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Future Frame Prediction

Given a video sequence, generate the next frames.

Input Predictor 
Model

Output
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Background

Unsupervised learning based on autoencoders:
- Generative models.

Source: Understanding Autoencoders 3

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694


Learning Unsupervised Features

- Using Temporal Information:
- Movement dynamics → Relative features.
- Better learn visual features.
- Invariance to light, rotation, occlusion.

- Predictive Coding:
- Neuroscience Theory of the Brain
- Always generating predictions.
- Compares predictions against sensory input.
- Use difference to learn better models of the world.
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Applications

- Unsupervised learning:
- Early behaviour detection & 

understanding:
- Falls in elderly people.
- Robbery or aggression. 

- Planning for agents:
- Interaction with environment.
- Autonomous cars.

- Video processing:
- Compression.
- Slow motion.
- Inpainting.
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Structure of the Presentation

◉ Fundamentals.
◉ Training techniques.
◉ Loss functions.
◉ Measuring prediction error.
◉ Models and main trends.
◉ Experiments.
◉ Results.
◉ Discussion.
◉ Conclusions and future work.
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Fundamentals (I)

Convolutional Neural Networks (CNN)

Convolution [1] Deconvolution [2] Convolutional Autoencoder with Pooling layers [3]

[1] Intel Labs, Bringing Parallelism to the Web with River Trail, http://intellabs.github.io/RiverTrail/tutorial/ 
[2] Vincent Dumoulin, Convolutional Arithmetics: https://github.com/vdumoulin/conv_arithmetic 
[3] H. Noh, S. Hong, and Bohyung Han. Learning deconvolution network for semantic segmentation. ICCV (2015). 7

http://intellabs.github.io/RiverTrail/tutorial/
https://github.com/vdumoulin/conv_arithmetic


Fundamentals (II)

Long Short-Term Memory (LSTM)

An LSTM cell [1]

Unrolled LSTM Network [2]

[1] A. Graves, A. R. Mohamed, and G. Hinton. Wikimedia 
commons: Peephole long short-term memory, 2017.
[2] C. Olah. Understanding LSTM networks, 2015. 
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https://en.wikipedia.org/wiki/Long_short-term_memory
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Fundamentals (III)

Generative Adversarial Networks (GAN)
- Generative network produces samples. (G)
- Discriminative network classifies real from generated samples. (D)

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.

[1]

Source: Generative Adversarial Networks
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Source: HeuriTech Blog

https://www.linkedin.com/pulse/gans-one-hottest-topics-machine-learning-al-gharakhanian/
https://blog.heuritech.com/2017/04/11/began-state-of-the-art-generation-of-faces-with-generative-adversarial-networks/


Improved Training

- Curriculum learning:
- Model learns to generate short sequences first.
- Then it is progressively fine-tuned for longer predictions.

- Pretrain for reconstruction:
- First train the model for sequence reconstruction.
- Then fine-tune for future frame prediction.

- Feedback Predictions:
- Many models use past predictions as input during test time.
- Train the model to predict based on previously generated frames. 
- Model more robust to own errors. Avoids propagating mistakes.
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Loss Functions

Distance Losses (Blurry) Other Common Losses

Gradient Difference Loss (GDL)

Adversarial to ensure sharp predictions.
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Measuring Results
From a given sequence and correct movement dynamics, multiple futures are possible.
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Compare against Ground Truth Realistic looking sequences

Inception Metric
- Train a traditional classifier.
- Measure accuracy with predicted sequences.

Human Evaluation
- “Which sequence do you prefer?”

Application for other tasks

- Fine-tune the model for:
- Action Classification.
- Optical flow estimation.

- Improved planning for a system 
playing Atari Games. [1]

- Emulate video-game. [1]

- Weather prediction.

[1] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-Conditional Video Prediction using Deep Networks in Atari Games. In NIPS, 2015.

- Mean Squared Error
- Peak Signal to Noise Ratio
- Structural Similarity
- Structural Dissimilarity



Models

- Simple non-recurrent proposals.
- Use input to generate prediction filters:

- Non-recurrent.
- Recurrent.

- Predict using basic element other than frames.
- Explicit separation of content and motion.
- Models for the experiments.
- Others.
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Models (I)

Simple non-recurrent proposals
[1] [2]

[3]

[1] R. Goroshin, M. Mathieu, and Y. LeCun. Learning to linearize under uncertainty. NIPS 2015. 
[2] M. Zhao, C. Zhuang, Y. Wang, and T. Sing Lee. Predictive encoding of contextual 
relationships for perceptual inference, interpolation and prediction. In ICLR’15, 2014.
[3] Y. Zhou and T. L. Berg. Learning temporal transformations from time-lapse videos. In 
ECCV, 2016. 14



Models (II)

Predict filter which is applied to last input frame(s)
[1]

[2]

[1] Z. Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala. Video 
frame synthesis using deep voxel flow. In ICCV, 2017.
[1] C. Vondrick and A. Torralba. Generating the future with 
adversarial transformers, 2017.
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Models (III)

Predict filter which is applied to last input frame(s) (recurrent)

[1] B. De Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool. Dynamic filter networks. In NIPS, 2016.
[2] V. Pătrăucean, A. Handa, and R. Cipolla. Spatio-temporal video autoencoder with differentiable memory. ICLR Workshop, 2016. 16

[1] [2]



Models (IV)

Predict at some feature level, then generate future frame.

[1]

[2]

[1] R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee. Learning to generate long-term future via hierarchical prediction. 2017.
[2] J. R. van Amersfoort, A. Kannan, M.’A. Ranzato, A. Szlam, D. Tran, and S. Chintala. Transformation-based models of video sequences. CoRR, 2017. 17



Models (V)

Explicit separation of content and motion.

[1]

[2]

[1] X. Liang, L. Lee, W. Dai, and E. P. Xing. Dual motion gan for future-flow embedded video prediction. In ICCV, 2017.
[2] E. L. Denton and V. Birodkar. Unsupervised learning of disentangled representations from video. In NIPS, 2017. 18



Models (VI)

Others.

[1] [2]

[3]

[1] N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves, 
and K. Kavukcuoglu. Video pixel networks. CoRR, 2016.
[2] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-Conditional Video Prediction 
using Deep Networks in Atari Games. In NIPS, 2015.
[3] F. Cricri, X. Ni, M. Honkala, E. Aksu, and M. Gabbouj. Video ladder networks. CoRR, 
2016. 19



Tested Models

- Deep architectures.
- Ability to work with varying number of frames.
- Complexity of design enough to handle the 

proposed datasets.
- Code available online.
- Implementation adaptable to the experiments.
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Tested Model (I)

Srivastava

- Recurrent Model.
- Fully Connected LSTM AE.
- Independent encoder-decoder:

- Unroll encoder on whole input.
- Unroll decoder to generate 

predictions.
- L2 reconstruction loss.

[1] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsupervised learning of video representations using LSTMs. In ICML, 2015. 21



Tested Model (II)

Mathieu

- Non-Recurrent Model.
- Multi scale CNN.
- Inputs and outputs volumes of frames.
- L2, Adversarial and GDL.

[1] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond Mean Square Error. 2015. 22



Tested Model (III)

Finn - Recurrent Model.
- Convolutional LSTM AE.
- Predicts patch transformations.
- Dynamic masks for applying 

transforms at pixel level.

- Explicit foreground/background 
separation.

- Allows for hallucinating new pixels.
- Pixel distance and GDL.

[1] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through video prediction. In NIPS, 2016. 23



Tested Model (IV)

Lotter

[1] W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks for video prediction and unsupervised learning. ICLR, 2016.

- Recurrent Model.
- Convolutional LSTM.
- Each layer tries to fix previous layer 

mistakes.
- Two step execution:

- Top-down pass to update 
predictor state.

- Bottom-up pass to update 
predictions, errors and targets.
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Tested Model (V)

Villegas - Recurrent model.
- Autoencoder with residual 

connections.

[1] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee. Decomposing motion and content for natural video sequence prediction. 2017.

- Separate input:
- Difference images through 

CNN + LSTM (Motion).
- Single static frame through 

CNN (Content).
- They used a fused loss with L2, 

Adversarial and GDL.

25



Tested Model (VI)

Oliu

[1] M. Oliu, J. Selva, and S. Escalera. Folded recurrent neural networks for future video prediction, 2017. 

- Recurrent model.
- Conv. GRU AE-like architecture with 

shared weights:
- Unroll encoder to take all input 

sequence.
- Unroll decoder to generate whole 

predicted sequence.
- They used a simple L1 loss.
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Experimental Setting

- Use 10 frames as input to predict future 10 frames.
- Used implementations adapted to use specific 

sampling:
- Take random subsequence during train.
- Slide over all possible sequences for testing.

- Three datasets with increasing complexity.
- Measure results quantitatively with MSE, PSNR and 

DSSIM.
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Datasets (I)

Moving MNIST
- 64 x 64 (grayscale)
- Generated randomly.
- Train: 1M seq. Test: 10K seq.
- Simple motion dynamics, occlusion, separate objects.

28

[1]

[1] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsupervised learning of video representations using LSTMs. In ICML, 2015. 



Datasets (II)

KTH
- 25 subjects performing 6 actions in 

4 different settings.
- 120 x 160 (cropped and resized to 

64 x 80) and grayscale.
- Train: 383 seq. Test: 216 seq.
- Complex human motions, static 

background.
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[1]

[1] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In ICPR, 2004. 



Datasets (III)

UCF101
- Videos of humans performing 101 different actions.
- Objects and humans interacting in different ways.
- 240 x 320 x 3 (cropped and resized to 64 x 85 x 3).
- Frame rate halved to increase motion between frames.
- Most complex case with varying background, objects 

and camera motion. 
- Train: 9950 seq. 

Test: 3361 seq.
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[1]

[1] K. Soomro, A. R. Zamir, and M. Shah. UCF101: Action Recognition dataset, 2011.



Quantitative Results (I)

● DSSIM is more related to qualitative results. MSE and PSNR regard blurry predictions as good.
● Finn seems to perform better for static backgrounds. Only worked for square videos.
● Lotter and Villegas were not able to learn an initial representation for Moving MNIST.
● The fully connected model by Srivastava needed too many parameters for KTH and UCF101.
● Oliu and Villegas present more balanced results over the different datasets.
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Moving MNIST KTH UCF101
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Qualitative MMNIST Results (I)

5 frames input
10 Ground Truth

Srivastava

Mathieu

Finn

Oliu
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Qualitative MMNIST Results (II)
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Qualitative KTH Results (I)
5 frames input
10 Ground Truth

Srivastava

Mathieu

Finn

Oliu

Villegas

Lotter
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Qualitative II Results (II)
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Qualitative UCF101 Results (I)
5 frames input
10 Ground Truth

Srivastava

Mathieu

Finn

Oliu

Villegas

Lotter
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Qualitative UCF101 Results (II)

38



Discussion
- Use a metric that regards the structure of the image.

- Residual connections →  Feature hierarchy.

- Feedback during train → Models robust to errors. 

- Predict further without them →  Consistent sequences.

- Separate content and motion →  Focus learning efforts.

- Incremental learning → Improves learning.

- Multi scale → Not aparent impact.

- Pixel difference losses are not enough:
- Adversarial produces sharp results, but not better predictions.
- GDL reduces artifacts. 39



Conclusion
- Task of future frame prediction has been presented.
- Different trends for solving the problem.
- Specific models have been tested and compared.
- Results of the experiments analysed.
- Discussion for the different approaches.
- Related publications:

- CVPR’18 submission. [1]
- Springer Book Chapter

Future work:

- Need for a proper evaluation metric.
- Design and build predictive model.
- Separately test different variables.
- Change hyperparameters of tested models.

40[1] M. Oliu, J. Selva, and S. Escalera. Folded recurrent neural networks for future video prediction, 2017. 



“Thank you!


