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Introduction

Motivation:

Human action recognition research area

large intra-class variations
low video resolution
high dimension of video data

Kinect → multimodal data access

Hand-crafted features vs automatic feature learning

Goals:

Analyse multimodal data benefits in deep learning

To this end, 2DCNN is extended to multimodal (MM2DCNN)

Evaluation of video summarization impact in action recognition
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Hand-crafted Features

Approaches to cope with temporal information

1 Treat videos as spatio-temporal volumes

2 Flow-based features, explicitly deal with motion

3 Trajectory-based approaches, motion is implicitly modelled

Histograms of Oriented Gradients (HOG) → HOG3D

Scale-Invariant Feature Transform (SIFT) → 3D-SIFT

Histogram of Normals (HON) → HON4D

Dense Trajectories (DT & iDT)
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Optical Flow

For a given time t and pixel (x , y)t :

(x , y)t+1 = (x , y)t + d
(x ,y)
t

Applications:

Trajectory construction

Descriptors: HOF, MBH

Deep learning → CNN input

Figure: Optical flow field vectors (green
vectors with red end points)
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Scene Flow

For a given time t and pixel (x , y , z)t

(x , y , z)t+1 = (x , y , z)t + dt
(x ,y ,z)

Applications:

3D trajectory construction

Deep learning → CNN input

Advantages over optical flow:

Real world motion units

Z-axis motion
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Deep Learning - Two-stream Convolutional Neural Network

2DCNN performs the recognition by processing 2 different streams, spatial
and temporal, combining both by a late fusion

Figure: Two-stream architecture for video classification
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Video Summarization

Video summarization allows for the extraction of few video frames (keyframes)
so that they jointly try to maximize the information contained in the orig-
inal video

Figure: Video summarization overview
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Video Summarization - Techniques

Sequential Distortion Minimization (SeDiM) [Panagiotakis2013]

Selects frames so that the distortion between the original video and the synopsis is min-
imized. Does not guarantee global minima of distortion

Absolute Histogram Difference (Hdiff) [CV2015]

Simple summarization technique based on the absolute difference of histograms of con-
secutive frames

Time Equidistant Algorithm (TEA)

Keeps keyframes in equal intervals in duration

Content Equidistant Algorithm (CEA) [4783025]

Based on the iso-content principle. Estimates keyframes that are equidistant in video
content
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SeDiM - Architecture

(a) Original steps

(b) Modified version

Figure: Schemes for (a) original version and (b) our proposal

Vicent Roig Ripoll (UPC,UB,URV) Master’s Thesis October, 2017 12 / 39



SeDiM - Examples

Figure: k = 5 keyframes on Montalbano RGB samples. 1st row: vattene, 2nd:
seipazzo, 3th combinato, 4th: ok
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Hdiff - Examples

Figure: k = 5 keyframes on Montalbano RGB samples. 1st row: vattene, 2nd:
seipazzo, 3th combinato, 4th: ok
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TEA - Examples

Figure: k = 5 keyframes on Montalbano RGB samples. 1st row: vattene, 2nd:
seipazzo, 3th combinato, 4th: ok
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CEA - Examples

Figure: k = 5 keyframes on Montalbano RGB samples. 1st row: vattene, 2nd:
seipazzo, 3th combinato, 4th: ok
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Proposed Method

1. Data Pre-processing
1 RGB-D Registering
2 Depth denoising

2. Video Summarization strategies
1 RGB: Ordered sequences of k = 14 RGB videos
2 Depth: Ordered sequences of k = 14 Depth videos
3 RGB-D: Combination of k = 7 RGB and depth summaries

3. Multi-Modal 2D CNN
Extend VGG-16 2DCNN by adding a scene flow stream

Base models are UCF101 (temporal and spatial)

Scene flow stream is to be fine-tuned from the RGB model of the same dataset
Weighted average fusion
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RGB-D Alignment

Some datasets are not properly aligned

RGB-D registration uses the intrinsic (focal length and the
distortion model) and extrinsic (translation and rotation) camera
parameters to warp the colour image to fit the depth map

Figure: IsoGD RGB and depth frame superpositions
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Hybrid Median Filter

Figure: HMF workflow Figure: 5x5 HMF shapes
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Denoising (1)

(a) Original (b) Inpaint

(c) Inpaint + HMF
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Denoising (2)

1st row: Inpainting + HMF

2nd row: Superposition before
registration

3rd row: Superposition after
registration
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Late Fusion

Weighted sum is used to fuse class scores of each modality.

Given M modalities, each sample has N feature arrays of size K classes,
then, the final scores are:

Sf =
N∑
i

wiSi

where weights wi are to be optimized
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MSR Daily Activity 3D

Characteristics:
Action recognition

16 classes
10 subjects

320 samples

Evaluation:
25% Train
25% Validation
50% Test

Vicent Roig Ripoll (UPC,UB,URV) Master’s Thesis October, 2017 25 / 39



Montalbano V2

Characteristics:
Gesture recognition

20 classes
27 subjects

940 samples

13858 gestures

Evaluation:
1-470 Train
471-700 Validation
701-940 Test
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Isolated Gesture Dataset (IsoGD)

Characteristics:
Gesture recognition

249 classes
17 subjects

47933 gestures

Evaluation:
35878 Train
5784 Validation
6271 Test
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Evaluation on MSR Daily

Figure: sedim

Figure: hdiff

Figure: tea

Figure: cea
W=[0.2, 0.3, 0.5]
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Evaluation on Montalbano V2

Figure: sedim

Figure: hdiff

Figure: tea

Figure: cea
W=[0.65, 0.15, 0.2]
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Evaluation on IsoGD

Figure: sedim

Figure: hdiff

Figure: tea

Figure: cea
W=[0.2, 0.8]
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Comparison - MSR Daily

Method Accuracy

EigenJoints 58.10
MovingPose 73.80

HON4D 80.00
SSTKDes 85.00
ActionLet 85.75
MMDT 78.13

MM2DCNN 68.50

Table: Performance comparison with sota methods on MSR Daily
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Comparison - Montalbano V2

Method Accuracy

Rank pooling 75.30
AdaBoost, HoG 83.40

Temp Conv + LSTM 94.49
Dense Trajectories 83.50

MMDT 85.66

MM2DCNN 97.74

Table: Performance comparison with sota methods on Montalbano
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Comparison - IsoGD

Method Accuracy

NTUST 20.33
MFSK 24.19

MFSK+DeepID 23.67
XJTUfx 43.92

XDETVP-TRIMPS 50.93
TARDIS 40.15

ICT NHCI 46.80
AMRL 55.57

2SCVN-3DDSN 67.19
MM2DCNN 46.63

Table: Performance comparison with sota methods on IsoGD

ref: http://chalearnlap.cvc.uab.es
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Multimodal Fusion Justification

Figure: Each column shows one modality. Each row shows the result of each
modality. Red: wrong, Green: correct
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Conclusions

Different summarization strategies do not change much

TEA gets best results in all datasets

State of the art in Montalbano V2

MM2DCNN outperforms 2DCNN
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Future Work

Video Summarization

Different k per dataset

Consider other video summarization alternatives

MM2DCNN

Add scene flow stream for IsoGD

Use a larger dataset (e.g. NTU) to pre-train all nets

Fuse by using a trained model (Multiclass-SVM, RF, etc)

Apply PCA to avoid overfitting

Others

Combine hand-crafted features with deep learning [ICC2]

Use 3DCNN instead of 2DCNN
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Thanks for your attention

Questions?
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