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Automatic analyzing humans in photographs or videos has great potential applications in 
computer vision, including medical diagnosis, sports, entertainment, movie editing and 
surveillance, just to name a few. Body, face and hand are the most studied components 
of humans. Body has many variabilities in shape and clothing along with high degrees of 
freedom in pose. Face has many muscles causing many visible deformity, beside variable 
shape and hair style. Hand is a small object, moving fast and has high degrees of freedom. 
Adding human characteristics to all aforementioned variabilities makes human analysis 
quite a challenging task.

In this thesis, we developed human segmentation in different modalities. In a first scenario, 
we segmented human body and hand in depth images using example-based shape 
warping. We developed a shape descriptor based on shape context and class probabilities 
of shape regions to extract nearest neighbors. We then considered rigid affine alignment 
vs. nonrigid iterative shape warping. In a second scenario, we segmented face in RGB 
images using convolutional neural networks (CNN). We modeled conditional random field 
with recurrent neural networks. In our model pair-wise kernels are not fixed and learned 
during training. We trained the network end-to-end using adversarial networks which 
improved hair segmentation by a high margin.

We also worked on 3D hand pose estimation in depth images. In a generative approach, 
we fitted a finger model separately for each finger based on our example-based rigid hand 
segmentation. We minimized an energy function based on overlapping area, depth 
discrepancy and finger collisions. We also applied linear models in joint trajectory space 
to refine occluded joints based on visible joints error and invisible joints trajectory smoothness. 
In a CNN-based approach, we developed a tree-structure network to train specific features 
for each finger and fused them for global pose consistency. We also formulated physical 
and appearance constraints as loss functions.

Finally, we developed a number of applications consisting of human soft biometrics 
measurement and garment retexturing. We also generated some datasets in this thesis 
consisting of human segmentation, synthetic hand pose, garment retexturing and Italian 
gestures.
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Abstract

Automatic analyzing humans in photographs or videos has great potential appli-
cations in computer vision, including medical diagnosis, sports, entertainment,
movie editing and surveillance, just to name a few. Body, face and hand are the
most studied components of humans. Body has many variabilities in shape and
clothing along with high degrees of freedom in pose. Face has many muscles caus-
ing many visible deformity, beside variable shape and hair style. Hand is a small
object, moving fast and has high degrees of freedom. Adding human characteristics
to all aforementioned variabilities makes human analysis quite a challenging task.

In this thesis, we developed human segmentation in different modalities. In a
first scenario, we segmented human body and hand in depth images using example-
based shape warping. We developed a shape descriptor based on shape context and
class probabilities of shape regions to extract nearest neighbors. We then considered
rigid affine alignment vs. nonrigid iterative shape warping. In a second scenario,
we segmented face in RGB images using convolutional neural networks (CNN). We
modeled conditional random field with recurrent neural networks. In our model
pair-wise kernels are not fixed and learned during training. We trained the network
end-to-end using adversarial networks which improved hair segmentation by a
high margin.

We also worked on 3D hand pose estimation in depth images. In a genera-
tive approach, we fitted a finger model separately for each finger based on our
example-based rigid hand segmentation. We minimized an energy function based
on overlapping area, depth discrepancy and finger collisions. We also applied linear
models in joint trajectory space to refine occluded joints based on visible joints
error and invisible joints trajectory smoothness. In a CNN-based approach, we de-
veloped a tree-structure network to train specific features for each finger and fused
them for global pose consistency. We also formulated physical and appearance
constraints as loss functions.

Finally, we developed a number of applications consisting of human soft bio-
metrics measurement and garment retexturing. We also generated some datasets
in this thesis consisting of human segmentation, synthetic hand pose, garment
retexturing and Italian gestures.

Key words: depth image, segmentation, pose recovery, CNN, generative model
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1 Introduction

Computer vision has attracted a lot of interest during last decades because of the
growth of captured data, and the increasing demanding from industry for automatic
processing, understanding and managing these data. This is while new sensors
have been introduced (e.g. hand-held camera, smart-phone, Kinect, Google Glass,
GoPro), image and video repositories appeared and many applications to process
them were required. Therefore, the final goal of computer vision is to solve low level
problems like image denoising and resolution enhancement, or high level prob-
lems like object/event segmentation/detection/classification and image/video/text
generation. Therefore, developing effective and efficient techniques is important,
and significant advances in the last decade, thanks to the growth of datasets and
computer powers (e.g. GPUs), tend to the development of real world applications.

Despite recent advances, still some challenges exist. Feature extraction and im-
age representation are fundamental tasks in computer vision. Correctly describing
images with respect to the variability and noise in the data has been vastly studied.
Such descriptors must be invariant to some transformations (e.g. rotation or trans-
lation), illumination and noise (e.g. image distortions or missing data), while being
able to model inter/intra-class data correlations or even temporal connectivity.
This is where machine learning algorithms comes in and play an important role
in the success of models. While many hand crafted features were proposed in the
literature (like HOG and SIFT or more advanced representations like bag-of-words),
recently convolutional neural networks (CNN) achieved a great success by learning
simple filters in a complicate feed-forward graph. However, CNNs are not invariant
to aforementioned variabilities and such variabilities must be embedded in the
data.

Among all captured images and videos in the world, humans are present in most
of them and correctly analyzing humans in the data is an important issue in many
applications. Face, hand and body are the most studied components of humans.
Early works in facial domain tried to solve face detection and localization in the
images while face recognition remained a challenging problem till recent years.
Psychological face analysis tried to solve problems like emotion and first impression
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Chapter 1. Introduction

recovery. In the movie and multimedia industry, facial landmark detection could
be used for face alignment and deformation (e.g. avatar generation). Face segmen-
tation, as a mid level computer vision problem, used to help some higher order
applications like make-up transform. Hand pose recovery and gesture recognition
are fundamental tasks in human-computer interaction and robot learning. Recently,
the number of publications has been increased in this domain by introducing depth
sensors (e.g. Kinect) which helped to overcome some traditional challenges like
hand self-similarity and illumination changes. Human identification and behavior
analysis in surveillance systems, body deformation in movie industry, body gesture
recognition in human-computer interaction and body movements in sport analysis
are examples of applications where analyzing and tracking human body is necessary.
This can not be done without some intermediate tasks like human segmentation,
body pose recovery or biometrics extraction.

Problem statement: In this thesis we address the problem of human segmenta-
tion and pose recovery in different modalities and develop a number of applications
in both RGB and depth images (captured indoor). Face segments can be defined as
hair, face skin and face components like eyes, nose and lips. For hand, segments
could be finger phalanxes and palm. Body segments, however, has a broad defini-
tion and is application dependent. In one application body limbs can be defined as
segments while in another clothes are composing the segments. However, in this
thesis we do not cover cloth segmentation. In this study, human segments has a
high correlation with human pose. Human pose is determined as joints locations
in 2D/3D and bones connect them together. For face, This definition is referred as
landmark localization and we do not cover it in this thesis.

In this thesis, we provide different solutions in a single camera single object
setup and heavily rely on machine learning techniques. While example/model de-
formation is used for hand/body segmentation in depth images, CNNs are applied
in face segmentation in RGB modality. In 3D hand pose recovery in depth images,
we propose two solutions: 1- realistic hand model fitting and temporal pose refine-
ment, and 2- CNN based regression. Finally, we develop some applications based
on human segmentation like geometrical soft biometry extraction and garment
retexturing.

1.1 Challenges

RGB images: Other than common challenges in RGB images like illumination
changes and background clutter, we list some specific challenges in the following.

• In the face segmentation, hair segmentation is the most challenging task.
Hair has a free-form style with different colors and easily can be confused

2



1.1. Challenges

with background color. In single object segmentation, background faces
near to front face can be easily segmented as frontal face. Also, face can be
occluded by some objects like hair, glasses or even hand.

• Single frame 3D body pose recovery: Human body has a high degree of
freedom and enormous number of poses can be defined by a human being.
Human shape variability and different cloths styles and colors add even more
difficulty to the problem. Humans can be easily occluded partially by other
objects or parts of the body (self-occlusion). In single frame single camera
setup, depth information is lost and there are ambiguities in the orientations.

Usually, the search space is constrained to 20 to 60 joint angles that determine
the pose configuration through a skeleton model. Even with this rather coarse
representation the search space is very high dimensional. Therefore, efficient
optimization and search strategies are needed. A further complication is that
only a few regions of parameter space correspond to valid human poses.

A true generative method should model all the intricacies of the image for-
mation process. Obviously the high appearance variability makes it difficult
to model. In one hand, a very detailed model might work best for a specific
instance but might not generalize well to other scenes. On the other hand, a
very coarse model will not truthfully synthesize the image.

• Generally, garment retexturing is a challenging task. Firstly, as a pre-processing,
garment must be segmented from background and other objects which is
still an open problem, despite recent advances. Secondly, the source and
target garments may not have the same texture/pattern or shape and this
makes finding correspondences really hard. These problems get harder when
we must solve it for a moving subject with different poses and perhaps self-
occlusions. In automatic and virtual clothing, different from static garment
retexturing, dynamics of the garment must be solved as well.

Depth images: although, in general, depth sensors have helped to cope with
some challenges like illumination changes in RGB data, some challenges still remain
open. Depth sensors are mainly applicable in indoor scenarios and provide from
0.5 to 4 meters effective depth, suffering from missing data and/or boundary noise.

• 3D hand pose recovery: hand is a small object which is moving fast, easily
getting occluded and has a high self similarity. Lack of texture in depth data
along with blurry image (due to fast motion) makes it hard to find correct
solution without having temporal information or body state. Hand, similar to
body, has a high degree of freedom which needs efficient search strategies.

3



Chapter 1. Introduction

1.2 Related works

Human pose and segmentation have a wide range of applications and a lot of
attention has been paid to these domains during the last decades. In this section
we briefly review a number of works and ideas in the state of the art. Generally, we
can group any approach into generative and discriminative or a combination of
both. Generative approaches aim at modeling all the complications of the image
formation process. A truly generative method should model variabilities in the
object like human pose, shape, clothing, illumination and even background. In
practice, generative methods only model image features with respect to easiness
and efficiency of building and synthesizing. Inference in generative methods usually
is done by optimizing a defined energy function w.r.t. to the model parameters.
The energy measures the consistency between the model and the observations
where the hope is that the global optimum corresponds to the true solution. A
successful generative model must be able to generalize to different motion patterns
and appearance conditions. However, for efficient and feasible evaluation of the
energy in huge search space, some initialization must be provided.

Discriminative methods learn a model using training data to map image features
to the problem space. In contrast to generative methods, discriminative models
are more direct and are therefore easier to implement. Such methods perform very
well when proper feature extraction is applied and the distribution of the training
is similar to the distribution of the testing. However, these methods often overfit
on training data and generalization to instances unseen in the training data is a
challenge. Furthermore, obtaining enough training data with accurate groundtruth
is not a trivial task. Although each method has its advantages and shortcomings,
they can complement each other. Discriminative methods can provide rough idea
about the problem and generative methods can provide the fine detail.

1.2.1 Segmentation

Human parsing, segmentation and pose recovery can be treated as synonyms
depending on the solution. Pictorial structures model an object with connections
between parts and learn appearance and configuration of each part. It is common
to keep configuration parameters small for efficient inference, which can contain
part location, orientation and scale [47]. Hierarchical models, specifically AND/OR
graphs, are kinds of body parts representation used to encode the hierarchical and
reconfigurable composition of parts as well as the geometric and compatibility
constraints between parts. AND/OR graph models are built upon parts, poselets or
parselets features and, generally, structural learning and max-margin framework is
used to learn the parameters of the model discriminatively [37, 187, 217].
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1.2. Related works

Energy minimization based on CRF and graph-cut has been actively studied
for segmentation problems where an initial unary potential is refined by pair-wise
potentials defined among different parts. As an example, while [139] proposed an
edge based deformable model and iterative parsing learned by CRF, [64] applied
graph cuts to perform a local and spatial optimization as an energy minimization
function to improve initial unary potentials. [89] proposed an efficient iterative
algorithm for approximate inference in fully-connected CRFs with Gaussian edge
potentials, which has been widely adopted for postprocessing outputs of pixel-level
segmentation models [9, 66, 124].

Model based shape fitting is a successful solution for both segmentation and
pose recovery. Statistical shape models, like PCA-based models, are useful tools
to deform a template model and then fit it with shape appearance. Statistical part
based models can be combined with graphical models to generate deformable
models [219, 220]. Another kind of shape fitting can be applied by exemplar-based
non-rigid warping where a template or nearest example is registered with shape
[158, 201].

Shotton et al.[152] trained random forest (RF) on pixel features extracted from a
depth image and showed a successful pixel-level discriminative human segmenta-
tion. However, the output segmentation was noisy and researchers proposed spatial
connectivities among segments to improve the results [64, 82]. Recently, researchers
have been actively working on CNNs, among discriminative approaches, and many
advances have been achieved though in the segmentation problem. [107] combined
fully-connected layers with (de)convolution layers and enabled denser [9, 66, 124],
higher resolution predictions [49], and/or encoder-decoder [208] predictions. [105]
generated pairwise terms as class edge potentials through a four-connected graph.
Such edge potentials extracted in a multi-objective network along with unary terms
were trained using non-structured loss functions.

1.2.2 Pose recovery

Generative models, from pictorial structures to more detailed shape generation
like SMPL model [108], have been vastly used in human pose recovery. While
pictorial structures and its varities [26, 47, 133] have been used for 2D pose recovery,
[6, 13] combined pictorial structures from different view points for 3D pose recovery.
Realistic models can be used for multiple purposes. [134] minimized a parametric
model using body silhouette and fused video with inertial sensors for accurate
motion capture (MoCap). [18] minimized SMPL model parameters based on 2D
pose estimation and image appearance. Model fitting has been used for hand pose
recovery in depth images as well. While [127] used a simple hand model to fit with
appearance, [168] applied a more sophisticated fitting function and model where
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Chapter 1. Introduction

the model can be personalized for each person. A set of approaches minimize a
function over generated hypotheses. [155] generates a set of 3D hypotheses over
Gaussian distributions of body parts based on 2D estimated part locations and
finds the best candidate. [213] estimates 2D pose from 3D MoCap data over dense
trajectories.

Discriminative approaches can be divided into heat-map based and regression
techniques. Heat-map based techniques generate parts likelihood and pose is
estimated through generative models like pictorial structures, inverse kinematics
[172] or viewpoint fusion [106]. Heat maps are generated through separate classi-
fiers trained on each part or unified classifiers like CNNs. CNNs are able to jointly
model heat maps and graphical models [173], cascading models [189] or error feed-
back loops [21]. Regression techniques estimate pose directly in the output of the
regressor and can perform better in case of occlusions [162, 165, 175].

1.2.3 Datasets

Available datasets are growing every day in any domain in computer vision with
more complicated and larger data. In this subsection we review a number of datasets
with respect to the scope of this thesis.

Semantic segmentation: There is enormous number of datasets in different
domains. Urban scene parsing datasets [20, 147] are mainly used in automatic driver
assistant systems and contains labels like road, car, building, tree and pedestrian.
Indoor/outdoor scene parsing datasets [137, 211] contains more semantic labels
under quite different light conditions and environments. Microsoft coco [102]
recently is introduced with a large number of labeled images ( 300K) in more than
70 categories. NYU depth dataset [122] even includes depth images along with RGB
data in the video sequences of indoor environment.

More specific to this thesis in human segmentation, Chen et al.[25] added part
labels to pascal VOC 2010 dataset [120] which contains over 3K images of humans.
In the human category 24 semantic parts are defined as hand, foot, lower/upper
arm and leg, upper body and head and face parts. Freiburg Sitting people [128]
constitutes a small dataset containing 201 images of six subjects in different view-
points. Recently, [92] fitted SMPL model on LSP dataset [73] based on body joints
and silhouette, and provided SMPL-based human segmentation on that dataset
where 8515 images are given with part labels and body model. Other than body
parts, [100] provides human body labels for clothes segmentation, though semantic
labels are categorized based on cloth type. Recently, LIP dataset [50] introduced as
cropped person instances from Microsoft coco constituting 50,462 images. Labels
are defined as 19 human parts or clothes labels such as dress, socks, pants, gloves,
scarf, skirt, and in addition to a background label.
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1.2. Related works

To the best of our knowledge, there is not any dataset for human body segmen-
tation in depth images with enough variability in pose and viewpoint. However,
for hand segmentation in depth images, [150] captures RGB and depth images of
five subjects applying gestures. To provide ground truth labels, fingers are painted
and hand segments are extracted by color segmentation and manual correction.
Moreover, recently Freiburg Rendered Handpose Dataset [218] has been introduced
as a synthetic dataset with 41,258 training and 2,728 test RGBD images. Segmen-
tation labels are defined as background, body and three per bone finger and palm
segments.

Datasets in face segmentation have different semantics in labels. While in
part labels dataset [76] segments are defined as face skin, hair and background,
in a higher order semantic definition, Helen dataset [93] contain eyebrows, eyes,
nose and mouth as well. Parts label dataset contains 2927 face images, a subset
of LFW dataset [68]. In this dataset labeling is done manually based on extracted
super-pixels. FASSEG dataset [83] is a small dataset containing 70 frontal and 200
multi-view segmented images. Face images are cropped in this dataset. Helen
dataset provides labels based on facial landmarks on high resolution images under
a broad range of appearance changes like illumination, age, emotion and pose. This
dataset consists of 2000 training and 330 test images.

Hand pose recovery: Earlier datasets in this domain are small datasets with
mainly front view hand deformation in RGB cameras. Most of recent datasets have
been created by the aim of depth cameras. However, a number of datasets are intro-
duced with both RGB and depth images. Datasets in this domain are provided with
3D joint locations. However, Dexter dataset [159] and HandNet dataset [192] just
provide fingertips in the groundtruth. Dexter dataset was recorded using multiple
RGB and depth cameras in multiple viewpoints. One single subject is performing 7
actions in less than 500 frames. HandNet dataset contains more data (totally 215K
frames) recorded from 10 subjects using one single RGBD camera. Moreover, some
datasets just assign a posture class to each image as groundtruth such as static
or dynamic sign language datasets [7, 11]. Recently, egocentric datasets [10] are
introduced with hand-hand and hand-object interactions.

ICVL [166], MSRA [162] and NYU [172] datasets are among the most cited
datasets in the state of the art. ICVL has 180K training depth data with small
noise in the images and 16 annotated joints. This dataset has a low variability in the
pose and over 30% of ground truth annotations have low accuracy. MSRA have been
recorded from 9 subjects in 17 pose categories (500 frames per each) and 21 anno-
tated joints. NYU is recorded in three viewpoints simultaneously with three Kinect1
cameras. Training set contains over 72K RGBD frames gathered from one subject.
Although, depth images are noisy with missing data, ground truth annotations are
almost accurate due to multiple view model fitting. Recently, Big2.2Hand dataset
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[203] is introduced with a high number of annotated depth frames (over 2.2M) from
different viewpoints including egocentric images and even object interaction. 10
subjects participate in this dataset.

1.3 Contributions

We organize our contributions in three groups: human segmentation consisting of
body, hand and face, 3D hand pose recovery, and applications and datasets.

1. Human segmentation: In depth images, we use nearest examples to segment
body and hand. For this purpose, we applied shape descriptors like histogram
of oriented gradients (HOG) and a new descriptor that encodes class prob-
abilities of points into spatial bins. We then used iterative rigid/non-rigid
alignment of shape point clouds and classified the points. We obtained accu-
rate results even for small segments and showed benefits of example-based
approaches against discriminative shape segmentation.

In RGB images, we developed face segmentation based on CNNs. We used
conditional random fields (CRF) modeled as recurrent neural network (RNN)
layers and instead of using fixed pair-wise kernels, we let the network to learn
it without training a separate unary potential. We combined the outputs
with generative adversarial networks (GAN) and outperformed state of the art
specially for hair segmentation by a high margin. We give an initial face seg-
mentation as input to another channel of layers and gain some improvements
in the results.

2. 3D human pose recovery: For hand pose recovery in depth images, we de-
veloped two approaches. In both approaches, we showed separating the
problem into simpler sub-problems makes it easier and faster to search the
space and optimize the solution. More specifically, we separated viewpoint
and palm joints optimization from fingers. In the first approach, we used
a generative model benefiting from nearest example data which used to
segment hand and extract palm joints. The accuracy of segmentation and
extracted palm joints make us be able to optimize and fit our model fast and
accurate separately for each finger. We also studied the usage of temporal
data in occlusion recovery and could slightly improve occluded joints.

In the second approach, we applied discriminative approaches by using
CNNs. We separated fingers in different channels and fused the features
at the end. We combined all channels into a tree-structure network which
helped a better optimization than single channel networks and made us
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able to have more finger specific features. We also applied appearance and
physical hand constraints as new loss function which helped optimization by
providing gradients in the back-propagation.

3. Applications and datasets: We developed a number of applications and
datasets. In the first application, we provided body soft biometrics mea-
surements based on segmented body. We used an aligned model to fill gaps
and occluded areas. Finally, we extracted a set of adjacent points on a plane
cutting body surface and measured limbs size by Euclidean distance among
the points.

We also developed a garment retexturing application where a segmented
garment is retextured by a given garment image. The source image is in RGB
and the target image in RGBD. The surface topology is extracted from depth
image using geodesic distance. We used garments boundary correspondences
as key points to deform target point cloud through thin plate spline (TPS)
and fit on source garment. Finally, each point is assigned a color from source
garment.

In this thesis we have created a number of datasets: 1- human depth images
with segments and limb sizes as ground truth, 2- a synthetic dataset of hand
depth images with variable pose and viewpoint with segments and poses as
ground truth, 3- an Italian gesture dataset with audio and RGBD data, and
pose and gestures begin-end as ground truth, 4- a garment dataset with RGBD
data and stitched markers as ground truth. Also some contributions have
been done in a set of events, "Chalearn: Looking at people" challenges and
workshops, and studied gesture recognition on Italian gestures and explain-
able computer vision on first impressions.

1.4 List of papers

Journal

• Meysam Madadi, Egils Avots, Gholamreza Anbarjafari, Sergio Escalera, Xavier
Baro, Jordi Gonzalez, From 2D to 3D Geodesic-based Garment Matching: A
Virtual Fitting Room Approach, Under revision at IET Computer Vision, 2017.

• Meysam Madadi, Sergio Escalera, Jordi Gonzàlez, F. Xavier Roca, Felipe Lum-
breras, Multi-part body segmentation based on depth maps for soft biometry
analysis, Pattern Recognition Letters 56 (2015), pp. 14–21

Conference proceedings
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• Meysam Madadi, Sergio Escalera, Alex Carruesco Llorens, Carlos Andujar,
Xavier Baro, Jordi Gonzalez, Occlusion aware hand pose recovery from se-
quences of depth images, 12th IEEE Conference on Automatic Face and
Gesture Recognition (FG), 2017

• Hugo Jair Escalante, Isabelle Guyon, Sergio Escalera, Julio Jacques Jr., Meysam
Madadi, Xavier Baro, Stephane Ayache, Evelyne Viegas, Yagmur Gucluturk,
Umut Guclu, Marcel van Gerven, Rob van Lier. Design of an Explainable
Machine Learning Challenge for Video Interviews. Proceedings of the The
2017 International Joint Conference on Neural Networks (IJCNN 2017), IEEE,
2017

• Sergio Escalera, Xavier Baro, Jordi Gonzalez, Miguel A. Bautista, Meysam
Madadi, Miguel Reyes, Víctor Ponce, Hugo J. Escalante, Jamie Shotton, Is-
abelle Guyon, ChaLearn Looking at People Challenge 2014: Dataset and
Results, ChaLearn Looking at People, European Conference on Computer
Vision, 2014.

ArXiv

• Meysam Madadi, Sergio Escalera, Xavier Baro, Jordi Gonzalez, End-to-end
Global to Local CNN Learning for Hand Pose Recovery in Depth data, arXiv:
1705.09606, 2017.

• Umut Guclu, Yagmur Gucluturk, Meysam Madadi, Sergio Escalera, Xavier
Baro, Jordi Gonzalez, et al. End-to-end semantic face segmentation with con-
ditional random fields as convolutional, recurrent and adversarial networks.
Under revision at PAMI, 2017.

1.5 Outline

The organization of the thesis is as follows. In Chap. 2 we explain human seg-
mentation by exemplar-based body and hand segmentation, and CNN-based face
segmentation. 3D hand pose recovery is covered in Chap. 3 based on generative
models and CNNs. In Chap. 4 we explain two applications and datasets we created
during this thesis. Finally, conclusions and future work discussion are presented in
Chap. 5.
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2 Human Segmentation

2.1 Exemplar-based body segmentation in depth im-
ages

Human body segmentation is a mid level computer vision problem and used in
many high level applications like biomedical image processing, clothes classifica-
tion, clothes retexturing and virtual try-on, and biometrics extraction and surveil-
lance, just to name a few. Additionally, utilization of body segmentation techniques
could potentially improve the performance in several other computer vision tasks
such as pose recovery or gesture recognition. Body segmentation is mainly a chal-
lenging task due to the variabilities in body pose, shape, clothes and environment.
A body segmentation approach must be able to detect body boundaries and mask,
and segment body into parts. Segmenting body from background can be applied
as pre-processing (e.g. using background subtraction, depth thresholding, classifi-
cation or energy-based approaches) or along with body parts. In this section, we
assume a subject is segmented from the background beforehand. Fig. 2.1 shows seg-
mentation models we used for body segmentation using depth images, consisting
of hand as well.

Depth images, as the outputs of depth sensors (e.g. Kinect and Intel Realscene),
are a kind of image with the distance of each visible point in the scene to the camera,
and thus invariant to the color changes. Currently, most of depth sensors are mainly
based on time of flight (ToF) for depth computation and applied indoors with a
limited field of view (FoV) and range. Kinect is one of the first sensors with a broader
FoV. Although, its first version was using light coding with an infrared projector and
performed poorly with many missing data in IR interference, its second version
has been replaced by ToF technology and kept a high FoV, resulting to a higher
quality image. Regardless of generated image quality and level of captured details, a
common problem with ToF cameras is generation of noise in objects boundaries.
In some applications we use morphological operators to filter such noise.

Among segmentation approaches, [152] proposed a random forest based ap-
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(a) (b) (c) (d)

Figure 2.1: Body and hand models. Typical body depth image, hand model and
defined segments.

proach to learn pixel labels from depth offsets, achieving robust segmentation
results. This method has become one of the standard techniques for segmentation
in depth data. However, this approach requires a huge dataset of real and synthetic
labeled images as well as an expensive training procedure. Researchers have used
different modifications of random forest such as hough forests [195] and hierar-
chical decision forests [82], or post processing energy minimization to improve
segmentation accuracy. For instance, [65] applied graph cuts to perform a local and
spatial optimization of random forest output probabilities.

Recently, CNNs have been actively used for the segmentation problem in gen-
eral. However, there has been relatively fewer semantic body segmentation models
relying on CNNs and depth images. [123] modeled structure learning in two se-
quential networks, one for pixel label and the other for context learning. They
also modeled the prediction structure into the loss function using local prediction
consistency and global segment variances. [128] refined fully convolutional net-
work in [107] by adding more up-convolution layers and generating spatial dropout
in transition layers coming from earlier pooling layers. [186] proposed a general
architecture for jointly object and parts segmentation in multiple objects datasets.
They grouped similar semantic parts among the objects and applied a two-stream
network for object and part potentials which is followed by a fully connected CRF
to explore long-range context.

Generative and realistic model fitting can be handled easier in depth than
RGB images because of easier measuring of object surface geometries (e.g. sur-
face normals) and shape topologies. Simple geometric models represent shape
by connection of simple geometric objects (such as cylinders and spheres) in the
kinematic tree [79, 127], while more sophisticated models represent shape point dis-
placements by training parameters in reduced linear space (e.g. using PCA) [75, 108].
[219] used a part-based model and separated part parameters for part shape and
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2.1. Exemplar-based body segmentation in depth images

body pose. They stitched parts and fitted this model on 3D human data using
graphical models. A number of works used examples, retrieved from a dataset [150]
or previous frame estimation [127], to reduce search space and avoid model drifts.
Authors in [201] used examples to register with shape points without keeping any
special constraint on the connection and dependency of points in the example
model. Therefore, the example/model fitting remained as a registration problem.

In this section, we consider exemplar-based segmentation in depth images using
rigid and non-rigid 3D shape alignment and provide results for body and hand data.
For this task, we develop a number of shape descriptors based on histograms of
oriented gradients (HOG) [2] and shape context [15, 91] to extract example models.
Rigid alignment does not change source shape topology and it can be defined as an
affine transformation consisting of rotation, translation and scale. When there are
large numbers of examples with a uniform distribution of shape viewpoints and
poses, rigid alignment with nearest example is practical and efficient. However, in
small datasets, similar examples to the shape may not exist, and thus, non-rigid
alignment is used. To study the effect of small number of exemplars, we group
data into clusters and keep cluster centers as exemplars. The number of clusters is
defined using a Gaussian mixture in an EM algorithm. With such an optimization,
we are able to accurately cluster training data in a problem-dependent way without
the need of prefixing clustering parameters.

2.1.1 Non-rigid 3D shape alignment

Retrieve nearest exemplar

The Histogram of Oriented Gradients (HOG) descriptor has been studied vastly
in the domain of human detection and pose recognition. Here, the key idea is
to use HOG as the human body descriptor in depth images, where the gradients
of the depth image are the derivatives of the body hull surface. We apply HOG
feature vector on the whole body to retrieve nearest exemplar. For non-rigid shape
alignment, we tried to keep the smallest possible number of exemplars in the
training data. Therefore, we use a problem-dependent clustering strategy to group
HOG feature vectors of training data and keep each cluster center as possible
exemplar.

To cope with the problem of determining the exact number of clusters, we
estimate the optimum number of clusters by combining the EM and k-means
algorithms as proposed in [97]: let X = {x1, ..., xN }, xi ∈ Rd be a given data set. An
iterative algorithm starts from Mmi n to Mmax , M ∈ {1, ..., N }, and at each iteration
EM algorithm is initialized with the clusters of X obtained from k-means (k = M);
then the parameters of the mixture model and the posterior probabilities of the
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members of X are computed. At the end of each iteration the mutual relationship
between every two mixtures is measured as:

ψ(i , j ) = p(i , j ) log2
p(i , j )

p(i )p( j )
, i = 1, ..., j , (2.1)

p(i ) = 1

N

N∑
n=1

p(i |xn) (2.2)

p(i , j ) = 1

N

N∑
n=1

p(i |xn)p( j |xn) (2.3)

where p(i ) is the probability of the mixture i and p(i , j ) is the joint probability of
i and j mixtures. For any composition of i , j ∈ {1, ..., M }, if ψ(i , j ) > 0, then i and j
mixtures are considered statistically dependent so the process finishes and M −1 is
returned as the most suitable number of mixtures.

One of the limitations of such an approach is when there is no ’meaningful’
mixture, i.e. when the number of training poses is low or when the data does
not follow normal distributions. In the case of straggly or scarce data, algorithm
goes to reach Mmax where each data is assumed as a cluster itself. When the data
distributions are not normal, we can tune Mmi n and Mmax to solve this problem.
After estimating the optimal M , the EM is trained and the labels and feature vectors
of each model are kept. EM algorithm shows better cluster results than k-means,
besides we can keep the parameters of EM and retrieve them later in order to predict
the cluster of a new feature vector applying the posterior probabilities of the feature
vector and the mixtures. This is useful to retrieve the closest model to test point
cloud in an efficient way at test step.

Point matching

Once an exemplar retrieved, a set of points are sampled from shapes and recon-
structed into 3D coordinates. Then, alignment is performed based on an iterative
process in which the selected points are matched between the two clouds and re-
fined at each iteration. Those detected points which do not match are considered as
outliers and discarded in the next iteration. The process is repeated until a certain
estimation error or a maximum number of iterations is reached. Fig. 2.2 shows the
flow diagram of this approach. In the following we review this alignment process in
detail.
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2.1. Exemplar-based body segmentation in depth images

Figure 2.2: Process diagram.

Assume PN×3 is the matrix of selected x, y, z points in the depth image coordi-
nates of the model, tN×1 is the matrix of gradient angles and gN×2 is the matrix of
normalized gradients. Then, the point cloud for the model is defined as:

Pt an = P +α[
g ◦ [

cos(t ) |sin(t )
] |0

]
N×3 , (2.4)

where α is a static constant and A ◦B is the Hadamard product of A and B . We use
Pt an later to compute new gradient angles matrix of the model after converting it to
real world coordinates.

Subsequently, we employ the basic shape context of [15] extended to 3D data.
We propose to use exponential space for the radius of nested spheres (nr ) as:

ri = 10i /nr −1

9
×max({||x − y || | x, y ∈ω}), i = 1, ...,nr , (2.5)

where ω is the set of inlier points (vs. outliers). This space partitioning forces
shape context to be more sensitive to near samples to the sphere bin than farther
ones. After computing the shape context histograms for all selected points, the
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best matched points between all pairs of points on the model and the input test
pattern are found. Such a matching process minimizes the overall matching cost,
for which a cost table performs matching based on the histogram similarity and
appearance similarity of the points. As in [15], we use χ2 test to find the histogram
similarity cost and the gradient angular difference polarity to find the appearance
cost between pairs of (pi , q j ) points of the two point clouds. So the cost function is
defined as:

C (pi , q j ) = 1

2

(1−α)

nr n2
θ

2∑
k=1

[hi (k)−h j (k)]2

hi (k)+h j (k)
+α(1−cos(ti − t j ))

 , (2.6)

where nθ must be an even number, hi (k) and h j (k) denote the k-th bin of the
histogram, and ti and t j are the gradient angles at pi and q j , respectively. The
appearance cost acts as a penalty function causing smooth alignments on the
surfaces, while the α coefficient controls this smoothing factor.

Redundant, “dummy” points are also added to the cost table with a constant
cost to control the sensitivity of the shape context to noise as in [15]. Therefore,
points that do not match any other with a lower value than this dummy cost will be
considered as outliers. In hard assignments, each point matches exactly one point
in the cost table so that the overall cost is minimum. This task, commonly referred
to as Linear Assignment Problem (LAP), can be solved using [74].

Transformations

Sample points are aligned after matching to generate new coordinates and gradient
angles which will be used in next iteration to refine the final matched points. This
alignment task is done by generating an interpolation matrix using the best matches
of random samples and thin plate spline (see [15, 19]) in the form of:

T =
[

KN×N [1|PN×3]
[1|PN×3]> 0

]−1

(N+4)2

[
QN×3

0

]
(N+4)×3

, (2.7)

where K is a kernel matrix, P is the best model matching points matrix, and Q is the
best test pattern matching points matrix. K is computed as:

Ki j =
{
||Pi −P j || log(||Pi −P j ||) if i 6= j ,

λ if i = j ,λ> 0,
(2.8)
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2.1. Exemplar-based body segmentation in depth images

Figure 2.3: Iterative alignment process shows how points get closer at each step.

where λ=α2λ0 is a regularization parameter used to smooth the interpolation. The
term α is defined as:

α= 1

N

N−1∑
i=1

N∑
j=i+1

||Pi −P j ||, (2.9)

and λ0 is a scaling factor. We change 0 values of
∥∥Pi −P j

∥∥ in the indices matrix K to
1 to avoid generating −∞ in logarithm. Then, model sample points are mapped to
their interpolated locations in the test pattern using the interpolation matrix T and
the same procedure specified in equation 2.7 in the form [K |1|O]T , where O is the
point cloud model and Ki j = ||Oi−P j || log(||Oi−P j ||). These new mapped points are
sent to the next iteration along with new gradient angles. New gradient angles are
updated in a procedure as follows: image coordinates of the mapped model samples
are computed, Pt an points computed in previous sections are mapped using the
matching points and the alignment procedure, and their image coordinates are
estimated; finally the angles extracted from the differences of the coordinates of 2D
mapped model and Pt an sample points are returned as new gradient angles. Figure
2.3 illustrates an alignment example within the described iterative process.
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Label assignment

In order to cope with self-occlusions, we maintain a complete point cloud for each
sample model. Once alignment has been done, the complete model is transformed
to the test point cloud using the matching points of the former described approach
through TPS. This warped complete model is used to complete occluded parts
and assign labels. We can easily estimate the label of each point using its nearest
neighbor pixel label after alignment of the point clouds by applying the matching
points and the transformation procedure described above. Unfortunately, assign-
ments of labels from 3D nearest neighbors cause problems in the case of imperfect
alignments and broken segments. To minimize this issue, as well as noise points, we
proposed to train SVM directly on 3D coordinates of warped model using a linear
kernel and predict test points labels from it. SVM makes a bound around points
and tune the assignments.

Experiments and results

To evaluate our method, we have created a dataset manually labeled containing
1155 frames (Chap. 4). We used a 10-fold cross validation over all 1155 frames
to generate the results. The segmentation error per frame is the proportion of
mislabeled pixels in relation to the total number of pixels. Then, the overall error is
averaged.

We have used a block of 9×6 including 2×2 cells and 8 orientation bins for HOG.
Figure 2.4 illustrates some clusters contents and shows how the poses and bodies
are clusterized together. We achieved the best number of clusters at 90 in a range
of [15..100] clusters. Although the results show the robustness of our approach to
the HOG parameters, we found that the parameter values give the best alignment
results: nθ = 8, nr = 15, 500 random samples, dummy cost 0.1, 35% of samples as
additional dummy points, appearance cost weight 0.15, and 4 iterations. We set the
parameter λ0 to 1000 for first iteration to have an affine transformation and br k−1

for next iterations where b = 0.9, r = 1.7, and k is the iteration number.
In order to compare our approach, we have considered the random forest (RF)

pixel labeling approach as defined in [152]. In particular, the RF implementation
computes the weights of each body part label as:

Wl = 0.5+ P (l )√∑N
i=1 P (i )2

, (2.10)

where P (l ) is the probability of the label l and is equal to the averaged proportion of
the number of pixels with label l compare to the total number of pixels in the body
for some random images. In essence, this weight adjusts the probability of small
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2.1. Exemplar-based body segmentation in depth images

Figure 2.4: Some typical clusters are shown in this image among HOG and EM. The
number of clusters is estimated for every combination of parameters. We employed
randomly 90% of data to train 10% to test.

vs. large segments. The whole approach is implemented in C++ using the OpenCV
library, and the computational time for the complete soft biometric estimation is
around 50 seconds: less than 1s for nearest model finding, 2s for point sampling,
14s for alignment and 33s for label assignment.

2.1.2 Segmentation results

Given the results shown in Figure 2.5, we fixed the number of cluster to be 90 and
progressively increasing the number of training images in order to test our multi-
part segmentation methodology. The results in Figure 2.5 illustrate a low sensitivity
of our approach to the number of training data: human body segmentation accuracy
is improved between 10% and 20% compared to RF. On the other hand, RF trend
shows that segmentation errors remain stable and is not able to improve for higher
amounts of training data. We plot the qualitative results of segmentation in Figure
2.6, where the influence of alignment in the segmentation is shown. Segmentation
errors occur in the areas for which alignment is not perfect, so SVM has incorrect
labels. Another source of error comes from inconsistencies of manual labeling for
different samples. The results in the image shows how the approach copes with the
self occlusions.

The similarity of the test pattern to the estimated model plays also an important
role. In this case, higher number of random samples will generate better alignment
and segmentation result, and higher complexity instead. Using perfect alignment
parameters implies a low number of iterations, whereas a high number of iterations
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Figure 2.5: In our approach, segmentation error remains stable in different amount
of training data in comparison to RF. Average error percentage for our method and
RF at the best case is 13.55±7.01 and 32.26±10.03, respectively.

will reduce the accuracy dramatically in some cases. We observed that the affine
behavior of λ0 at first iteration generated quite better transformation results. We
also implemented soft-assignment vs. hard-assignment which is faster but no
difference in accuracy was found.

2.1.3 Rigid 3D shape alignment

Several state-of-the-art works [82, 150, 195] use Random forest (RF) to extract view-
point or nearest neighbors from the deeper branches of the trees trained on a
particular dataset. Such methodology can be seen as stochastic shape extraction
and leads to some irrelevant nearest shape recovery. Besides that, this approach is
not efficient for large scale datasets. On the other hand, common statistical shape
descriptors try to find a correlation among the components composing the shape
and grouping them into bins. For rigid shape alignment, we developed a 3D shape
descriptor and retrieved a number of nearest shapes.

In order to evaluate our method on highly-variable poses and viewpoints, as
well as temporal analysis, we created a rich synthetic hand dataset mimicking the
features of commodity depth cameras (Chap. 4) in which 3D joint locations and
pixel labels are available. We illustrate some properties of the hand model used to
create this dataset in Fig. 3.1. We created a hand model with 25 semantic segments
used as low-level pixel labels in the dataset. At a higher level of semantics, we
segmented the hand by assigning each pixel a label from the set L = {l1, ..., l6}, where
L represents fingers and the palm.
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2.1. Exemplar-based body segmentation in depth images

Figure 2.6: Qualitative results. First column shows the nearest model found, second
column is the test sample, third column is the warped model after registration, and
the next two columns belong to our approach segmentation and RF respectively.
Black points correspond to segment lines used for soft biometrics measurements
(described in Chap. 4).

Nearest shapes extraction

In the proposed descriptor, we train a classifier to segment a hand into a set S =
{si }25

i=1 with 25 classes defined in the dataset and group probability responses of the
classifier into log-polar bins. Therefore we first select a fixed random number of
pixels from the hand and estimate each class response for each pixel applying the
trained classifier. For aggregating the responses into bins, we reconstruct a point
cloud of selected pixels and divide X Y Z axes into three axis pairs X Y , X Z and Y Z .
Thus, we map the point cloud to front, top and side views and apply measurements
separately on each view.

We compute the log-polar binning based on shape context [15]. Let q = 1
N

∑N
i=1 Pi

be the center of the point cloud where N is the number of points and let Pi ∈ R3

denote the i -th point in world coordinates. We set q as the center of the log-polar
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coordinate system. Then histograms of different views (front view for instance) are
computed as:

Hx y (k,c) =
N∑

i=1
{Ri c |(P x y

i −q x y ) ∈ bi nx y (k)}, (2.11)

where Ri c denotes probability responses of the i -th point and c-th class predicted
by the classifier, and k is the bin number. Finally histograms at each view are
concatenated and normalized. Applying such descriptor we discriminate both
spatial and class dependencies of different shape points into bins, being fast to
compute, invariant to slight rotations of the hand and robust against boundary noise
due to the random selection of points. We show an illustration of our descriptor in
Fig. 3.2. We set 8 angle and 5 radius bins as the log-polar binning parameters of the
shape descriptor. Finally, for a fast extraction of the K nearest shapes, a kd-tree is
trained based on the extracted features. We apply the work of Shotton et al. [153]
as our segmentation classifier and train 14 trees with depth 20 using 100 random
features, 150K random samples with a subset of 500 randomly selected pixels per
frame and 1000 uniformly distributed offsets with a scaling factor of 120mm. To fit
data in memory we train each tree with 23% of random data.

Palm and finger segmentation

Nearest shapes can vary in shape and pose and need to be aligned to each other
beforehand. We use palm joints of nearest shapes to align them through Procrustes
analysis. This provides a uniform and smooth distribution of palm points in the
point cloud of the nearest shapes. Given this point cloud with their corresponding
labels li , we find an affine transformation A with scaling factor s to hand point cloud
P by applying iterative closest point matching (ICP) [207]. For a faster convergence,
we modify ICP process to find closest points from group of points with the same
label. Pixel labels of test frame were estimated by RF beforehand. Then, we get the
palm joints by transforming the nearest shape joints given A and s.

Although our trained RF could segment the hand, it is not reliable under some
situations, especially for distinguishing fingers (See Fig. 2.7 for some samples).
Quadratic discriminant analysis provides a proper way to assign each point in the
point cloud in query a label from aligned point cloud of nearest shapes efficiently.

Results

By incorporating QDA for segmenting hand into the set L, we could improve RF
segmentation performance. Since each segment li has a number of sub-segments
from the set S, for a given pixel P belonging to segment li , we discard those proba-
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Figure 2.7: Qualitative RF performance. Rows from top to bottom: ground truth,
RF, and improved RF results. We improve RF segmentation performance by around
20%.

bilities (given by RF) not belonging to li , and consider the index of the maximum
probability as the final estimated label for that pixel. Fig. 2.7 illustrates some quali-
tative results of RF segmentation performance and its improvement in a number of
frames.

2.2 CNN based face segmentation

Semantic segmentation is a very important topic in computer vision because of its
many applications in object recognition, image annotation, image coding, scene
understanding and biomedical image processing. One specific field of semantic
segmentation is face segmentation in which the task is to correctly assign labels
of face regions such as nose, mouth, eye, hair, etc. to each pixel in a face image.
Face segmentation techniques are frequently used in security systems and in the
field of human computer interaction, mainly in order to facilitate the problems of
face detection and recognition [3, 112, 117, 135], and emotion/expression recogni-
tion [29, 58, 160]. Further specialized entertainment oriented applications of face
segmentation include style transfer [41], virtual make-up application [104], virtual
face-swapping [87] and 3D performance capturing [144]. Additionally, utilization
of face segmentation techniques could potentially improve the performance in
several other computer vision tasks involving the processing of face images such as
apparent personality prediction [53] and face hallucination [54].

Semantic segmentation of faces is a difficult problem because of the large num-
ber of variable conditions that need to be considered, especially when applied
to face pictures taken in uncontrolled environments. These conditions include
variations in facial expression, skin color, lighting, image quality, pose, hair texture
and style, as well as the presence of varying amounts of background clutter and
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Table 2.1: An overview of the differences and the similarities between the vari-
ants of our model, and the recent semantic segmentation models that they are
based on. ψu and ψp denote learned instead of fixed unary potential and pairwise
potential of a conditional random field, respectively.

adversarial
training

conditional random field dilated
conv.(ψu) (ψp ) (end-to-end)

Yu and Koltun (2015) [202] × —– —– —– X
Liu et al. (2015) [105] × X X × ×
Zheng et al. (2015) [209] × X × X ×
Luc et al. (2016) [109] X —– —– —– X

Cnn (Ours) × —– —– —– X
CnnGan (Ours) X —– —– —– X
CnnRnn (Ours) × X X X X
CnnRnnGan (Ours) X X X X X

occlusions. Furthermore, despite extensive studies in face segmentation, correctly
classifying hair pixels still remains a particularly challenging task [184], mainly due
to the inherent properties of hair such as color similarity to background, non-rigidity
and non-unique shape.

Recently, there has been a sizable number of advances in semantic segmenta-
tion. In the context of semantic face segmentation, [105] showed that formulat-
ing the unary potential and the pairwise potential of a conditional random field
(CRF) over a four-connected graph as a convolutional neural network (CNN) re-
sulted in state-of-the-art accuracy on the Part Labels dataset [76, 94] and the Helen
dataset [93, 158]. While this model was not end-to-end trainable and relied on graph
cuts, it learned both the the unary potential and the pairwise potential of the CRF.
In the context of semantic image segmentation, [209] showed that formulating the
iterative update equation of a CRF over a fully-connected graph [89] as a recurrent
neural network (RNN) resulted in state-of-the-art accuracy on Pascal VOC 2012
dataset [43]. While this model did not learn the pairwise potential of the CRF and
relied on fixed Gaussian kernels, it was end-to-end trainable.

Furthermore, [202] showed that the results of convolutional semantic segmen-
tation models can be improved by using dilated kernels instead of regular kernels,
which increase receptive field size without decreasing receptive field resolution.

Similarly, [109] showed that results of convolutional semantic segmentation
models can be improved by using an adversarial loss function in addition to a
segmentation loss function, which enforces higher-order consistencies without
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explicitly taking into account any higher-order potentials.
Here, our goal is to formulate a model for semantic face segmentation by com-

bining the respective strengths of the aforementioned models. That is, the model
should learn both the unary potential and the pairwise potential of a CRF over a
four-connected graph like [105], and be end-to-end trainable like [209] while aggre-
gating multiscale contextual information like [202], and detecting and correcting
higher-order inconsistencies like [109]. Table 2.1 shows an overview of the differ-
ences and similarities between our proposed model (i.e., CnnRnnGan), its variants
(i.e., Cnn, CnnGan and CnnRnn), and the recent semantic segmentation models
that they are based on.

The contributions of our work are the following:

1. We introduce an end-to-end trainable convolutional and recurrent neural
network formulation of a conditional random field over a four-connected
graph for face segmentation, which is augmented with dilated convolutions
and adversarial training.

2. We exploit the structured nature of faces by conditioning the model on face
landmarks, and/or training multiple models for different face landmarks and
aggregating their outputs.

3. We achieve state-of-the-art results on the Part Labels dataset and the Helen
dataset.

2.2.1 Related Work

Semantic segmentation has been widely studied in computer vision in a wide
spectrum of domains. For a comprehensive review of classical approaches for
semantic segmentation, we refer the reader to [216]. In this section, we review
recent work on semantic segmentation in general and semantic face segmentation
in particular.

The most recent state-of-the-art semantic segmentation models almost exclu-
sively rely on convolutional neural networks. In contrast to earlier approaches
where recognition architectures were directly used for semantic segmentation [46],
current approaches utilize architectures that are carefully adapted for the task at
hand. [107] proposed the first such approach, where the fully-connected layers of
popular architectures such as AlexNet [90], VGGNet [156] and GoogLeNet [163] were
replaced with (de)convolution layers and combined with earlier layers to enable
dense and high resolution predictions. Since then, this approach has been contin-
uously improved by the introduction of more sophisticated architectures, which
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Figure 2.8: Our proposed end-to-end semantic face segmentation model. The
conditional random field is formulated as a composition of two neural networks:
i) A convolutional neural network, which nonlinearly transforms an input face
and its initial segmentation to the unary potential and the pairwise kernels of
the conditional random field. ii) A recurrent neural network, which transforms
the unary potential and the pairwise kernels of the conditional random field to
the final segmentation of the input face. In the training phase, a discriminator
and the conditional random field play a two-player minimax game, in which the
objective of the discriminator is distinguishing ground-truth segmentations from
final segmentations, and the objective of the conditional random field is fooling the
discriminator.

enabled denser [9, 66, 124], higher resolution predictions [49], and/or encoder-
decoder [208] predictions. In particular, [202] proposed dilated convolutions for
dense prediction, where contextual information could be aggregated by multiscale
levels without loss of neither resolution nor coverage. This idea has been extended
by [23] to enable a larger field of view through spatial pyramid pooling. Such ap-
proaches enjoy the benefits of dense and high resolution predictions without the
burden of extra parameters.

At the same time, conditional random fields have been used in semantic seg-
mentation for postprocessing outputs of region-level or pixel-level semantic seg-
mentation models. While the relatively small number of outputs of region-based
semantic segmentation models could be postprocessed by CRFs with dense pair-
wise connectivity [76], the relatively large number of outputs of pixel-level semantic
segmentation models could only be postprocessed by CRFs with sparse pairwise
connectivity [105]. In a seminal work, [89] proposed an efficient iterative algorithm
for approximate inference in fully-connected CRFs with Gaussian edge potentials,
which has been widely adopted for postprocessing outputs of pixel-level segmen-
tation models [9, 66, 124]. [209] formulated this algorithm as a recurrent neural
network, which is trained along with a pixel-level segmentation model instead of
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postprocessing it. This formulation is reminiscent of the pixel-level semantic seg-
mentation model in [132], whose outputs were iteratively refined with a recurrent
convolutional neural network.

Recently, generative adversarial networks (GANs) [51] have received particular
attention in computer vision [24, 35, 138]. The idea behind GANs is training a dis-
criminator and a generator by letting them play a two-player minimax game. In this
game, the objective of the discriminator is distinguishing samples that are drawn
from the data distribution from samples that are drawn from the model distribution,
and the objective of the generator is fooling the discriminator. While GANs have
been proposed for estimating generative models via an adversarial process, they
have been widely adopted for other tasks such as inpainting [131], style transfer [98]
and super-resolution [95] as loss functions. In particular, [109] estimated a seman-
tic segmentation model via an adversarial process by training a discriminator for
distinguishing ground-truths from outputs of the semantic segmentation model
and the semantic segmentation model for fooling the discriminator. They showed
that this process leads to improved results on the Stanford Background dataset [52]
and the PASCAL VOC 2012 dataset.

There has been relatively fewer semantic face segmentation models that rely
on convolutional neural networks. Most earlier models were based on CRFs [76],
hand designed features [188] and exemplars [158]. Kae et al. [76] modeled global
part dependencies using a restricted Boltzmann machine to have an overall realistic
shape while local shape details were modeled through a CRF, whereas Smith et
al. [158] used exemplar-based non-rigid warping for face segmentation. Despite
the progress in the models, hair segmentation is still the most challenging part
due to its color and style variability. Earlier works include attempts of modeling
hair, skin and background color [148, 197], mixture of hair styles [96] or MRF/CRF
labeling [67]. As a specialized hair segmentation, Wang et al. [185] applied co-
occurrence probabilities of face components identified by a Markov random field.
The final segmentations were constrained in a tree-structured model built over part
co-occurrences.

Among CNN-based face segmentation methods, [111] segmented faces based
on a hierarchical part detection process, where the face was detected as the root of
the hierarchy and the smallest components of the face were detected at the bottom
of such hierarchy. Then, an autoencoder network transformed those detected
components into label maps. As a result of using hierarchies, partially occluded
faces could be easily handled. Recently, [214] applied the part detection idea by
training one network for each part and mapping the segmentation result to the
original image. [105] generated pairwise terms as class edge potentials through a
four-connected graph. Such edge potentials extracted in a multi-objective network
along with unary terms were trained using non-structured loss functions, and
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Figure 2.9: Our semantic face segmentation pipeline. First, 68 landmarks of the
the input face are detected. An initial segmentation of the input face is obtained by
filling the regions that are formed by connecting the landmarks around background,
face skin, left eyebrow, right eyebrow, left eye, right eye, nose, upper lip, inner
mouth and lower lip. A similarity transformation from the landmarks of the input
face to the landmarks of a template face is estimated. The input face and the
initial segmentation of the input face are warped to the template face by using
the similarity transformation, and resized to 500 pixels × 500 pixels. The final
segmentation of the face is obtained by using our model. Optionally, the final
segmentation of the image is warped back from the template face by using the
inverse of the similarity transformation.

provided prior knowledge to the network by including inaccurate segmentations
as an additional network input. This study showed the benefits of including prior
knowledge for improving face segmentation.

2.2.2 End-to-end semantic face segmentation

For end-to-end semantic face segmentation, we formulate a conditional random
field as a composition of a convolutional neural network and a recurrent neural
network (Section 2.2.2). The convolutional neural network is used for obtaining
the unary potential and the pairwise kernels of the conditional random field as a
function of an input face and its initial segmentation (Section 2.2.2). The recur-
rent neural network is used for obtaining the label compatibility function and a
mean field approximation of the Gibbs distribution of the conditional random field
as a function of the unary potential and the pairwise kernels of the conditional
random field (Section 2.2.2). In the training phase, a discriminator and the condi-
tional random field play a two-player minimax game, in which the objective of the
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discriminator is distinguishing ground-truth segmentations from final segmenta-
tions, and the objective of the conditional random field is fooling the discriminator
(Section 2.2.2). Fig. 2.8 illustrates main components of our model.

Prior to entering the model, an input face is preprocessed as follows: A template
face is obtained by averaging the faces in the training set. Sixty-eight landmarks
of the template face and the input face are detected by using the dlib implemen-
tation [84] of an ensemble of regression trees [78].1 An initial segmentation of
the input face is obtained by filling the regions that are formed by connecting the
landmarks around background, face skin, left eyebrow, right eyebrow, left eye, right
eye, nose, upper lip, inner mouth and lower lip. A similarity transformation from
the landmarks of the input face to the landmarks of the template face is estimated.
The input face and its initial segmentation are warped to the template face by
using the similarity transformation, and resized to 500 pixels × 500 pixels. The
final segmentation of the input face is obtained by using our model. Optionally,
the final segmentation of the input face can be resized back from 500 pixels × 500
pixels and warped back from the template face by using the inverse of the similarity
transformation. Fig. 2.9 illustrates our preprocessing pipeline.

Conditional Random Field

We begin the exposition of our model by considering a conditional random field
over a four-connected graph. Let I = {I1, . . . , IN } and X = {X1, . . . , XN } be random
fields, where Ii ∈R3 and Xi ∈L = {l1, . . . , lP } are the color vector and the label of the
pixel i ∈ {1, . . . , N = h ×w}, respectively. Let G = (V ,E ) be a four-connected graph,
where V contains all pixels, and E contains all pixel pairs that have a taxicab metric
of one.

The conditional random field (I,X) over G is defined by the following Gibbs
distribution:

P (X = x|I) = 1

Z (I)
exp(−E(x|I)) (2.12)

where Z is the partition function, and E is the following Gibbs energy:

E(x) = ∑
i∈V

ψu(xi )+ ∑
i , j∈E

ψp (xi , x j ) (2.13)

where ψu is the unary potential, which is the cost of assigning the label xi to the
pixel i , and ψp is the pairwise potential, which is the cost of assigning the labels xi

1Note that the dataset that was used for training the landmark detection model provided by dlib
contains some of the images that we use to test our final segmentation model. To avoid circular analysis,
we retrained the landmark detection model on the same dataset that it was originally trained on after
removing these images.
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and x j to the pixels i and j , respectively. Note that we omit conditioning on I for
notational convenience. The pairwise potential is of the following form:

ψp (xi , x j ) =µ(xi , x j )ki , j (2.14)

where µ is a label compatibility function, which is not assumed to be sym-
metric since it was shown that this assumption improves semantic segmentation
results [209], and k is arbitrary pairwise kernels.

Following [89], we approximate the Gibbs distribution with the mean field
distribution that minimizes the Kullback–Leibler divergence between the Gibbs
distribution and the distributions that are of the following form:2

Q(X) = ∏
i∈V

Qi (Xi ) (2.15)

This approximation results in the following iterative update equation:

Qi (xi = l ) = 1

Zi
exp

(
−ψu(xi )− ∑

l ′∈L

µ(l , l ′)
∑

i , j∈E

ki , j Q j (l ′)

)
(2.16)

Convolutional Neural Network

Following [105], we formulate ψu and k as a convolutional neural network, whose
architecture is inspired by recent ones proposed in [77, 181, 202].

The network comprises the following layers:

1. One convolution layer that has 32 kernels of size 3×3 with no nonlinearities.

2. Five blocks, where each block comprises the following layers:

a Two parallel convolution layers that have 64 kernels of size 1×1 with no
nonlinearities (i.e. bias layer) and 64 dilated kernels of size 3×3 with
gated activation units [181] (i.e. weight layer). The input of the bias
layer is the initial segmentation. The output of the bias layer is summed
with the activation of the weight layer. The output of the weight layer
becomes the input of the next layer.

b Two parallel convolution layers that have 64 kernels of size 1×1 with
no nonlinearities (i.e. residual layer) and 64 kernels of size 1×1 with

2While the Gibbs energy can be converted to a submodular energy, which makes exact inference
(e.g. with combinatorial min cut/max flow algorithms) possible, we resort to approximate inference (i.e.
with mean field theory) to be able to formulate it as a recurrent neural network, which makes end-to-end
training possible.
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rectified linear units (i.e. skip layer). The output of the residual layer is
summed with the input of the block, which becomes the input of the
next layer. The output of the skip layer is concatenated with the outputs
of the skip layers of the remaining blocks along the channel axis, which
becomes the input of the next layer after the last block.

3. One convolution layer that has 160 kernels of size 1×1 with rectified linear
units.

4. Two parallel convolution layers that have P kernels of size 1 × 1 with no
nonlinearities (i.e., ψu) and four kernels of size 1×1 with exponential units
(i.e., k).

Dilated kernels are the same as the regular kernels with the exception that
successive kernel elements have holes between each other, whose size is determined
by a dilation factor. As a result, they increase receptive field size without decreasing
receptive field resolution. Note that regular convolution layers can be considered
dilated convolution layers with a dilation factor of one.

The dilation factor of the first block is one, which is doubled after every block.
The number of blocks (i.e., five) is chosen to be the largest possible value such that
the receptive field dimensions of the last block is less than or equal to the pixel
dimensions. That is:

q = argmax
x

f (x) : f (x) = 3+2
x−1∑
i=0

2i ≤ min(h, w) (2.17)

where q is the number of blocks.

Recurrent Neural Network

Following [3], we formulate the iterative update equation (eq. 2.16) as a recurrent
neural network. The network comprises (i) a message passing layer, (ii) a compat-
ibility transform layer, and (iii) a local update and normalization layer. Note that
only the compatibility transform layer has free parameters.

The layers are implemented as follows: Let ψu be a P ×h ×w tensor and k be a
4×h ×w tensor, which are the outputs of the convolutional neural network. Prior
to the first iteration, Q is initialized with ψu , and the channels of k are broadcasted
to the shape of Q, which results in a set of four P ×h ×w tensors.

• In the message passing layer, Q is shifted up, right, down and left by one pixel,
and multiplied (i.e. Hadamard product) with the corresponding elements of
k, which results in a set of four P ×h ×w tensors. The elements of this set are
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summed. As a result, this layer outputs a P ×h ×w tensor, which becomes
the input of the next layer.

• In the compatibility transform layer, the input tensor is convolved with P
kernels of size 1 × 1. As a result, this layer outputs a P ×h ×w tensor, which
becomes the input of the next layer.

• In the local update and normalization layer, the input tensor is subtracted
from −ψu , exponentiated and normalized (i.e., softmax function). As a result,
this layer outputs a P ×h ×w tensor, which becomes the input of the first
layer after the first four iterations and the output of the network after the fifth
iteration.

Adversarial Training

While this end-to-end trainable convolutional and recurrent neural network for-
mulation of a conditional random field can learn both the unary potential and the
pairwise potential, it does not take into account any higher-order potentials that
can enforce higher-order consistencies. To be able to enforce higher-order consis-
tencies without explicitly taking into account any higher-order potentials, we train
the model by minimizing an adversarial loss function in addition to a segmentation
loss function [109].

To this end, next to our model (which is from now on referred to as the generator)
we train a discriminator. We denote the output of the discriminator as DθD (.), which
is the probability that the input of the discriminator is a ground-truth segmentation.
We denote the output of the generator as GθG (.), which is the probabilities of assign-
ing each of the P labels to each of the N pixels of the input. In this context, the goal
of the discriminator is to distinguish ground-truth segmentations from generated
segmentations, whereas the goal of the generator is to generate segmentations
that are indistinguishable from ground-truth segmentations. That is, they play the
following minimax game:

min
θG

max
θD

ET (n)∼pT (T (n)) logDθD

(
T (n))+

EI (n)∼pI (I (n)) log
(
1−DθD

(
GθG

(
I (n)))) (2.18)

where I = {I (1),I (2), . . .} is a set of images, and T = {T (1),T (2), . . .} is a set of
corresponding ground-truth segmentations.

We formulate the discriminator as a convolutional neural network whose ar-
chitecture is inspired by the architecture in [138]. The network comprises four
convolution layers and a fully-connected layer. The i th convolution layer has
26+i kernels with a size of 3×3, a stride of 2×2, a pad of 1×1 and leaky rectified

32



2.2. CNN based face segmentation

units [114]. The activations of the first four convolution layers are normalized along
the mini-batch (i.e., batch normalization [70]). The output of the last convolution
layer is averaged along the spatial axes (i.e., global average pooling [101]). The
fully-connected layer has one kernel with a sigmoid unit.

The discriminator is trained by iteratively minimizing the following discrimina-
tor loss function:

Ldi s =− logDθD

(
T (n))− log

(
1−DθD

(
GθG

(
I (n)))) (2.19)

Note that Ldi s is the sum of two sigmoid cross entropy loss functions.
The generator is trained by iteratively minimizing the following linear combina-

tion of an adversarial loss function and a segmentation loss function:

Lg en = Lad v +λLseg (2.20)

where λ is the coefficient of the segmentation loss function and the constituent
loss functions are of the following forms:

Lad v =− logDθD

(
GθG

(
I (n))) (2.21)

Lseg =− ∑
l∈L

∑
i∈V

T (n)
l ,i logGθG

(
I (n))

l ,i (2.22)

Note that Lad v is a sigmoid cross entropy loss function, and Lseg is a softmax
cross entropy loss function.

2.2.3 Results

Implementation details

The models were implemented in Chainer with CUDA and cuDNN [170].
The biases of the models were initialized with zero, the weights of the models

were initialized with samples drawn from a scaled Gaussian distribution [61], and
the coefficient of the segmentation loss function (i.e., λ) was set to 100.

Adam [85] with initial α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 1e-8 was used to
iteratively train the models on the combination of the training set and the validation
set3 for 111 epochs. The learning rate (i.e., α) was reduced by a factor of 10 after 100
and 110 epochs.

At each iteration, the discriminator and the generator were updated sequentially.
To prevent them from overpowering each other, the training of the discriminator

3The hyperparameters (i.e., λ, α and the number of epochs) were optimized prior to combining the
training set and the validation set.
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Table 2.2: The results of the main experiment on the Part Labels dataset. Confi-
dence matrix is reported in terms of percentage. The rest of the results are reported
in terms of Jaccard index (i.e. intersection over union) of the classes and their
arithmetic mean, respectively.

predicted class

97.97 00.73 01.30 —–

tr
u

e
cl

as
s

01.83 96.37 01.79 —–

06.35 05.44 88.21 —–

Jaccard index .9656 .9182 .7808 .8882

was suspended or resumed if the following conditions were satisfied, respectively:

Ldi s

Lad v
< 0.1,

Ldi s

Lad v
> 0.5 (2.23)

Similarly, the training of the generator was suspended or resumed if the follow-
ing conditions were satisfied, respectively:

Ldi s

Lad v
> 10,

Ldi s

Lad v
< 2 (2.24)

These conditions were selected based on [38].

Datasets

We analyzed the Part Labels dataset and the Helen dataset in our experiments. These
datasets are the standard benchmark datasets for semantic face segmentation,
which comprise pairs of in-the-wild faces and ground-truth segmentations.

Parts Label dataset comprises 2927 pairs of in-the-wild faces and ground-truth
segmentations of background, face skin (including ear skin and neck skin) and hair
(including facial hair), which is split in a 1500 pair training set, a 500 pair validation
set and a 927 pair test set.

Helen dataset comprises 2330 pairs of in-the-wild faces and ground-truth seg-
mentations of face skin (excluding ear skin and neck skin), left eyebrow, right
eyebrow, left eye, right eye, nose, upper lip, inner mouth, lower lip and hair (exclud-
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Table 2.3: The results of the main experiment on the Helen dataset. Confidence
matrix is reported in terms of percentage. The rest of the results are reported
in terms of Jaccard index (i.e. intersection over union) of the classes and their
arithmetic mean, respectively.

predicted class

97.28 00.41 02.30 —–

01.83 95.46 00.43 00.16 00.36 00.13 00.01 00.18 01.44 —–

00.05 19.66 80.22 00.06 —–

tr
u

e
cl

as
s 13.25 00.02 86.73 —–

07.23 92.77 —–

14.16 00.01 80.90 03.63 01.30 —–

02.35 09.49 82.20 05.96 —–

00.06 09.65 04.46 84.83 —–

16.38 02.70 00.11 80.81 —–

Jaccard index .9452 .8933 .6987 .7974 .8884 .6619 .7467 .7580 .6962 .7873

ing facial hair), which is split in a 2000 pair training set, a 230 pair validation set and
a 100 pair test set.

Evaluation metrics

Results are reported in terms of confusion matrix and Jaccard index (i.e., intersection
over union). Confusion matrix is defined as the square matrix A where Ai , j is the
number of pixels whose true class is i and predicted class is j . Jaccard index of class
i is defined as follows:

Ji =
Ai ,i∑

j Ai , j +∑
j A j ,i − Ai ,i

(2.25)

Jaccard index of all classes is defined as follows:

J =
∑

i Ji

P
(2.26)
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Main Experiments

We conducted two main experiments on the Labeled Parts and the Helen datasets,
in which we evaluated the CnnRnnGan model.

Part Labels Dataset
We iteratively trained one global CnnRnnGan model for segmenting back-

ground, face skin and hair. Before the first iteration, the images in the dataset
were resized to 106 pixels × 106 pixels. At each iteration, a mini-batch of size 16 was
randomly selected without replacement, horizontally and vertically translated by ±
5 pixels, and mirrored in the left-right direction. Then, the mini-batch was cropped
to the central 96 pixels × 96 pixels.

In the test phase, the inputs were oversampled (i.e., center and corners) and
mirrored (i.e., left-right direction). The outputs were placed to their corresponding
locations in the original inputs and averaged. Table 2.2 shows the resulting confu-
sion matrix and Jaccard index. The most common cause of errors was mislabeling
the classes as background. The least common cause of errors was mislabeling the
classes as hair. All of the classes were segmented with a relatively high accuracy
(J = 0.8882). Background was the most accurately segmented class (Jb = 0.9656).
Hair was the least accurately segmented class (Jh = 0.7808).

Helen Dataset
We iteratively trained the following five CnnRnnGan models for segmenting

different classes:

• One global model for segmenting background, face skin and hair.

• Three local models for segmenting eyebrows, eyes and nose, respectively.

• One local model for segmenting upper lip, inner mouth and lower lip.

The outputs of the global model and the local models were aggregated by re-
sizing the output of the global model to 500 pixels × 500 pixels and placing the
non-background outputs of the local models to their corresponding locations in
the resized output of the global model.

The global model was trained on the Helen dataset in the exact same way as it
was trained on the Part Labels dataset. The local models were trained in a slightly
different way than that in which the global models were trained. Before the first
iteration, the images in the dataset were cropped to 90 pixels × 90 pixels such that
their centers coincided with the centers of the corresponding classes of the average
face. At each iteration, a mini-batch of size 16 was randomly selected without
replacement, rotated by ± 7.5 degrees, scaled by a factor of 1 ± 0.05, horizontally and
vertically translated by ± 5 pixels, and randomly flipped in the left-right direction.
Additionally, the initial segmentations were further randomly rotated by ± 0.75
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2.2. CNN based face segmentation

Table 2.4: Comparison of our results versus the previous state-of-the-art on the
Part Labels dataset. The overall results are reported in terms of pixel and superpixel
accuracy, respectively. The rest of the results are reported in terms of F1 score.

Kae et al. (2013) [76] —– —– —– —– 94.95
Tsogkas et al. (2015) [178] —– —– —– —– 96.97
Liu et al. (2015) [105] 97.10 93.93 80.70 95.12 —–
Zheng et al. (2015) [208] —– —– —– —– 96.59
Saxena et al. (2016) [146] —– —– —– 94.82 95.63

Ours 98.25 95.74 87.69 96.67 97.16

degrees, scaled by a factor of 1 ± 0.005, and horizontally and vertically translated by
± 0.5 pixels. The additional data augmentation was used to further avoid overfitting
the training set since the training set had a small overlap with the training set of the
landmark detection model. Finally, the mini-batch was cropped to the central 80
pixels × 80 pixels.

In the test phase, the inputs were oversampled (i.e., center and corners) and
mirrored (i.e., left-right direction). The outputs were placed to their corresponding
locations in the original inputs and averaged. Table 2.3 shows the resulting confu-
sion matrix and Jaccard index. The most common cause of errors was mislabeling
the classes as face skin and background. The least common cause of errors was
mislabeling the classes as eyes and nose. Importantly, when the non-background
outputs of the local models were misclassified, they were almost always misclas-
sified as the output of the global model and almost never as one another, which
suggests that the simple post-hoc aggregation of the outputs of the global model and
the local models was sufficient. All of the classes were segmented with a relatively
high accuracy (J = 0.7873). Background and face skin were the most accurately
segmented classes (Jb = 0.9452 and J f s = 0.8933). Hair and upper lip were the least
accurately segmented classes (Jh = 0.6962 and Jul = 0.6619).

Compared to the accuracy of hair segmentations on the Part Labels dataset,
accuracy of hair segmentations on the Helen dataset was considerably lower (Jh =
0.7808 versus Jh = 0.6962). This discrepancy can be attributed to the way in which
hair was annotated in the datasets. In the Part Labels dataset, hair was annotated
by automatically segmenting images to superpixels and manually labeling the su-
perpixels. In the Helen dataset, hair was automatically annotated by alpha matting.

In the Helen dataset, we observed relatively lower accuracy for hair, eyebrows
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Chapter 2. Human Segmentation

Table 2.5: Comparison of our results versus the state-of-the-art on the Helen
dataset. All of the results are reported in terms of F1 score. The overall results
exclude the background results and the face skin results.

...

Smith et. al (2013) [158] 88.20 72.20 78.50 92.20 ...
Liu et. al (2015) [105] 91.20 73.40 76.80 91.20 ...
Zhou et. al (2015) [214] —– 81.30 87.40 95.00 ...

Ours 94.36 82.26 88.73 94.09 ...

Smith et. al (2013) [158] 65.10 71.30 70.00 85.70 80.40
Liu et. al (2015) [105] 60.10 82.40 68.40 84.90 85.40
Zhou et. al (2015) [214] 75.40 83.60 80.90 92.60 87.30

Ours 79.66 85.50 86.23 92.82 90.99

and upper lips compared to the rest of the classes. The relative low accuracy of
hair and eyebrows can be attributed to the fact that these classes do not have well
defined boundaries making it difficult to isolate them from background and/or face
skin. Similarly, the relatively low accuracy of upper lip can be attributed to the fact
that this class has shared borders with four other classes (i.e., face skin, inner mouth
and lower lip) and often misclassified as belonging to one of them. However, the
discrepancy between upper lip, and inner mouth or lower lip is surprising since
these classes have the similar properties with upper lip, but might be explained by
class imbalance.

Comparison of results versus state-of-the-art

After the main experiments, we compared the results of the CnnRnnGan model on
the Part Labels dataset and the Helen dataset versus the earlier results reported in
the literature.

Part Labels Dataset
First, we compared our results on the Part Labels dataset versus the following:

• Restricted Boltzmann machine (RBM) and CRF based image labeling method
of Kae et al. (2013) [76].

38



2.2. CNN based face segmentation

• CNN, RBM and CRF based semantic part segmentation method of Tsogkas et
al. (2015) [178].

• CNN and CRF based face labeling method of Liu et al. (2015) [105].

• Convolutional variational autoencoder based semantic segmentation method
of Zheng et al. (2015) [208].

• Convolutional neural fabric based semantic segmentation method of Saxena
et al. (2016) [146].

To the best of our knowledge, the CnnRnnGan model achieved state-of-the-
art results on the Part Labels dataset (Table 2.4). The best overall results in the
literature [105, 178] were improved by 1.55 and 0.19 percentage points (pp) from
95.12 to 96.67 and from 96.97 to 97.16 for pixels and superpixels, respectively.4 The
improvements in the best existing hair results were more pronounced compared to
those in the rest of the best existing results (= 6.99 pp versus ≤ 1.81 pp).5

Helen Dataset
Second, we compared our results on the Helen dataset versus the following:

• Exemplar based face parsing method of Smith et. al (2013) [158].

• CNN and CRF based face labeling method of Liu et al. (2015) [105].

• CNN based face parsing method of Liu et al. (2015) [214].

To the best of our knowledge, our model also achieved state-of-the-art results
on the Helen dataset (Table 2.5). The best overall result in the literature [105] was
improved by 3.69 pp, from 87.30 to 90.99. The improvements in the best existing
face skin, upper lip and lower lip results were more pronounced compared to those
in the rest of the best existing results (≥ 3.16 pp versus ≤ 1.90 pp).

Ablation Experiments

Finally, we conducted two sets of ablation experiments on the Part Labels dataset
and the Helen dataset, in which we evaluated the variants of the CnnRnnGan model.

Part Labels Dataset
First, we evaluated the effect of removing the different components of the

CnnRnnGan model on the Part Labels dataset (Table 2.6).

4Note that the CnnRnnGan model was trained on pixels only. The superpixel results were obtained
by averaging the corresponding outputs of the CnnRnnGan model. While these results are supoptimal
since the CnnRnnGan model was not trained on superpixels, they are reported for completeness.

5Note that background, face skin and hair results were reported in [105] only.
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Figure 2.10: Example segmentations of the variants of the CnnRnnGan model
that were evaluated in the ablation experiment on the Part Labels dataset. The
last two columns show failure cases in which none of the model variants achieved
satisfactory results. gt. denotes ground-truth.

Table 2.6: The results of the ablation experiment on the Part Labels dataset. The
results are reported in terms of Jaccard index (i.e. intersection over union) of the
classes and their arithmetic mean, respectively.

Cnn .9617 .9111 .7525 .8751
CnnGan .9622 .9114 .7574 .8770
CnnRnn .9663 .9177 .7795 .8878

CnnRnnGan .9656 .9182 .7808 .8882

The CnnRnnGan model achieved the best results except for background. The
performance deteriorated by removing the Gan component and keeping the Rnn
component (CnnRnn model). Removing the Rnn component and keeping the Gan
component (CnnGan model) further deteriorated the results. The results dropped
also by removing both the Rnn component and the Gan component (Cnn model).
Among all of the classes, the most notable change was observed for hair (= 0.0283).

Fig. 2.10 shows representative examples. In the first column, it can be observed
that even though the ground truth had a mistake (the hands were incorrectly labeled
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2.2. CNN based face segmentation

Table 2.7: The results of the ablation experiment on the Helen dataset. The results
are reported in terms of Jaccard index (i.e. intersection over union) of the classes
and their arithmetic mean, respectively.

init. .8253 .6358 .4855 .6527 .5325 .5568 .5757 .6001 .5405
1c. .9465 .8770 .6074 .6811 .8562 .5666 .6655 .6667 .7030 .7300
init.+1c. .9408 8805 .6189 .6880 .8618 .5724 .6804 .6738 .6717 .7320

init.+5c. .9452 .8933 .6987 .7974 .8884 .6619 .7467 .7580 .6962 .7873

as face skin), particularly the CnnRnn and CnnRnnGan models correctly segmented
most pixels. The example in the second column demonstrates the performance of
the models in a difficult facial hair case. In this example, all models performed well
in segmenting the mustache, but only CnnRnnGan model correctly identified the
beard pixels. The third column showcases an example that all models performed
well. The examples in the fourth and fifth columns highlight the gradual improve-
ment provided by each additional model component in the correct classification of
hair pixels. Especially in the example in the fifth column, it is possible to observe
the improvements in the identification of fine details of hair. The first failure case
example in column six demonstrates a difficult case for all models. The pixels to the
left of the face skin are indeed hair pixels, however they belong to another person
in the photograph. All models failed to make this distinction. The last failure case
example shows that all models failed to segment the facial hair pixels and incorrectly
labeled them as facial skin pixels. This error could be attributed to the low contrast
difference between the face skin and facial hair pixels.

Helen Dataset
Subsequently, we evaluated the effect of conditioning the CnnRnnGan model

on the initial segmentation and/or training multiple CnnRnnGan models for seg-
menting different classes on the Helen dataset (Table 2.7). The initial segmentation
(init. model) failed to achieve competitive results. These results were considerably
improved by training a single CnnRnnGan model for segmenting all of the classes
(1c. model). Conditioning the single CnnRnnGan model on the initial segmenta-
tion (init.+1c. model) slightly enhanced the performance. The results were once
again considerably improved by training multiple CnnRnnGan models for segment-
ing different classes and conditioning them on the initial segmentation (init.+5c.
model), which made them the best for all of the classes except for background and
hair. Among all of the classes, the most notable improvements were observed for
eyebrows, eyes, upper lip, inner mouth and lower lip (∈ [0.1051,0.2132]).
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Figure 2.11: Example segmentations of the variants of the CnnRnnGan model
that were evaluated in the ablation experiment on the Helen dataset. The last
two columns show failure cases in which none of the model variants achieved
satisfactory results. gt. denotes ground-truth.

We illustrate qualitative examples in Fig. 2.11. In the first five columns of this
figure, it is possible to see an increase in performance starting from the simplest ini-
tial segmentation model to the complex variants of the CnnRnnGan model. While
the initial segmentation does a good job in determining the general locations of
each face region, it does not provide a detailed solution. Furthermore, it can be ob-
served that the initial segmentation performs rather poorly in the nose and eyebrow
regions, and whenever the expression of the face diverges from a neutral pose in
the mouth regions. Among the variants of the CnnRnnGan model, the qualitative
differences were minimal. However, the improvement provided by training multiple
CnnRnnGan models for segmenting different classes and conditioning them on the
initial segmentation (i.e. init.+5c) has resulted in visually distinguishable accuracy
differences. This model was able to capture the details better than the remaining
two model variants. The last two columns in the figure demonstrate failure cases
where all model variants had errors. Models performed poorly in distinguishing hair
from background when the background color was similar to the hair color (column
6) and in identifying the mouth regions when the person in the photograph had an
extreme facial expression (column 7).
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3 3D Hand Pose Recovery

Recently, hand pose recovery attracted special attention thanks to the availability
of low cost depth cameras, like Microsoft Kinect [28, 69, 81, 106, 126, 136, 159, 162,
164, 165]. Unsurprisingly, 3D hand pose estimation plays an important role in most
HCI application scenarios, like social robotics and virtual immersive environments.
Despite impressive pose estimation improvements, 3D hand pose recovery still faces
some challenges before becoming fully operational in uncontrolled environments
with fast hand/fingers motion, self occlusions, noise, and low resolution [180].
Besides, available datasets mainly provide front-face hand deformations, which
are not suitable to compare state-of-the-art approaches against hard cases with
large occlusions. Also, to the best of our knowledge, little attention has been paid to
incorporate temporal motion information in hand pose recovery problems. As an
example, Oikonomidis et al.[127] only initialized the model using previous frame.

In this chapter, we consider 3D hand pose recovery in depth images. We mainly
propose two solutions for this problem. The first solution combines both spatial
and temporal information in a generative approach, while the second solution
exploits CNNs as discriminative pose regressor. In both solutions, as in [162], we
break the hand pose estimation problem into hierarchical optimization subtasks,
each one focused on a specific finger and hand region, while reducing the search
space. In the first approach, we present a system for efficient hand pose recovery
in non-controlled settings, involving self-occlusions, based on current trends to-
wards minimizing pose parameters in the space of nearest candidates [150, 195].
Consequently, motivated by [213], our estimated joints are applied in a sequence of
frames to minimize parameters of a trained bilinear model [4] consisting of shape
and trajectory bases. This process further refines the estimation of occluded parts.

In the second solution, a specific tree-shaped CNN architecture is designed
allowing local finer specializations for different fingers and hand regions than a
global pose. In addition, we model correlated motion among fingers by fusing the
features, learned in the hierarchy, through fully connected layers and training the
whole network in an end-to-end fashion. The main advantage of this strategy is that
the 3D hand pose prediction problem is attained as a global learning task based on
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Chapter 3. 3D Hand Pose Recovery

local estimations. In order to improve the final estimation in such high non-linear
space of hand configurations, we incorporate appearance and physical penalties in
the loss function.

3.1 Related Work

Hand pose estimation has been extensively studied in literature [42], we refer the
reader to [69, 150] for a complete classification of earlier works in the field.

Two main strategies have been proposed in the literature for addressing the
aforementioned challenges. Model-based generative approaches, whose strategy
essentially lies on fitting a predefined 3D hand model to the depth image [32,
115, 127, 136, 150, 164]. However, as a many-to-one problem, designing a global
objective function and accurate initialization of model parameters are critical, and
due to the fast motion and non-rigid nature of hands, together with finger self-
occlusions, it is still a challenge for single-hand trackers to correctly maintain the
state of an animated 3D hand model over time.

Temporal information and trajectory analysis, besides the shape itself, provide
useful information to analyze shape and recover occluded parts. Works from struc-
ture from motion, such as matrix imputation [154], statistical model analysis and
non-rigid structure from motion [130, 167], showed the benefits of using temporal
information for shape analysis. Zhou et al. [213] proposed a spatio-temporal model
for the problem of human pose recovery. Although their approach obtains promis-
ing results, the complexity of the minimization problem makes it not applicable for
all types of pose deformations.

Alternatively to model based techniques, the so-called data-driven approaches
consider the available training data to directly learn hand pose from appearance [69,
81, 86, 162, 165, 195]. Contrary to using hand trackers, which lead to model drift over
time, single-frame detection methods are initialized at each frame, thus recovering
more easily from estimation errors [150]. Multiple procedures based on Random
Forests (RF) have emerged consisting of Hough Forests [195], Random Decision
Forests [82] and Latent Regression Forests [165], as detailed in [69]. Unfortunately,
the number of occluded joints is commonly bigger in hands than in human bodies.
As a result, techniques based on RF usually require huge training sets, and some kind
of viewpoint estimation is needed in order to improve performance [166]. Some
data-driven works analyze the hand in the space of nearest shapes in order to reduce
the search space [150] or approximate unknown pose parameters through matrix
factorization [28]. Data-driven hand pose approaches have been benefited from
recent advances on CNNs as well. Yet, finding features with suitable generalization
and discrimination properties in highly nonlinear spaces is a challenging task.
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Most CNN-based architectures in data-driven hand pose estimation approaches
are specifically designed to be discriminative and generalizable. Although the
success of such approaches depends on the availability of enough training data,
CNN models cope reasonably well with a highly nonlinear output space. In order to
deal with this problem, two main kind of approaches can be distinguished in the
literature, namely heat-map and direct regression methods.

Heat-map approaches estimate likelihoods of joints for each pixel as a pre-
processing step. In [172], a CNN is fed with multi resolution input images and
one heat-map per joint is generated. Subsequently, an inverse kinematic model is
applied on such heat-maps to recover the hand pose. Nevertheless, this approach is
prone to propagate errors when mapping to the original image, and estimated joints
may not correlate with the hand physics constraints. The work of [106] extends
this strategy by applying multi-view fusion of extracted heat-maps, where 3D joints
are recovered from only three different viewpoints. In this approach, erroneous
heat-maps are expected to be improved in the fusion step using complementary
viewpoints. The key idea in this work is to reduce the complexity of input data by
aligning all data with respect to the hand point cloud eigenvectors. For most heat-
map based approaches, however, an end-to-end solution can be only achieved by
considerably increasing the complexity of the model, e.g. introducing a cascading
approach [190]. Although such approaches used to work well for 2D pose estimation
in RGB images, they do not necessarily are able to model occluded joints from
complex hand poses in depth data.

As an alternative, a number of works propose direct regression for estimating
the joint positions of the 3D hand pose based on image features [125, 126, 162]. As
mentioned in [171], contrary to heat-map based methods, hand pose regression
can better handle the increase in complexity of modeling highly nonlinear spaces.
Although some approaches propose Principle Component Analysis (PCA) to reduce
the pose space [106, 125], in general such linear methods typically fail when dealing
with large pose and appearance variabilities produced by different viewpoints.

Recently, error feedback [126] and cascading [162] approaches have proven to
avoid local minima by iterative error reduction. Authors in [126] propose to train a
generative network of depth images by iteratively improving an initial guess. Also,
the method proposed in [162] divides the global hand pose problem into local
estimations of palm pose and finger poses. Thus, finger locations can be updated at
each iteration relative to the hand palm. Contrary to our method, the authors use a
cascade of classifiers to combine such local estimations.

Authors in [157] apply a CNN to make use of the resulting feature maps as the
descriptors for computing k-nearest shapes. Similarly to our approach, in their
method the CNN separates palm and fingers and computes the final descriptor by
dimensionality reduction. Differently to our approach, they factorize the feature
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(a) (b)

Figure 3.1: Hand models. a) DOF for different joints. Joints are indexed by assigned
numbers. This figure also shows how skeleton is fitted inside hand. b) Palm coordi-
nate system. Finger parameters are computed based on this coordinate system.

vectors and nearest neighbors hyper-parameters to estimate the hand pose. In a
different way, we propose training the network by fusing local features to avoid
non-accurate local solutions, without the need of introducing cascading strategies
nor multi-view set-ups.

3.2 Generative 3D hand pose recovery

The basic idea of the proposed method is to recover a hand pose through a combi-
nation of part-based model fitting and data-driven approaches in a single frame
and, afterward, refine occluded joints in a sequence. As illustrated in Fig. 3.2, we
first segment hand and recover palm joints (introduced in Chap. 2). Given the
palm joints and segmented fingers, we extract a number of candidates for each
finger using a set of predefined examples. We then send these candidates to the
optimization process to minimize an objective function which fits a finger model
to the segmented finger (Sec. 3.2.1). We minimize the parameters of each finger
separately. Finally, occluded joints are refined by solving the coefficients of the
trained bilinear model in a sequence of F images (clip). We cluster clips in order to
reduce non-linearity (Sec. 3.2.2).

3.2.1 Pose estimation

Given the nearest shapes and their corresponding joint locations, one could min-
imize coefficients of a weighted sum of basis models (like PCA) to extract hand
pose. However we observed that this process does not perform well in practice.
Instead, we divide the problem of pose estimation into two sub-problems: palm
pose estimation, as global hand pose, and fingers pose estimation. Each problem is
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3.2. Generative 3D hand pose recovery

Figure 3.2: Diagram of the proposed method. In the first step, a single-frame hand
pose is estimated. First palm joints and finger segments are recovered through
nearest shapes. Then finger models are fitted using extracted candidates. In the
second step, temporal data is incorporated to refine first step estimation.

solved separately. In the model, palm pose is first detected. We assume palm is rigid
and refer to palm pose as a composition of wrist and base joints of all fingers except
the thumb in 3D space (i.e. joints 4, 8, 12, 16 and 20 in Fig. 3.1a). Sun et al.[162]
regress palm pose by iterative refinement of an initial pose. Sharp et al.[150] esti-
mate a global view point and iteratively fit a model by generating some hypothesis
candidates. It has been shown that NN-based approaches perform well in practice
[69]. In this work we rely on extracted nearest shapes to both estimate palm pose
and segment the hand. This approach explained in Chap. 2.

To get fingers poses, we fit a simple finger model for each finger separately
based on segmented pixels of that finger, and thus an incorrectly segmented finger
instantly causes a failure pose. Each finger model S is composed of three cylinders
and half-spheres except for the thumb, which is composed of an ellipsoid, two
cylinders and three half-spheres. Finger model parameters are computed based on
the palm coordinate system (see Fig. 3.1).

Given hypothesis parameters h, camera calibration parameters, palm pose and
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finger properties like length and diameter of bones, we can render a 3D model
of the finger S and project it onto the image plane. Let IM , MM and MF be the
depth image of the projected finger model, the projected finger model mask and
the segmented finger extracted from Sec. 2.1.3, respectively. Then, we set the
background of IM to zero and define Mi n = MF ∧MM and Mout =¬MF ∧MM (see
Fig. 3.3). The goal is to find hypothesis parameters h that best fit the model to the
finger in query. Therefore we define the objective function E(h, I ) to compute the
amount of discrepancy between IM and I with respect to MF through:

E1 = 1− #Mi n

#MF +ε , (3.1)

E2 =
{

10 if Mi n ⊂®,

E1
mean(mi n(|IM (Mi n )−I (Mi n )|,λ))

λ if Mi n 6⊂ ®,
(3.2)

E3 = #(IM (Mout ) < (I (Mout )+τ))

#(Mout )+ε , (3.3)

E(h, I ) = w1E1 +w2E2 +w3E3, (3.4)

whereλ and τ are some depth difference thresholds. Term E1 computes overlapping
area between MM and MF normalized by #MF . Term E2 controls the mismatching
of depth in the overlapping area Mi n . Such a mismatching depth energy is directly
related to #Mi n . We consider this situation in the first case of Fig. 3.3. A small
area Mi n can generate a lower depth mismatching energy which can cause a wrong
matching. Therefore we scale E2 by multiplying it to E1 as a function of #Mi n to
reduce the effect of #Mi n in the depth mismatching energy. We add term E3 to
avoid finger collision to non overlapping pixels Mout . We consider this situation in
the second and third cases of Fig. 3.3. We add the term ε to avoid division by zero
and set it to a low value. The number 10 in E2 is a maximum energy, and w1, w2,
and w3 are some fixed weights.

Particle swarm optimization (PSO) is a commonly used approach to minimize
such an objective function. However, it is not efficient for minimizing over all
possible parameters and it is easily trapped to local minima [80]. In order to cope
with such problems, we predefine a low number (300 in our case) of sample fingers
which cover most finger poses and evaluate a simple function over all predefined
samples to select the best candidates. We use simple facts to design this evaluation
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3.2. Generative 3D hand pose recovery

Figure 3.3: Objective function E . We jointly maximize overlapping area Mi n (E1)
and minimize depth discrepancy between generated model and hand finger (E2).
We show the overlapping area (green) can have a relation to the depth difference.
A small depth difference may not guarantee a good matching, and therefore, we
penalize it by multiplying it to the normalized non-overlapping area (blue). Hence
a small depth difference is only useful if blue area is small as well. In the second
and third cases we should avoid collision between the model surface IM and other
finger surfaces available in Mout (E3). τ controls the area between fingers.

function. As the first rule, all finger joints should be located in the hand mask after
projecting them onto the image plane. Secondly, the joints should have at least a
depth equal to the hand surface depth plus a threshold. Let J x y z

f ∈ R3× fN be the

matrix of 3D locations of the joints belonging to the finger f and J uv
f ∈R2× fN be the

matrix of 2D locations of the joints of finger f after projecting onto the image plane
where fN is the number of joints. Therefore all joints should meet the constraint
I (J uv

f )+ω≤ J z
f , where ω is a constant value. Since we set the background of I to a

high value, this constraint satisfies the first rule as well. We consider a third rule for
visible fingers such that the joints should not be far from the finger point cloud. We
formulate these rules for finger f as:

C f d = {I (J uv
f i )− J z

f i +ω}, i ∈ 1, ..., fN , (3.5)
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C f =
{

C f d if MF ⊂®,

{C f d ,γ‖I x y z (MF )− J x y z
f ‖} if MF 6⊂ ®,

(3.6)

Er r (C f ) = ∑
{c|c∈C f ∧c≥0}

mi n(c,ϕ), (3.7)

where I x y z (MF ) is the center of finger point cloud and J x y z
f is the center of the

candidate joints. ω is a depth threshold that controls the distance of the joints to
the hand surface. γ is a weight to balance different terms. Eq. 3.6 is treated as a con-
strained inequality and therefore negative values are desirable. As a consequence
we sum over positive costs limited by constant threshold ϕ Eq. 3.7 to evaluate each
sample finger. Finally a number of samples with the lowest error are selected as
candidates and feed into PSO. We set the number of generations and population
size to 5 and 30, respectively. For completely occluded fingers (i.e. MF ⊂ ®) we
apply Eq. 3.6 and make an average finger from outcomes. All the thresholds and
weight terms are experimentally set to some fixed values as follows: τ= 15, λ= 25,
w1 = 0.25, w2 = 0.65 and w3 = 0.1, ω= 8, γ= 4 and ϕ= 50.

3.2.2 Spatio-temporal pose recovery

Time-varying spatial data is involved in a vast range of computer vision applica-
tions [167, 194] and proved to be useful in extracting missing data. Spatial correla-
tion or trajectory analysis of independent points solely fails to model all information
in spatio-temporal data. Akhter et al. [4] combined two linear shape and trajectory
bases learned by discrete cosine transform and SVD to exploit spatio-temporal reg-
ularities. We follow this work to generate linear bases of hand data. To train bilinear
bases, we have generated a dataset including smooth deformation of fingers in a
reference view in a sequence. The advantage of keeping a reference view is that all
the frames are previously aligned by their palm joints. Then we extract fixed-length
clips by a sliding window over the sequences. A clip is represented by Q ∈ RF×5D

where F is the number of frames and D is the number of parameters for each
finger. Clip Q can be factorized by TC B T (as introduced in [4]) where T ∈ RF×kt

and B ∈ R5D×ks are learned trajectory and shape structures and C ∈ Rkt×ks is the
coefficient matrix. Given the learned T and B , the goal is to minimize a function
over coefficients C in order to extract clip Q at test time.

A common problem with linear basis models like PCA and SVD is that they are
sensitive to the correlation coefficient or distribution of the data. A solution is to
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3.2. Generative 3D hand pose recovery

divide the space of clips (e.g. clustering) in order to provide more correlation among
data. However, this solution is not exact. In, [213] authors search over all clusters to
find best models. However, this is not suitable for a huge number of clusters, as in
our case. In order to cope with previous issues, we propose a fast and approximate
solution to find best models.

In the training step, we apply k-means to cluster data. We regenerate each
cluster by extracting νN nearest clips to the cluster centroid where N is the number
of clips in the cluster and ν> 1. In fact, we extend each cluster with overlapping
to its adjacent clusters. Afterwards, we train bilinear models T and B on each
cluster (as described in [4]). This causes the models to be more robust at cluster
boundaries.

At test time, given the last clip Q (initialized using Sec. 3.2.1) and parameters
visibility V ∈ {0,1}F×5D (extracted from RF), we are able to find nearest clips in a
dataset by a trained kd-tree. However, visible and invisible joints have the same
weight in the clips and possible errors in the initial estimation can cause a false
nearest cluster. More specifically, the task is to find a cluster that best describes both
the appearance and occluded parts, and then minimize a function on coefficients
C . Therefore we define the objective function STC (Q,V ,T,B ,µ,σ) as:

STC =
F∑

f =1

5D∑
i=1

V f i |Q f i −Qr
f i |+β

F−1∑
f =1

Ψ f , f +1, (3.8)

where Q f i extracts the i -th parameter in frame f , Qr = TC B T denotes recon-
structed parameters through coefficients C , Ψ is a smoothness function among
correspondent parameters in frames f and f +1, and β is a regularization weight.
We define the smoothness function as:

Ψ f , f +1 =
5D∑
i=1

¬(V f ,i ∧V f +1,i )

∣∣∣∣∣Qr
f ,i −Qr

f +1,i −µ f i

σ f i

∣∣∣∣∣ , (3.9)

where µ f i and σ f i are precomputed mean and standard deviation distance for i -th
parameter in the frame f for each cluster, respectively. The first term in Eq. 3.8
denotes the appearance cost and the second term penalizes large movements of
the occluded joints.

We approximate the best cluster by first extracting a number of nearest clusters,
traversing a trained kd-tree using clip Q. This kd-tree is trained based on clusters
centroids. Subsequently, we generate a number of random poses around clip Q and
evaluate function STC on them for each extracted nearest cluster. Finally, we take
that cluster which generates minimum average error.

Efficient minimization of Eq. 3.8 is required. Levenberg-Marquardt algorithm
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is a standard minimization technique, although finding a good initial point to
minimize Eq. 3.8 makes the problem intractable. In order to overcome this problem,
we use PSO with a number of randomly selected particles around Q and apply
T T R(B T )−1 for all random clips to generate initial particles, where R is a random
clip and T and B are trained bliniear structures of the best cluster. To have a fair
distribution of fingers and removing undesired clips, we apply Eq. 3.7 on all fingers
for all random clips and select a subset of best candidates by sorting clips regarding
their maximum finger error. As a consequence, the solution is achieved in a few
generations. We set the number of generations and population size to 5 and 100,
respectively.

We use finger parameters in all frames as a trajectory descriptor which is invari-
ant to finger length and hand shape. Finger parameters have an advantage versus
the 3D joints locations since we have more control on them, like adding constraints
or generating a more meaningful shape without adding extra regularization. Given
that this process mainly improves occlusion recovery, we combine the recovered
invisible joints to the visible joints estimated in the initial step as the final pose.
In the experiments, we show that initial pose estimation has a low error which is
reliable enough to be used in the occlusion refinement process. We apply full rank
matrices to train the bilinear model, with ks = 7, kt = 7, clip length F = 7 frames and
β= 0.1.

3.2.3 Results

Evaluation metric We used the 3D Euclidean distance from joints to groundtruth
for evaluating the different approaches. We also measured the success rate as
in [162] to compute percentage of each error threshold.

Evaluation on the synthetic dataset (Chap. 4) For comparison, we used as the
baseline a transformed average shape from the nearest neighbors according to
our shape descriptor and ICP. We compared PSO vs. greedy for single-frame pose
recovery as well. In the greedy approach after applying our population selection
proposal (Eq. 3.7), the best candidate was selected by evaluating Eq. 3.4. We include
our occlusion refinement approach and we show how it can be combined with
greedy to slightly improve occluded joints. Fig. 3.4a shows the per-joint average
error (mm) for different approaches. As it can be expected PSO performs slightly
better than the greedy approach. However, the difference is not significant and the
greedy approach runs faster than PSO. Joints belonging to the palm exhibit accurate
palm pose recovery even in quite difficult poses which is quite critical for recovering
the pose of individual fingers. Notice that the baseline is the most accurate approach
for the thumb joints. A possible explanation is that the thumb has higher movement
range than other fingers and it is thus hard to recover with model-based approaches.
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(a) (b)

(c)

Figure 3.4: a) Error per joint. Joint arrangement is shown in Fig. 3.1a. The mean
errors are 12.86, 12.40, 15.16, 14.72 and 11.09, respectively. b) Success rate over
different error thresholds on our dataset comparing to DeepPrior ([125]), and c)
success rate on the MSRA dataset. Note that we took the state-of-the-art results
instantly from [162]. See [162] for details on the methods.

Bilinear optimization solely does not improve the overall error and resulted in
lower accuracy than single-frame techniques, but when combined with the greedy
solution we could improve occluded parts poses by 3.7mm (i.e. visible joints from
greedy and occluded ones from bilinear optimization). Although this is not a
big improvement, the results show the benefits of incorporating temporal data.
However, increasing the number of frames within each clip adds complexity to the
bilinear coefficient optimization and precludes real-time performance.

For the current version of the system, the hand can not be occluded by any other
object. Since we use ICP and QDA, model drifts might occur when the number of
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(a)

(b)

Figure 3.5: a) Greedy vs. baseline. b) Greedy vs. bilinear optimization.

visible pixels from the hand is dramatically reduced (due to pose, viewpoint, camera
noise, or missing data). Not availability of nearest shapes does also influence the
pose recovery process for both hand segmentation and palm pose recovery tasks.

We also compared our proposal with the DeepPrior ([125]) Convolutional Neural
Network approach. Fig. 3.4b illustrates the success rate error among proposed
methods and DeepPrior. DeepPrior shows the lowest accuracy. This could be
because of the high pose variability and presence of occlusions [125]. We trained
DeepPrior with 300K samples, 200 epochs and learning rate 0.001. We also show
some qualitative results in Fig. 3.6a and 3.6b.

We compared greedy vs. baseline and greedy vs. bilinear optimization for some
examples in Fig. 3.5a and 3.5b. The purpose of these graphs is to compare how
different methods behave in a sequence of frames.

Evaluations on MSRA dataset Without accurate hand segments, we were not
able to properly evaluate our approach on this dataset. However we used inaccurate
hand segments to setup our baseline method on this dataset. To report results and
compare to the state-of-the-art on this dataset we applied a 9-fold cross validation,
where each fold corresponds to one subject. Fig. 3.4c illustrates success rate of our
baseline approach comparing to [162]. Table 3.1 shows per-joint average error in
comparison to state-of-the-art approaches. Notice that our baseline method clearly
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(a)

(b)

Figure 3.6: Qualitative results on our dataset. a) Comparing different approaches.
Columns from top to bottom: depth images, segmentation, baseline, greedy, and
DeepPrior [125]. The rows show the frames 1, 12, 27, 42, 75, 83, 244, 301 and 352
from left to right. b) Greedy+bilinear optimization in depth video. Columns from
top to bottom: depth images, ground truth, and final results. Results are generated
with error lower than 30mm per visible joint for initial step.
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Table 3.1: Quantitative results on MSRA dataset. Values are per-joint error in mil-
limeters. Letters R and T go for finger root and finger tail, respectively. We extracted
values from the results reported in the papers. Results for [127] obtained from [28].

IndexR IndexT MiddleR MiddleT RingR RingT LittleR LittleT ThumbT Mean
Oikonomidis et al. [127] 31.0 56.0 32.9 56.0 32.9 49.3 35.1 53.7 22.2 38.2

Choi et al. [28] 22.6 43.5 24.0 44.9 23.1 43.1 21.8 39.5 31.1 29.8
Ge et al. [106] 11.5 16.0 9.0 15.6 9.9 15.1 13.2 16.0 16.7 13.0

Ours (KNN+ICP) 9.5 17.3 7.7 17.1 8.3 15.5 10.6 17.7 14.8 12.8

Figure 3.7: Qualitative results on MSRA dataset [162]. Columns from top to bottom:
depth images, groundtruth, and our estimation.

outperforms most of the state-of-the-art approaches on this dataset. These results
show the robustness and accuracy of our methodology against highly variable poses.
Fig. 3.7 shows some qualitative results on this dataset.

Time complexity Our methodology has a high parallelization capability at any
stage. It is GPU-friendly since fingers estimations are minimized separately.

Greedy finger minimization needs just evaluating function E over the selected
candidates. Initial pose estimation is achieved in real time. Most of the processing
time is consumed by PSO optimization over bilinear model coefficients C . We use 5
generations over 100 particles which is comparable to 30 and 100 in [150] respec-
tively. We implemented the whole pipeline in Matlab and C++, which although not
optimized, runs at 10 fps.

56



3.3. CNN based hand pose regression

3.3 CNN based hand pose regression

Given an input depth image I , we refer the 3D locations of n hand joints as the
set J = { j ∈R3}n

1 . We denote j x y z and j uv z as a given joint in the world coordinate
system and after projecting it to the image plane, respectively. We define n = 20
for the wrist, finger joints and finger tips, following the hand model defined in
[162]. We assume a hand is initially visible in the depth image, i.e. not occluded by
other objects in the scene, although may present self-occlusions, and properly been
detected beforehand (i.e. pixels belonging to the hand are already segmented [172]).
We also assume intrinsic camera parameters are available. We refer to global pose
as the whole set J , while, a local pose is a subset of J (e.g. index finger joints).

Considering hand pose recovery as a regression problem with the estimated
pose as output, we propose a CNN-based tree-shaped architecture, starting from
the whole hand depth image and subsequently branching the CNN blocks until each
local pose. We show the main components of the proposed approach in Fig. 3.8. In
such a design, each network branch is specialized in each local pose, and related
local poses share features in the earlier network layers. Indeed, we break global
pose into a number of overlapping local poses and solve such simpler problems
by reducing the nonlinearity of global pose. However, since local solutions can be
easily trapped into local minima, we incorporate higher order dependencies among
all joints by fusing the last convolutional layer features of each branch and train the
network for global and local poses jointly. We cover this idea in Sec. 3.3.1. We also
apply constraints based on appearance and dynamics of hand as a new effective
loss function which is more robust against overfitting than simple L2 loss while
providing a better generalization. This is explained in Sec. 3.3.2.

3.3.1 Hand pose estimation architecture

In CNNs, generally, each filter extracts a feature from a previous layer, and by
increasing the number of layers, a network is able to encode different inputs by
growing the Field of View (FoV). During training, features are learned to be activated
through a nonlinear function, for instance using Rectified Linear units (ReLU). The
complexity and number of training data has a direct relation to the number of filters,
layers or complexity of the architecture: an enormous number of filters or layers
might cause overfitting, while a low number might lead to slow convergence and
poor recognition rates. Interestingly, different architectures have been proposed to
cope with these issues [126, 171, 190]. For example, in multi-task learning, different
branching strategies are typically applied to solve subproblems [39, 45], and the
different subproblems are solved jointly by sharing features. Similarly, we divide
global hand pose into simpler local poses (i.e. palm and fingers) and solve each
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Figure 3.8: Proposed network architecture. Branching strategy connects CNN blocks
into a tree-shape structure while regressing local pose at each branch. Each local
pose is a 24 dimensional vector. We also include a viewpoint regressor in th network
as a rotation matrix in terms of quaternions Q at the output. We then fuse all the
features of the last convolutional layers to estimate output global pose. We use Q
features in the fusion to extract palm joints more accurate.

local pose separately in a branch by means of a tree-shaped network. We show this
architecture in Fig. 3.8.

The proposed architecture has several advantages. Firstly, most correlated
fingers share features in earlier layers. By doing this, we allow the network to
hierarchically learn more specific features for each finger with respect to its most
correlated fingers. Secondly, the number of filters per finger can be adaptively
determined. Thirdly, the estimation of the global pose is reduced to the estimations
of simpler local poses, resulting the network to train at fast convergence rates.

We define the amount of locality by the number of joints contributing to a
local pose. Keeping such locality high (i.e. lower number of joints), in one hand,
causes fingers to be easily confused among each other, or detected in a physically
impossible location. A low locality value (i.e. higher number of joints), on the
other hand, increases the complexity. Besides, local joints should share a similar
motion pattern to keep lower complexity. So in the particular implementation in
this paper, we assign to each local pose one finger plus palm joints, thus leading to
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a 24 dimensional vector.
Training the network only based on local poses omits information about inter-

fingers relations. Tompson et al. [173] included a graphical model within the training
process to formulate joints relationships. Li et al. [99] used a dot product to compute
similarities for embedded spaces of a given pose and an estimated one in a structural
learning strategy. Instead, we apply late fusion based on local features, thus, let the
network learn the joint dependencies through fully connected layers for estimating
the final global pose. The whole network is trained end-to-end jointly for all global
and local poses given a constrained loss function.

Network details Input images are pre-processed with a fix-sized cube centered
on the hand point cloud and projected into the image plane. Subsequently, the
resulting window is cropped and resized to a 192×192 fixed size image using nearest
neighbor interpolation, with zero-mean depth.

As intermediate layers, the network is composed of six branches, where each
branch is associated to specific fingers as follows: two branches for index and
middle fingers, two branches for ring and pinky fingers, one branch for thumb, and
one branch for palm. For the palm branch, instead of performing direct regression
on palm joints, we make regression on the palm viewpoint, defined as the rotation
(in terms of quaternions) between the global reference view and the palm view. As
shown in the experimental results, more accurate and reliable optimization is then
achieved, since the network is able to model interpolations among different views.

As shown in Fig. 3.8, each convolutional block consists of a convolution layer
with 3 × 3 filter kernels and a ReLU followed by a max-pooling, except for the
last block. All pooling layers contain a 2 × 2 window. The last block contains
a convolutional layer with 6× 6 filter kernels, providing a feature vector. Fully
connected layers are added to the end of each branch for both local and global
pose learning. For local pose at each branch there are two hidden layers with 1024
neurons with a dropout layer in between. Similarly, for global pose at each branch,
the feature vector is followed by two hidden layers with 1024 neurons with a dropout
layer in between. Then, the last hidden layers are concatenated and followed by a
dropout and a hidden layer with 1024 neurons. Finally, the global and local output
layers provide the estimation of joints with one neuron per joint and dimension.

3.3.2 Constraints as loss function

In regression problems, the goal is to optimize parameters such that a loss func-
tion between the estimated values of the network and the ground-truth value is
getting minimized. Usually, in the training procedure, an L2 loss function plus a
regularization term is optimized. However, it is generally known that, in an un-
balanced dataset with availability of outliers, L2 norm minimization can result in
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poor generalization and sensitivity to outliers where equal weights are given to the
training data [14]. Weight regularization is commonly used in deep learning as a
way to avoid overfitting. However, it does not guarantee the weight updating to
bypass the local minima. Besides, a high weight decay causes low convergence rates.
Belagiannis et al. [14] proposed Tukey’s biweight loss function in the regression
problems as an alternative to L2 loss robust against outliers. We formulate the loss
function as L2 loss along with constraints applied to hand joints regarding the hand
dynamics and appearance, leading to more accurate results and less sensitivity to
ground-truth noise.We define the loss function for one frame in the form of:

L =λ1Lloc +λ2Lg l o +λ3Lapp +λ4Ld yn , (3.10)

where λi i ∈ {1..4} are factors to balance loss functions. Lloc , Lg l o , Lapp and Ld yn

denote the loss for the estimated local and global pose, appearance, and hand
dynamics, respectively. Next, each component is explained in detail.

Let F l ∈ R3×m be the concatenation of the m estimated joints in each branch
of the proposed network and G l ∈R3×m be the ground-truth matrix. Note that m
is not necessarily equal to n = 20. F g ∈R3×n and Gg ∈R3×n are the outputs of the
embedded network for estimated joints and ground-truth, respectively. Then, we
define local and global losses as:

Ll oc =
3m∑
i=1

(F l
i −G l

i )2, (3.11)

Lg l o =
3n∑

i=1
(F g

i −Gg
i )2. (3.12)

A common problem in CNN-based methods for pose estimation is that in some
situations estimated pose does not properly fit with appearance. For instance, joints
are placed in locations where there is no evidence of presence of hand points, or
being physically incorrect [106, 125, 126]. In this paper, during training we penalize
those joint estimations that do not fit with the appearance or are physically not
possible, and include such penalties in the loss function.

We first assume that, rationally, joints must locate inside the hand area and have
a depth value higher than the hand surface, besides, joints must present physically
possible angles in the kinematic tree. Therefore, for a given joint j x y z the inequality
I ( j u , j v )− j z < 0 must hold, where I ( j u , j v ) is the pixel value at location ( j u , j v ).
To avoid violating the first condition (i.e. when a joint is located outside hand area
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after projection to the image plane), we set the background with a cone function as:

5
√

(u −0.5w)2 + (v −0.5h)2 +φ,

where w and h are width and height of the image, and φ is a fixed value set to 100.
The reason to use a cone function instead of a fixed large value is to avoid zero
derivatives on the background. We use hinge formulation to convert inequality to a
loss through:

Lapp =
m∑

i=1
max(0,I ( j u

i , j v
i )− j z

i ). (3.13)

We subsequently incorporate hand dynamics by means of the top-down strategy
described in Algorithm 1. We assume all joints belonging to each finger (except
thumb) should be collinear or coplanar. Thumb has an extra non-coplanar form and
we do not consider it in the hand dynamics loss. A groundtruth finger state sG ∈ {1..4}
is assigned to each finger computed by the conditions defined in Algorithm 1. Each
finger has a groundtruth normal vector eG which is finger direction for the case 1 and
finger plane normal vector for the other cases. Therefore, we define four different
losses, one of them triggered for each finger (as shown in Algorithm 1). Let A, B , C
and D be four joints belonging to a finger starting in A as the root joint and ending
in D as fingertip. Then the dynamics loss is defined as:

Ld yn =
4∑

i=1
∆i (A,B ,C ,D, sG ,eG ), (3.14)

where i denotes a finger index. Now we consider each case in Algorithm 1 in the
following.

We consider a collinear finger in case 1. A finger is collinear if:

‖B − A‖+‖C −B‖+‖D −C‖ < ‖D − A‖+κ,

where κ is a threshold defining the amount of collinearity and set to 0.01‖D − A‖.
To compute the loss for a collinear groundtruth finger, the following condition has

to be hold: ρ < cos(∠(
−−→
AD ,eG )) ≤ 1, where ρ is a threshold. This condition has to

be met for
−→
AB and

−→
AC as well. The cosine function can be extracted through dot
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product. Therefore, using hinge formulation, the loss is defined as:

∆i (A,B ,C ,D,1,eG ) = max

(
0,ρ−

−→
AB ·eG

‖−→AB‖

)
+

max

(
0,ρ−

−→
AC ·eG

‖−→AC‖

)
+

max

(
0,ρ−

−−→
AD ·eG

‖−−→AD‖

)
+

µmax(0,‖−→AB‖+‖−→BC‖+‖−−→C D‖−1.01‖−−→AD‖),

(3.15)

where µ is a factor to balance different components of the loss function.
We consider a coplanar finger for cases 1, 2 and 3. We define a finger to be

coplanar if cross products of all subsets of the finger joints with three members to
be parallel. Note that a collinear finger is necessarily coplanar. However, we exclude
collinear fingers from this definition due to cross product, as shown in Algorithm 1.
For a groundtruth coplanar finger, such cross products must be parallel to the plane
normal vector. Therefore, for given joints A, B and C , the following condition must
hold:

ρ < cos(∠(
−→
AB ×−→

BC ,eG ) ≤ 1.

Given the groundtruth finger is coplanar of case 2, we compute the loss function as:
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∆i (A,B ,C ,D,2,eG ) = max

(
0,ρ− (

−→
AB ×−→

BC ) ·eG

‖−→AB ×−→
BC‖

)

+max

(
0,ρ− (

−→
AC ×−−→

C D) ·eG

‖−→AC ×−−→
C D‖

)
.

(3.16)

The loss functions for the other coplanar finger cases are computed in the same
way.

3.3.3 Loss function derivatives

All components in Eq. 3.10 are differentiable, thus we are able to use gradient-based
optimization methods. In this section we explain derivatives of the constraint loss
function in Eq. 3.13. Derivatives of the rest of loss functions are computed through
matrix calculations. We first define derivative of Lapp with respect to t ∈ { j x

i , j y
i , j z

i }
through:

∂Lapp

∂t
=

{
0 if I ( j u

i , j v
i )− j z

i ≤ 0

∂I /∂t −∂ j z
i /∂t otherwise.

(3.17)

In the following we just consider positive condition of Eq. 3.17. Besides, we omit
index i (which denotes i -th joint) from the notations for the easiness of reading.
Depth image I is a discrete multi-variable function of j u and j v , where j u is a
multi-variable function of j x and j z , and j v is a multi-variable function of j y and
j z . Consequently, the total derivative of a depth image can be computed by the
chain rule through:

dI

dt
= ∂I

∂ j u

d j u

dt
+ ∂I

∂ j v

d j v

dt
(3.18)

d j u

dt
= ∂ j u

∂ j x

d j x

dt
+ ∂ j u

∂ j z

d j z

dt
(3.19)

d j v

dt
= ∂ j v

∂ j y

d j y

dt
+ ∂ j v

∂ j z

d j z

dt
(3.20)
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Next, we present components of j u derivative in detail1. Depth image I is a
function of hand surface. However, hand surface given by the depth camera may
have noise and not be differentiable at some points. To cope with this problem, we
estimate depth image derivatives by applying hand surface normal vectors. Let s to
be the surface normal vector for a given joint. Then, derivative of I with respect to
u axis is given by the tangent vectors through:

∂I

∂ j u = sx

sz . (3.21)

As mentioned, j uv z is the projection of the estimated joint j x y z from world
coordinate to the image plane. Note that joints have zero mean and j uv z is extracted
after the image has been cropped and resized. Let fx , px , M x y z and M uv z to be the
camera focal length and image center for x axis, world coordinate hand point cloud
center, and its projection to image plane, respectively. Then j u is computed as:

j u( j x , j z ) =
(

fx ( j x +M x )

j z +M z +px −M u
)

scalex + w

2
,

scalex = w M z

c fx
,

(3.22)

where c is the cube size used around hand point cloud to crop the hand image.
Using this formulation, derivative of j u can be easily computed and replaced in
Eq. 3.19.

3.3.4 Results

In this section we evaluate our approach on two public real-world datasets: NYU
[172] and MSRA [162]. MSRA dataset has less accurate groundtruth comparing to
NYU dataset and provides a multi-subject benchmark. We evaluate our approach
using two metrics: average distance error in mm and success rate error [169]. Next,
we detail the method parameters and evaluate our approach both quantitatively
and qualitatively in comparison to state-of-the-art alternatives.

Training

We utilize MatConvNet library [182] on a server with GPU device GeForce GTX Titan
X with 12 GB memory. We optimize the network using stochastic gradient descent
(SGD) algorithm. We set the batch size, learning rate, weight decay and momentum
to 50, 0.5e-6, 0.0005 and 0.9, respectively. Although our approach converges in

1Derivatives belonging to j v are computed in the same way as j u
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Figure 3.9: Constraints derivatives during training process. Estimated joints along
with derivatives of appearance and hand dynamics are illustrated for the first five
epochs in the training process. We qualitatively show how proposed network con-
verges very fast in few epochs.

almost 6 epochs, we terminate the process after 20 epochs, while reducing the
learning rate by a factor of 10 after epoch 6. Overall, training takes two days while
testing takes 50 fps.

Loss function parameters tuning We set a low value for parameter µ in Eq. 3.15
since it behaves like a regularization and it is not connected to ground-truth. Ld yn

is mainly a summation of cosine functions while Lapp is in millimeters. Therefore
we set λ4 higher than λ3 to balance cosine space with millimeter. Finally, we set
parameters λ1, λ2, λ3, λ4 and µ experimentally to 4, 4, 3, 20 and 0.0005, respectively.
We show derivatives of appearance and dynamics loss functions for a number of
joints in the first five epochs in Fig. 3, as well as qualitative images of estimated
joints.
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(a) (b)

(c)

Figure 3.10: Quantitative results comparing baselines on NYU dataset. a) Training
process in terms of average error per epoch. b) Comparing palm: joints regression
vs. viewpoint regression. c) Maximum success rate, comparing baselines.

Comparison with baselines

We compare with baselines considering four types of our approach on NYU dataset
(we denote each by a number): (1) hierarchical network trained just with local poses
including one finger in each branch, and without constraints and fusion network
(this baseline shows a high locality value), (2) previous baseline along with palm
joints included in the local pose in all branches, (3) previous baseline along with
constraints, and finally, (4) previous baseline along with fusion network.

First of all, we compare training and validation set trend for baseline methods 1
and 3 in Fig. 3.10a for NYU dataset. It can be seen that, by applying the proposed
constraints, method 3 is more robust against overfitting than method 1. Validation
error in method 3 does not significantly change from epoch 7 to 15 and starts
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Figure 3.11: Comparison of the proposed network baselines with respect to the
mean error per joint on NYU dataset [172].

overfitting slightly after epoch 15. Comparing both methods in epoch 20, method
1 has a lower error in training while its validation error is almost 1.5 times the
validation error of method 3.

We evaluate our palm joints vs. palm viewpoint regression in terms of success
rate error in Fig. 3.10b. Palm viewpoint regressor gives a rotation matrix in terms of
quaternions. We convert quaternions to rotation matrix and use it to transform a
predefined reference palm example. As it can be seen in the figure, palm viewpoint
regression significantly reduces palm joints error.

We show the success rate with maximum joints error in Fig. 3.10c. As it can be
seen, method 1 has the highest error while when palm joints are included in the
local pose, method 2 is able to better localize finger joints. By applying constraints
in the loss function (method 3), the results are slightly improved for the lower error
tolerance while fusion network (method 4) improves method 3. We also illustrate
per joint mean error in Fig. 3.11. From the figure, as expected, a very local solution
(method 1) performed the worst among the baselines. Comparing method 2 and
3 in average error shows the benefits of applying constraints as loss as well. By
including viewpoint features in the fusion network, palm joints mean error was
considerably improved by method 4. Although method 4 performed better for the
pinky and ring fingertips, it did not achieve the best results for index and thumb
fingertips. This opens the future work idea that a selective solution among local
and global estimations can be applied as a post-processing solution.
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(a) (b)

(c)

Figure 3.12: State-of-the-art comparison. a) and b) Mean and maximum success
rate on NYU dataset. c) Maximum success rate on MSRA dataset.

Comparison with state of the art

We compare our approach to [172], [126], and [157] on NYU dataset and [162] and
[106] on MSRA dataset. Note that we compare with state-of-the-art data-driven
approaches. Mentioned works use 14 joints (as proposed in [172]) to compare
on NYU dataset. For a fair comparison on this dataset we take 11 joints most
similar to [172] out of our 20 used joints. We show the results on NYU dataset in
Fig. 3.12b based on our method 4. Regarding the maximum success rate we slightly
outperform state-of-the-art results. Regarding the average success rate (Fig. 3.12a),
we improve state-of-the-art results. We achieve overall mean joint error 15.6 mm vs.
16.5 mm reported in [126]. Some qualitative results on this dataset is shown in Fig.
3.14 comparing to state of the art.

We show the maximum success rate results on MSRA dataset in Fig. 3.12c. For a
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(a)

(b)

Figure 3.13: Qualitative results. a) NYU dataset. Rows from top to bottom:
groundtruth, method (1) and method (4). b) MSRA dataset. Rows from top to
bottom: groundtruth and method (4). See text for details of the methods.

fair comparison with CNN-based approaches, we compare to Ge et al.[106] without
their post-processing results. As it can be seen, we get slightly better results for
lower error tolerances comparing to [106]. Although Sun et al.[162] has a higher
number of good frames for errors lower than 18mm, it performs the worst for higher
error rates.
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Figure 3.14: Tompson et al.[172] just estimates 2D pose using joints heat-map,
providing poor pose estimation results in the case of noisy input images (second
column). Oberweger et al.[125] results (DeepPrior) show that PCA is not able to
properly model hand pose configurations. Oberweger et al.[126] improved previous
results by applying an error feedback loop approach. However, error feedbacks do
not provide accurate pose recovery for all the variability of hand poses. In our local
pose estimation framework, a separate network is trained for each finger. Then,
we fuse learned local features to include a higher order dependency among joints,
obtaining better pose estimation results than previous approaches.
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4.1 Soft biometrics measurement

Soft biometrics in contrast to hard biometrics are traits of the human body, like
color of the hair, skin, height and weight, that can be used to describe a person.
These attributes have a lower power to discriminate and authenticate an individual,
but they are easier to compute in comparison to hard biometrics.

Soft biometric traits have been used in video surveillance to track people with
single camera systems or even with a discrete joint camera network [33, 34, 140];
as a pre-processing approach to help hard biometric systems to search databases
faster or to increase reliability and accuracy [55, 116]; and for other applications
like person re-identification [118], supported diagnosis in clinical setups [141], or
commercial tools like clothing sizing [27], just to mention a few. Most surveillance
systems using soft biometrics have integrated human height as one of their most
important cues [34, 71, 140].

Authors in [183] proposed a weight estimation technique that computes weight
by summation of coefficients of some soft biometrics like height and calf circumfer-
ence. Since soft biometrics have semantic correlation in human metrology, these
can be computed according to part relations. Recently, [1] studied the problem of
predictability and correlation in human metrology applying some statistical mea-
surements between different soft biometrics features in order to make correlation
clusters among them to predict unknown body measurements. Authors in [145]
used joints estimated by KinectSDK to estimate initial dimensions, afterward multi-
ple Regression of the 2 principal components of estimated body dimensions were
applied to estimate other dimensions. Authors in [191] computed body measure-
ments using a regression based approach from body parameters after an accurate
scanning of the body.

While most of the biometrics measurements are based on regression on some
known body parameters, in this section, first we accurately segment human limbs
from a single depth image captured by a Kinect camera (Chap. 2), and as a result we
compute traits such as arm and leg lengths, and neck, chest, stomach, waist and
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Figure 4.1: Red points are non visible points of the model inside occluded mask.
Left image is the corresponding depth map.

hip sizes from segmented limbs.

4.1.1 Size measurements

We rely on geometrical body surface measurements and joint locations to compute
soft biometrics. Therefore, we need to segment body traits beforehand (as described
in Chap. 2). We first align an exemplar model to body point cloud and assume
this exemplar model is complete, i.e.the coordinates of all body surface is available
regardless of self-occlusions. Therefore, after point clouds alignment, one can easily
find which areas are self-occluded in the depth image by comparing warped model
and depth image using a depth difference threshold. Then, to measure size, we
complete occluded body pixels from warped model. Fig. 4.1 shows how occludees
are completed in a sample depth image.

After segmenting body, the lengths of arms and legs are easily obtained by com-
puting the joint locations like shoulder, elbow and wrist for arms; or hip, knee and
ankle for legs. But the most challenging part in size measurements lies in the esti-
mation of the circumference of body traits like neck, chest or waist. Depending on
the training data, one could add more body parameters like principle components
as degree of obesity and using such a more robust model, full size measurements
are possible from body completion. This can obtain even more accurate results in
multi-view systems which require a point cloud nearest neighbor based approach.

Next we describe a geometrical approach to compute camera view circumfer-
ence of such traits: we estimate the orthogonal plane to the body principal axis so
that the intersection of this plane and the body hull surface is used for estimating
those measurements. Since the principal axis of the body is the symmetry axis of it,
we assume that this axis starts at the mean point of the hip segment boundary and
ends at the mean point of the neck segment boundary. These boundaries lie on the
segments after estimating labels. The accuracy of principal axis strongly depends
on the segmentation accuracy. Similarly, the principal axis of the neck starts at the
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Figure 4.2: Constructing trait curve for size measurement using orthogonal plane γ
to the body principal axis.

mean point of the neck segment boundary and ends at the head joint.
As shown in Fig. 4.2, let h be the head point and t be the tail point of the

principal axis, j be the joint point of a segment, γ be the orthogonal plane to the
principal axis crossing at j , and o be the intersection of γ and the principal axis. In
this assumption, o is unknown and we compute it using other known points as:

o =α(h − t )+ t , (4.1)

where α is the plane γ factor computed as:

α=
∑

(h − t )◦ (m − t )∑
(h − t )2 . (4.2)

Let p be a point on body hull that belongs to the selected segment. Point p lies

on γ plane if and only if −→op · −→oh = 0 is satisfied. Since the body hull point cloud
is a discrete surface, we threshold the dot product for all points in the segment
to estimate the intersection curve. However, the resulting narrow strip of points
is still not appropriate for measurements. We divide the resulting strip into non-
overlapping segments to extract the mean point of each segment, and then consider
the Euclidean distance between neighbor segments. Applying such an interpolation
reduces affects of boundary points noises. These measurements can be used in
regression based approaches as initial parameters.

For small segments like neck, using completed point cloud and tuning the
weights of each segment in SVM segmentation improves segment line analysis.
An important parameter is the threshold of dot product which can be tuned for
different point cloud densities and segments.
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Figure 4.3: Overall size error per person in mm.

Table 4.1: The average mean and standard deviation error in mm for all the data.

Neck Chest Stomach Waist Hip Arm Leg
55.76 69.47 64.63 46.60 55.61 41.44 30.65

Our method ± ± ± ± ± ± ±
33.57 49.58 39.84 31.45 34.35 25.65 24.07

4.1.2 Results

We show in Fig. 4.3 the average limbs size errors among all subjects. This shows that
the data distribution among all individuals is not normal and some data is more
challenging for measurements. Notice that segment lines in different parts lie into
the segments according to the Fig. 2.6 even for small segments like neck.

The accuracy of measurements is directly related to the accuracy of the segmen-
tation and database labels: chest has the highest size errors (because clothes affect
mostly on this part) whereas arm and leg have the lowest error values. Other source
of errors are the affect of clothes in some poses as well as human faults in taking
groundtruth. Besides self occlusions problem for example in the chest part has
been solved by completing the point cloud. Table 4.1 summarizes the average mean
and standard deviation errors in mm per limb.
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4.2 Garment retexturing

As shopping for garments is increasingly moving to a digital domain, the next step
after just seeing the desired clothes is to virtually try them on. Due to the fact that
an actual try-on of clothes is time-consuming, a virtual alternative has always been
desired, and many researchers have been engaged in developing novel strategies
and systems to perform such a task [31, 60, 149, 174, 215]. It requires scanning,
classification of the body based on gender and size, 3D modeling [48, 59, 206] and
visualization. Constrained texture mapping and parametrization of triangular mesh
are some popular examples, although they suffer from some deficiencies such as
finding the parameter values and manual adjustments [103, 113]. Many researchers
have also suggested methodologies for visually fitting garments onto the human
body based on dense point clouds [12, 63]. However, garment retexturing in a
virtual fitting room is still an open problem [30, 143, 177].

The focus of this section is an application for a specialized fitting room where
the images of the person are captured with a Kinect-2 RGB-D camera. There are
several steps between taking an RGB-D picture and displaying the final result with
a retextured garment. These steps involve segmentation of the garment, garment
matching and surface retexturing. Retexturing part involves several challenges.
First, a coordinate map must be created between the image of the new texture
and the image that is being retextured. This problem is especially difficult in the
case of non-rigid and easily transformable surfaces like clothes. One of the biggest
problems of easily deformable surfaces is self-occlusion. In many cases, one part of
a surface blocks the visibility of another part of the surface. To achieve a realistic
result, it is necessary to consider this occlusion aspect in the computation of texture
coordinates. Another challenge is to shade the new texture correctly. It is possible
to use the color information of the original image, but the lighting, intensity and
the original color of the surface are usually not previously known and must be
estimated.

The proposed automatic retexturing method, after the segmentation stage uses
the point set registration method [72] to find correspondence between the outer
2D contours of the person and the target garment. After the contour matching, the
surface topology of the flat 2D garment is approximated using geodesic distance in
a global closed form solution using thin plate spline (TPS) [19] and the final result
is superimposed onto the segmented area.

4.2.1 Literature review

The matching problem stage can be defined as a correspondence problem, which
incorporates pair-wise constraints. Hence, it is often solved with a graph matching
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approach [44, 62, 212], which is especially suitable for deformable object matching.
Furthermore, additional constraints can be added to the framework in order to
reduce the computation time (e.g. clearly, each cloth type is constrained to the body
part where it is dressed), or in order to take problem-specific aspects into account.

There exist various techniques for conducting a mapping from 2D image texture
space to a 3D surface. Some examples are intermediate 3D shape [17], direct draw-
ing onto the object [57], or using an exponential fast marching method by applying
geodesic distance [176, 196]. Many researchers have devoted special attention try-
ing to attempts to enhance the realism of virtual garment representation during
the last decade [22]. One of the most frequently used texture fitting methods was
proposed by Turquin et al. [179], which allows the users to sketch garment contours
directly onto a 2D view of a mannequin. The initial algorithm has been further
enhanced by many other researchers [200, 205].

Another popular way of mapping a 2D texture onto a 3D surface is by using a
single image [210]. As proposed by [212], an estimation of a 3D pose and shape of
the mannequin is followed by constructing an oriented facet for each bone of a man-
nequin according to angles of the pose, and projecting the 2D garment outlines into
corresponding facets. Eckstein et al. [40] proposed a constrained texture mapping
algorithm, which can be used for 2D and 3D modeling, and multi-resolution texture
mapping and texture deformation, but it may produce a Steiner vertex effect when
a simple solution does not exist. Kraevoy et al. [88] introduced a method based on
iterative optimization of a constrained texture mapping method. In their method, it
is a requirement to specify the corresponding constraint points on the grid model
and texture image, the parametrized mesh. Later, Yanwen et al. [199] reported a
constrained texture mapping method based on harmonic mapping, with interactive
constraint selection by the user; the method produces high efficiency, real-time
optimization, and adjustment of mapping results. The block based constrained
texture mapping methods are also used in order to bring higher speed and lower
computational costs [110].

There exist several standard methods for projecting textured surfaces on screen.
The simplest shading methods work only by using surface normals independently
without considering the overall surface, attempting to estimate the brightness of the
surface given some known viewer and light source direction. Examples of this kind
of method are the Gouraud shading, Phong shading, and Blinn-Phong shading [151].
However, these methods do not support shadows.

4.2.2 Retexturing approach

We propose an automatic retexturing method covering the stages of garment seg-
mentation, 2D to 3D garment matching and rendering. As pre-processing, we use
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Figure 4.4: Overview of the proposed retexturing method.

RGB, depth and infrared images of the Kinect and segment out the garment from
the background. The segmented depth image is used to compute retexturing from
a source 2D flat garment image. We reduce the problem of surface point matching
to an interpolating problem by using garment contour matching. The interpo-
lation process takes surface topology into account using geodesic distance in a
global closed form solution using thin plate spline (TPS) [19]. Thus, 2D garment
contours are matched beforehand applying point registration based on Gaussian
mixture models [72]. Finally the resulting mapped source image is sampled, and the
segmented area can be superimposed using these colors. As a result, realistic ren-
dering is provided showing both qualitative and quantitative advantages in relation
to state-of-the-art method alternatives based on thin-plate splines with geodesic
interpolation. The proposed retexturing method is visualized in Fig. 4.4.

Segmentation

In order to make accurate measurements in real world units, we standardize the
coordinate system of body and garment models according to real world coordinates.
Moreover, rich visualization includes aligned image data (RGB and depth images),
so as to provide animations as close as possible to the real scenario [62].

The first step of the proposed retexturing method is segmentation of garments
from the background. It is necessary to extract a set of points from the image
corresponding to the area being retextured. The proposed method works under the
following assumptions: the area to be retextured is a shirt (or some other initially
known garment) worn by a person, the person is assumed to be standing in front of
the camera and is assumed not to occlude the area of interest with his/her hands.
The segmentation is done by first extracting pixels and the skeleton of the body
using Kinect SDK. Skeleton joint locations along with some artificial joints are used
to train the GrabCut algorithm [142] and select areas with desired joints. In the
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case of the reference 2D image, the GrabCut algorithm is also applied initializing
the background color with the pixels on the borders of the image. This simple
automatic segmentation approach worked accurately in our dataset. In case of other
non-controlled scenarios, any other automatic or semi-automatic segmentation
approach could be considered.

Outer contour matching

Contour matching can be viewed as a point set registration problem, where a
correspondence must be found between a scene and a model. A few of the most well
known methods for point set registration are iterative closest point [16], robust point
matching [56, 161], and Coherent point drift [121] algorithms. For our purposes, a
correspondence must be found between highly deformed shapes. Out of available
algorithms, we have chosen to use non-rigid point set registration using Gaussian
mixture models [72] because of its accurate fitting under different conditions and
fast execution time. Additionally, Gaussian mixtures provide robust results even if
the shapes have different features, such as different neck lines, hand positions and
folds.

Let’s define the contour of a garment on a real person as CR and the contour
of the flat garment as CF . The aim is to create a correspondence between contour
models CR and CF . In the point matching algorithm, the point sets are represented
by Gaussian mixture models. The interpretation is such that a statistical sample
is drawn from a continuous probability distribution of random point locations.
Afterward the point set registration problem is viewed as an optimization problem,
meaning that a certain dissimilarity measure between the Gaussian mixtures con-
structed from the transformed model set and the fixed scene set is minimized based
on L2 distance between the mixtures.

Before finding the corresponding points between the shapes, the contours are
down-sampled and normalized. Essentially the used method provides information
about how CR has to be transformed to match CF . After the transformation is found,
nearest neighbor search is used to find the corresponding points between the two
contours. Outer contour matching examples are shown in Fig. 4.5.

Inner contour matching

Inner contour matching refers to the process of finding correspondence points
between the body surface and the 2D flat garment in order to assign to each body
point a color from the garment. This process is mainly a difficult task due to, first,
the lack of depth information for the 2D flat garment and the lack of texture for
the depth image, and second, dissimilar textures for the source 2D flat garment
and target put-on garment. Therefore feature based matching is not applicable.
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(a) (b) (c)

Figure 4.5: Short and long sleeve examples for contour correspondences obtained
using point set registration. Red contour corresponds to CR and blue contour
corresponds to CF .

Conformal based approaches like [193, 204] fail due to the different topologies of
the surfaces.

In order to solve this problem efficiently, we first generate a triangulated 3D
mesh based on the depth image of the segmented area. To have a smooth shape
at boundaries, we apply some morphological filtering at segmented body shape
borders. A solution can be obtained by finding an affine deformation matrix for
each face triangle to bring both source and target surfaces into alignment according
to the matched points of the outer contours. However, we cannot guarantee a
perfect matching for near contour points in such a solution due to different surface
topologies and depth camera noise in the contours. Instead, we propose to use
thin plate splines (TPS) [19] as a solution in closed-form based on a radial basis
kernel. Let X = {x1, ..., xN } ∈R3 be the set of all points belonging to the segmented
and discretized body surface Ω. Then, a mapping from xi to the source image is
computed through

W (xi ) =
n∑

j=1
ω jκ(‖xi −CR j ‖), (4.3)

where ω is a set of trained coefficients based on CR and CF , κ(d) = d 2 logd is a
radial basis kernel and n is the number of contour points. This basic formulation
is based on Euclidean distance among the points which is not applicable for our
problem since contour points do not cover all the surface; besides that, Euclidean
distance does not describe the surface topology. Instead we propose a geodesic-
based distance to include surface topology. We show this idea in Fig. 4.6.

Since we apply discretized body surfaceΩ, the Dijkstra algorithm can be used
to compute the shortest distance from xi to each CR j , j ∈ {1..n}. However, we get

79



Chapter 4. Applications and datasets

Figure 4.6: Comparing Euclidean to geodesic distance in TPS. TPS finds a mapping
between two point sets based on known correspondences. In this image we consider
such a mapping between two 2D example lines where end points CR are matched
with CF . As can be seen, point xi has equal Euclidean distance DE to points CR1 and
CR2 . In this case, mapping WE does not take line topology into account, causing a
wrong interpolation where points on the right hand side of WE (xi ) get much denser
than the points on its left hand side. This problem can be solved by using geodesic
distance DG in the mapping WG .

a stairstep-like shortest path which causes an amount of error in the distance, no
matter how much we refine mesh. Instead, we follow the fast marching algorithm
of [36] to compute a fast and accurate approximation of geodesic distance. The fast
marching algorithm is closely related to the Dijkstra algorithm with the difference
that it satisfies the Eikonal equation ‖∇U (x)‖ = 1/s(x), x ∈Ω to update the graph
where ∇U (x) is the gradient of the action map U and s(x) is a positive outwards
speed function at point x. U (x) is a function of time at point x that describes
the evolution of the surface with respect to s(x) and surface gradient. We assume
the surface is differentiable at all points. Starting from xi , at each iteration, the
algorithm sweeps outwards one grid point with respect to s(x) to locate the proper
grid point to update. Then geodesic distance can be computed for two vertices vi

and v j from the shortest path L = {L1, ...,Lm} by

Γ(vi , v j ) =
m−1∑
l=1

‖Ll −Ll+1‖ (4.4)

To compute geodesic distance efficiently, we set a flag for cell di j of the distance
table as 1 if vertices vi and v j already exist on a larger optimum path, avoiding
recomputing the optimum path for them.
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Then we rewrite the TPS formulation to compute the coefficient matrix ω as

ω=
[

K̇n×n +λI [1|CRn×3 ]
[1|CRn×3 ]> 0

]−1

(n+4)2

[
CFn×3

0

]
(n+4)×3

, (4.5)

where K̇i j = Γ(CRi ,CR j )2 logΓ(CRi ,CR j )∀i , j ∈ {1, ...,n}, i 6= j . λI is a regularization

term and is added to the kernel K̇ where I is the identity matrix and λ ∈R. λ values
close to zero make the kernel sensitive to wrong correspondences, and values far
from zero tend to an affine transformation. We set λ to -1000, and by doing so, the
visualization becomes more realistic and less noisy.

Afterward, a solution can be achieved by applying trained coefficients as

W = [K̈N×n |1|XN×3]ω (4.6)

where K̈i j = Γ(Xi ,CR j )2 logΓ(Xi ,CR j ). Matrix W includes warped points to the 2D
shirt image. We assign each point the color of its corresponding pixel from the shirt
image.

Shading

The shading effect of the garment is achieved using an adaptation of method [8]
which is an automatic technique for garment retexturing and shading, where the
shading information is acquired from Kinect 2 infrared information and is super-
imposed on the inner shape results. It is worth noticing that shadow mapping on
the garment is not the main contribution of this section, and thus its usage and
coverage are limited to the extent demanded for visualizing the results illustrating
the effectiveness of the proposed mapping method.

The general procedure for obtaining the final visualization is as follows. The
point cloud corresponding to the area of interest provided by the Microsoft Kinect 2
camera is triangulated and rendered as described in the previous section. The
image created as a result of mapping in the previous steps is used as a texture image,
such that each vertex corresponds to a point on the image. Afterward, the rendered
image is modified by the corresponding infrared values for each pixel. Finally, the
segmented area in the Kinect frame is replaced by the color information from the
previous step.

For the sake of enhancing the representation quality, the point cloud is prepro-
cessed before rendering, since it usually is noisy. More clearly, smoothing the depth
image with a Gaussian filter is considered, which, according to our experiments,
significantly improves the results.
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(a) (b)

Figure 4.7: a) Landmarks used in the second dataset on the flat garment (right) and
landmark locations after putting the garment on as ground truth. Landmarks are
shown by indices for comparison purposes. b) Retextured garment and estimated
landmarks (left) and displacement arrows to ground truth landmarks (right) for
computing error.

4.2.3 Results

In order to evaluate our method, we created two datasets: first dataset for qualitative
evaluation and second dataset with attached landmarks for quantitative evaluation
(see details in Chap. 4). We used two metrics for evaluation of our method: qualita-
tive comparison using the mean opinion score (MOS), and quantitative comparison
using the mean square error (MSE). The MOS score was measured by showing 91
sets of images from the first dataset to 41 people. Each person was asked for an
opinion about which one of the images in each set looks visually more realistic.
The MSE was measured on the second dataset by retexturing the flat version of the
shirt and computing the average distance from retextured landmarks to ground
truth landmarks. Fig. 4.7b shows the process of computing MSE. We compare our
method with two state-of-the-art methods, nonrigid iterative closest point (NRICP)
[5] and coherent point drift (CPD) [121], using introduced evaluation metrics.

All compared results were produced with the same set of parameters that were
determined empirically. The setup parameters for matching the contours needed
for the point registration algorithm [72] are set as follows (see original paper for
the definition of parameters): sigma, which is the scale parameter of Gaussian
mixtures, is set to 0.2 and 0.1, and the maximum number of function evaluations
at each level is set to 50, 500, 100, 100 and 100. The point registration algorithm
uses contours with 400 points. After the transformation and point correspondence
are found, the contour is further down-sampled to 120 points and used for the
inner point matching. A larger number would have resulted in a long computation
time, whereas a smaller number of points resulted in some undersampled parts and
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Figure 4.8: Retexturing effects for different necklines

produced inferior mappings. 120 points were chosen as a compromise between the
execution time and the resulting mapping quality.

Evaluation

We separated long and short sleeve images in the results to analyze them separately.
We show the MOS percentage in Table 4.2. The results illustrate that our method
outperforms state-of-the-art methods by a large margin regarding realistic view.
This can also be seen qualitatively in Fig. 4.11. We added correspondences between
flat garment and body contours in the third column of Fig. 4.11 to see the effect
of outer contour matching on the retexturing results. It can be seen that the final
retextured image still has a realistic appearance even with small misalignment in
outer correspondences. However, a small misalignment can have a local impact.
This can mainly be seen in the long sleeves. If the source and target garments have
different features, for example if a collar is present in the put-on image and not
present in the flat image, some unnatural effects may be seen; the same goes for
different neck lines as shown in Fig 4.8. The NRICP algorithm has the worst visual
results due to the different topologies of the surfaces between flat garment and
body, and the CPD algorithm has difficulties with aligning surfaces in the boundary
regions.

MSE values are shown in Table 4.3. As seen from the visual results, in most
cases our method is more accurate than state-of-the-art methods regarding marker
distances to ground truth. Our method generates a lower error for short sleeves than
long sleeves. However, this is not a significant change according to the MSE results.
Often our method performs better than other methods for almost each marker in
Fig. 4.9 and 4.10 where samples represent different garments, and landmarks are
the white circles that are placed on the garment, as is shown in Fig. 4.7. Our method
is more stable among different persons and different markers in comparison to the
state-of-the-art methods. However, the long sleeves error as seen in Fig. 4.10(a)
fluctuates among different persons due to higher variation in hand position. Marker
numbers 8 and 16, which were placed at the end of the sleeves, have the highest
error in both long and short sleeve garments. This happens due to slight point
misalignment in outer contour matching.
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Table 4.2: Mean Opinion Score (MOS) comparison

Method T-shirt Votes T-shirt Percentage Long sleeve Votes Long sleeve Percentage
NRICP [5] 77 2.68% 32 3.69%
CPD [121] 485 16.88% 245 28.23%

Ours 2311 80.44% 591 68.09%

Table 4.3: Marker mapping error

Method MSE for T-shirts MSE for Long sleeves
NRICP [5] 115.400 px 215.349 px
CPD [121] 83.850 px 190.618 px

Ours 75.005 px 105.884 px

(a) (b)

Figure 4.9: Method comparison for t-shirts: graph (a) shows the sample pixel
distance error for each sample and graph (b) shows the pixel distance error for each
of the landmarks.

At current stage, the method is implemented in Matlab, and the processing time
for one Kinect frame on an Intel Core i7-2670QM 2.2GHz CPU takes from 5 to 10
minutes. The calculation time depends on the pixel count in the retextured surface.
We believe that execution time can be greatly reduced by converting the method to
a low level programming language and using cloud computing solutions.
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(a) (b)

Figure 4.10: Method comparison for garments with long sleeves: graph (a) shows the
sample pixel distance error for each sample and graph (b) shows the pixel distance
error for each of the landmarks.

4.3 Datasets

During the time of this dissertation, we have created a number of datasets: human
body segments and soft biometrics, synthetic hand segments and pose, garment
and body, multi-modal Italian gestures. In the following we explain each dataset in
details.

4.3.1 Human body

This dataset contains 1155 frames of 38 individuals, 7 females and 31 males, with a
resolution of 640×480 pixels captured by a Kinect using the OpenNI library [129].
Each frame consists of RGB and depth image, label of each body pixel, a complete
model in the self-occlusion cases, as well as, ground truth values of the front views
of limbs sizes with a ±20 mm human error in measurements. We manually labeled
pixels which caused non-homogenous segments among all subjects (a sample
segmentation is available in Fig. 2.1b). Subjects rotate facing the camera in a
range of ±60◦ such that the whole body was observable. Fig. 4.12 shows a number
of samples in the dataset. We used this dataset for body segmentation and soft
biometrics measurement.
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(a) (b) (c) (d) (e) (f)

Figure 4.11: Images created by the proposed retexturing method, (a) is the original
image, (b) is the image of a shirt, (c) shows the shape correspondence, (d) is the
retextured image based on the geodesic mapping, (e) is mapping using the Coherent
Point Drift (CPD) algorithm and (f) is mapping using the non-rigid Iterative Closest
Point (ICP) algorithm.

4.3.2 Synthetic hand

We created this dataset for hand pose recovery and segmentation to evaluate our
methods in any view point under strong self-occlusions. This dataset contains
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Figure 4.12: Sample images used in the body segmentation and soft biometrics
measurement dataset.

single frame hand images, hand mocap data and sequences of hand deformations
in test set.

Data generation Datasets were generated with Blender 2.74 using a detailed,
realistic 3D model of a human adult male hand (Fig. 2.1c). The model was rigged
using a hand skeleton (Fig. 3.1a) with four bones per finger, reproducing the distal,
intermediate, and proximal phalanges, as well as the metacarpals. The thumb finger
had no intermediate phalanx and was controlled with three bones. Additional bones
were used to control palm and wrist rotation. Unfeasible hand poses were avoided
by defining per-bone rotation constraints. All finger phalanges had only 1-DoF
rotation (for finger flexion/extension) but metacarpals had 2-DoF rotation to allow
for finger adduction/abduction. This resulted in 4-DoF per finger (except for the
thumb), which proved to be enough to reproduce all reasonable poses in the context
of gesture-based interaction (see some sample poses in Fig. 4.13).

The original male model was deformed manually to fit a female hand by displac-
ing the original vertices through Blender’s shape keys. This allowed us to generate an
arbitrary number of intermediate models through the blend shapes defined by the
linear interpolation of the vertices from their original (male hand) to the modified
(female hand) positions.

Points on the hand’s surface were assigned a unique color label identifying the
underlying skeleton joint, as shown in Fig. 2.1d. The palm center was assumed to
be roughly at the metacarpals’ centroid.

The animated hand model was rendered using a virtual camera reproducing the
image resolution and the intrinsic parameters of the target depth sensor (Kinect-2).
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Figure 4.13: Upper two rows are some sample poses, lower two rows are a small
sample set of the depth images generated for the test set. The image shows ten
interpolation frames between four predefined hands poses.

The virtual camera was always aiming at the hand, from a view direction which was
chosen randomly from a uniform discretization of the Gauss sphere (we used 320
directions associated with the normal vectors of a subdivided icosahedron).

Training datasets We generated two different training sets. For the first dataset,
we generated three pieces of data: a color image (pixel labels), a depth image, and a
text file containing the location of the skeleton joints. Each training example was
generated by randomly choosing a view-direction and a hand pose (Fig. 4.13). We
generated over 600K samples for this dataset and used it for RF training and nearest
neighbor extraction.

For the second dataset, we just produced the text files containing the joints
locations. Camera viewpoint was fixed in this dataset in order to benefit from a
reference viewpoint and palm joints were aligned. We provided temporal data in
this dataset including a smooth interpolation between pairs of key poses. Key poses
were chosen either randomly or from a small set of predefined poses. We included
different deformation speeds in this dataset. The unique motion range of the thumb
(which includes opposition-reposition, besides flexion-extension and adduction-
abduction) forced us to prevent finger self-intersections by inserting additional
frames. This guaranteed feasible and natural hand movements. We generated over
1200K frames for this dataset and used it to extract clips and train bilinear model.

Test dataset For generating this dataset we followed the same rule as our second
dataset except we produced the color labels, depth images, and text descriptions,
and camera rotations were smooth along pose interpolation frames (see Fig. 4.13).
We generated over 8K frames for this dataset.
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(a)

(b)

(c)

Figure 4.14: Sample images used in our dataset. a) T-shirts used in first data set, b)
Long sleeve shirts used in first data set and c) People who participated in creating
the first data set.

4.3.3 Garment/body

This dataset was taken using the Kinect 2 RGB-D camera to test our proposed
retexturing method. According to [198], Kinect 2 can capture frames starting from
0.5 meters and has depth accuracy error smaller than 2 mm in the cater part of the
frame. The error increases towards edges of the frame, and it also increases with
greater measurement distances. The best distance for scanning objects is the 0.5
to 2m range. To achieve the best depth resolution, the people were scanned at a
distance of 1.5 to 2 meters where the error in the horizontal and vertical plane is
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the smallest. Each image contains a person facing the camera in a pose that does
not significantly occlude the worn garment. The garments segmented from the
original database were retextured using another database consisting of images of
flat shirts. The flat shirt database was captured with various cameras providing
decent quality images, as depth was not required. The first data set contained 91
retextured images with 14 people (11 males and 3 females). This data set used 13
flat garments (4 long sleeve garments and 9 t-shirts). The second data set contained
39 retextured images with 5 people (4 males and 1 female). This data set used 8
flat garments (4 long sleeve garments and 4 t-shirts). We physically attached 16
landmarks to garments in the second dataset. This was done in order to determine
the retexturing precision by retexturing the same garment onto itself. Fig. 4.7a
shows a sample of a real put-on image and the landmarked garment itself. Some
samples of both datasets are shown in Fig. 4.14 and 4.15.

(a)

(b)

(c)

Figure 4.15: Sample images used in our second dataset. a) T-shirts used in first data
set, b) Long sleeve shirts used in first data set and c) People who participated in
creating the first data set.
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Training seq. Validation seq. Test seq. Sequence duration FPS
393 (7,754 gestures) 287 (3,362 gestures) 276 (2,742 gestures) 1-2 min 20

Modalities Num. of users Gesture categories Labeled sequences Labeled frames
RGB, Depth, User mask, Skeleton 27 20 13,858 1,720,800

Table 4.4: Main characteristics of the Mont albano gesture dataset.

4.3.4 Montalbano: Italian gestures

This multi-modal gesture recognition dataset was created as the third track of
Chalearn LAP 2014. The RGBD data contains nearly 14K manually labeled (begin-
ning and ending frame) gesture performances in continuous video sequences, with
a vocabulary of 20 Italian gesture categories. This third track focused on multi-
modal automatic learning of a set of gestures with the aim of performing user
independent continuous gesture recognition.

RGB Depth User mask Skeletal model

Figure 4.16: Different modalities of the Montalbano dataset.

In all the sequences, a single user is recorded in front of a Kinect, performing
natural communicative gestures and speaking in fluent Italian. Examples of the
different visual modalities are shown in Fig. 4.16. In ChaLearn LAP 2014 we have
focused on the user-independent automatic recognition of a vocabulary of 20 Italian
cultural/anthropological signs in image sequences.

A list of data attributes for this dataset is described in Table 4.4. The main
characteristics of the database are:

• Largest dataset in the literature, with a large duration of each individual per-
formance showing no resting poses and self-occlusions.

• There is no information about the number of gestures to spot within each
sequence, and several distractor gestures (out of the vocabulary) are present.

• High intra-class variability of gesture samples and low inter-class variability
for some gesture categories.
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5 Conclusions

In this thesis we addressed human segmentation and hand pose recovery in vari-
ous modalities. We showed a close relationship between segmentation and pose
recovery in face and hand where one can help recovering the other. The aim is to
provide accurate low and mid-level computer vision solutions applicable in high-
level applications. Feature extraction, as a low-level technique, plays an important
role in computer vision. We developed feature extraction using both hand crafted
and CNN-based techniques. The usage of feature extraction can be application
dependent. However, regardless of the application, a difference between hand
crafted descriptors and CNN-based features is that the latter is data dependent and
the features can be learned. This causes CNN-based features to be more powerful
for specific data and application, but may fail to describe images outside the scope
of the training data. In this thesis we developed hand crafted features based on
both stand-alone shape structure and learned training data. More specifically, we
developed a 2.5D shape descriptor which computes spatial dependencies of shape
regions with respect to the shape itself and also other shapes in the dataset. For
the latter task, we trained RF classifier on training data to discriminate shape re-
gions and we showed that even with low accuracy in the RF output, we still have
reasonable discriminative power by computing shape structure into bins.

We applied human body and hand segmentation in depth images using example-
based approaches. We showed that segmentation by exploiting discriminant analy-
sis among nearest neighbors is efficient using a rigid alignment of shapes. However,
it may not be accurate for smaller segments specially in lack of enough data samples.
Therefore, a non-rigid alignment of shapes can generalize better in smaller datasets.
We applied iterative correspondence matching using shape context point descriptor.
We showed accurate human segmentation even for small segments like wrist in a
gathered dataset. We also worked on RGB modality for face segmentation. Other
than depth modality where objects can segmented from the background by back-
ground subtraction and depth thresholding, in RGB modality background is mainly
segmented as a separate label along with other object labels. We proposed a CNN-
based approach to segment face along with hair and background. While CRF based
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approaches use a fixed pair-wise kernels, we let the network learn pair-wise kernels
without explicitly training unary potentials. We showed training this network using
generative adversarial network significantly improve hair segmentation which is
the most challenging part of face. In this technique we fed an initial segmentation
into the network based on face landmarks which helped the network better localize
segments.

We also worked on 3D hand pose recovery in depth images and proposed two
solutions based on generative models and CNNs. In generative model, we fit a
simple finger model separately for each finger based on hand segmentation. While
we used landmarks to help face segmentation, here we applied vice-versa and
showed hand segmentation could help to reduce search space of model parameters
and thus a faster and more reliable pose recovery even with a greedy solution and
a set of predefined finger candidates. We also used temporal joint trajectories to
recover occluded joints based on appearance and trajectory smoothness function.
We used linear models to learn trajectories. To better exploit linear models in highly
nonlinear space of hand pose trajectories, we clusterized data. Minimizing the
model parameters over the whole clusters is not efficient for real-time applications,
so we approximated nearest cluster by efficiently searching for best cluster. Gradient
based minimization approaches suffer from initial parameter guess. So we used
particle based minimization with a normal distribution of particles. As a result, we
slightly improved occluded joints in a highly variable viewpoint dataset that we
gathered.

In our hand pose recovery solutions, we heavily rely on breaking a complex
problem into simpler problems and solve them individually. For instance segment-
ing hand using global shape structure and solving palm and fingers separately. We
applied CNNs similarly as pose regressors to learn specialized features for finger
and palm poses as simpler pose problems than the whole set of hand joint locations.
For this task we developed a tree-structure network which solves each finger and
palm in each branch. This network is followed by a fusion network to learn global
consistency of the joints. We also applied physical and appearance constraints
to the network as loss functions to correct infeasible hand configurations. It was
also useful to avoid groundtruth noise in the training dataset. We introduced palm
viewpoint regression as a rotation matrix in terms of quaternions and showed much
more stable results than palm joints regression.

Humans are the subjects in many applications in computer vision and human
analysis has a spread domain from medical diagnosis, sports analysis and secu-
rity to entertainment, retailing and fashion design. Finally, the aim is to develop
techniques to solve real life application dependent problems. During this thesis we
developed some applications consisting of human soft biometrics measurements
and human garment retexturing. For both applications, we relied on segmen-
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tation and surface geometry. In the latter application, garment was segmented
and retexturing formulated as garment points matching to a source garment. We
matched inner contour points efficiently by interpolating target points based on
target surface topology and outer contour points matching.

5.1 Future work

In this thesis we used single modality as the input to the problem, either RGB or
depth. However, fusing multi-modal data can help reducing ambiguities in one
modality by another. Even including motion patterns like optical flow as another
modality may produce more stable pose recovery in CNNs for instance [119].

Although our example-based human body segmentation worked well in our
dataset, it has not been tested on more complex datasets. In our proposed nonrigid
warping, we do not apply constraints on connectivity of adjacent pixels in the
model and therefore incorrect correspondences may cause an unrealistic model
deformation. Applying spring-like constraints in the deformation model avoids this
phenomena. Even statistical linear shape models like SMPL [108] can be applied
for more stable model deformation.

Our proposed shape descriptor worked well in practice for hand pose recov-
ery. We will apply our generative hand pose recovery in real datasets. Also, our
temporal occluded joints refinement just relies on initial single frame pose esti-
mation and does not recover pose from failures. As future work we will develop a
spatio-temporal model based on appearance and trajectory motion patterns. Our
synthetic hand model enables us to provide a huge amount of data for temporal
motion analysis not only for generative models but also for discriminative CNN
models. The availability of such data is quite important for the success of tempo-
ral CNNs, recurrent neural networks and memory cells. CNN-based structured
learning in hand pose recovery has not been vastly studied and following the works
in human pose recovery, joints can be extracted by modeling hand structure into
CRF inference or by using sample candidates and structural SVM. Efficient feature
extraction is a key reason in the success of a CNN model and more intelligent hand
crafted connection of layers are proposed instead of letting standard networks learn
feature activations in specific regions by their own.

In the proposed applications, we will apply mentioned generative statistical
models like SMPL. These models are symmetric, able to give pose and used for seg-
mentation. Therefore, soft biometrics can be extracted by regressing fitted shape
PCA components or even by our proposed geometric-based approach (e.g. geodesic
distance). SMPL can be applied in garment retexturing as well. So after fitting
the model into body, given any pose or viewpoint, source garment contours can
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be matched to predefined labeled points on the model. Then this model can be
retextured and projected to body surface.
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