Multimodal 2DCNN action recognition from RGB-D Data with Video Summarization

Vicent Roig Ripoll

Master in Artificial Intelligence UPC, UB, URV

Master's Thesis

Advisor: Sergio Escalera Guerrero Co-advisor: Maryam Asadi-Aghbolaghi

October, 2017

Overview

Introduction

2 Related Work

- 3 Video Summarization
- Proposed Method
- 5 Experimental results

6 Conclusions

7 References

Motivation:

- Human action recognition research area
 - large intra-class variations
 - low video resolution
 - high dimension of video data
- Kinect \rightarrow multimodal data access
- Hand-crafted features vs automatic feature learning

Goals:

- Analyse multimodal data benefits in deep learning
- To this end, 2DCNN is extended to multimodal (MM2DCNN)
- Evaluation of video summarization impact in action recognition

Outline

Introduction

2 Related Work

3 Video Summarization

Proposed Method

5 Experimental results

6 Conclusions

7 References

Approaches to cope with temporal information

- Treat videos as spatio-temporal volumes
- 2 Flow-based features, explicitly deal with motion
- Trajectory-based approaches, motion is implicitly modelled
 - Histograms of Oriented Gradients (HOG) \rightarrow HOG3D
 - Scale-Invariant Feature Transform (SIFT) \rightarrow 3D-SIFT
 - Histogram of Normals (HON) \rightarrow HON4D
 - Dense Trajectories (DT & iDT)

For a given time t and pixel $(x, y)_t$:

 $(x,y)_{t+1} = (x,y)_t + d_t^{(x,y)}$

Applications:

- Trajectory construction
- Descriptors: HOF, MBH
- Deep learning \rightarrow CNN input

Figure: Optical flow field vectors (green vectors with red end points)

Image: Image:

For a given time t and pixel $(x, y, z)_t$

$$(x, y, z)_{t+1} = (x, y, z)_t + d_t^{(x, y, z)}$$

Applications:

- 3D trajectory construction
- Deep learning \rightarrow CNN input Advantages over optical flow:
 - Real world motion units
 - Z-axis motion

2DCNN performs the recognition by processing 2 **different streams**, **spatial** and **temporal**, combining both by a late fusion

Se			S	patia	strea	am Co	onvN	et		
	single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax	class
			Ter	npor	al stre	eam (Convl	Net		score fusion
		conv1 7x7x96 stride 2	conv2 5x5x256 stride 2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1	full6 4096 dropout	full7 2048 dropout	softmax	
input video	multi-frame	norm. pool 2x2	pool 2x2			pool 2x2				

Figure: Two-stream architecture for video classification

Outline

Introduction

2 Related Work

3 Video Summarization

Proposed Method

5 Experimental results

6 Conclusions

7 References

Video Summarization

Video summarization allows for the extraction of few video frames (keyframes) so that they jointly try to **maximize** the **information** contained in the original video

Video summary

Figure: Video summarization overview

Sequential Distortion Minimization (SeDiM) [Panagiotakis2013]

Selects frames so that the **distortion** between the original video and the synopsis is **minimized**. Does not guarantee global minima of distortion

Absolute Histogram Difference (Hdiff) [CV2015]

Simple summarization technique based on the **absolute difference** of histograms of consecutive frames

Time Equidistant Algorithm (TEA)

Keeps keyframes in equal intervals in duration

Content Equidistant Algorithm (CEA) [4783025]

Based on the iso-content principle. Estimates keyframes that are equidistant in $\ensuremath{\textit{video}}$ content

< ロ > < 同 > < 三 > < 三

Figure: Schemes for (a) original version and (b) our proposal

3

-

- ∢ ∃ ▶

Image: Image:

SeDiM - Examples

Figure: k = 5 keyframes on Montalbano RGB samples. 1st row: *vattene*, 2nd: *seipazzo*, 3th *combinato*, 4th: *ok*

Hdiff - Examples

Figure: k = 5 keyframes on Montalbano RGB samples. 1st row: *vattene*, 2nd: *seipazzo*, 3th *combinato*, 4th: *ok*

TEA - Examples

Figure: k = 5 keyframes on Montalbano RGB samples. 1st row: *vattene*, 2nd: *seipazzo*, 3th *combinato*, 4th: *ok*

CEA - Examples

Figure: k = 5 keyframes on Montalbano RGB samples. 1st row: *vattene*, 2nd: *seipazzo*, 3th *combinato*, 4th: *ok*

Outline

Introduction

2 Related Work

3 Video Summarization

Proposed Method

5 Experimental results

6 Conclusions

7 References

Proposed Method

1. Data Pre-processing

- RGB-D Registering
- 2 Depth denoising

2. Video Summarization strategies

- **1 RGB:** Ordered sequences of k = 14 **RGB videos**
- **2** Depth: Ordered sequences of k = 14 Depth videos
- **3 RGB-D:** Combination of k = 7 **RGB** and **depth** summaries

3. Multi-Modal 2D CNN

- Extend VGG-16 2DCNN by adding a scene flow stream
- Base models are **UCF101** (temporal and spatial)
- Scene flow stream is to be fine-tuned from the RGB model of the same dataset
- Weighted average fusion

RGB-D Alignment

- Some datasets are not properly aligned
- **RGB-D registration** uses the **intrinsic** (focal length and the distortion model) and **extrinsic** (translation and rotation) camera parameters to warp the colour image to fit the depth map

Figure: IsoGD RGB and depth frame superpositions

Hybrid Median Filter

Figure: HMF workflow

Figure: 5x5 HMF shapes

э

Denoising (1)

Image: A math a math

(c) Inpaint + HMF

Vicent Roig Ripoll (UPC,UB,URV)

Master's Thesis

October, 2017 21 / 39

э.

æ

Denoising (2)

- 1st row: Inpainting + HMF
- 2nd row: Superposition **before** registration
- 3rd row: Superposition after registration

Weighted sum is used to fuse class scores of each modality.

Given M modalities, each sample has N feature arrays of size K classes, then, the final scores are:

$$S_f = \sum_i^N w_i S_i$$

where weights w_i are to be optimized

Outline

Introduction

2 Related Work

- 3 Video Summarization
- Proposed Method
- 5 Experimental results

6 Conclusions

7 References

MSR Daily Activity 3D

Characteristics:

- Action recognition
- 16 classes
- 10 subjects
- 320 samples

Evaluation:

- 25% Train
- 25% Validation
- 50% Test

Image: Image:

Characteristics:

- Gesture recognition
- 20 classes
- 27 subjects
- 940 samples
- 13858 gestures

Evaluation:

- 1-470 Train
- 471-700 Validation
- 701-940 Test

Characteristics:

- Gesture recognition
- 249 classes
- I7 subjects
- 47933 gestures

Evaluation:

- 35878 Train
- 5784 Validation
- 6271 Test

Image: Image:

Model	RGB	Depth	RGB-D	Random
RGB	53.75	54.37	53.75	52.50
Opt. flow	55.63	52.50	55.00	53.75
Scene flow	62.50	59.84	61.42	62.20
Late Fusion	67.72	64.57	63.78	66.14

Model	RGB	Depth	RGB-D	Random
RGB	51.25	51.88	52.50	52.50
Opt. flow	53.12	53.12	55.00	53.75
Scene flow	59.84	59.84	56.69	62.20
Late Fusion	67.72	68.50	68.50	66.14

Figure: sedim

Figure: tea

Figure: cea

Model	RGB	Depth	RGB-D	Random	Model	RGB	Depth	RGB-D	Random
RGB	51.88	50.62	51.88	52.50	RGB	53.12	53.75	54.37	52.50
Opt. flow	51.25	48.75	51.88	53.75	Opt. flow	56.87	53.12	54.37	53.75
Scene flow	58.27	55.12	58.27	62.20	Scene flow	59.84	57.48	59.06	62.20
Late Fusion	62.20	63.78	65.35	66.14	Late Fusion	66.14	66.14	66.93	66.14

Figure: hdiff

W=[0.2, 0.3, 0.5]

Model	RGB	Depth	RGB-D	Random
RGB	96.03	97.06	95.72	97.06
Opt. flow	61.06	59.74	60.67	64.24
Scene flow	66.79	66.31	65.15	64.72
Late Fusion	97.28	97.56	97.20	97.25

Model	RGB	Depth	RGB-D	Random
RGB	97.51	97.48	97.37	97.06
Opt. flow	63.09	62.69	63.63	64.24
Scene flow	70.41	70.33	68.60	64.72
Late Fusion	97.68	97.70	97.74	97.25

Figure: sedim

Figure: tea

Model	RGB	Depth	RGB-D	Random	Model	RGB	Depth	RGB-D	Random
RGB	96.10	96.47	96.10	97.06	RGB	96.50	96.77	96.55	97.06
Opt. flow	60.24	62.31	59.79	64.24	Opt. flow	62.15	63.34	62.73	64.24
Scene flow	66.03	67.21	65.63	64.72	Scene flow	66.82	67.13	66.96	64.72
Late Fusion	96.46	96.89	96.27	97.25	Late Fusion	96.94	97.19	97.17	97.25

Figure: hdiff

Figure: cea

Image: A math a math

W=[0.65, 0.15, 0.2]

Model	RGB	Depth	RGB-D	Random
RGB	26.37	27.32	27.47	21.50
Opt. flow	39.82	39.58	39.88	42.74
Late Fusion	42.95	43.43	43.69	43.66

Model	RGB	Depth	RGB-D	Random
RGB	30.93	30.38	30.24	21.50
Opt. flow	41.67	41.34	41.60	42.74
Late Fusion	46.62	46.63	46.35	43.66

Figure: sedim

Figure: tea

Model	RGB	Depth	RGB-D	Random	Model	RGB	Depth	RGB-D	Random
RGB	27.11	29.36	27.48	21.50	RGB	26.68	29.29	27.98	21.50
Opt. flow	40.11	39.79	39.35	42.74	Opt. flow	41.10	42.28	41.95	42.74
Late Fusion	42.93	44.56	43.09	43.66	Late Fusion	43.52	45.91	45.08	43.66

Figure: hdiff

Figure: cea

Image: A math a math

W=[0.2, 0.8]

э

Method	Accuracy
EigenJoints	58.10
MovingPose	73.80
HON4D	80.00
SSTKDes	85.00
ActionLet	85.75
MMDT	78.13
MM2DCNN	68.50

Table: Performance comparison with sota methods on MSR Daily

Image: A math a math

Method	Accuracy
Rank pooling	75.30
AdaBoost, HoG	83.40
Temp Conv $+$ LSTM	94.49
Dense Trajectories	83.50
MMDT	85.66
MM2DCNN	97.74

Table: Performance comparison with sota methods on Montalbano

Comparison - IsoGD

Method	Accuracy
NTUST	20.33
MFSK	24.19
MFSK+DeepID	23.67
XJTUfx	43.92
XDETVP-TRIMPS	50.93
TARDIS	40.15
ICT NHCI	46.80
AMRL	55.57
2SCVN-3DDSN	67.19
MM2DCNN	46.63

Table: Performance comparison with sota methods on IsoGD

ref: http://chalearnlap.cvc.uab.es

3

(日) (同) (三) (三)

Multimodal Fusion Justification

Write on a paper Read a book Write on a paper

Figure: Each column shows one modality. Each row shows the result of each modality. Red: wrong, Green: correct

Vicent Roig Ripoll (UPC, UB, URV)

October, 2017 34 / 39

Outline

Introduction

2 Related Work

- 3 Video Summarization
- Proposed Method
- 5 Experimental results

6 Conclusions

7 References

- Different summarization strategies do not change much
- TEA gets best results in all datasets
- State of the art in Montalbano V2
- MM2DCNN outperforms 2DCNN

Future Work

Video Summarization

- Different k per dataset
- Consider other video summarization alternatives

MM2DCNN

- Add scene flow stream for IsoGD
- Use a larger dataset (e.g. NTU) to pre-train all nets
- Fuse by using a trained model (Multiclass-SVM, RF, etc)
- Apply PCA to avoid overfitting

Others

- Combine hand-crafted features with deep learning [ICC2]
- Use 3DCNN instead of 2DCNN

Image: Image:

References

- Panagiotakis, Costas and Ovsepian, Nelly and Michael, Elena Video Synopsis Based on a Sequential Distortion Minimization Method Computer Analysis of Images and Patterns: 15th International Conference
- C. Panagiotakis and A. Doulamis and G. Tziritas Equivalent Key Frames Selection Based on Iso-Content Principles IEEE Transactions on Circuits and Systems for Video Technology
- Asadi-Aghbolaghi, Maryam and Bertiche, Hugo and Roig, Vicent and Kasaei, Shohreh and Escalera, Sergio (2017)

Action Recognition From RGB-D Data: Comparison and Fusion of Spatio-Temporal Handcrafted Features and Deep Strategies

The IEEE International Conference on Computer Vision (ICCV)

C V, Sheena and Narayanan, N.K.

Key-frame Extraction by Analysis of Histograms of Video Frames Using Statistical Methods

Image: Image:

Procedia Computer Science (2015)

Thanks for your attention

Questions?

Vicent Roig Ripoll (UPC,UB,URV)

Master's Thesis

October, 2017 39 / 39