el diagnóstico  visual.

©  2016  Elsevier  España,  S.L.U.  y SEMNIM.  Todos  los  derechos  reservados.
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Table 1
Demographic and clinical data for the DMSA-positive group. Detailed information
about  the clinical relevance of these variables can be found in Ref. 10.

Proportion of subjects
with  the parameter
available

Mean  ± standard
deviation or
proportion

Age (months) 16/16 27 ± 32
Sex (male/female) 16/16 12/16 females
Weight (kg) 16/16  10.8 ± 6.3
Fever (positive > 38 ◦C) 15/16 13/15 positive
C  reactive protein (CRP)

(mg/L)
15/16  112.5 ± 84.1

Leukocyte count
(mil/mm3)

14/16 16.1 ± 7.6

Vesicoureteral reflux
(positive/negative)

14/16  1/14 positive

Relative perfusion of the
affected  kidney (%)

16/16 47.6 ± 5.5

Chronic lesion, based on
6-month  DMSA

16/16  4/16 chronic lesion
ntroduction

99mTc-dimercaptosuccinic acid (DMSA) scans are a valuable
uclear medicine test in assessing renal morphology and struc-
ural damage. At the time of this writing, planar-image DMSA is
he gold standard for the diagnosis of acute pyelonephritis and renal
cars.1,2 This particular clinical context is especially relevant within
he pediatric population.3–5

An important limitation of this technique is that it does not
istinguish accurately lesions that will spontaneously resolve
rom those which will cause permanent renal damage.6 For that,

 6-month follow-up DMSA scan is needed in order to confirm a
enal scar diagnosis, representing a major limitation both in clinical
nd economic terms.

DMSA  scan evaluation by the trained physician remains purely
isual. As in most medical imaging scenarios, while this approach
s accurate enough in many cases, it suffers from inter- and
ntra-observer variabilities.7,8 Additionally, its diagnostic product
s descriptive and categorical, lacking a continuous modeling of the
nderlying renal damage.

With  computational advances, the trend to try to complement
he visual diagnostic products with image-derived quantitative
nd observer-independent parameters is spreading in the field.
lthough quantitative DMSA image analysis has been used in the
eld,9,25,26 to the best of our knowledge, the computation of image-
erived quantitative indicators of structural renal damage in DMSA
cans has not been addressed by means of a comprehensive com-
utational framework.

In  this work, we propose for the first time a DMSA segmenta-
ion and quantification framework that seeks to provide clinically
aluable indicators for the assessment of structural renal dam-
ge. In particular, we aim to compute image-derived quantitative
nd subject-independent parameters designed to model accurately
he underlying renal pathophysiology observed in DMSA scans.
he performance such indicators will be evaluated within three
ifferent contexts: automatic renal damage detection, indicators’
orrelation with non-imaging clinical data and early permanent
enal lesion detection.

aterials  and methods
Please cite this article in press as: Sampedro F, et al. Computing quan
scans. Rev Esp Med  Nucl Imagen Mol. 2016. http://dx.doi.org/10.1016

emographics  and DMSA acquisition

A total of 16 pediatric DMSA scans with visually-diagnosed
tructural  kidney damage, its 6-month follow-up DMSA scans, and
6 age- and sex-matched controls were obtained from the Philips

HC

ig. 1. Four examples of DMSA scans illustrating the pathological spectrum to be model
hird  scan suffered renal sequelae as opposed to the patients of the other two patholog
isual  inspection of the damaged area.
follow-up
(positive/negative)

Precedence workstation at the Nuclear Medicine department of
Hospital de Sant Pau, Barcelona, Spain.

The 16 pathological DMSA scans showed clearly identifiable
upper-pole single-kidney lesions, which are the most prevalent
in our center. The image type of choice to be analyzed in this
work is the white-background posterior projection of the DMSA
acquisition.

Several demographic and clinical variables of interest in this
context were also obtained for the 16 pathological cases (Table 1).

The 16 DMSA positive scans are intended to represent a wide
spectrum of renal damage scenarios, making them a valuable set
to test the efficiency of the proposed quantitative indicators at
modeling the underlying renal pathology (Fig. 1).

Computation of DMSA-derived quantitative indicators

In order to quantify the structural kidney damage (SKD) within
the DMSA scans, two  approaches (manual and automatic) were
conducted regarding the image segmentation of the pathologi-
cal areas. Then, from the obtained lesion’s segmentation, a set of
image-derived quantitative indicators is computed.
titative indicators of structural renal damage in pediatric DMSA
/j.remn.2016.06.010

ed by the proposed quantitative indicators. HC: healthy control. The patient of the
ical scans. The illustrative conceptual ordering of the positive scans was based on

Manual segmentation and quantification methodology
An expert-guided manual segmentation framework was

custom-build using Matlab®.11 Given the low resolution of the

dx.doi.org/10.1016/j.remn.2016.06.010
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filter
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Lesion detection
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tend to be associated to volume loss and therefore related to per-
Fig. 2. Block diagram of the automatic DMSA

mages, a pixel-based free hand drawing tool with basic contour
lling routines was sufficient for the physicians to segment the
6 pathological areas from each patient’s DMSA posterior projec-
ion. Due to the high kidney size and tracer uptake distribution
attern variability across the group, physicians also segmented
he whole damaged kidney in order to obtain relative measures
as explained below). Note that the damaged kidney segmentation
eeds not to be highly accurate since it will be only used as a size
nd global uptake reference.

utomatic  segmentation and quantification methodology
A  fully automatic segmentation framework is proposed and

mplemented as follows (the pipeline is summarized in Fig. 2). First,
n anisotropic filter (Perona & Malik with 15 iterations, �t = 1/7,
nd � = 30)12 was applied to the original DMSA scan in order to
educe its noise level while maintaining the underlying anatomical
orphology.
Second, since lesions can be located in both left and right kid-

eys, they need to be isolated and analyzed separately. For that, an
d-hoc method to bisect the image aiming to separate both kid-
eys was implemented, based on running a linear discriminant
nalysis (LDA)13 to find the natural separating line of both kid-
eys, which were previously labeled loosely by a pixel-location
-means14 (k = 2) clustering algorithm. Note that while in most
ases a simpler method would work (e.g. detecting the vertical
ine with a local minimum of tracer uptake near the center of the
mage and splitting in it), this more general method would work in

ore complex acquisition scenarios such as slightly rotated kid-
eys that could appear mildly overlapped in the scan.

Now,  for each half-image obtained, the damaged kidney area
if any) should be detected and segmented. For that, in the first
lace, the kidney contour should be obtained. Special care should be
aken in choosing the appropriate algorithm for that task (particu-
arly in damaged kidneys), since the most common approaches will
ot include within the kidney segmentation the damaged area due
o its low tracer uptake, thereby impeding the subsequent lesion
etection and also altering the real kidney size.

Due to that fact, an ad-hoc image gradient search method was
mplemented for this task: from an initial seed pixel, a breadth-
rst search method is applied, performing an iterative procedure
o include those neighbor pixels below a given gradient threshold
geodesic path,22,23 using a threshold of 0.11) in the solution mask.
inally, a canny edge detector24 is applied on the resulting mask to
btain the outer kidney’s contour. This method was  able to obtain
uccessfully the outer contour of the kidneys, holding in its interior
ny possible kidney damage. Let this whole kidney segmentation
e called S1.

Next,  S1 was used as an initiation mask of a Localized
egion  Based Active Contour Segmentation algorithm (Lankton
nd Tannenbaum,15 using  ̨ = 0.2, the Yezzi energy function, and
Please cite this article in press as: Sampedro F, et al. Computing quan
scans. Rev Esp Med  Nucl Imagen Mol. 2016. http://dx.doi.org/10.1016

 maximum number of iterations of 5000), which isolated the non-
amaged region of the kidney (S2). Note that the key strategy to
e able to detect and segment any possible damaged area relies on
he robust comparison of S1 and S2. If, after performing an iterative
y lesion detection and segmentation system.

binary  erosion16 (using a disk with a radius of 3pixels as structur-
ing element) of S1 until obtaining a maximum overlap17 with S2
(let this eroded S1 mask be called S3), S2 and S3 have significantly
different contours, this would be probably related to the presence
of a lesion.

Therefore, the detection of a round-shaped connected compo-
nent (CC18) on the difference mask D = S3@@-S2 will be associated
with a pathological region. Note however that, given the noise con-
ditions and the variable performance of all the image-processing
steps applied until the computation of D, the presence of several
connected components in D is expected. In order to select the cor-
rect CC that is properly associated with the lesion and discard the
possible others, several rules are applied regarding the CC shape
and location (described in the supplementary material).

Indicators definition and computation
From the manually-segmented (MS) regions (lesion and kidney

contour), the following two indicators of SKD were proposed and
computed: the relative kidney’s damaged area (MS-rKDA), defined
as the ratio of the pathological area and the kidney’s area where
the lesion is located; and the relative lesion uptake, defined as
the ratio of the median image intensity of the pathological area
and the one of the underlying damaged kidney (MS-rLU). The
motivation for the computation of these two indications relates
to the need of quantifying both the extent of the lesion and its
tracer uptake. Analogously, form the automatically-segmented (AS)
regions (lesion and kidney contour), the AS-rKDA and AS-rLU indi-
cators were obtained. Note that, by definition, the MS-rKDA and
MS-rLU values of the control DMSA scans is zero, since its obten-
tion procedure is expert-guided. In contrast, the corresponding
AS-rKDA and AS-rLU need not to be zero, and in fact will be used
to evaluate the diagnostic power of the automatic quantification
framework.

Finally, as mentioned in Section “Introduction”, the derivation
of an efficient indicator from a baseline DMSA scan that could
predict the chronic character of the observed lesion would be of
great interest. For this task, we first note that, although it cannot
be stated as a general rule, large polar hypoactive areas without
deformity of the outlines and with indistinct margins will gener-
ally heal whereas marked localized deformity of the outlines will
generally correspond to permanent sequelae19,20 (see Fig. 1 for an
example).

Therefore, we  propose the Dilated Lesion Histogram Exponent
(DLHE) indicator as a predictor of renal sequelae. This parameter
is defined as the exponent of a fitted exponential curve in the his-
togram of the segmented lesion after a dilation operation 16(using a
disk-shaped structuring element of radius = 3 pixels). The rationale
behind the proposal is that sharp transitions of intensity from phys-
iological uptake to hypoactive areas (i.e. the renal lesions) would
titative indicators of structural renal damage in pediatric DMSA
/j.remn.2016.06.010

manent damage.
Further  details about all the described image-processing

algorithms’  parameters and its derivation are available in the sup-
plementary material.

dx.doi.org/10.1016/j.remn.2016.06.010
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egmentation results

Fig.  3 shows the manual and automatic segmentation results of
 sample DMSA positive patient. Additional illustrative manual and
utomatic segmentation results for the DMSA scans of the study are
vailable in the supplementary material.

Automatic segmentation accuracy with respect to the manual
pproach was highly variable across scans, given its aforemen-
ioned noise and morphological variability. Therefore, significant
oint-to-point correlation between MS-rKDA and AS-rKDA and
S-rLU and AS-rLU was not obtained (p > 0.1).
However, AS-rKDA achieved significant diagnostic power using

 Receiver operating characteristic (ROC21) curve at the detection
f positive DMSA scans, obtaining an Area Under the Curve (AUC) of
Please cite this article in press as: Sampedro F, et al. Computing quan
scans. Rev Esp Med  Nucl Imagen Mol. 2016. http://dx.doi.org/10.1016

.92 (Fig. 4). The cost-effective (cross point of sensitivity and speci-
city curves) AS-rKDA cut-off point derived from the ROC curve
as 0.087, which obtained a sensitivity of 81% and a specificity of

4%.
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perating characteristic (ROC) AS-rKDA curve for the detection of DMSA positive scans. A
omatic segmentation (down). Note the illustration of the aforementioned automatic
) and the selected D’s pathological CC (red).

Clinical correlations

We  performed a correlation analysis between the proposed
indicators (MS-rKDA, AS-rKDA, MS-rLU and AS-rLU) and the avail-
able clinical data. Two significant results were obtained. On the
one hand, fever-negative patients had lower MS-rKDA than fever-
positives (p = 0.02). On the other hand, a significant correlation
(p < 0.001) was observed between the MS-rKDA and C-reactive pro-
tein (CRP) values of DMSA positive subjects (Fig. 5).

Chronic damage prediction

Fig.  6 illustrates the significant performance results of the DLHE
indicator at detecting chronic lesions within the DMSA positive
titative indicators of structural renal damage in pediatric DMSA
/j.remn.2016.06.010

scans: AUC = 0.86, and sensitivity and specificity of 100% and 75%,
respectively (computed from the cost-effective DLHE cutoff of
0.013). None of the other proposed indicators achieved significant
performance within this context.
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iscussion

In the present work we proposed, implemented and vali-
ated a DMSA image analysis framework for the computation of
Please cite this article in press as: Sampedro F, et al. Computing quan
scans. Rev Esp Med  Nucl Imagen Mol. 2016. http://dx.doi.org/10.1016

uantitative indicators that seek to characterize structural renal
amage.

The set of proposed indicators was designed to model quan-
itatively the presence of a possible renal lesion in a DMSA scan.
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roups. (d) ROC DLHE curve for the detection of chronic DMSA positive scans. AUC: area u
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Considering  both manual (MS-) and automatic (AS-) segmenta-
tion approaches, the relative kidney’s damaged area (MS-rKDA,
AS-rKDA) and its relative median intensity (MS-rLU, AS-rLU) were
computed. Despite showing some accuracy limitations at the
image-segmentation level, the automatically-computed AS-rKDA
indicator was  able to successfully classify most of the pathological
and control DMSA scans, suggesting an innovation potential for a
possible computed aided diagnosis tool in this particular scenario.

The  biological significance of the MS-rKDA indicator was  shown
with its association with the CRP and fever values. The fact that
the MS-rLU indicator did not correlate with any of the other
non-imaging variables may  suggest that this parameter, although
having a conceptual basis, could be substantially distorted due to
the DMSA acquisition variabilities. Hence, the relationship between
the proposed DMSA-derived and additional nephrological param-
eters (such as renal ultrasound or histological patterns) needs to be
further addressed in order to determine its potential clinical value.

Note that none of these indicators (MS-rKDA, AS-rKDA, MS-
rLU, AS-rLU) succeeded in predicting the chronic character of
the renal lesions. For that, a measure derived from the DMSA
histogram of the segmented lesion (DLHE) was  designed, which
obtained a significant performance at modeling the underlying
renal sequelae morphology. This result especially motivates further
research in this line, given the potential advantages of the accurate
chronic lesion identification from a single pediatric baseline DMSA
titative indicators of structural renal damage in pediatric DMSA
/j.remn.2016.06.010

scan.
This work has some limitations. On one hand, it used a rela-

tively low number of subjects for the validation of the proposed
image-quantification framework, which is especially critical in the

DMSA image intensity within lesion (0-255)
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ssessment of the potential value of the DLHE parameter given the
ow number of patients with chronic lesions included in the study.
lso, the fact that the visual DMSA evaluation was used as the
old-standard for the identification of structural renal damage and
herefore used for the validation of the DMSA-derived quantitative
ndicators is another limitation of this study. In addition, only scans

ith clearly identifiable and upper-pole lesions were considered
ue to the computational challenge that represents the imple-
entation of a generic DMSA lesion detection image-processing

lgorithm. On the other hand, a wider spectrum of nephrological
ariables should be used in the correlation analysis of the proposed
ndicator in order to fully appreciate their clinical value. To over-
ome these limitations, our proposals and results will need to be
eneralized and validated in large cohort (ideally multi-center),
tudies.

Taken together, this work proposed for the first time the imple-
entation of a computational framework for the quantification of

tructural renal damage from DMSA scans. A set of image-derived
umerical indicators was designed and computed on a group of
ediatric DMSA scans, which showed a promising potential to com-
lement visual DMSA evaluation and non-imaging renal damage

ndicators. Importantly, the incorporation of this type of image-
uantification environment may  provide major contributions on
he early detection of permanent renal damage within the pediatric
opulation.

onclusion

In order to complement the visual diagnosis of structural renal
amage from DMSA scans, a set of image-derived quantitative indi-
ators was proposed. Its computation was performed within a novel
omputational framework that included both manual and auto-
atic segmentation approaches. The performance of the proposed

ndicators at modeling the underlying renal pathology suggests
 promising potential that will need to be validated and cross-
alidated in larger cohort studies.
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ABSTRACT

Background: The APOE effect on Alzheimer Disease (AD) risk is stronger in 
women than in men but its mechanisms have not been established. We assessed the 
APOE-by-sex interaction on core CSF biomarkers, brain metabolism and structure in 
healthy elderly control individuals (HC).

Methods: Cross-sectional study. HC from the Alzheimer’s Disease Neuroimaging 
Initiative with available CSF (n = 274) and/or 3T-MRI (n = 168) and/or a FDG-
PET analyses (n = 328) were selected. CSF amyloid-ß1–42 (Aß1–42), total-tau (t-tau) 
and phospho-tau (p-tau181p) levels were measured by Luminex assays. We analyzed 
the APOE-by-sex interaction on the CSF biomarkers in an analysis of covariance 
(ANCOVA). FDG uptake was analyzed by SPM8 and cortical thickness (CTh) was 
measured by FreeSurfer. FDG and CTh difference maps were derived from interaction 
and group analyses.

Results: APOE4 carriers had lower CSF Aß1–42 and higher CSF p-tau181p values 
than non-carriers, but there was no APOE-by-sex interaction on CSF biomarkers. The 
APOE-by-sex interaction on brain metabolism and brain structure was significant. 
Sex stratification showed that female APOE4 carriers presented widespread brain 
hypometabolism and cortical thinning compared to female non-carriers whereas male 
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APOE4 carriers showed only a small cluster of hypometabolism and regions of cortical 
thickening compared to male non-carriers.

Conclusions: The impact of APOE4 on brain metabolism and structure is modified 
by sex. Female APOE4 carriers show greater hypometabolism and atrophy than 
male carriers. This APOE-by-sex interaction should be considered in clinical trials in 
preclinical AD where APOE4 status is a selection criterion.

INTRODUCTION

The apolipoprotein E (APOE) genotype is the 
strongest genetic risk factor for Alzheimer’s disease 
(AD) [1]. It has three isoforms, ε2, ε3 and ε4. The APOE 
ε4 allele (APOE4) increases the risk for AD [2]. The 
effect of the APOE4 allele on AD biomarkers in healthy 
controls (HC) has been widely studied [3], [4]. APOE4 
carriers have consistently lower cerebrospinal fluid (CSF) 
ß-amyloid 1–42 (Aß1–42) levels than non-carriers, but the 
differences in tau levels are more controversial [5]–[7]. 
Most, [8]–[10] but not all [18F]-fluorodeoxyglucose 
(FDG) PET studies [11]–[13] have shown hypometabolism 
in AD-related regions in APOE4 carriers in late-middle 
age [8] and even earlier [10]. A gene-dosage effect on 
the hypometabolism has also been reported [9]. The 
relationship between the APOE genotype and brain 
structure is more controversial. Many cross-sectional 
studies have reported cortical thinning or hippocampal 
atrophy, [3], [4], [14] while several others have found no 
relationship [15] and two have reported increased gray 
matter in relation to the APOE4 allele [16], [17].

Several factors might account for the conflicting 
results. First, the age-range differences between 
studies are critical because distinct effects of APOE 
across the lifespan have been described [18]. Not all 
brain changes associated with the APOE genotype 
reflect incipient AD. APOE has been implicated in 
normal human brain development [19]. Second, there 
are amyloid dependent [20] and independent [21] 
mechanisms underlying the APOE influences on AD 
risk. However, most studies assessing the role of APOE 
on brain structure and metabolism do not assess AD 
pathophysiological biomarkers to disentangle these 
mechanisms. Third, APOE4 is likely to interact with 
other pathological factors, complicating the isolation 
of a unique genetic effect [4]. And fourth, some of the 
inconsistent imaging and biochemical findings related 
to APOE in HC might result from neglecting a possible 
APOE-by-sex interaction [6]. Most studies to date have 
included sex as a covariate in the analyses but they did 
not explicitly test for an APOE-by-sex interaction.

The finding that the APOE effect on AD risk is 
stronger in women than in men was reported in early 
studies, [22], [23] confirmed in meta-analyses, [23], [24] 
and in a recent longitudinal study [6]. However, only 
two studies have assessed APOE-by-sex interactions 

on AD biomarkers. Altmann et al found a significant 
interaction for tau in mild cognitive impairment 
patients [6]. Damoiseaux et al reported a significant 
APOE-by-sex interaction for CSF tau levels and default 
mode network abnormalities in healthy controls [25].

The interaction between APOE4 and sex on brain 
structure and metabolism has not been established. This 
interaction could affect the design and interpretation 
of prevention trials in preclinical AD in which 
APOE is a selection criterion (i.e. the Alzheimer’s 
Prevention Initiative APOE4 Trial, NIH project number 
1UF1AG046150–01). The aim of the present study was to 
examine the interactions between APOE4 and sex on brain 
metabolism and structure, based on the hypothesis that the 
APOE4 allele exerts a differential adverse effect on brain 
metabolism and structure depending on sex.

RESULTS

Demographic and clinical of the participants 
in the CSF, FDG and MRI subsets are summarized 
separately in the Table 1. CSF was available in 274 HC 
individuals, 328 had an FDG PET, 225 had a 3T MRI, 
and 137 subjects had all three biomarkers. There were 
no significant differences between the MRI, PET and 
CSF subsets in age, sex, APOE status, MMSE or CSF 
biomarkers. There were no significant differences in age, 
APOE status, MMSE or CSF biomarkers between males 
and females in all three subsets. In the FDG and CSF 
subsets, males had higher years of education than females 
(p < 0.001), but in the MRI subset this difference did not 
reach significance.

APOE4 carriers had lower CSF Aß1–42 values than 
non-carriers in all three subsets (p < 0.001). APOE4 
carriers had higher CSF p-tau181p values in the three 
subsets, but these only reached significance in the FDG and 
CSF subset which had larger sample sizes (p < 0.001 and 
p = 0.004 respectively). APOE4 carriers had higher CSF 
t-tau values in the three subsets, but these only reached 
significance in the CSF subset (p < 0.05). There were 
no significant differences in MMSE scores or education 
between APOE4 carriers compared to non-carriers in 
any of the subsets. There were no significant differences 
between males and females in CSF biomarkers. Neither 
was there an APOE-by-sex interaction on CSF Aß1–42, CSF 
t-tau or CSF p-tau181pvalues in the analysis of covariance 
(ANCOVA) analyses.
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APOE-by-sex interaction on brain metabolism

Fig. 1A presents this FDG voxel-wise interaction 
analysis across the cerebral hemispheres, showing voxels 
with an APOE-by-sex interaction, covaried by age and 
years of education (p < 0.005, k = 50). Two clusters 
emerged, one located mainly in the anterior cingulate 
region and the other in the temporal region. To analyze the 
directionality, we isolated the temporal cluster, averaged 
the FDG uptake, and plotted it in box and whisker plots 
(Fig. 1B). As shown, this interaction was driven by the 
decreased metabolism in female APOE4 carriers and 
the increased metabolism in male APOE4 carriers. The 
main and interactive effects of APOE4 status and sex 
on brain metabolism in the ANCOVA analysis were 
significant in the model (interaction term between APOE4 
status and sex: ß-coefficient = 0.069, standard error 
[SE] = 0.021, p = 0.001; main effect of APOE4 status: 
ß-coefficient = –0.037, SE = 0.016, p = 0.019; main effect 
of sex: ß-coefficient = −0.041, SE = 0.018, p = 0.026). 
Similar results were found for the anterior cingulate 
cluster (not shown).

Fig. 2 shows the sex stratified APOE4 group 
analyses for FDG, covaried by age and years of education. 
Female APOE4 carriers showed widespread clusters 

of decreased metabolism (p < 0.005) across the whole 
cerebral cortex in both hemispheres with respect to APOE4 
non-carriers (Fig. 2A). Male APOE4 carriers showed an 
isolated cluster of decreased metabolism (p < 0.005) in the 
precuneus with respect to non-carriers (Fig. 2B).

To examine the impact of CSF biomarkers in the 
APOE-by-sex interaction on brain metabolism, we 
included CSF Aß1–42 and CSF p-tau181p as covariates in 
the analyses. The inclusion of the CSF biomarkers did 
not significantly alter the results of the APOE-by-sex 
interaction analysis (not shown) nor the female APOE4 
carriers vs non-carriers comparison (Fig. 3A1–3A3). In 
the male APOE4 carriers vs non-carriers comparison 
two clusters of increased metabolism emerged in APOE4 
carriers with respect to male non-carriers in prefrontal 
regions and a cluster in the medial temporal region when 
CSF Aß1–42 levels or both Aß1–42 and CSF p-tau181p levels 
(but not CSF p-tau181p levels alone, Fig. 3 B2) were 
included as a covariate (Fig. 3B1 and 3B3).

APOE-by-sex interaction on brain structure

Fig. 4A presents the vertex-wise interaction 
analysis across the whole cortical mantle, covaried 
by age and years of education, showing voxels with 

Table 1: Demographic, cerebrospinal fluid and clinical data in the CSF, FDG-PET and MRI 
Alzheimer’s Disease Neuroimage Initiative subsets.

MRI (N = 168) FDG-PET (N = 328) CSF (N = 274)

APOE4 N (%) 50 (29.76%) 87 (26.5%) 71 (25.9%)

AGE 73.4 (6.02) 74.5 (5.57) 74.4 (5.97)

SEX (% Females) 53.6% 49.4% 50.4%

MMSE 29.1 (1.07) 29.0 (1.24) 29.1 (1.15)

YEARS OF EDUCATION 16.6 (2.55) 16.3 (2.77) 16.3 (2.69)

Aß1–42*** TOTAL 200.7 (49.92) 201.4 (52.46) 200.6 (52.51)

APOE4− 211.3* (46.32) 213.5* (46.87) 212.1* (47.81)

APOE4+ 175.4* (49.58) 165.2* (51.85) 167.9* (51.87)

p-taup181*** TOTAL 32.4 (16.41) 30.78 (18.14) 30.48 (17.97)

APOE4− 31.3 (16.68) 28.3* (15.31) 28.2* (15.23)

APOE4+ 35.0 (15.62) 38.1* (23.38) 36.9*(23.10)

t-tau*** TOTAL 66.0 (31.88) 68.9 (34.57) 68.4 (32.12)

APOE4− 65.1 (32.60) 67.0 (34.84) 66.0** (30.29)

APOE4+ 68.2 (30.34) 74.5 (33.41) 75.1** (36.22)

APOE4+ = apolipoprotein E ε4 allele carrier, APOE− = apolipoprotein E ε4 allele non-carrier
Values are expressed as mean (standard deviation) unless specified.
*equals p < 0.001 and
**equals p < 0.05 for the APOE4 carriers vs non-carriers comparison within each subset. Note that 137 subjects were 
included in the three subsets.
***CSF data only available in 146 subjects in the MRI subset and 242 subjects in the PET subset.
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Figure 1: FDG APOE-by-sex interaction analysis. A. Areas in which there is a FDG-uptake interaction between sex and the 
APOE4 status (p < 0.005 uncorrected) co-varied for age and years of education displayed across the medial and frontal views of the cerebral 
cortex. B. Box and whisker plot illustrating individual FDG-uptake values in the temporal cluster. For each plot, the central black lines show 
the median value, the regions above and below the black line show the upper and lower quartiles, respectively, and the whiskers extend 
to the minimum and maximum values. As illustrated, the female APOE4 carriers showed decreased metabolism in the temporal cortex 
with respect to female non-carriers. FDG = fluorodeoxyglucose; APOE = apolipoprotein E, APOE4+ = apolipoprotein E ε4 allele carriers, 
APOE4− = apolipoprotein E ε4 allele non-carriers.

Figure 2: Sex-stratified FDG analyses. Analysis between APOE4 carriers and APOE4 non-carriers (p < 0.005 uncorrected) in 
A. females and B. males, co-varied for age and years of education across the lateral and medial views of the cerebral cortex. As shown, 
female APOE4 carriers showed widespread clusters of decreased metabolism with respect to female APOE4 non-carriers (Fig. 2A), 
whereas male APOE4 carriers only showed an isolated cluster of decreased metabolism (p < 0.005) in the precuneus with respect to male 
non-carriers (Fig. 2B). FDG = fluorodeoxyglucose; APOE4 = apolipoprotein E ε4 allele.
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Figure 3: Sex-stratified FDG analyses with CSF biomarker levels included as a covariate. Row 1. CSF Aß1–42 levels; Row 2. 
CSF p-tau181p levels; Row 3 CSF Aß1–42 and p-tau181p levels. The analysis between female APOE4 carriers and female APOE4 non-carriers 
A1-A3. showed several clusters of decreased metabolism (p < 0.005 uncorrected) co-varied for age. As illustrated, female APOE4 carriers 
showed decreased metabolism in the anterior cingulate cortex with respect to female non-carriers after the inclusion of the CSF biomarkers 
as a covariate. The analysis between male APOE4 carriers and male APOE4 non-carriers B1-B3. showed several clusters of increased 
metabolism (p < 0.005 uncorrected) co-varied for age. As illustrated, male APOE4 carriers showed increased metabolism in several clusters 
in the dorsolateral prefrontal cortex with respect to male APOE4 non-carriers after the inclusion of CSF Aß1–42 levels or both CSF Aß1–42 
and CSF p-tau181p as a covariate (B1 and B3), but not after the inclusion of the CSF p-tau181p levels alone (B2). FDG = fluorodeoxyglucose; 
APOE = apolipoprotein E, APOE4: apolipoprotein E ε4 allele

an APOE-by-sex interaction. Two large clusters  
(Family-wise error corrected [FWE] p < 0.05) emerged, 
one in the dorsolateral frontal region and one in the 
temporoparietal region. To analyze the directionality, 
we then isolated the temporoparietal cluster, averaged 
the cortical thickness (CTh), and plotted it in a box and 
whisker plot (Fig. 4B). As shown, this interaction was 
mainly driven by the increased CTh in male APOE4 
carriers. The main effects and the interactive effects of 
APOE4 status and sex in the ANCOVA analysis were 
significant in the model (interaction term between APOE4 

status and sex: ß-coefficient = −0.228, SE = 0.045, 
p < 0.001; main effect of sex: ß-coefficient = 0.149, 
SE = 0.039, p < 0.001; main effect of APOE4 status: 
ß-coefficient = 0.062, SE = 0.030, p = 0.041). Similar 
results were found for the remaining cluster (not shown).

Fig. 5 shows the sex-stratified APOE4 CTh 
analyses, covaried by age and years of education. Male 
APOE4 carriers showed 3 large clusters (FWE corrected) 
of increased CTh with respect to non-carriers. Two of 
the clusters were observed in the left hemisphere, one 
in the dorsolateral frontal region and another in the 
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Figure 4: CTh APOE-by-Sex interaction analysis. A. Family-wise corrected (p < 0.05) clusters with an interaction between sex 
and the dichotomized APOE4 genotype co-varied for age and years of education displayed across the lateral and posterior views of the 
cerebral cortex. B. Box and whisker plot illustrating individual CTh values in the temporo-parietal and occipital cluster. For each plot, 
the central black lines show the median value, regions above and below the black line show the upper and lower quartiles, respectively, 
and the whiskers extend to the minimum and maximum values. As illustrated, male APOE4 carriers showed increased CTh in the 
temporo-parietal and occipital cluster. CTh = cortical thickness; APOE = apolipoprotein E, APOE4+ = apolipoprotein E ε4 allele carriers, 
APOE4− = apolipoprotein E ε4 allele non-carriers.

Figure 5: Sex-stratified CTh analyses. Analysis between male APOE4 carriers and male APOE4 non-carriers, co-varied for age and 
years of education. As shown, male APOE4 carriers presented large clusters of increased CTh (FWE p < 0.05) in temporo-parieto-occipital 
regions, mainly in the left hemisphere. The analysis between female APOE4 carriers and female APOE4 non-carriers showed clusters of 
decreased CTh which did not survive FWE correction (not shown). CTh = cortical thickness; APOE = apolipoprotein E; FWE = family-
wise error corrected (p < 0.05).
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temporoparietal, occipital and precuneus regions. The 
third cluster was observed in the right hemisphere in the 
parietal and occipital regions. Female APOE4 carriers 
showed cortical thinning in several regions than female 
APOE4 non-carriers (not shown as this analysis did not 
survive FWE correction).

To examine the influence of CSF biomarkers on 
the APOE-by-sex interaction on brain structure, we 
included CSF Aß1–42 and CSF p-tau181p as covariates in 
the analyses. The vertex-wise APOE-by-sex interaction 
analysis across the whole cortical mantle showed a 
reduction in the significance maps when including CSF 
biomarkers as covariates, especially Aß1–42 (Fig. 6). In 
the sex-stratified APOE4 CTh analyses, the clusters of 
increased CTh in male APOE4 carriers disappeared when 
CSF Aß1–42 levels (but not CSF p-tau181p levels) were 
included as a covariate (Fig. 7). No result survived FWE 
correction in females.

All analyses were repeated excluding APOE ε2 
allele carriers and including CSF t-tau as a covariate. 
We also restricted the analyses to non-hispanic white 
subjects (not shown). The results were not significantly 
altered in any case.

DISCUSSION

This study shows for the first time that the impact of 
the APOE4 genotype on brain structure and metabolism 
is modified by sex. We found a significant APOE-by-sex 
interaction on brain metabolism and structure. Female 
APOE4 carriers showed brain hypometabolism and 
cortical thinning with respect to female non-carriers 
whereas male APOE4 carriers showed only a small cluster 
of hypometabolism and cortical thickening with respect 
to male non-carriers. CSF core AD biomarkers had an 
influence on brain structural results (and to a lesser extent 
on brain metabolism).

Epidemiologically, there is strong evidence that 
supports the APOE-by-sex interaction [6], [11], [23]. 
The only study assessing the APOE-by-sex interactions 
on MRI demonstrated the interaction on resting state 
functional connectivity but not on gray matter volume 
[25]. Our results expand these findings. We show an 
APOE-by-sex interaction on both brain structure and 
metabolism. The discrepancy on brain structure could be 
due to the differences in the subject population or technical 
differences (CTh analyses vs voxel-based morphometry 
[26]). Our FDG results are congruent with those of the 
aforementioned resting state functional connectivity 
analyses. APOE appears to affect brain network activity 
which is closely related to neuroenergetic functions [27].

Our metabolic findings suggest that women are 
metabolically more susceptible to the APOE4 genotype. 
Neglecting a possible APOE-by-sex interaction on brain 
metabolism could be one of the reasons for the discordant 
FDG results [8]–[13]. Male APOE4 carriers showed 

increased CTh and females decreased CTh. The finding 
of cortical thickening in AD vulnerable areas in middle 
aged (48–75 years old) APOE4 carriers with respect to 
non-carriers has already been described [16], [17], but 
it is in contrast with other works assessing older cohorts 
[3], [4], [14], [15].

The discrepancies on brain structure might be 
conciliated if we consider a 2-phase phenomenon model 
in preclinical AD [28]. In this framework, pathological 
cortical thickening associated with low CSF Aß1–42 would 
be followed by atrophy once CSF p-tau181p becomes 
abnormal [28]. Accordingly, our study shows that the 
clusters of increased CTh in male APOE4 carriers 
disappear when we included CSF Aß1–42 as a covariate. 
The hypometabolism in female APOE4 carriers did 
not disappear when CSF Aß1–42 levels were included as 
a covariate. The APOE4 genotype might therefore exert 
its effects on brain glucose metabolism—at least in part—
independently of amyloidogenic pathways [29]. Of note, 
the inclusion of CSF Aß1–42 levels as a covariate prompted 
the emergence of several areas of increased metabolism 
in male APOE4 carriers. Increased brain metabolism 
in relation to brain amyloidosis has been previously 
described [30].

Altogether, our findings support that the 
mechanisms underlying the increased AD risk in female 
APOE4 carriers might occur downstream of Aß pathology 
[6]. The APOE4 effect on lowering CSF Aß1–42 levels is 
marked in both men and women (with no sex differences) 
and was also found in our work [6], [25]. The impact 
of an APOE-by-sex interaction on CSF has only been 
assessed twice and, as in the present work, always with 
data from the ADNI study. The absence of an APOE- 
by-sex interaction on CSF Aß1–42 levels is in agreement 
with the two previous works [6], [25]. The impact on CSF 
p-tau181p levels is less clear. We did not find an APOE- 
by-sex interaction on CSF p-tau181p levels. Such an 
interaction was reported initially [25] in HC but was 
not confirmed in the later work with a larger sample 
size [6]. Nonetheless, this last work did find the 
interaction for CSF p-tau181p levels in mild cognitive 
impairment patients. Women, moreover, would be 
more susceptible and would present more abnormal 
neuronal injury biomarkers [25] and faster clinical 
decline [6]. Accordingly, female APOE4 carriers showed 
hypometabolism and cortical thinning with respect to 
non-carriers, suggesting that female APOE4 carriers 
might be more advanced in the aforementioned 2-phase 
phenomenon model in preclinical AD [28].

The mechanisms by which the APOE allele modifies 
the risk for AD have been extensively studied but are not 
completely understood. Both ß-amyloid-dependent [20] 
and ß-amyloid-independent [21] mechanisms have 
been described. APOE appears to affect brain network 
activity and neuroenergetic functions [27] and to 
increase microglia reactivity at Aβ plaques in mouse 
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Figure 6: CTh APOE-by-Sex interaction analysis with CSF biomarker levels included as covariates. Family-wise corrected 
(p < 0.05) clusters with an interaction between sex and the dichotomized APOE4 genotype co-varied for age and: A. CSF Aß1–42 levels; 
B. CSF p-tau181p levels; C. CSF Aß1–42 and p-tau181p levels. As illustrated, the inclusion of CSF Aß1–42 levels as a covariate significantly 
diminished the clusters showing a CTh APOE-by-sex interaction. CTh = cortical thickness; APOE = apolipoprotein E.

Figure 7: Sex stratified CTh analyses with CSF biomarker levels included as a covariate. The analysis between male 
APOE4 carriers and male APOE4 non-carriers showed several clusters of increased CTh (p < 0.005 uncorrected) co-varied for age and CSF 
p-tau181p levels. There were no significant clusters of increased CTh male APOE4 carriers vs male APOE4 non-carriers after the inclusion 
of CSF Aß1–42 levels as a covariate. CTh = cortical thickness; APOE = apolipoprotein E.
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models [31], [32]. These metabolic and inflammatory 
responses in relation to the APOE genotype might differ in 
males and females, accounting for the differences found.

This work has potential clinical implications. 
Clinical trials in preclinical AD in which APOE4 status 
is a selection criterion are underway (Alzheimer’s 
Prevention Initiative APOE4 Trial, NIH project number 
1UF1AG046150–01). Our results emphasize the 
importance of sex stratification when considering the AD 
risk and its impact on AD topographical biomarkers [33] 
conferred by the APOE genotype. More broadly, the 
present work stresses the need to consider interactions 
between biomarkers and risk factors in the AD preclinical 
phase [28].

The strengths of this study are the inclusion of a 
relatively high number of subjects and the fact that the 
results were found in two different topographical AD 
biomarkers, [34] with congruent findings between the 
two. The study has some limitations. It is cross-sectional 
and the age-range sampled does not include young HC 
to assess the age-range in which amyloid is starting to 
deposit in the brain of APOE4 carriers [35].

In conclusion, the impact of APOE4 on brain 
structure and metabolism is modified by sex in HC. This 
interaction should be considered in current clinical trials 
in preclinical AD in which APOE4 status is a selection 
criterion.

MATERIALS AND METHODS

Study participants and clinical classification

Data used in the preparation of this article were 
obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (http://adni.loni.usc.edu). The 
ADNI was launched in 2003 by the National Institute 
on Aging (NIA), the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), private pharmaceutical companies 
and non-profit organizations, as a $60 million, 5-year 
public-private partnership. The primary goal of ADNI has 
been to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression 
of mild cognitive impairment (MCI) and early AD. 
Determination of sensitive and specific markers of very 
early AD progression is intended to aid researchers and 
clinicians to develop new treatments and monitor their 
effectiveness, as well as lessen the time and cost of 
clinical trials.

The Principal Investigator of this initiative is 
Michael W. Weiner, MD, VA Medical Center and 
University of California – San Francisco. ADNI is the 
result of efforts of many co-investigators from a broad 

range of academic institutions and private corporations, 
and subjects have been recruited from over 50 sites 
across the U.S. and Canada. The initial goal of ADNI was 
to recruit 800 subjects but ADNI has been followed by 
ADNI-GO and ADNI-2. To date these three protocols have 
recruited over 1500 adults, ages 55 to 90, to participate 
in the research, consisting of cognitively normal older 
individuals (HC), people with early or late MCI, and 
people with early AD. The follow up duration of each 
group is specified in the protocols for ADNI-1, ADNI-2 
and ADNI-GO. Subjects originally recruited for ADNI-1 
and ADNI-GO had the option to be followed in ADNI-2. 
For up-to-date information, see http://www.adni-info.org.

We included all HC with available CSF and/or 
a 3T-MRI and/or an FDG PET.

CSF analyses

ADNI procedure

Methods for CSF acquisition and biomarker 
measurement using the ADNI cohort have been reported 
previously [36]. Aß1–42, total tau (t-tau) and phospho-tau 
(p-tau181p) levels were measured using the multiplex xMAP 
Luminex platform (Luminex) with Innogenetics (INNO-
BIA AlzBio3) immunoassay kit–based reagents.

MRI and FDG-PET imaging procedures

ADNI acquisition procedure

The details of MRI and FDG-PET acquisition are 
available elsewhere (http://www.adni-info.org).
FDG-PET processing procedure

FDG-PET images were downloaded in the most 
processed format. They were intensity-scaled by the 
reference pons-vermis region [37], spatially normalized 
using SPM8 [http://www.fil.ion.ucl.ac.uk/spm/] to the 
Montreal Neurological Institute (MNI) PET template 
and spatially smoothed with a Gaussian kernel of full 
width at half-maximum (FWHM) of 8 mm. All resulting 
images were visually inspected to check for possible 
registration errors. Voxel-wise results were displayed at 
p < 0.005 (uncorrected) using an extent threshold k = 50, 
and projected on an inflated single-subject cortical surface 
reconstruction.

Cortical thickness processing procedure

Cortical reconstruction of the structural images 
was performed with the FreeSurfer software package, 
version 5.1 (http://surfer.nmr.mgh.harvard.edu). The 
procedures have been fully described elsewhere [38]. 
Estimated surfaces were inspected to detect errors in the 
automatic segmentation procedure. Fifty-seven of the 
225 N3 processed MRI analyzed were excluded because 
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of segmentation errors and 168 were included in the 
analyses. A Gaussian kernel of 15 mm full-width at half 
maximum was applied. To avoid false positives, we tested 
Monte Carlo simulation with 10,000 repeats in Qdec 
(family-wise error [FWE], p < 0.05). Only regions that 
survived FWE are presented in the figures.

Statistical methods

Group analyses were made using SPSS (SPSS 
Inc, Chicago, IL). Comparisons between groups were 
performed using the two-tailed Student t test for 
continuous variables and a chi-square test for categorical 
variables.

The main objective of our work was to study the 
APOE-by-sex interaction on brain metabolism and brain 
structure. Two approaches were used: interaction and 
sex-stratified analyses. We carried out an ANCOVA as 
implemented in SPM and FreeSurfer for the PET and 
MRI analyses, respectively, using the APOE genotype 
(APOE4 carrier vs APOE4 non-carrier) and sex as binary 
categorical independent variables, and age and years 
of education as variables of no interest to assess the 
interaction.

To examine the impact of CSF biomarkers on 
the FDG PET and CTh analyses, we introduced CSF 
biomarkers as covariates in the analyses. All analyses were 
repeated excluding APOE2 carriers and restricting to only 
non-hispanic white subjects.

Clusters derived from the interaction analyses in 
FDG or CTh were isolated to analyze the directionality 
of the interactive effects for each variable within an 
ANCOVA model, using age as a covariate. Specifically, 
we used the following model for FDG-PET and MRI:

Mean cluster FDG uptake (or mean cluster CTh) 
= â0 + â1*SEX + â2*APOE + â3*[SEX*APOE] + age

The same ANCOVA approach was used for the CSF 
analyses to test for an interactive effect of APOE genotype 
and sex in CSF biomarker levels.
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Non-demented Parkinson’s disease patients with apathy
show decreased grey matter volume in key executive
and reward-related nodes
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Abstract Apathy is a common but poorly understood neuro-
psychiatric disturbance in Parkinson’s disease (PD). In a re-
cent study using event-related brain potentials we demonstrat-
ed impaired reward processing and compromised
mesocortico-limbic pathways in PD patients with clinical
symptoms of apathy. Here we aimed to further investigate
the involvement of reward circuits in apathetic PD patients
by assessing potential differences in brain structure. Using
structural magnetic resonance imaging (MRI) and voxel-
basedmorphometry (VBM)we quantified greymatter volume
(GMV) in a sample of 18 non-demented and non-depressed
PD patients with apathy, and 18 matched non-apathetic

patients. Both groups were equivalent in terms of
sociodemographic characteristics, disease stage, cognitive
performance and L-Dopa equivalent daily dose. Apathetic pa-
tients showed significant GMV loss in cortical and subcortical
brain structures. Various clusters of cortical GMV decrease
were found in the parietal, lateral prefrontal cortex, and
orbitofrontal cortex (OFC). The second largest cluster of
GMV loss was located in the left nucleus accumbens
(NAcc), a subcortical structure that is a key node of the human
reward circuit. Isolated apathy in our sample is explained by
the combined GMV loss in regions involved in executive
functions, and cortical and subcortical structures of the
mesolimbic reward pathway. The correlations observed be-
tween apathy and cognition suggests apathy as a marker of
more widespread brain degeneration even in a sample of non-
demented PD patients.

Keywords Apathy . VBM . Parkinson’s disease .

Motivation .MRI . Behavior

Introduction

Among the whole spectrum of behavioral disturbances found
in Parkinson’s disease (PD), apathy represents one of the most
commonly reported (Pedersen et al. 2010; Aarsland et al.
2009). Apathy is defined as a state of diminished goal-
directed behavior, reduced interest for pleasurable activities
and flattened affect. These disturbances cannot be attributed
to a decreased level of consciousness, cognitive impairment or
depression (Marin 1991; Levy and Dubois 2006;
Pagonabarraga et al. 2015). The prevalence of apathy in PD
ranges from 17 % to 70 %, having a profound impact on the
patient’s quality of life and increasing the burden of
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caregivers. Moreover, apathy severity has been associated
with executive dysfunction and with an increased risk for
the development of dementia. However, the executive deficits
associated with apathy do not fully explain the clinical corre-
lates and underlying mechanisms of apathy in PD.

Better understanding on the different brain circuits that
cause apathy in PDwould help to provide more adequate treat-
ment strategies for its management (Dujardin et al. 2007).
Signs and symptoms of apathy recorded from clinical obser-
vation have been structured into four subdomains involving: a)
executive dysfunction (decrease in cognitive interests); b) def-
icits in auto-activation (lack of self-initiated mental processes);
c) emotional distress (negative affect); and d) deficits in reward
processing (decreases response to positive reinforces).

These four subdomains have been associated with different
neural substrates. Executive dysfunction is thought to involve
the dorsolateral prefrontal cortex (DLPFC), the dorsal caudate
and putamen and the anterior cingulate cortex (ACC).
Alterations in this circuit would lead to decreased planning
and cognitive inertia (Levy and Dubois 2006). Impaired
auto-activation has been associated with deficits in the ventral
tegmental area, territories in the dorsomedial prefrontral cor-
tex (PFC) including the supplementary motor area and the
ACC. Alterations at this level would lead to a decrease in
self-initiated behavior. The emotional distress subdomain
has been related with hyperactivity in the subgenual cingulate
cortex, and hypometabolism of the PFC and dorsal ACC.
These alterations have been related to negative emotions of
depression such as sadness and hopelessness. Finally, deficits
in reward processing would involve the mesocortico-limbic
pathway that includes the ventral tegmental area, orbitofrontal
cortex, and nucleus accumbens (NAcc). The NAcc is a key
node of the reward circuit, with robust activation responses to
positive reinforcers (Riba et al. 2008).

The dysexecutive basis for apathy in PD has been clearly
explained by the massive disruption of the dorsal caudate
reciprocal thalamo-cortical projections to DLPFC. However,
it has been also shown that alterations in the mesocortico-
limbic pathway play an important role in the development of
apathy (Martinez-Horta et al. 2014). Decreased responsive-
ness at this level would underlie emotional flatness, decreased
emotional resonance, and decreased response to positive and
negative reinforcers, as can be clinically observed in apathetic
PD patients.

In line with reward processing deficits, in a recent study
using event-related brain potentials we demonstrated reduced
sensitivity to monetary incentives in early-stage PD patients
with apathy (Martinez-Horta et al. 2014). The study compared
cognitively-preserved and non-depressed PD patients with
clinical symptoms of apathy with matched non-apathetic PD
patients. The study showed significant decreases in the ampli-
tude of the feedback-related negativity or FRN, a neurophys-
iological correlate of incentive processing. These results

strongly supported a compromised mesocortico-limbic path-
way as a key process in the pathogenesis of apathy in PD.

In the present study, we aimed to investigate the presence
of structural brain abnormalities in PD patients who have de-
veloped clinically relevant symptoms of apathy. Using mag-
netic resonance imaging (MRI) and voxel-based morphome-
try (VBM) we compared brain structure between two groups
of matched PD patients with isolated apathy. According to
standard criteria, all participants were classified as non-
demented and non-depressed and only differed with regard
to the presence or absence of apathy.

Methods

Patient recruitment

Thirty-six PD patients with isolated apathy were prospectively
included in the study. The sample was recruited from outpa-
tients regularly visiting the Movement Disorders Unit at Sant
Pau Hospital The diagnosis of PDwas established according to
the Queens Square Brain Bank criteria (Daniel and Lees 1993).

The diagnosis of apathy was established by using a semi-
structured clinical interview based on the standard diagnostic
criteria for apathy (P. Robert et al. 2009). An initial screening
for the presence of clinically relevant symptoms of apathy was
conducted using item 4 of the UPDRS part I (Goetz et al.
2008). The item is scored on a five-point scale ranging from
0 to 4, with higher scores indicating more severe symptoms of
apathy. A score of 2/3 was chosen as an adequate value to
initially identify potential study participants, avoiding the in-
clusion of patients with extreme symptomatology associated
with the minimal score of 1 or the maximum score of 4. The
score of 2/3 has adequate sensitivity and specificity (Leentjens
et al. 2008) and a recent study confirmed it value for detecting
apathy in PD (Weintraut et al. 2016). The semi-structured
interview was given to screened patients, and only those ful-
filling the diagnostic criteria for apathy were included in the
study (sees supplementary material).

Exclusion criteria were patients presenting clinically mean-
ingful depression and/or anxiety, as assessed by a score ≥ 11
on the depression and/or anxiety items of the Hospital Anxiety
and Depression Scale (HADS) (Mumford 1991). More com-
prehensive assessment for depressive symptoms was done
through the administration of a semi-structured clinical inter-
view based on the standard DSM-IV-R diagnostic criteria for
depression and dystimia. Presence of motor fluctuations in
response to L-dopa, or medium-to-advanced PD according
to Hoehn and Yahr stages (H&Y > 2) (Hoehn and Yahr
1967) also constituted exclusion criteria. Patients with demen-
tia were also excluded, as assessed by a score < 24 on the
Mini-Mental State Examination (MMSE) (Folstein et al.
1975), and a score < 123 on the Dementia Rating Scale
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(DRS) (Llebaria et al. 2008), which constitutes a level 1 rec-
ommended instrument from the Movement Disorders Society
Task Force for the screening of dementia in PD (PDD) (Litvan
et al. 2011; Dubois et al. 2007; Emre et al. 2007). Patients with
focal abnormalities in neuroimaging studies, alterations in
blood tests, non-compensated systemic disease (i.e., diabetes,
hypertension) and patients taking psychopharmacological
medications were also excluded.

Each patient, with his or her caregiver if appropriate, was
interviewed regarding disease onset and medication history,
including type of motor response to L-dopa. All study partic-
ipants were taking L-dopa and dopaminergic agonists (DA).
Current medications and dosages were calculated for L-dopa
daily dose, DA equivalent L-dopa daily dose and total L-dopa
daily dose (LED) (Tomlinson et al. 2010). Participants were
required to have received stable doses of dopaminergic drugs
for the last 12 weeks and to show a stable response to medi-
cations. Motor status and disease stage were assessed by ex-
perienced neurologists in movement disorders (JP & JK)
using the Unified Parkinson’s Disease Rating Scale (UPDRS).

Potential differences between groups in demographic, clin-
ical, cognitive and behavioral characteristics were analyzed
with independent two-tailed t-tests for continuous variables,
Mann-Whitney test for ordinal data, and the χ2 test for cate-
gorical variables. Associations between the demographic,
clinical and cognitive variables were analyzed with
Pearson’s correlations. Significance was set at p < 0.05.

MRI acquisition

T1-weighted images were acquired on a Phillips 3 TAchieva
in sagittal orientation (TR = 7.4 and TE = 3.4, matrix size
=228 mm × 218 mm; flip angle =9°, FOV = 250x250x180,
slice thickness = 1.1 mm, 300 slices, acquisition time = 4′55″,
voxel size =0.98 × 0.98 × 0.6).

MRI data processing and statistics

Gray matter volume (GMV) analysis from T1-weighted im-
ages was carried out using voxel-based morphometry (VBM)
analysis in SPM8. The preprocessing steps were as follows.

First, unified segmentation was applied to the structural
T1-weighted images of each subject. During this segmenta-
tion step, affine regularization was performed applying the
values for the ICBM space template for European brains.
The resulting tissue probability maps (GM maps) were then
normalized to a standard stereotactic space using the corre-
spondingDARTEL transformations to achieve spatial normal-
ization into Montreal Neurological Institute (MNI) space. All
normalized GM images were further analyzed to identify re-
gional differences in GMV (using Bmodulation^ to compen-
sate for the effect of spatial normalization). Finally, the nor-
malized and modulated images were smoothed using an

isotropic spatial filter (FHWN =8 mm) to reduce residual
inter-individual variability.

The individual smoothed GMV images were entered into a
voxel-wise second-level two-sample t-test between the apa-
thetic and non-apathetic PD patient groups. Individual values
of total intracranial volume (TIV) were extracted and included
as a nuisance variable to correct for global differences in TIV
and, since no one of the recorded clinical variables exhibited
significant differences between groups, age and sex were in-
cluded as covariates of no interest. Results showing p < 0.005
(uncorrected) (Lieberman and Cunningham 2009) and a min-
imum extent of 50 voxels were considered significant. For the
clusters showing significant gray matter differences, a small-
volume correction (SVC) was applied (Worsley et al. 1996).
Specifically, results were small volume corrected for family-
wise error (FWE p < 0.05) within a sphere of 15 mm of
diameter around peak coordinates extracted from independent
studies (van der Vegt et al. 2013; Reijnders et al. 2010).

GMV at the regions of interest (ROIs) extracted from the
clusters obtained in the former voxel-wise analysis were com-
puted from build-in SPM8 functions to perform further regres-
sion analysis with other clinical variables of interest.

Results

Socio-demographic and clinical matching

As shown in Table 1, groups were carefully matched for
all clinical and socio-demographic variables. Only the
presence of symptoms of apathy differentiated the two
groups. Data in the table are expressed as means ± stan-
dard deviation (SD) for the continuous variables, as per-
centage for the categorical variables and as mean range
for the ordinal variables.

As indicated in the table, the sample was clinically charac-
terized by individuals in the early to middle stages of the
disease (disease duration 7.5 ± 5.1 years; H&Y stage
1.8 ± 0.4). In both groups, total MMSE and DRS scores
ranged above the proposed cut-off score for dementia. To
address the presence of subtle signs of cognitive impairment,
we applied the accepted MDS criteria for mild cognitive im-
pairment associated to PD (PD-MCI). (Litvan et al. 2011)
Thus, using the suggested cut-off score of total DRS
score < 138, up to 64 % of patients accomplished criteria for
PD-MCI. Based on these criteria, prevalence of PD-MCI was
up to 77 % in the apathy group and 50 % in the non-apathy
group. These percentages resulted in a non-significant trend of
increased prevalence of PD-MCI on the apathy group
(χ2 = 3.1; p = 0.083). This result is consistent with previous
findings supporting more impaired cognitive performance in
apathetic PD patients (Pluck and Brown 2002; Martinez-
Horta et al. 2013; Santangelo et al. 2015).
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Focusing on specific subdomains of the DRS, a slight
significant decrease was found for conceptualization in
the apathy group (p = .04), but no significant differences
were found on memory, attention, initiation/perseveration
or construction.

No relevant signs of anxiety or depression were evidenced
on the HADS scores and subsequent clinical interviews.

Voxel-based morphometry and statistical results

As seen in Fig. 1, between group comparisons of the
VBM analysis showed a significant reduction of GMV
in a set of cortical and subcortical brain regions in the
apathetic patient group.

Cortical GMV decreases were found in the left inferior
parietal lobule (BA 40, SVC p = 0.002 FWE), left supe-
rior parietal gyrus (BA 7), left orbitofrontal cortex (BA
47), right postcentral gyrus (BA 3), right inferior frontal
gyrus (BA 44, SVC p = 0.033 FWE) and right supple-
mentary motor area (Table 2).

The only subcortical structure that showed statistically sig-
nificant differences between groups was the left nucleus

accumbens (NAcc, SVC p = 0.041 FWE), in the ventral part
of the striatum (Fig. 2). Using less stringent criteria (p < 0.01,
uncorrected) GMV decreases were found bilaterally (see
supplementary data).

GMV at the identified ROIs showed a significant cor-
relation with clinical variables. Decreased GMV in the
NAcc significantly correlated with global cognitive per-
formance as measured by the DRS total score (r = .831;
p < .001). Focusing on the different DRS sub-scores, this
relation appeared exclusively associated with performance
on the memory domain (r = .388; p = .01). At the emo-
tional level, a negative correlation between the left inferi-
or orbital prefrontal cortex and depression HADS scores
(r = −.523; p = .003) was found. At the cognitive level,
significant correlations were found between GMV reduc-
tion in the right inferior frontal gyrus with lower DRS
total score (r = .513; p = 0.001), and lower conceptuali-
zation (r = .371; p = .02), memory (r = .417; p = .01) and
initiation/perseveration (r = .331; p = .04) item scores.
Decreased GMV in the left superior parietal gyrus corre-
lated also with lower score in the initiation/perseveration
item of the DRS (r = .436; p = .008).

Table 1 Clinical and sociodemographic data

Non-Apathy Group Apathy Group p

n 18 18

Gender (f/m)a 10/8 10/8 χ2 = .631

Age (years) 64.8 ± 10.6 68.8 ± 10.1 .262

Education (years) 8.3 ± 3.6 10.5 ± 5 .150

Disease duration (years) 7.5 ± 5.1 5.1 ± 3 .080

MMSEb 28.2 ± 2.1 28.5 ± 1.6 .632

DRSc 134.2 ± 5.1 136.3 ± 5.5 .232

HADS-Ad 8.1 ± 4.2 8.7 ± 4 .718

HADS-De 4.8 ± 2.7 5.8 ± 3 .346

UPDRS Apathy scoref 0 2.5 ± .5 < .000

H&Y stageg 1.8 ± .4 1.8 ± .3 .391

UPDRS IIIh 18.3 ± 6.3 20.8 ± 8 .326

L-dopa daily dose 375.8 ± 319 362.8 ± 339 .906

DA equivalent dosei 190 ± 216 169 ± 218 .773

Total LEDj 565.8 ± 386 531.8 ± 397 .941

aGender represented as number of females (f) and males (m)
bMini mental state examination
c Dementia rating scale
d Hospital anxiety and depression scale – Anxiety score
e Hospital anxiety and depression scale – Depression score
f Item 4 unified Parkinson’s disease rating scale
g Hoehn and yahr stage
hUnified Parkinson’s disease rating scale total motor score
i Dopamine agonists L-dopa equivalent daily dose
j Total L-dopa daily equivalent dose. Data presented as mean ± SD
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Discussion

In the present study, we searched for structural brain abnor-
malities in PD patients with clinical manifestations of isolated
apathy. Based on previous data indicating deficits in reward
processing in this population, we postulated that structural
compromise will extend from territories linked to executive
functions to structures within the mesocortico-limbic reward
circuit. In keeping with this hypothesis, apathetic patients
showed significant areas of GMV loss in subcortical and cor-
tical brain regions. Significant clusters of GMV loss were
located in the left NAcc and left inferior orbital PFC, both
key nodes of the human reward circuit (Riba et al. 2008).
Analysis on cortical findings showed spatially distributed
clusters of grey matter decrease over the parietal and frontal
lobes, involving functionally related areas that participate on
action preparation/initiation, manipulation of information, as
well as high-order integration of emotional stimuli.

Based on these findings, apathy in PD is associated with
combined atrophy of fronto-parietal areas involved in execu-
tive functions, and regions of the human reward circuit. Initial

research considered apathy in PD as a specific manifestation
of the executive function caused by dopaminergic depletion of
lateral prefrontal areas (Pluck and Brown 2002; Levy and
Dubois 2006; Santangelo et al. 2015; Levy and Czernecki
2006). Apathy in PD has been consistently associated with
the progressive executive dysfunction caused by decreased
activation of lateral prefrontal and posterior parietal areas
(Isella et al. 2002). In accordance, apathy in PD has been
merely explained as secondary to functional deficits associat-
ed with nigrostriatal and mesocortical dopamine depletion in
the putamen and caudate nucleus, respectively. (Santangelo
et al. 2015; Pluck and Brown 2002; Martinez-Horta et al.
2013). However, when apathy in PD has been explored with
more extensive neuropsychological batteries, it has also been
observed to be associated with impairment in tasks involving
reward or emotional processing (Martinez-Horta et al. 2013;
Martinez-Corral et al. 2010). In agreement with this hypothe-
sis, in recent study using event-related brain potentials we
demonstrated reduced sensitivity to monetary incentives in
apathetic PD patients. The study measured the amplitude of
the feedback-related negativity (FRN) while participants

Fig. 1 Regions showing a reduction of gray matter volume in apathetic patients with respect to the non-apathetic group. There were no regions showing
significant increase in gray matter volume

Table 2 Brain regions showing a significant reduction of grey-matter volume when comparing apathy vs. non-apathy groups

Brain area Cluster size Lateralization BA MNI (x, y, z) Maximum t P Value FWE

Inferior parietal lobule 535 L 40 -57 -37 24 4.28 < 0.005 p = 0.002

Post-central gyrus 200 R 3 36–27 52 4.27 < 0.005 -

Pars opercularis 171 R 44 50 12 5 3.47 < 0.005 p = 0.033

Nucleus accumbens 412 L - -11 15–11 3.39 < 0.005 p = 0.041

Supplementary motor area 51 R 6 9 6 54 3.07 < 0.005 -

Inferior orbital PFC 93 L 47 -20 8–20 2.90 < 0.005 -

Superior parietal gyrus 91 L 7 -20 -70 42 2.85 < 0.005 -

BA Brodmann area, MNI Coordinates in montreal neurological institute stereotactic space. (p value <0.005; k = 50. FEW p value <0.05)
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performed a lottery task. This wave, with generators in the
ventral striatum and other limbic regions, was found to be
significantly decreased in the apathetic subgroup (Martinez-
Horta et al. 2014).

Our current anatomical findings give additional support to
the notion of impaired reward processing in PD patients who
develop apathy, and underline the existence of a more com-
plex related circuitry which subserves motivational, cognitive
and behavioral functions. The NAcc and the OFC are key
structures within the mesolimbic reward pathway. In contrast
with the nigrostriatal pathway, this circuit had been previously
considered to remain relatively spared in early and middle PD
stages (Rowe et al. 2008; Gotham et al. 1988, 1986). In
contrast, the decreases in grey matter found here in both
the NAcc and the OFC support its compromise in patients
who develop apathy, even in the early stages of the dis-
ease. The left-sided lateralized pattern we found is consis-
tent with the eminent unilateral-to-bilateral course of PD
pathology. In fact, using less strict p-value (p < 0.01) a
significant decrease can be bilaterally seen showing that
right NAcc is not free of more severe degeneration in
apathetic PD patients (see supplementary data).

These results are in line with recent neuroimaging studies
using various assessment techniques. In one study using
resting-state fMRI, Baggio and colleagues found an associa-
tion between apathy and altered functional connectivity be-
tween the limbic regions of the PFC and the striatum
(Baggio et al. 2015). However, this study did not properly
control the effect of depression in the studied sample. In an-
other study using shape analysis, the authors found atrophy of
the NAcc in association with more severe apathetic symptoms
in PD. However, part of the studied sample did not accomplish
criteria for apathy, and this relationship was found only in
relation to symptom severity (Carriere et al. 2014). Different

PET studies have also given evidence on the decreased
mesocortico-limbic dopaminergic activity present in apathetic
PD patients. By using [11C]-Raclopride, [11C]-RTI-32 and
[18]-FDG decreased dopamine release capacity has been ob-
served in the mesolimbic circuit, as well as reduced binding
and metabolism in the ventral striatum (Thobois et al. 2010;
Remy et al. 2005; G. H. Robert et al. 2014). Our results extend
and support the existence of structural abnormalities in the
NAcc in non-demented PD patients from the early and middle
stages of the disease.

In addition to the NAcc, we found GMV decreases in cor-
tical brain areas. Atrophy in these regions may account for
manifestations pertaining to other symptomatology domains
than reward processing. Grey matter loss was found in the
premotor cortex, including the SMA, and the pars opercularis
of the inferior frontal gyrus (BA44). This cluster included
regions around the insular cortex, the DLPFC and the pars
triangularis (BA45). These last two areas connect with the
middle (BA46) and the orbital (BA47) frontal areas. The al-
teration of the premotor cortex in our apathetic patients could
be linked to the disruption of self-initiated behavior and thus
to deficits in the auto-activation domain. These deficits would
be further supported by cortical atrophy around the insula and
related frontal structures. GMV decreases at this level would
be consistent with difficulties in the executive integration of
plans of action.

Cortical regions connected with the limbic system also
showed loss of GMV. Within the medial prefrontal cortex,
isolated apathy was associated with decreased GMV in the
OFC. The OFC is part of the mesocortico-limbic reward cir-
cuit, playing a critical role in incentive processing and higher
order integration of emotion (Timbie and Barbas 2015).
Abnormalities in the OFC have been associated not only to
apathy, but also to depression, anxiety, and social cognition

Fig. 2 Inverse correlation between cortical and subcortical GMV loss and cognitive performance
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(Jenkins et al. 2014; Drevets 2007; Milad and Rauch 2007;
Levy and Dubois 2006). The correlation observed between
volume loss in the OFC and depression HADS scores could
be interpreted as a marker of the emotional distress that may
coexist even in apathetic patients without clinical criteria for
depression(Pagonabarraga et al. 2015). On the contrary, it
could be also the consequence that many items in commonly
used scales for depression (including the HADS), are actually
measuring decreased motivated behaviors. Since patients in
our sample were free of clinically relevant depression, OFC
atrophy –in conjunction with decreased volume in the NAcc–
may indicate that not only loss of GMV in lateral aspects of
the prefrontal cortex lead to apathy, but that the concurrent
disruption of cortical and subcortical regions within the
mesocortico-limbic reward are crucial for the clinical manifes-
tation of decreased goal-directed behaviors.

Additional clusters of grey matter reduction were found in
the inferior frontal gyrus and in the parietal lobes. These two
structures have been associated with the cognitive aspects of
apathy in PD (Pagonabarraga et al. 2015). Atrophy of these
regions may account for previous evidence indicating a pat-
tern of worse cognitive performance in apathetic patients
(Martinez-Horta et al. 2013; Pluck and Brown 2002). These
deficits were seen mainly in tasks involving frontal executive
capacities, but also in others that rely on adequate parietal
function (Martinez-Horta et al. 2013). Importantly, impair-
ment in these tasks has been associated with more accelerated
cognitive decline (Williams-Gray et al. 2009; Aarsland et al.
2011). This raises the question of a possible link between
more severe global cognitive dysfunction and apathy. In PD
various authors have shown that apathy may herald dementia
(Williams-Gray et al. 2009; P. Robert et al. 2009), and grey
matter atrophy and cortical thinning in posterior cortical re-
gions have been associated with an increased risk of develop-
ing dementia (Aarsland et al. 2011; Bohnen et al. 2007;
Bohnen et al. 2006). In the present study, the correlations
observed between the NAcc and several cortical regions with
global cognitive deterioration involving not only executive
functions, suggests that the presence of apathy is a marker of
more extensive cortical and subcortical degeneration even in a
sample of non-demented patients.

Taken together, the present neuroimaging findings indicate
the presence of structural abnormalities in PD patients with
apathy. These abnormalities were observed in subcortical and
cortical brain regions in a carefully selective sample of non-
demented PD patients with isolated apathy in the early to mid-
stages of the disease. GMV decreases in the NAcc demon-
strate atrophy of a core structure of the mesocortico-limbic
circuit and support a compromise of the reward circuit in this
population. Areas of GMV decrease in the parietal lobe, as
well as in the lateral andmedial aspects of the prefrontal cortex
fit well with the cognitive, auto-activation and emotional
symptoms also present in apathy. Finally, the significant

relation between structural changes and specific cognitive as-
pects links apathy to cognitive deterioration.

Given the highly specific characteristics of the patient sub-
population studied here, the present findings should be general-
ized with caution. Apathetic PD patients are only a subgroup of
the broad range of PD patients usually encountered in the clin-
ical practice. Also, symptom manifestations may evolve differ-
ently in the various domains that constitute apathy in the course
of PD. Thus, the degree of compromise of the neural circuits
discussed here may vary in the different stages of the disease.
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Telling true from false: cannabis users show increased
susceptibility to false memories
J Riba1,2,3, M Valle2,3,4,11, F Sampedro5,11, A Rodríguez-Pujadas1, S Martínez-Horta6, J Kulisevsky6,7 and A Rodríguez-Fornells8,9,10

Previous studies on the neurocognitive impact of cannabis use have found working and declarative memory deficits that tend to
normalize with abstinence. An unexplored aspect of cognitive function in chronic cannabis users is the ability to distinguish
between veridical and illusory memories, a crucial aspect of reality monitoring that relies on adequate memory function and
cognitive control. Using functional magnetic resonance imaging, we show that abstinent cannabis users have an increased
susceptibility to false memories, failing to identify lure stimuli as events that never occurred. In addition to impaired performance,
cannabis users display reduced activation in areas associated with memory processing within the lateral and medial temporal
lobe (MTL), and in parietal and frontal brain regions involved in attention and performance monitoring. Furthermore, cannabis
consumption was inversely correlated with MTL activity, suggesting that the drug is especially detrimental to the episodic aspects
of memory. These findings indicate that cannabis users have an increased susceptibility to memory distortions even when
abstinent and drug-free, suggesting a long-lasting compromise of memory and cognitive control mechanisms involved in
reality monitoring.

Molecular Psychiatry (2015) 20, 772–777; doi:10.1038/mp.2015.36; published online 31 March 2015

INTRODUCTION
Cannabis is the most widely used recreational drug worldwide
after alcohol and tobacco.1,2 Despite changing attitudes in the
perceived risks associated with this substance and decriminaliza-
tion initiatives taking place in many US states and countries,1,3 the
health implications of long-term cannabis consumption are still a
matter of concern.4 Regular use of cannabis has been associated
with adverse health consequences, including psychiatric and
neurocognitive disorders. Besides the more immediate risk of
developing cannabis dependence,5 other mental disorders, such
as anxiety, depression or psychosis,6,7 and cognitive impairment
have also been described.8 One recent study involving over a
thousand individuals found that chronic cannabis use is asso-
ciated with cognitive decline, with greater deterioration being
observed in those individuals presenting a more persistent use.9

Among the various cognitive domains studied, memory is one of
the most frequently identified as being negatively affected by
cannabis.9–11

Impaired working and declarative memory are well-known
aspects of acute intoxication.12 Cannabis preparations and delta-
9-tetrahydrocannabinol, its main active principle, acutely deterio-
rate the ability to retain information for short periods of time,8,13

and impair episodic memory and verbal recall.14,15 A characteristic
of cannabis consumption is that residual effects can linger for days
after the most recent use.10 Typically, these deleterious effects
gradually wear off and memory processes normalize after several

weeks of abstinence.16,17 However, some studies in heavy cannabis
users have observed impairment persisting even months after the
last consumption.9,10 In addition to impaired performance, imaging
studies in chronic cannabis users have found structural brain
alterations in the hippocampus, a key area in the memory
processing network. Notably, decreases in hippocampal volume
showed an association with the amount of cannabis used.18–20

These structural changes may be long-lasting, as volume reduc-
tions can persist even after abstinence of 6 months.18

An unknown aspect of long-term cannabis use is its potential to
disrupt memory and reality monitoring mechanisms that normally
allow us to distinguish between veridical and illusory events.
Avoiding memory distortions may be extremely relevant in certain
contexts such as the courtroom and forensic examination, and in a
more general context this ability provides us with an adequate
sense of reality that guides future behavior based on past
experiences. Memories of events that never occurred, or false
memories, can be found in neurological and psychiatric condi-
tions. They have been described in post-traumatic stress disorder,
psychosis, dissociative disorders and in cases of confabulation or
‘honest lying’ associated with confessions of uncommitted crimes,
among others.21 However, in a more subtle form, false memories
are also a common occurrence in everyday life in healthy
individuals22 and show an increase with age.23 Susceptibility to
this phenomenon probably has a neural basis, as it has been
linked to individual differences in white matter microstructure.24
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False memories can be induced in laboratory conditions using
experimental procedures such as the Deese-Roediger-McDermott
paradigm.25 In this task, participants study a list of words that are
later presented together with semantically unrelated new words
and semantically related new words (lures).25 Lures induce the
illusion of a false memory where participants mistakenly claim that
the new stimulus has been encountered previously. The correct
identification of lures as previously unseen stimuli is more
cognitively demanding than that of unrelated novel stimuli, the
former leading to greater activation of medial temporal lobe
(MTL), parietal and frontal brain regions.26 In the present study we
tested susceptibility to false memories in a group of abstinent
heavy cannabis users and their matched controls using the Deese-
Roediger-McDermott paradigm in association with functional
magnetic resonance imaging (fMRI; see online methods).

MATERIALS AND METHODS
Ethics
The study was approved by the Ethics Committee of Sant Pau Hospital and
all participants gave their written consent to participate.

Participants
We recruited a group of 16 heavy cannabis users not seeking or having a
history of treatment for their cannabis consumption. We defined heavy
cannabis use as daily use for at least the last 2 years. The recruited sample
had never been diagnosed with a psychiatric or neurological condition
including alcohol or other drug abuse. Cannabis users were matched to a
cannabis-naive (o50 occasions of cannabis use in their lifetime) group of
healthy controls, free of psychiatric or neurological conditions. Fourteen
controls had used cannabis o10 times and only two had used it between
10 and 50 times. To rule out a history of psychiatric and neurological
disorders, users and controls were interviewed by a clinical psychologist.
The two groups were matched taking into account the following socio-
demographic variables: sex, age, years of education, verbal intelligence
and fluid intelligence. Verbal intelligence was assessed using a Spanish
version of the NART,27 known as TAP–‘Test de Acentuación de Palabras’
(‘word accentuation test’).28 Fluid intelligence was assessed using a
computerized version of the Matrix Reasoning from the Wechsler Adult
Intelligence Scale-III.29 Detailed socio-demographic data for each group is
provided as Supplementary information.
Cannabis users had taken the drug an average of around 42 000 times

(range: 4 000–246 375) times. The average number of years of use was 21 (3–
39). The average number of daily cannabis cigarettes smoked was 5 (1–24)
and the average age of initial use was 17 (12–20) years. We did not exclude
tobacco smokers from the study and they were not instructed to abstain
from tobacco during the study. Ten participants in the cannabis group and
four in the control group were currently using tobacco. Participants
abstained from cannabis use for at least 4 weeks prior to testing. Urine
samples were taken during the 4-week period and immediately before the
experimental session. All participants tested negative for cannabis, alcohol,
benzodiazepines, amphetamines, opiates and cocaine on their day of
participation.

Memory paradigm
The memory paradigm consisted in a modified version of the Deese-
Roediger-McDermott paradigm25 and included a study phase and a testing
phase (see Supplementary information). Both phases were conducted with
the participant in the MRI scanner. Stimuli were presented using goggles
and behavioral responses were recorded by button press using a magnet-
compatible response pad.
The study phase comprised 20 lists of four words. Prior to the

presentation of the four words comprising a list, the name of that list
was announced on the screen. Of the 20 lists, fifteen comprised four
semantically related Spanish words and the other 5 lists comprised 3
semantically related words plus a catch word. Catch words were
semantically unrelated to the list announced and were used to control
for the participant’s attention during the task. A total of 80 stimuli were
presented during the study phase: 75 legitimate words plus 5 catch words.
Participants were requested to indicate by button press whether the
presented word belonged to the announced list. The order of presentation

of the 20 word lists was randomized between participants. The study
phase lasted 11min.
Approximately 15min after completion of the study phase, the test

phase was conducted and lasted 14min. Participants were presented with
the 75 legitimate words shown during the study phase plus 40
semantically unrelated new words and 40 semantically related new words
(lures, see stimuli tables in the Supplementary information file). Stimuli
were presented in semi-random order with the restriction that the same
type of stimulus (old, new or lure) was not presented more than twice in
succession. We used a rapid presentation event-related design. Stimulus
duration was 500ms. The stimulus onset asynchrony was on average
5.125 s and it was jittered between 4 s and 10 s. The order and timing of
events were optimized using the Optseq2 software (http://surfer.nmr.mgh.
harvard.edu/optseq/). Participants were required to judge whether a word
had been presented in the study phase and make an old vs new decision
by button press. The task had the following outcomes: (1) a studied word
was correctly classified as old or ‘hit’ (true memory recognition); (2) a
studied word was incorrectly classified as new or ‘miss’; (3) a non-studied
word was correctly classified as new or ‘correct rejection of new word’; (4) a
non-studied word was incorrectly classified as old or ‘false alarm’; (5) a lure
was correctly classified as new or ‘false memory rejection’; and (6) a lure
was incorrectly classified as old or ‘false recognition’.

Functional magnetic imaging protocol
Data were acquired in a 3-Tesla Siemens Magnetom Trio Scanner.
Structural images of the brain were obtained by means of a T1-weighted
MPRAGE sequence: 256 × 256 matrix; 240 1-mm sagittal slices. Functional
images were obtained using an echo-planar-imaging sequence. The pulse-
sequence parameters were as follows: time to repeat = 2000ms; time to
echo= 29ms; flip angle = 80°; matrix = 128× 128; slice thickness = 4 mm.
Each volume comprised 36 transversal slices (2 × 2 × 4 mm voxel). A total of
412 volumes were acquired during the test phase.

Preprocessing of imaging data
fMRI data were analyzed using the SPM8 software. Raw echo-planar-
imaging images were slice time and motion corrected. Echo-planar-
imaging images were then co-registered to each individual’s structural T1
image. T1 images were normalized to the T1 Montreal Neurologic Institute
template and the obtained parameters were used to transform the echo-
planar-imaging images into Montreal Neurologic Institute space. Normal-
ized images were subjected to high-pass temporal filtering (128 s or
0.008 Hz) and to spatial smoothing using an 8mm Gaussian filter.

Statistical analysis
A first-level analysis was performed for each individual using a design
matrix that included the following predictors: ‘hit’, ‘miss’, ‘correct rejection
of new word’, ‘false alarm’, ‘false memory rejection’, ‘false recognition’.
Motion correction parameters and the temporal and hemodynamic
response function dispersion derivatives were introduced in the model
as covariates. The contrast of interest ‘false memory rejection’4‘correct
rejection of new word’ was calculated for each participant.
The second level analysis involved a between-groups (cannabis and

controls) comparison using an independent-samples t-test for the ‘false
memory rejection’4‘correct rejection of new word’ contrast. Both the
controls4cannabis and cannabis4controls contrasts were calculated. We
considered clusters to be significantly different between groups for P-values
o0.001 uncorrected and a spatial extension of 10 contiguous voxels.
To assess for correlations between activation values and drug-use

variables, mean fMRI parameter values for the different statistically
significant clusters (region of interest) were calculated for each individual.
The voxels included in the calculations for each cluster were those showing
P-values o0.001 uncorrected.

RESULTS
Behavior
The analysis of behavioral data obtained in the study phase did
not detect differences between groups regarding their degree of
attention. Thus, the number of correctly identified catch trials,
expressed as mean ± s.d., was 4.00 ± 0.63 for the controls and
4.18 ± 0.75 for the cannabis users t(30) =− 0.76, P40.1.
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The analysis of behavioral data in the test phase showed no
differences between groups in the number of correctly recognized
studied words (true memory recognition; mean± s.d.: cannabis
users, 64 ± 6; controls, 65 ± 6; t(30) = 0.4, P40.1) or in the number
of correctly rejected new words (correct rejection of new words:
cannabis users, 37± 3; controls, 39± 0.7; t(30) = 1.9, P=0.076). No
differences were found either in the time (in milliseconds) taken to
correctly recognize studied words (cannabis users, 1185 ± 199;
controls, 1089± 195; t(30) =− 1.36, P40.1), or to correctly reject
new words (cannabis users, 1200± 345; controls, 1043± 196;
t(30) =− 1.58, P40.1). However, as shown in Figure 1, cannabis
users showed significantly more false memories. A two-way
analysis of variance, with outcome (false recognition vs false
memory rejection) as within-subjects factor and participant group
(cannabis vs controls) as between-subject factors, showed a
significant interaction (F(1,30) = 5.60, P= 0.025). Lure words were
falsely recognized as studied words more often (false recognition;
cannabis users, 12± 6; controls, 8 ± 4; t(30) =− 2.24, P= 0.033), and
were rejected less often (false memory rejection; cannabis users,
27± 6; controls, 32± 4; t(30) = 2.46, P= 0.021).

fMRI
Imaging data were analyzed specifically looking for differences
between groups in the pattern of blood oxygenation level
dependent (BOLD) response associated with the correct rejection
of lures or false memory rejection as compared with the correct
rejection of new words. Figure 2 shows the mentioned contrast
separately for each of the two participant groups. Note the larger
extension and lower P-values of active voxels in the control group.
Figure 3 and Table 1 show the results of the between-groups

comparison. Control participants showed higher activation for the
contrast false memory rejection4correct rejection of new words
in parietal, prefrontal, temporal and subcortical structures. All
these structures have previously been found to be involved in the
correct identification of false relative to new semantic stimuli.26

Greater behavioral efficacy in the control group was thus
associated with greater brain activity for the rejection of lures
than for the rejection of new unrelated words.

Correlation analysis
To look for potential associations between the pattern of brain
activation and history of cannabis use, we defined regions of
interest for each of the statistically significant areas identified in
the between-groups comparison. The parameters (beta values)
associated with false memory rejection in each region of interest
were extracted only for the cannabis group, and their values were
correlated with drug-use data: lifetime cannabis consumption,
years of use and amount of cannabis used daily. As shown in
Figure 4, a significant negative correlation (r=− 0.806, r2 = 0.650,
Po0.001) was found between activity in the MTL regions of
interest and lifetime cannabis use (log value of the estimated
number of cannabis cigarettes smoked).

DISCUSSION
Our results show that cannabis users had a higher susceptibility to
memory illusions, as observed in certain neurologic and psychiat-
ric populations,21 and elderly individuals.23 They further identify
the functional substrate of this deficit in the hypoactivation of a
series of spatially distributed brain regions participating in the
network involved in semantic30 and episodic31 retrieval. The
network identified fits nicely with previous studies that have
shown that compared with new items, recognition of false stimuli
leads to greater activation of the hippocampus and the
parahippocampal gyrus, and also of the left parietal and left
dorsolateral prefrontal cortices in healthy subjects.26 Although
activation of MTL structures in these tasks can be directly

associated with memory,32 the parietal cortex can be linked to
attentional processes and the dorsolateral prefrontal cortex to
monitoring issues in this context.33 It has been shown that the
effective rejection of lures leads to greater activation of the
dorsolateral prefrontal cortex34 and lesions at this level lead to
increased false recognition in neurological patients.35 Thus, rather
than a compromise of memory structures per se (that is, the
hippocampus), our results point to a more diffuse impairment,
which leads to a reduced capacity to deal with the retrieval and
monitoring demands needed to differentiate between illusory and
real events.
From a theoretical perspective, two main accounts have been

put forward to explain the false memory phenomenon: the fuzzy
trace theory and the activation-monitoring account. The fuzzy
trace theory postulates that stimuli are encoded into two types
of memory traces: a ‘verbatim’ trace containing specific details
and features associated with the stimulus, and a ‘gist’ trace that
contains more general aspects of the encoding event. False
memories occur when new stimuli share certain features with past
events and elicit the retrieval of the gist trace, but not the verbatim
trace.36 In contrast, the activation-monitoring account37 postulates
that cognitive control mechanisms need to be engaged to
correctly identify and reject the highly activated lures. According
to this view, false memories occur when monitoring mechanisms
fail to identify the non-studied but semantically related lures.
Our findings can be interpreted in the light of the two accounts

described above. The between-groups comparison of fMRI
activation maps showed activity not only in distributed brain
areas participating in semantic30 and episodic31 retrieval, but also
in cognitive control, as suggested by the significant dorsolateral
prefrontal clusters identified.38,39 The greater activation found for
the control group in the medial and lateral temporal cortices
suggests access to both the semantic (lateral) and episodic
(medial) features of the studied stimuli. Using the terminology of
the fuzzy trace account, controls would take advantage of both
the verbatim and gist traces when deciding to reject a false
memory. On the contrary, the inverse correlation found between
lifetime cannabis use and the BOLD response in the MTL suggests
that chronic exposure to cannabis may be especially detrimental
to the brain structure providing the episodic or gist features to

Figure 1. Behavioral data. The graphs show performance results in
the memory task. Cannabis users performed significantly worse than
controls, showing increased false recognition and decreased false
memory rejection. Error bars denote one s.d. of mean.
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stored information. Cannabis users may have been left more
dependent on the verbatim features of stimuli to decide whether
a given word was a legitimate memory or not. Paradoxically, the
greater activation of gist-related information in the control group
compared with the cannabis group might have made them more
vulnerable to false memories. Concurrent retrieval of item-based
(verbatim) and context-based (gist) information in the control
group might elicit conflict and require the engagement of
cognitive control mechanisms, explaining the increased frontal
activation observed in the controls. Thus, a more efficient conflict-
or activation-monitoring, as signaled by increased dorsolateral

prefrontal activity, may have led to the final outcome of better
performance in the control group.
Further evidence of MTL and prefrontal impairment by cannabis

is provided by magnetic resonance spectroscopy studies. Using
this technique, researchers have found detrimental neurometa-
bolic changes in these brain areas. For instance, Silveri and
colleagues have reported decreased myo-inositol/creatine levels
in the MTL and thalamus of users.40,41 Hermann et al.42 have found
reduced N-acetyl-aspartate/total creatine ratios in the dorsolateral
prefrontal of recreational users, and Cowan et al.43 have found
analogous decreases in Brodmann area 45 in the inferior frontal

Figure 2. Rendering of fMRI results for each participant group. The statistical maps show the results of the voxel-wise comparison ‘false
memory rejection’4 ‘correct rejection of new word’. For depiction purposes results are shown at P= 0.01.

Figure 3. Group differences between controls and cannabis users. The images show the results of the voxel-wise independent-samples t-test
controls4 cannabis users for the contrast ‘false memory rejection’4 ‘correct rejection of new word’. The brain regions depicted showed
significantly higher activation in the control group as compared with the cannabis using group at P= 0.001 uncorrected. No significant results
were obtained for the contrast cannabis users4controls. For depiction purposes results are shown at P= 0.005.

Chronic cannabis impairs reality monitoring
J Riba et al

775

© 2015 Macmillan Publishers Limited Molecular Psychiatry (2015), 772 – 777



gyrus. Considering that analogous neurometabolic changes can
be observed in older individuals44 and that reality monitoring
deficits increase with age,45 we speculate that chronic cannabis
use could aggravate the memory deficits associated with the
normal ageing process.
Our findings extend previous knowledge on the impact of

cannabis use on memory12 and executive function.8 Although
there are contradictory results regarding the normalization of
memory in the long term,9,10,16 impairment has been associated
with the intensity of cannabis use, with heavy users showing
deficits in various memory functions.46 Interestingly, many
neuroimaging studies implementing simple memory tasks have
failed to find differences in performance between heavy cannabis
users and controls.12 Our findings suggest that impairment may
be more subtle and affect more complex cognitive processes, like
those involved in the Deese-Roediger-McDermott paradigm.
A limitation of our study is the potential presence of residual

THC levels in the brain in the absence of detectable levels in other
biological matrices (in our case, urine). Whereas most studies in
humans consider that cognitive testing after a 4-week period will
assess the long-term effects of cannabis rather than its residual
effects,8 a longer persistence of THC in the brain has also been
observed.47 Thus, although unlikely, the presence of small
amounts of THC in the body cannot be entirely ruled out.
Taken together, the present results indicate that long-term

heavy cannabis users are at an increased risk of experiencing
memory errors even when abstinent and drug-free. These deficits

show a neural basis and suggest a subtle compromise of brain
mechanisms involved in reality monitoring. Though subtle, the
deficits found bear similarities with alterations observed in
psychiatric and neurologic conditions and also with age-related
cognitive decline. This lingering diminished ability to tell true from
false may have medical, and legal implications. Future studies
should address these issues and assess whether the deficits found
here extend to other forms of memory distortion and reality
monitoring beyond the false memory phenomenon.
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