

¹Dept. of Applied Mathematics and Analysis, University of Barcelona, Barcelona, Spain | ²Comuter Vision Center, Autonomous University of Barcelona, Bellaterra (Barcelona), Spain / ³Katholieke Universiteit Leuven, ESAT department-PSI, imec, Leuven, Belgium

Section 1: Introduction

- > Proposal: a novel mid-level representation **Binary tree of trajectory construction** for action/activity recognition on RGB videos > By recursively applying a *divisive spectral* on the basis of *improved dense trajectories* clustering algorithm [5] on the set of trajectories (IDT) [1], fisher vectors (FV), and videodarwin D. (VD) [2].
- \succ We model the evolution of features not only for features $\overline{x}, \overline{y}, \overline{t}, \overline{v}_x, \overline{v}_v$. the entire video, but also on its subparts \succ A tree node *i* containing the set of trajectories (represented as nodes in a binary tree $D_i \subseteq D$ expands a temporal segment (t_i, t'_i) of hierarchically grouping subsets of IDTs). the *T*-frame video, $0 \leq t_i < t'_i < T_i$.
- > For each node, we compute Node-VD and \succ Let U_i and u_i be respectively the matrix of per-Branch-VD. These are later combined with with frame FVs and the global FV on D_i . VD on the whole video trajectories (Root-VD) a to perform classification with SVM.
- > Results: better performance than standard VD (i.e., global-VD) and defines the state-of-the-art on UCF-Sports [3] and Highfive [4] action recognition datasets.

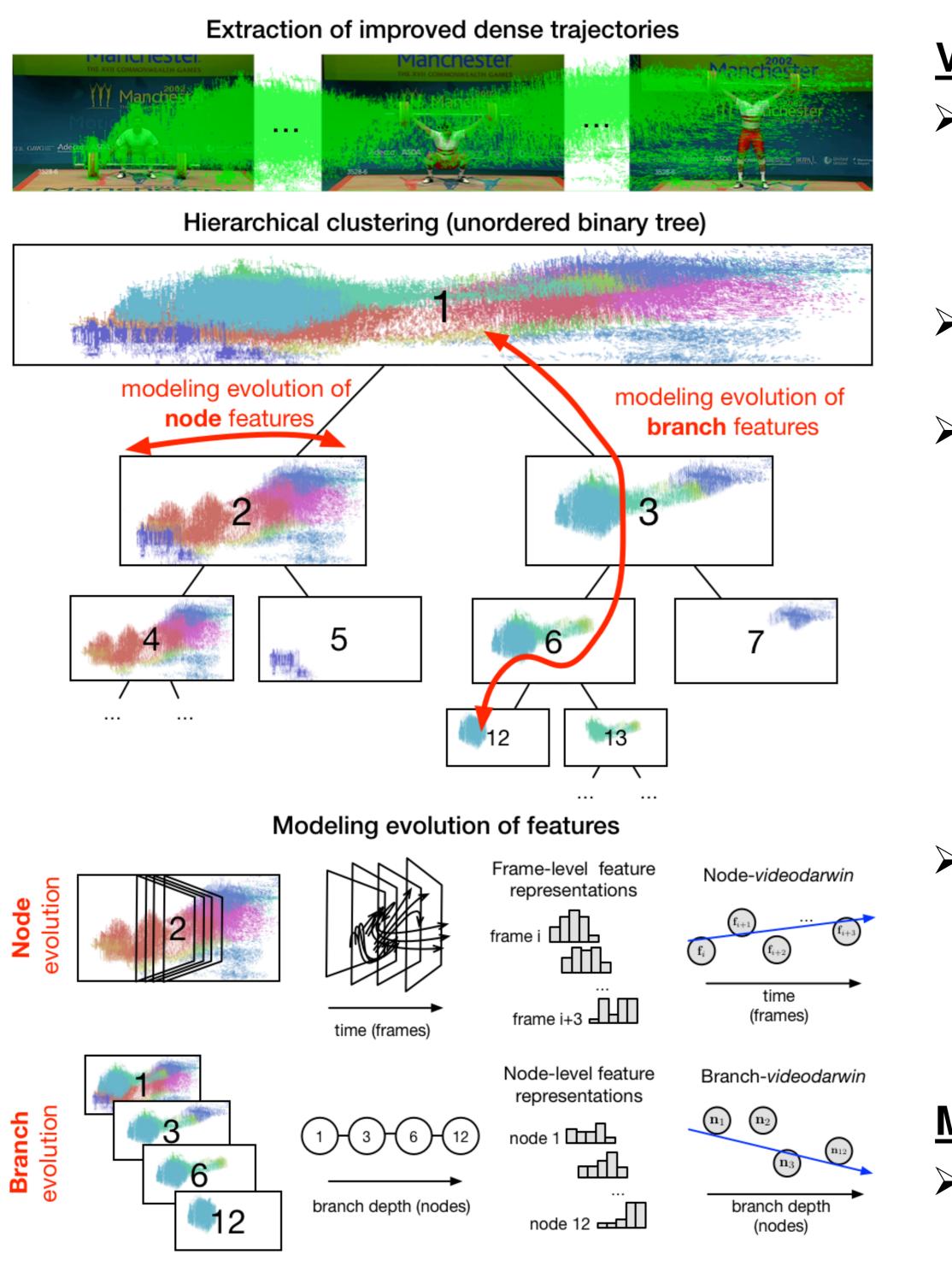


Fig. 1. The pipeline. Each leaf node is represented in a different color.

Darwintrees for action recognition

Albert Clapés^{1,2}, Tinne Tuytelaars³, Sergio Escalera^{1,2}

Section 2: Method

 \succ For the clustering, we used primitive trajectory



Fig. 2. *i*-th node representation: global FV for all IDTs assigned to the node's cluster, \mathbf{U}_{i} , and matrix of per-frame FVs, \mathbf{U}_i .

Videodarwin: in-a-nutshell

- \succ VD applies any learning algorithm able to frame ordering in a sequence. Our model choice is to use a *linear regressor* we refer to as ν .
- We compute VD in forward and reverse directions.
- \succ Prior to VD, *time varying mean* is applied. Given $\mathbf{X} \in \mathbb{R}^{\#\{\text{features}\} \times \#\{\text{timesteps}\}}$ forward videodarwin (FW) is calculated as follows:

$$\mathbf{m}_{\tau}^{FW} = \frac{1}{\tau} \sum_{k=1}^{\tau} \mathbf{X}_{:,k}$$
$$\mathbf{V}_{:,\tau}^{FW} = \frac{\mathbf{m}_{\tau}}{||\mathbf{m}_{\tau}||_{1}}, \forall \tau = 1, \dots$$

Note reverse VD simply re-defines m_{τ}^{FW} to calculate the varying mean backwards.

 \succ The final VD representation, w, is then: $\mathbf{w}^{FW} = \nu(\mathbf{V}^{FW}, (1...T))$ $\mathbf{w}^{RV} = \nu(\mathbf{V}^{RV}, (1..T))$ $\mathbf{w} = \left[\mathbf{w}^{FW}; \mathbf{w}^{RV}\right]$

Mid-level representations

- **Node-VD** representation on node *i*, i.e. \mathbf{n}_i , by taking $\mathbf{X} = \mathbf{U}_i$. In particular, **Root-VD** is just the special case i = 1.
- **Branch-VD** on node *i* requires its ancestors to

be represented by their global FV, \mathbf{u}_i . We construct *i*-th node's branch as a matrix of pernode global FVs. That is:

Darwintree kernel classification

> Each tree has an arbitrary number of nodes and each node is represented by the combination of Node- and Branch-VD:

 $k_{\rm DT}$

Section 3: Results

Method	UCF [3	Highfive [4] (mAP)		
		F#1	F#2	TOTAL
Ν	85.11	76.55	70.41	73.48
В	80.85	76.25	72.53	74.39
DT (N+B)	91.49	76.04	70.37	73.21
Root+DT	91.49	79.24	72.32	75.78

Table 1.

 $\mathbf{B}_{i} = [\mathbf{u}_{i}, \mathbf{u}_{i/2^{1}}, \mathbf{u}_{i/2^{2}}, \dots, \mathbf{u}_{1}]$

 \succ Then, *i* -th node's branch representation, \mathbf{b}_i , is computed taking $\mathbf{X} = \mathbf{B}_i$.

 $s_i = [n_i; b_i], i > 1.$

 \succ We define the **Darwintree kernel** function k_{DT} between two trees (S, S') based on pairwise similarities of their nodes' representations:

$$\Gamma(S,S') = \frac{1}{|S||S'|} \sum_{\mathbf{s}_i \in S} \sum_{\mathbf{s}_j \in S'} \phi(\mathbf{s}_i, \mathbf{s}_j),$$

 $\forall i, j > 1$, where $\phi(\cdot, \cdot)$ can be any linear mapping function (e.g. dot product).

Since root node has no ancestors, we define a different kernel:

 $k_{\text{root}}(\mathbf{n}_1, \mathbf{n}_1') = \phi(\mathbf{n}_1, \mathbf{n}_1')$

> Finally, a linear SVM performs classification using a linear combination of k_{DT} and k_{root} :

 $k_{\text{final}} = (1 - \alpha) k_{\text{DT}} + \alpha k_{\text{root}}.$

> We validated our method in UCF-Sports [3] and Highfive [4] datasets.

 \succ Node-VD (N) and Branch-VD (B) against **Darwintrees (DT):** DT provided superior performance than N or B on UCF-Sports. On Highfive, DT demonstrated its complementarity with Root-VD.

Branch-VD (B) Node-VD (N) versus Darwintrees (DT) and DT combined with root (Root+DT) at kernel level.

c also compared to oth	
Method	Accuracy (%)
Ours (Root+DT)	91.5
Karaman et al. (2014)	90.8
Ma et al. (2015)	89.4
Wang et al. (2013)	85.2
Ma et al. (2013)	81.7
Raptis et al. (2012)	79.3

Method	mAP		
Ours (Root+DT)	75.8		
Wang et al. (2015)	69.4		
Karaman et al. (2014)	65.4		
Ma et al. (2015)	64.4		
Gaidon et al. (2014)	62.4		
Ma et al. (2013)	36.9		
Patron-Pérez et al. (2012)	42.4		
Table 2 Deculte on Llighting detect			

Section 4: Conclusions

References

[1] H. Wang and C. Schmid. Action recognition with improved trajectories. In *CVPR*, pages 3551–3558, 2013.

[2] B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling video evolution for action recognition. In *CVPR*, pages 5378–5387, 2015.

[3] M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach a spatio-temporal maximum average correlation height filter for action recognition. In CVPR, pages 1–8, 2008.

[4] A. Patron-Perez, M. Marszalek, I. Reid, and A. Zisserman. Structured learning of human interactions in tv shows. In IEEE *TPAMI*, 34(12):2441–2453, 2012.

[5] A. Gaidon, Z. Harchaoui, and C. Schmid. Activity representation with motion hierarchies. In IJCV, 107(3):219–238, 2014

> We also compared to other **SOTA methods**.

Table 2. Results on UCF-Sports dataset.

Table 3. Results on Highfive dataset.

> A novel mid-level representation for action recognition on RGB videos.

> We modeled the evolution of features on both trajectory clusters and on the hierarchy defining those groupings.

 \succ It is applicable to any local spatio-temporal feature representation.

We demonstrated superior performance than other SOTA methods, especially for Highfive.