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Introduction 

• What is hand pose recovery? 

• And applications: 
• Human-computer interaction, 

• Virtual reality, 

• Robot learning. 
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Outline  

• Single frame pose recovery 

• Temporal pose recovery 

• Results 
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System overview and pipeline 

• Single frame hand pose recovery 

4 

Depth image 

K nearest neighbors 

Hand segmentation 

Predefined samples 
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System overview and pipeline 

• Spatial-temporal hand pose recovery 
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Pose clip 

GT clip clusters 

Nearest cluster with trained 
bilinear model 

Final pose 
refinement 



Single frame hand pose recovery 

• K nearest neighbors are extracted based on a novel descriptor. 
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Depth image Random forest Class probabilities 
Shape context of each plane 
over class probabilities 



Single frame hand pose recovery 

• K nearest neighbors are aligned to hand point cloud to: 
1. Segment hand into palm and fingers, 

2. Extract palm joints. 

 

• A set of candidate fingers are selected given: 
1. Hand segments and palm joints, 

2. A predefined set of sample fingers, 

3. A set of simple rules: 
• Joints must not be located outside the hand mask, 

• A joint must not have a depth lower than the hand surface. 
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Single frame hand pose recovery 

• We fit a finger model on hand depth image for each finger given: 
• Hand segments, 

• Selected finger candidates, 

• A discrepancy function E: 
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1 - Normalized overlapping area between finger model and finger segment 

*  I.Oikonomidis, N.Kyriazis, and A.A.Argyros.  Markerless and efficient 26-dof hand pose recovery. In ACCV, 2010 

* 



Single frame hand pose recovery 

• We fit a finger model on hand depth image for each finger given: 
• Hand segments, 

• Selected finger candidates, 

• A discrepancy function E: 
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Normalized depth discrepancy between finger model and finger segment 

*  I.Oikonomidis, N.Kyriazis, and A.A.Argyros.  Markerless and efficient 26-dof hand pose recovery. In ACCV, 2010 

* 



Single frame hand pose recovery 

• We fit a finger model on hand depth image for each finger given: 
• Hand segments, 

• Selected finger candidates, 

• A discrepancy function E: 
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Penalizing finger model collision with background fingers 

*  I.Oikonomidis, N.Kyriazis, and A.A.Argyros.  Markerless and efficient 26-dof hand pose recovery. In ACCV, 2010 

* 



Single frame hand pose recovery 

• We fit a finger model on hand depth image for each finger given: 
• Hand segments, 

• Selected finger candidates, 

• A discrepancy function E 
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*  I.Oikonomidis, N.Kyriazis, and A.A.Argyros.  Markerless and efficient 26-dof hand pose recovery. In ACCV, 2010 

* 

•Greedy approach: each finger candidate is applied of E, and the one with minimum 
value is selected as prediction 
•PSO: particles are initialized with finger parameters h, a new prediction h* is found 
after optimization 



Spatial-temporal hand pose recovery 

• To incorporate temporal data, we concatenate estimated poses from 
last F frames into clip matrix 

• Q can be factorized through                       *   

12 
*  I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh.  Bilinear spatiotemporal basis models.  TOG, 31(17), 2012. 

Learned trajectory bases using discrete cosine transform 



Spatial-temporal hand pose recovery 

• To incorporate temporal data, we concatenate estimated poses from 
last F frames into clip matrix 

• Q can be factorized through                       *   
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*  I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh.  Bilinear spatiotemporal basis models.  TOG, 31(17), 2012. 

Learned shape bases using SVD 



Spatial-temporal hand pose recovery 

• To incorporate temporal data, we concatenate estimated poses from 
last F frames into clip matrix 

• Q can be factorized through                       *   

14 
*  I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh.  Bilinear spatiotemporal basis models.  TOG, 31(17), 2012. 

Coefficient matrix 



Spatial-temporal hand pose recovery 

• To incorporate temporal data, we concatenate estimated poses from 
last F frames into clip matrix 

• Q can be factorized through                       *   

• The goal is to minimize an objective function over coefficient matrix C. 

 

15 
*  I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh.  Bilinear spatiotemporal basis models.  TOG, 31(17), 2012. 

Problem: Linear models like PCA and SVD are sensitive to the distribution of data. 

Solution: Clusterize clips into smaller and more inter-correlated categories, 

and approximate best cluster over extracted K nearest clusters. 



Spatial-temporal hand pose recovery 

• We define objective function as: 
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Reconstruction error with respect to visible joints 



Spatial-temporal hand pose recovery 

• We define objective function as: 
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Smoothness function of consequence frames 



Spatial-temporal hand pose recovery 

• We define objective function as: 

 

 

 

• Particle swarm optimization is applied to minimize objective function, 
initial particles are defined as random guesses near to Q. 
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Dataset  
• Current datasets are mainly designed for: 

• Front view hand pose recovery, 

• Single frame hand pose recovery. 

• We generated a synthetic hand dataset with natural finger 
movements and high degree of occlusion, consisting of +1M frames. 

19 http://chalearnlap.cvc.uab.es/dataset/25/description/ 
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Results  
• Quantitative results on our dataset (baseline 

is a 1NN approach) 

21 
 M. Oberweger, P. Wohlhart, and V. Lepetit.  Hands deep in deep learning for hand pose estimation.  CVWW, 2015. 



Results  
• Quantitative results on MSRA* dataset 
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Results  • Qualitative results on our dataset 
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Results  

• Qualitative results on MSRA dataset 
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Results 
• Components analysis 
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Even if nearest neighbors are non-accurate, 
after ICP, fingers segmentation are accurate Joint estimation robust against RF performance 



Results 
• Components analysis 
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Joint estimation relation to initial finger 
segmentation 

Joint temporal refinement based on initial 
static pose error 



Conclusions  
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• We created a synthetic hand dataset with huge variabilities of pose and 
viewpoint (http://chalearnlap.cvc.uab.es/dataset/25/description/), 

• We created a 2.5D shape descriptor, 
• By applying nearest neighbors, we efficiently: 

• segmented hand,  
• extracted palm joints,  
• and then sampled a number of candidates. 

• We fitted finger models on the hand in a single frame including spatial 
optimization constraints, 

• We refined joint estimates, including occluded joints, using spatio-
temporal linear models, 

• Our model is capable of recovering pose in different viewpoints and pose. 

http://chalearnlap.cvc.uab.es/dataset/25/description/
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Thank you for you attention! 


