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Introduction

 What is hand pose recovery?

* And applications:
* Human-computer interaction,
* Virtual reality,
* Robot learning.
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System overview and pipeline

* Single frame hand pose recovery
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System overview and pipeline

e Spatial-temporal hand pose recovery
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Single frame hand pose recovery

* K nearest neighbors are extracted based on a novel descriptor.

Shape context of each plane

Depth image Random forest Class probabilities over class probabilities

N
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1=1
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Single frame hand pose recovery

* K nearest neighbors are aligned to hand point cloud to:
1. Segment hand into palm and fingers,
2. Extract palm joints.

* A set of candidate fingers are selected given:
1. Hand segments and palm joints,
2. A predefined set of sample fingers,

3. Aset of simple rules:
* Joints must not be located outside the hand mask,
* Ajoint must not have a depth lower than the hand surface.




Single frame hand pose recovery

* We fit a finger model on hand depth image for each finger given:

* Hand segments, 4 @
« Selected finger candidates, i?j 4 e

. . W,
* A discrepancy function E: 4'% 8 o
U B

E(h, I) — lel -+ UJQEQ —+ w3E3 L '/

I

1 - Normalized overlapping area between finger model and finger segment

* 1.0ikonomidis, N.Kyriazis, and A.A.Argyros. Markerless and efficient 26-dof hand pose recovery. In ACCV, 2010



Single frame hand pose recovery

* We fit a finger model on hand depth image for each finger given:

* Hand segments, 4 @
« Selected finger candidates, i?j 4 e
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Normalized depth discrepancy between finger model and finger segment

* 1.0ikonomidis, N.Kyriazis, and A.A.Argyros. Markerless and efficient 26-dof hand pose recovery. In ACCV, 2010



Single frame hand pose recovery

* We fit a finger model on hand depth image for each finger given:

* Hand segments, 4 @
« Selected finger candidates, i?j 4 e

. . W,
* A discrepancy function E: 4'% 8 o
U B

E(h, I) — lel -+ UJQEQ —+ w3E3 L '/

I

Penalizing finger model collision with background fingers

* 1.0ikonomidis, N.Kyriazis, and A.A.Argyros. Markerless and efficient 26-dof hand pose recovery. In ACCV, 2010 0



Single frame hand pose recovery

* We fit a finger model on hand depth image for each finger given:
* Hand segments, \
* Selected finger candidates, ;.j 1“ 144 & o
* A discrepancy function E A;

*Greedy approach: each finger candidate is applied of E, and the one with minimum
value is selected as prediction

*PSO: particles are initialized with finger parameters h, a new prediction h* is found
after optimization

* 1.0ikonomidis, N.Kyriazis, and A.A.Argyros. Markerless and efficient 26-dof hand pose recovery. In ACCV, 2010 H



Spatial-temporal hand pose recovery

* To incorporate temporal data, we concatenate estimated poses from
last F frames into clip matrix Q € REx5P

* Q can be factorized through Q =TCB* *

I

Learned trajectory bases using discrete cosine transform

12
* 1. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh. Bilinear spatiotemporal basis models. TOG, 31(17), 2012.



Spatial-temporal hand pose recovery

* To incorporate temporal data, we concatenate estimated poses from
last F frames into clip matrix Q € REx5P

* Q can be factorized through Q =TCB* *

I

Learned shape bases using SVD

13
* 1. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh. Bilinear spatiotemporal basis models. TOG, 31(17), 2012.



Spatial-temporal hand pose recovery

* To incorporate temporal data, we concatenate estimated poses from
last F frames into clip matrix Q € REx5P

* Q can be factorized through Q =TCB* *

I

Coefficient matrix

* 1. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh. Bilinear spatiotemporal basis models. TOG, 31(17), 2012.



Spatial-temporal hand pose recovery

* To incorporate temporal data, we concatenate estimated poses from
last F frames into clip matrix Q € REx5P

e Q can be factorized through Q =TCB* *
* The goal is to minimize an objective function over coefficient matrix C.

=m===) Problem: Linear models like PCA and SVD are sensitive to the distribution of data.

mmmm) Solution: Clusterize clips into smaller and more inter-correlated categories,

=====) and approximate best cluster over extracted K nearest clusters.

* 1. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh. Bilinear spatiotemporal basis models. TOG, 31(17), 2012.



Spatial-temporal hand pose recovery

* We define objective function as:
F 5D

argmm T T ViilQpi — [TCBT]fZ + 5 Z g fHf+1
' f=111=1 f=1

H_J

Reconstruction error with respect to visible joints
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Spatial-temporal hand pose recovery

* We define objective function as:
F 5D

argmm T T ViilQpi — [TCBT]fZ + 5 Z g fHf+1

f=1:1=1 flI

Smoothness function of consequence frames

17



Spatial-temporal hand pose recovery

* We define objective function as:
F 5D

argmm NS vl - lTe BT + 8 Z \ZANA
f=1:1=1 f=1

* Particle swarm optimization is applied to minimize objective function,
initial particles are defined as random guesses near to Q.



Dataset

e Current datasets are mainly designed for:
* Front view hand pose recovery,
* Single frame hand pose recovery.

* We generated a synthetic hand dataset with natural finger
movements and high degree of occlusion, consisting of +1M frames.

http://chalearnlap.cvc.uab.es/dataset/25/description/

19


http://chalearnlap.cvc.uab.es/dataset/25/description/

Dataset
* Current datasets are mainly designed for:

* Front view hand pose recovery,
 Single frame hand pose recovery.

* We generated a synthetic hand dataset with natural finger
movements and high degree of occlusion, consisting of +1M frames.
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Results

e Quantitative results on our dataset (baseline
is a INN approach)
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M. Oberweger, P. Wohlhart, and V. Lepetit. Hands deep in deep learning for hand pose estimation. CVWW, 2015.



Results

 Quantitative results on MSRA* dataset

o
< 100 ,
£ 90 |
% g0 |
£ 70|
; 60 X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun. Cascaded hand pose
SE0 [t Mg regression. In CVPR, 2015.
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IndexR IndexT | MiddleR | MiddleT RingR | RingT LittleR | LittleT | ThumbT Mean
Oikonomidis et al. [14] 31.0 56.0 32.9 56.0 32.9 49.3 35.1 53.7 22.2 38.2
Choi et al. [3] 22.6 43.5 24.0 44.9 23.1 43.1 21.8 39.5 31.1 29.8
Ge et al. [12] 11.5 16.0 9.0 15.6 9.9 15.1 13.2 16.0 16.7 13.0
Ours (KNN+ICP) 9.5 17.3 7.7 17.1 8.3 15.5 10.6 17.7 14.8 12.8

[3] C. Choi, A. Sinha, J. H. Choi, S. Jang, and K. Ramani. A collaborative filtering approach to real-time hand pose estimation. ICCV, 2015.

[12] J. Y. Liuhao Ge, Hui Liang and D. Thalmann. Robust 3d hand pose estimation in single depth images: from single-view cnn to multi-view cnns. CVPR, 2016.

[14]l. Oikonomidis, N. Kyriazis, and A. Argyros. Efcient model-based 3d tracking of hand articulations using kinect. BMVC, pages 101.1-101.11, 2011.
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Resu |tS e Qualitative results on our dataset
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Results

* Qualita n MSRA dataset
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Results

* Components analysis

Joint estimation robust against RF performance

Even if nearest neighbors are non-accurate,
after ICP, fingers segmentation are accurate
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Results

* Components analysis

Initial joints average error {mm)

Joint estimation relation to initial finger
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Conclusions

* We created a synthetic hand dataset with huge variabilities of pose and
viewpoint (http://chalearnlap.cvc.uab.es/dataset/25/description/),

* We created a 2.5D shape descriptor,

* By applying nearest neighbors, we efficiently:
* segmented hand,
* extracted palm joints,
* and then sampled a number of candidates.

* We fitted finger models on the hand in a single frame including spatial
optimization constraints,

* We refined joint estimates, including occluded joints, using spatio-
temporal linear models,

* Our model is capable of recovering pose in different viewpoints and pose.
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Thank you for you attention!



