Automatic Image Quantification Strategies in Nuclear Medicine and Neuroradiology

PhD Defense Presentation

F. Sampedro

Index

- Motivation, objectives and general framework
- Contributions to the design and application of automatic quantification strategies in nuclear medicine and neuroradiology
 - Quantification of cross-sectional breast cancer FDG-PET-CT scans
 - Quantification of longitudinal Non-Hodgkin lymphoma FDG-PET-CT scans
 - Quantification of DMSA scans with structural renal damage
 - Quantification of cerebral FDG-PET scans in Alzheimer's Disease
 - Quantification of cortical thickness from T1-MRI scans in Alzheimer's Disease
 - Quantification of gray matter volume from T1-MRI in Parkinson's disease
 - Quantification of task-related brain activation in fMRI in cannabis users
- Other contributions in the field
- General conclusions and future work

Motivation and objective

Motivation and objective

High accuracy at identifying complex image patterns relying on previous knowledge.

Observer-dependent

Categorical output

Limitation at handling large 4D datasets

Motivation and objective

High accuracy at identifying complex image patterns relying on previous knowledge.

Observer-dependent

Categorical output

Limitation at handling large 4D datasets

Observer-independent

Continuous + categorical output.

Capable of handling large 4D datasets

Medium-low accuracy at identifying complex image patterns relying on previous knowledge.

Medium-low accuracy at identifying complex image patterns relying on previous knowledge.

PhD Thesis Objective: To design, implement and validate computational image quantification strategies for a set of nuclear medicine and neuroradiological contexts.

General framework

Contribution to the management (dx, px...) or understanding of

Scenario 1

Oncological PET/CT: Tumor burden (TB) quantification

TB computation system

TB computation system

TB computation system

Scientific output

Informatics. 2015.

Nuclear Medicine Communcations. 2013.

False positive

Man Seg	<u>TB indicator</u>	<u>Man Seg</u>	<u>Auto Seg</u>
48%	nTSUV	80%	58%
60%	nTSUV*NCC	85%	62
80%	nTSUV*aNCC	84%	61
79%	nTSUV*NORG	87%	64%
	<u>Man Seq</u> 18% 50% 30%	Man Seq TB indicator 18% nTSUV 50% nTSUV*NCC 30% nTSUV*aNCC	Man Seq TB indicator Man Seq 18% nTSUV 80% 50% nTSUV*NCC 85% 30% nTSUV*aNCC 84% 72% nTSUV*NORG 87%

Main conclusion: Automatic tumor segmentation of whole-body PET-CT scans is a computational challenge, showing excessive performance variance to be used in the clinical routine. TB indicators that take into consideration the tumor spread properties offer higher performance at modeling the underlying pathology.

Scenario 2

Oncological PET/CT: Tumor response or progression(TR/TP) quantification

TP/TR computation system

TP/TR computation system

70% accuracy at automatically
classifyingresponsefromprogression scenarios(90% when using
expert-
guided tumor segmentations)

Automatic Segmentation

Unable to detect subtle cases given the limitation of the automatic segmentation system

Correlation (%)	ΔWBMTV	∆SUV _{mean}	∆SUV _{max}	∆SUV _{peak}	ΔTLG
Progression	32.3	5.7	4.2	13.8	30.7
Partial Response	76.9	48.1	59.6	43.7	73.8
Mixed Response	8.3	20.0	13.3	26.7	25.0
Relapse	100	54.8	90.5	78.6	90.5
Complete Response	88.5	44.0	64.8	80.8	83.5

	Indicator	Correlation(%)	Correlation(%): Auto. Seg.
Progression	∆WBMTV * Vn * nSNTL	80.2	18.1
Partial Response	ΔWBMTV * (1+ ΔNCC)	77.1	32.2
Mixed Response	A _N /ΔWBMTV	68.3	28.3
Relapse	ΔWBMTV	100	45.2
Complete Response	ΔNCC	88.5	41.2

Main conclusion: Completely automatic evaluation and quantification of the tumor response in time from a pair of PET-CT scans has important computational limitations and therefore remains unpractical. Quantitative tumor response indicators that take into consideration the tumor's spread change in time offer higher performance properties at modeling the underlying tumor evolution.

Scenario 3

DMSA quantification of structural kidney damage (SKD)

SKD computation system

Main conclusion: Automatic structural kidney damage detection in DMSA scans can successfully distinguish pathological from control scans. Quantitative indicators derived from the properties of the damaged area correlate with other clinical variables relevant in this scenario. These results suggest a promising potential of this technology to complement visual diagnosis and to contribute to the understanding of the disease pathophysiology.

Scenario 4

Cerebral ¹⁸F-FDG PET: Brain metabolism quantification (SUVr)

SUVr computation system

<u>Sampedro</u> et al. APOE-by-sex Interactions on Brain Structure and Metabolism in Healthy Elderly Controls. Oncortarget. 2015.

Main conclusion: The brain metabolism in key areas of dementia is altered by the APOE4 genotype but in a different manner depending on the gender. APOE4+ females show stronger hypometabolism than APOE4+ males. This finding contributes to explain the clinically observed APOE4+ women's higher risk of developing Alzheimer's Disease.

<u>Scenario 5</u>

Cortical thickness(CTH) quantification from T1 MRI images

 CTH_1 > CTH_2 > ... > CTH_N

CTH computation system

<u>Sampedro</u> et al. APOE-by-sex Interactions on Brain Structure and Metabolism in Healthy Elderly Controls. Oncortarget. 2015.

Main conclusion: Brain atrophy in key areas of dementia is altered by the APOE4 genotype but in a different manner depending on the gender. APOE4+ females show stronger atrophy than APOE4+ males. This finding contributes to explain the clinically observed APOE4+ women's higher risk of developing Alzheimer's Disease.

<u>Scenario 6</u>

Gray matter volume (GMV) quantification from T1 MRI images

GMV computation system

Brain Imaging and Behaviour. 2016.

Main conclusion: Gray matter volume of the Nucleus Accumbens is reduced in apathetic Parkinson's Disease patients and correlate with cognitive status. These results suggest apathy as a marker of more widespread brain degeneration in Parkinson's disease.

<u>Scenario 7</u>

Task-related brain activation (TRBA) in fMRI

fMRI images

31

TRBA activation computation system

- Known association: Memory deficit -> Medial temporal Lobe (MTL) -> Hippocampus
- Study of the Hippocampal TRBA in a FM task in drug-free cannabis users and a control group

Riba, <u>Sampedro</u>&Valle et al. Telling true from false: Cannabis users show increased susceptibility to false memories. Molecular Psychiatry. 2014.

Main conclusion: Hippocampal activation during a false memory task was lower in drug-free cannabis users than in controls. This activation inversely correlated with lifetime cannabis use. These findings indicate that cannabis users have an increased susceptibility to memory distortions even when abstinent and drug-free.

Video_papercannabis.mp4

Other contributions in the field

1: **Frederic Sampedro**, Sergio Escalera, Spatial codification of label predictions in Multi-scale Stacked Sequential Learning: A case study on multi-class medical volume segmentation, <u>IET Computer Vision</u>, pp 1-8. 2014.

2: **Frederic Sampedro**, Sergio Escalera, Anna Puig, Iterative multi-class multi-scale stacked sequential learning: Definition and application to medical volume segmentation, <u>Pattern Recognition Letters</u>, Volume 46, 1 September 2014, Pages 1-10, ISSN 0167-8655.

3: **Frederic Sampedro**, Anna Domenech, and Sergio Escalera, I.Carrio.Static and dynamic computational cancer spread quantification in whole body FDG-PET/CT scans, <u>Journal of Medical Imaging and Health Informatics</u>, Vol 4, 1-7. 2014.

4. Frederic Sampedro, M. Revenga, M. Valle, N. Roberto, E. Domínguez-Clavé, M. Elices, E. Luna A. Crippa, J. Hallak, D. Araújo, P. Friedlander, S. Barker, E.Álvarez, J. Soler, J.Pascual, A. Feilding J. Riba. Assessing the psychedelic "after-glow": Ayahuasca-induced post-acute neurometabolic and functional connectivity changes are associated with enhanced mindfulness capacities. International Journal of Neuropsychopharmacology. 2017. In Press.

5: López-Mora DA, Camacho V, Pérez-Pérez J, Martínez-Horta S, Fernández A, Sampedro F, Montes A, Lozano-Martínez GA, Gómez-Anson B, Kulisevsky J, Carrió I. Striatal hypometabolism in premanifest and manifest Huntington's disease patients. <u>Eur J Nucl Med Mol Imaging</u>. 2016 Jun 28. [Epub ahead of print] PubMed PMID: 27349245.

6: Martinez-Horta S, Perez-Perez J, van Duijn E, Fernandez-Bobadilla R, Carceller M, Pagonabarraga J, Pascual-Sedano B, Campolongo A, Ruiz-Idiago J, **Sampedro F**, Landwehrmeyer GB; Spanish REGISTRY investigators of the European Huntington's Disease Network, Kulisevsky J. Neuropsychiatric symptoms are very common in premanifest and early stage Huntington's Disease. <u>Parkinsonism Relat Disord.</u> 2016 Apr;25:58-64. doi: 10.1016/j.parkreldis.2016.02.008. Epub 2016 Feb 11. PubMed PMID: 26898966.

7: Vaquero L, Cámara E, **Sampedro F**, Pérez de Los Cobos J, Batlle F, Fabregas JM, Sales JA, Cervantes M, Ferrer X, Lazcano G, Rodríguez-Fornells A, Riba J. Cocaine addiction is associated with abnormal prefrontal function, increased striatal connectivity and sensitivity to monetary incentives, and decreased connectivity outside the human reward circuit. <u>Addict Biol.</u> 2016 Jan 19. doi: 10.1111/adb.12356. [Epub ahead of print] PubMed PMID: 26786150. 8: Carmona-Iragui M, Fernández-Arcos A, Alcolea D, Piazza F, Morenas-Rodriguez E, Antón-Aguirre S, Sala I, Clarimon J, Dols-Icardo O, Camacho V, **Sampedro F**, Munuera J, Nuñez-Marin F, Lleó A, Fortea J, Gómez-Ansón B, Blesa R. Cerebrospinal Fluid Anti-Amyloid-β Autoantibodies and Amyloid PET in Cerebral Amyloid Angiopathy-Related Inflammation. <u>J Alzheimers Dis.</u> 2015;50(1):1-7. doi: 10.3233/JAD-150614. PubMed PMID: 26639966.

9: Dols-Icardo O, Vilaplana E, **Sampedro F**, Alcolea D, Belbin O, Camacho V, Blesa R, Lleó A, Clarimón J, Fortea J; Alzheimer's Disease Neuroimaging Initiative. Effect of REST on brain metabolism in the Alzheimer disease continuum. <u>Ann</u> <u>Neurol</u>. 2015 Oct;78(4):661-2. doi: 10.1002/ana.24484. Epub 2015 Aug 25. PubMed PMID: 26179831.

10: Alcolea D, Vilaplana E, Pegueroles J, Montal V, Sánchez-Juan P, González-Suárez A, Pozueta A, Rodríguez-Rodríguez E, Bartrés-Faz D, Vidal-Piñeiro D, González-Ortiz S, Medrano S, Carmona-Iragui M, Sánchez-Saudinós M, Sala I, Anton-Aguirre S, **Sampedro F**, Morenas-Rodríguez E, Clarimón J, Blesa R, Lleó A, Fortea J. Relationship between cortical thickness and cerebrospinal fluid YKL-40 in predementia stages of Alzheimer's disease. <u>Neurobiol Aging.</u> 2015 Jun;36(6):2018-23. doi: 10.1016/j.neurobiolaging.2015.03.001. Epub 2015 Mar 9. PubMed PMID: 25865441.

11: Pegueroles J, Vilaplana E, Montal V, **Sampedro F**, Alcolea D, Carmona M, Clarimon J, Blesa R, Lleo A, Fortea J.Longitudinal brain structural changes in preclini cal Alzheimer disease. <u>Alzheimers Dement</u>. 28 Sep 2016;pii:S1552-5260(16)32890-4. doi: 10.1016/j.jalz.2016.08.010.

Quantitative summary:

- \rightarrow 20 articles. Total IF=84.76, 101 citations, h-index=5
- \rightarrow Contributed to 27 conferences and congresses.
- → Research project participation: TIN, 2 Marató

General conclusions and future work

- Digital medical imaging technology and increasing computational power has led to the development of **quantitative medical image analysis**.
- For each image modality and clinical scenario, the **challenge of finding the best image-derived quantitative and observer-independent indicators** that model the underlying pathology emerge. Automatically-computed indicators that succeed in this task will undoubtedly contribute to the medical field.
- This PhD thesis presented a set of medical image quantification scenarios where the design and implementation of **quantitative indicators** that model a specific **clinical context** of interest **contributed to its understanding or management**.
- A large number of clinical scenarios remain where computing image-derived observer-independent and quantitative indicators could improve diagnostic accuracy, prognosis estimation or disease understanding.

Acknowledgments

- Dr Carrió
- Dr Escalera, Dr Riba
- A totes aquelles persones amb les que he tingut el plaer de col·laborar durant aquests anys.