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MOTIVATION

Remote 3D gaze estimation without user calibration is still an open issue.

State of the art: (deep) appearance-based approaches...

0 Do not consider global structure explicitly.

0 Mainly evaluated on HCI scenarios with restricted head pose and gaze direction.
e Not suitable for general everyday settings.

0 Only use static eye region appearance as input, but:
e Gaze behavior is not static.

Fig 1. The Wollaston effect [3], "the exact same set of eyes
may appear to be looking in different directions due to the

 Whole-face images encode more head pose and illumination-specific information [4]. surrounding facial cues".
PROPOSED APPROACH EXPERIMENTAL EVALUATION
0 Subject and head pose-independent multi-modal recurrent CNN for 3D gaze regression EYEDIAP dataset: 3-minute VGA videos with 2 lighting conditions.
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0 Individual and Fusion modules input sequences of s = 4 frames. el T T T2 T3 T 7 TS5 Te T 75 5 o T T BT 5@ 5%~
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0 FCs trained from scratch. 0 Train Tempora[ module and final Temporal | 6.1 | 56 | 45 | 7.5 | 6.4 | 82 | 120 | 50 | 75 | 54 | 50 | 58 | 6.6 | 40 | 45 | 58 | 6.2
. . regression layer from scratch. Table 1. Gaze angular error comparison fqr static (top half) and moving
Loss - average Euclidean distance. (bottom half) head pose for each subject in the FT scenario.

CONCLUSIONS

0 The approach combines face and eye appearance, facial landmarks and temporal information, and is tested on a wide range of head pose and gaze directions.
o Our multi-modal Static model achieves a significant improvement of 14.6% and 19.5% over the state of the art on EYEDIAP FT and CS scenarios, respectively.
0 Adding geometric features to appearance-based methods has a regularizing effect on accuracy results.

0 Adding sequential information further benefits the final performance by up to 4% compared to static-only input, especially when head motion is present.
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