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The nal goal of computer vision is to solve problems like:
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Humans are present in most captured images and videos
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Part segmentation and pose recovery are highly correlated

Motivation

[1] Shotton et al., Real-time human pose recognition in parts from single depth images. Communications of the ACM, 56(1):116–124, 2013.
[2] Vuong Le et al., Interactive facial feature localization, ECCV, 2012.
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Goal

Part Segmentation
Example-based body segmentation in depth images
CNN-based face parsing 

Hand pose recovery in depth images
Top-down model fitting in a sequence of frames
CNN-based pose regression in single frame

Applications
Garment retexturing

Conclusions
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Segmentation

• Part segmentation is defined as assigning each 
object pixel a semantical label.

• Solutions have been proposed by both 
generative and discriminative methods.

• Human body and hand have a high degree of 
freedom.

• Hand is a small object which can move fast.
• In the lack of data, discriminative methods may 

generate model drifts.

• Face is less non rigid than body. However, quite 
accurate segmentation is demanded for face 
analysis applications.

• Modeling all attributes of hair is almost 
intractable.

Introduction 
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Segmentation

System overview

• Initial parameters of a generative model is critical,
• Objective function in generative model is minimized iteratively,
• We define segmentation as example deformation and classification.

Example-based body/hand segmentation

kNN extraction Point matching

Rigid / non-rigid 
transformationSegmentation 

Iteration
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Segmentation

kNN extraction

• We created a shape descriptor
conditioned on initial segmentation
probabilities.

• Class probabilities of points are
accumulated into spatial bins.

• Random Forest can be trained
based on simple depth offset
features for initial segmentation.

Example-based body/hand segmentation

[1] Shotton et al., Real-time human pose recognition in parts from single depth images. CVPR, 2011.
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Segmentation

Rigid / non-rigid transformation

• Rigid alignment can be done when distribution of data covers 
all possible cases,

• Non rigid alignment can handle datasets with low amount of 
data,

• We define matching cost based on global and local similarity.

Example-based body/hand segmentation

Shape context

Shape context

Cost matrix
LAP TPS
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Segmentation

Dataset: body segmentation

Example-based body/hand segmentation
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• We have created a dataset of human body to evaluate our method containing of
• RGB-D images captured by Kinect,
• 1155 frames from 38 individuals (7 females and 31 males),
• 29 semantical classes,
• Front-view limb size of each person



Segmentation

Results: body segmentation (non-rigid alignment)

Example-based body/hand segmentation
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1NN        Depth Warped      Ours             RF

image           model         

Segmentation error is the percentage of 
wrong classified pixels

Nearest neighbors are extracted 
based on HOG features.



Segmentation

Dataset: hand segmentation

Example-based body/hand segmentation
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• We generated a synthetic hand dataset with natural finger movements and high 
degree of occlusion, consisting of 

• +600K single frames,
• +1M sequential mocap data,
• 25 semantical classes,
• 20 hand joints.



Segmentation

Results: hand segmentation (rigid alignment)

Example-based body/hand segmentation
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• Results are generated based on 3NN, ICP and QDA.



Segmentation

Conditional random field (CRF)

• CRF is defined by Gibbs distribution as
• Gibbs energy function E is defined by unary and pairwise 

potentials terms as 

• Pairwise potential is defined based on compatibility function 
and pairwise kernels as 

• Gibbs distribution can be approximated by mean field 
distribution in the form                                and iterative 
updating function 

Face parsing

[1] Philipp Krähenbühl and Vladlen Koltun. Ef cient inference in fully connected CRFs with Gaussian edge potentials. NIPS, 2012. 14



Segmentation

CNN-based methods

• CRF mean field approximation can be formulated by recurrent neural 
networks (Zheng 2015).

• Pairwise kernel can be learned based on a 4-connected graph (Liu 2015).
• Segmentation network can be trained by adversarial strategy (Luc 2016).

Face parsing

[1] Fisher Yu and Vladlen Koltun.  Multi-scale context aggregation by dilated convolutions. CoRR, 2015.
[2] Sifei Liu et al., Multi-objective convolutional learning for face labeling. CVPR, 2015.
[3] Shuai Zheng et al., Conditional random elds as recurrent neural networks. ICCV, 2015.
[4] Pauline Luc et al., Semantic segmentation using adversarial networks.  CoRR, 2016.
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Segmentation

• Network is conditioned to face landmarks,
• Pairwise kernels are learned end-to-end,
• Network is trained based on adversarial strategy,
• Discriminative network is trained based on minimax function

• Generative network is trained based on a combinatorial loss function

Face parsing – CNN architecture
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Segmentation

Datasets 

• Parts Label dataset comprises 
– 2927 pairs of in-the-wild faces,
– ground-truth segmentations of background, face skin (including ear skin and neck skin) and hair (including facial hair),
– A 1500 pair training set, a 500 pair validation set and a 927 pair test set.

• Helen dataset comprises 
– 2330 pairs of in-the-wild faces,
– ground-truth segmentations of face skin (excluding ear skin and neck skin), left eyebrow, right eyebrow, left eye, right 

eye, nose, upper lip, inner mouth, lower lip and hair (excluding facial hair),
– a 2000 pair training set, a 230 pair validation set and a 100 pair test set.
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Face parsing

[1] Andrew Kae et al., Augmenting crfs with boltzmann machine shape priors for image labeling. CVPR, 2013.
[2] Vuong Le et al., Interactive facial feature localization. ECCV, 2012.



Segmentation

Results: Parts label dataset (IOU error)

Face parsing
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Segmentation

Results: Helen dataset (IOU error)

Face parsing
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Segmentation

Results: comparing with state of the art (F1 score)

Face parsing
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Hand Pose 
Recovery

• Hand pose recovery is defined as estimating 2D/3D joints 
locations,

• The manifold of hand pose is highly nonlinear. However, palm 
is rigid and has 3 DoF.

• we break the hand pose estimation problem into hierarchical 
optimization subtasks:

By using generative models in a top-down strategy while reducing the 
search space,
By using discriminative CNN regressor incorporating appearance and 
physical penalties.

Introduction 
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Hand Pose 
Recovery

• Initializing model parameters based on similar samples (Sharp 
2015),

• Separating palm and fingers regression in a hierarchical 
cascading model (Sun 2015),

• Advancing model fitting by enhanced objective function (Qian 
2014),

• Spatial and temporal statistical model fitting (Zhou 2014).

Generative top-down model

[1] Sharp et al., Accurate, robust, and exible real-time hand tracking. In ACM Human Factors in Computing Systems, 2015.
[2] Sun et al,. Cascaded hand pose regression.  In CVPR, 2015.
[3] Qian et al,.  Realtime and robust hand tracking from depth.  CVPR, 2014.
[4] Zhou  and  F.  D.  la  Torre.   Spatio-temporal  matching  for  human detection in video.  ECCV, 2014.
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Hand Pose 
Recovery

Single frame pose recovery

• A set of candidate fingers are selected given:
1. Hand segments and palm joints,
2. A predefined set of sample fingers,
3. A set of simple rules:

• Joints must not be located outside the hand mask,
• A joint must not have a depth lower than the hand surface.

• A discrepancy function E is minimized using a hand 
model.

Generative top-down model

Depth 
image

kNNs

Hand 
segmentation

Final pose

Predefined 
samples

Minimization 

23



Hand Pose 
Recovery

Temporal pose refinement

• A clip of last frames Q can be factorized through 
• We define an objective function as

Generative top-down model

Pose clip

GT clip clusters

Nearest cluster with 
trained bilinear model

Final pose 
refinement

[1]  I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh.  Bilinear spatiotemporal basis models.  TOG, 31(17), 2012.

PSO
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Hand Pose 
Recovery

Results: Synthetic dataset 

Generative top-down model

25
[1] Markus Oberweger et al., Hands deep in deep learning for hand pose estimation. Computer Vision Winter Workshop, 2015.



Hand Pose 
Recovery

Results: Synthetic dataset 

Generative top-down model
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[1] Markus Oberweger et al., Hands deep in deep learning for hand pose estimation. Computer Vision Winter Workshop, 2015.

1NN

Greedy

DeepPrior



Hand Pose 
Recovery

Results: MSRA dataset 

Generative top-down model
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[1] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun.  Cascaded hand pose regression.  In CVPR, 2015.
[2] Iason Oikonomidis et al., Ef cient model-based 3d tracking of hand articulations using kinect.  BMVC, 2011.
[3] Chiho Choi et al., A collaborative ltering approach to real-time hand pose estimation.  ICCV, 2015.
[4] Ge et al., Robust 3d hand pose estimation in single depth images: from single-view cnn to multi-view cnns. CVPR, 2016.

Euclidean error (lower is better)



Hand Pose 
Recovery

• CNNs can be used to learn joints heatmaps (Tompson 2014). However it is 
giving 2D pose,

• Multi-view fusion is an extension of heatmap-based methods for 3D pose 
(Ge 2016),

• Feature learning for direct pose regression in single channel network does 
not have enough capacity for complex poses and viewpoints,

• Regression over a linear embedded space of pose does not generalize well 
in practice (Oberweger CVWW2015),

• Generative error feedback models still generate model drifts (Oberweger
ICCV2015),

• No specific constraints have been applied on the pose in the training 
process.
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CNN-based regressor

[1] Jonathan Tompson et al., Real-time continuous pose recovery of human hands using convolutional networks. TOG, 2014.
[2] Ge et al., Robust 3d hand pose estimation in single depth images: from single-view cnn to multi-view cnns. CVPR, 2016.
[3] Markus Oberweger et al., Hands deep in deep learning for hand pose estimation. Computer Vision Winter Workshop, 2015.
[4] Markus Oberweger et al., Training a feedback loop for hand pose estimation. ICCV, 2015.



Hand Pose 
Recovery

CNN architecture

• Hand pose is broken into a set of simpler sub-poses,
• Weights are shared in a hierarchy from general features to local features,
• Palm is modeled by a viewpoint regressor (Q),
• Local features are fused to generate global pose at the end.

CNN-based regressor
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Hand Pose 
Recovery

Constraints as loss function

• L2 loss does not guarantee proper generalization of network,
• It is proved that L2 loss is sensitive to the noise in the data,
• We accumulate L2 loss with appearance and physical constraints,

• In appearance loss, all projected joints must have a larger depth than 
image pixels,

• Physical constraints are defined based on finger’s dynamics:

CNN-based regressor
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Hand Pose 
Recovery

Results: NYU dataset 

CNN-based regressor
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[1] Jonathan Tompson et al., Real-time continuous pose recovery of human hands using convolutional networks. TOG, 2014.
[2] Markus Oberweger et al., Training a feedback loop for hand pose estimation. ICCV, 2015.
[3] Ayan Sinha et al., Deephand: robust hand pose estimation by completing a matrix imputed with deep features. CVPR, 2016.



Hand Pose 
Recovery

Results: NYU and MSRA datasets

CNN-based regressor
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Applications

Introduction 

• Garment retexturing is mainly used in retailing and/or movie 
editing,

• Problem is defined as mapping a 2D RGB texture to a 3D body 
surface, i.e. assigning each 3D point a color from flat garment.

• Challenges are included as:
1. Possible occlusion of 3D surface,
2. Inconsistency in the topology of surfaces,
3. Shading new texture correctly.

Garment retexturing
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Applications

System overview 

• Retexturing method using RGB-D data is covered by 
1. Garment segmentation (by means of Grabcut), 
2. 2D to 3D garment matching (2D contour matching by GMM) and 
3. Rendering (by IR image for colors intensity).

Garment retexturing

[1] Carsten Rother et al., Grabcut: Interactive foreground extraction using iterated graph cuts. TOG, 2004.
[2] Bing Jian and Baba C. Vemuri. Robust point set registration using Gaussian mixture models. In PAMI, 2010.
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Applications

2D to 3D garment matching

• We solve the problem by interpolating space between 2D and 3D 
garments.

• 2D garment deformation based on contours matching does not take 
surface topology into account,

• Thin plate spline can solve the problem in closed form.
• Given matched contours C_R and C_F, a mapping from 3D point x_i to RGB 

image is defined as:

• Radial basis kernel based on Euclidean distance does not take surface 
topology into account.

• Geodesic distance (fast marching algorithm) can solve the problem.

Garment retexturing

35[1] Thomas Deschamps and Laurent D. Cohen. Fast extraction of minimal paths in 3d images and applications to virtual endoscopy, 2001



Applications

2D to 3D garment matching

• We solve the problem by interpolating space between 2D and 3D 
garments.

• 2D garment deformation based on contours matching does not take 
surface topology into account,

• Thin plate spline can solve the problem in closed form.
• Given matched contours C_R and C_F, a mapping from 3D point x_i to RGB 

image is defined as:

• Radial basis kernel based on Euclidean distance does not take surface 
topology into account.

• Geodesic distance (fast marching algorithm) can solve the problem.

Garment retexturing

36[1] Thomas Deschamps and Laurent D. Cohen. Fast extraction of minimal paths in 3d images and applications to virtual endoscopy, 2001



Applications

Dataset 

Garment retexturing
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• To evaluate our method, we created a dataset by Kinect2 consisting of
– 91 RGB-D images of 14 individuals (11 males and 3 females) and 13 flat garments 

gathered from internet.
– 39 RGB-D images of 5 individuals (4 males and 1 female) putting on 8 garments. 

Garments are attached 16 landmarks to evaluate real vs. retextured landmark locations.



Applications

Results 

Garment retexturing
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• To compute MOS, we showed 91 sets of images to 41 individuals to define 
the most realistic image among methods in comparison.

[1] Brian Amberg, Sami Romdhani, and Thomas Vetter. Optimal step nonrigid icp algorithms for surface registration. CVPR, 2007.
[2] Andriy Myronenko and Xubo Song.  Point set registration: Coherent point drift. PAMI, 2010.



Applications

Results 

Garment retexturing
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Conclusions

We proposed nearest neighbor based solutions for human body/hand 
segmentation in depth images,
We created a shape descriptor in depth images conditioning on each point 
class probability,
We showed non-rigid model warping can generate accurate segmentation 
even for small segment regions.

As future work:
TPS warping does not take mesh connections into account and can generate unrealistic 
shapes. Spring-like modeling may solve the problem.
Realistic and parametric models can be used as an alternative to avoid model drifts.
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Body/hand segmentation



Conclusions

• We proposed an effective CNN architecture for face 
segmentation in RGB images in-the-wild,

• We modeled CRF as RNN able to learn pairwise kernels based 
on 4-connected graph

• We trained our CNN architecture end to end based on 
adversarial strategy,

• We showed conditioning the network on facial landmarks can 
improve results,

• We showed our model can accurately segment quite 
deformable face parts, e.g. lips and hair.
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Face parsing



Conclusions

We proposed a top-down generative strategy for hand pose recovery in 
depth images,
We reduced search space by the aim of nearest neighbors,
In a hierarchy palm is extracted and provide a basis for the finger model 
fitting,
We incorporated spatio-temporal model for occlusion refinement,
We showed our approach outperformed state of the art on complex 
datasets.

As future work
In top-down strategies, error can be propagated from top to bottom. We will consider 
generative models jointly optimized with spatio-temporal models.
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Generative hand pose recovery



Conclusions

We proposed a hierarchical CNN based solution for hand pose recovery in 
depth images,
We trained local sub-poses jointly with global pose,
We explicitly defined a loss by applying appearance and physical 
constraints on output joints,
We showed a viewpoint regressor is more accurate than joint locations 
regressor for palm joints recovery,
We showed our model outperformed state of the art on NYU and MSRA 
datasets.

As future work
We will consider generative models and adversarial training for hand pose recovery.
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CNN-based hand pose recovery



Conclusions

We developed an application for garment retexturing using RGB-D images 
in controlled situations,
We solved 2D to 3D point matching by 2D contour matching as control 
points and 3D warping through TPS,
We modeled surface topology by including geodesic distance in TPS,
As a result, our model generated realistic retextured images on a gathered 
dataset.

As future work
We will consider using parametric model fitting as an intermediate step for the 
applicability of garment retexturing in more complex body poses and occlusions.
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Garment retexturing
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end semantic face segmentation with conditional random elds as convolutional, recurrent and adversarial 
networks. Under revision at PAMI, 2017.

45

Publications 

A 1 of the 18 selected papers for oral presentation among hundreds of submissions
B one of the current most used benchmarks for rgb-d gesture recognition



• Color correction in industrial printing,
• Elders monitoring,
• ChaLearn Looking at People,
• AutoML challenge,
• Fingerprint recognition demo,
• Ball detection in sport events.
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