
3D Space Normalization

Proposed Approach

Stage-wise Training

Static Modalities

Experimental Evaluation

0

1

2

3

4

5

6

7

8

9

10

11

A
n
g
le

 e
rr

o
r 

(d
e
g
re

e
s)

6.9 6.43 5.58 5.71 5.59 5.55 5.52

OF-4096
NE-1536
NF-4096

NF-5632
NFL-4300

NFE-5632
NFEL-5836

Fig 5. Performance evaluation of the Static 
network using different input modalities
(O - Not normalized, N -Normalized, F- Face, 
E - Eyes, L - 3D Landmarks) and size of fusion
layers on the FT scenario.
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Static vs Temporal

[1]

Table 1. Gaze angular error comparison for static (top half) and moving 
(bottom half) head pose for each subject in the FT scenario. 
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Fig 6. Comparison among state-
of-the-art method MPIIGaze [4] 
and the Static and Temporal 
versions of our network.
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Fig 7. Angular error distribution on the 
FT scenario, in terms of x- and y- angles.
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Fig 4. Ground-truth eye gaze g and 
head orientation h distribution on the
filtered EYEDIAP dataset [1], in terms
of x- and y- angles. 

EYEDIAP dataset: 3-minute VGA videos with 2 lighting conditions.

2 scenarios:

□ CS - Continuous Screen target 

   • 14 subjects.

   • All head poses: 5-fold CV.

□ FT - Floating ball Target

   • 16 subjects.

   • All head poses: 4-fold CV.

   • Static and moving head poses 

      separately: leave-one-out CV.

Pre-processing:

□ Filter inconsistent data.

□ Apply data augmentation. 
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Fig 2. Pipeline overview. VGG-16 as base network for conv. blocks. Dropout between Fusion FCs as regularization. 
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Remote 3D gaze estimation without user calibration is still an open issue.

State of the art: (deep) appearance-based approaches...

□ Do not consider global structure explicitly.

□ Mainly evaluated on HCI scenarios with restricted head pose and gaze direction.

   • Not suitable for general everyday settings.

□ Only use static eye region appearance as input, but:

   • Gaze behavior is not static.

   • Whole-face images encode more head pose and illumination-specific information [4].

□ Subject and head pose-independent multi-modal recurrent CNN for 3D gaze regression 

   with remote calibrated RGB cameras.

□ The sequential information of eye and head movements is leveraged by combining 

   static appearance and shape features on consecutive frames. 

□ Face landmarks used as global shape cues encode geometric constraints.

□ Reduces the appearance variability.

□ Makes the model invariant to intrinsic 

   camera parameters.

□ Gaze vector is rotated according to

   virtual camera transformation.

Fig 3. 3D space normalization process.
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Loss - average Euclidean distance.

    Train Static model end-to-end on 

    each individual frame:

   □ Individual and Fusion modules 

      and final regression layer.

   □ Convolutional blocks pre-trained 

      with VGGFace dataset.

   □ FCs trained from scratch.

    Train Temporal model:

   □ Re-arrange training data to build 

      input sequences of s = 4 frames.

   □ Extract features of each sequence 

      frame from frozen Individual module.

   □ Fine-tune Fusion layers.

   □ Train Temporal module and final 

      regression layer from scratch.

1. 2.

ConclusionsConclusionsConclusions

□ The approach combines face and eye appearance, facial landmarks and temporal information, and is tested on a wide range of head pose and gaze directions.

□ Our multi-modal Static model achieves a significant improvement of 14.6% and 19.5% over the state of the art on EYEDIAP FT and CS scenarios, respectively.

□ Adding geometric features to appearance-based methods has a regularizing effect on accuracy results.

□ Adding sequential information further benefits the final performance by up to 4% compared to static-only input, especially when head motion is present.

Fig 1. The Wollaston effect [3], "the exact same set of eyes 
may appear to be looking in different directions due to the
 surrounding facial cues".
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