RECOVERING MISSING DATA FROM HUMAN BODY IMAGES

MAI - Master in Artificial Intelligence

INTRODUCTION

PROBLEM

- Semantic Knowledge
- Images of Humans
- Plausible Reconstruction

OUTLINE

- Introduction
 - Problem
 - Outline
- Dataset
 - Sources
 - o Joints
 - Masks
- Metrics
 - DSSIM, MSE
 - o WNJD
- Analyzed Methods
 - Related work
 - Context Encoders
 - Semantic Inpainting
 - PatchBased
- Results
 - Qualitative
 - Quantitative
 - Model
- Problems and discussion
 - Infighting between objectives
 - Instability
 - o Onion
- Competition
- Conclusions
 - future Work

Dataset

- Introduction
 - o Problem
 - o Outline

Dataset

- Sources
- Joints
- Masks

Metrics

- DSSIM, MSE
- o WNJ D

• Analyzed Methods

- Related work
- Context Encoders
- Semantic Inpainting
- PatchBased

Results

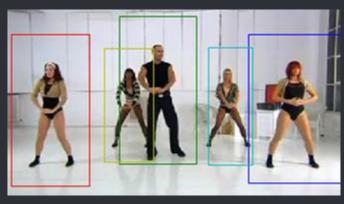
- Qualitative
- Quantitative
- o Model

• Problems and discussion

- Infighting between objectives
- o Instability
- o Onion

Competition

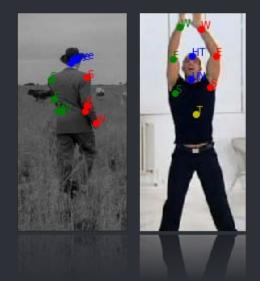
- Conclusions
 - future Work

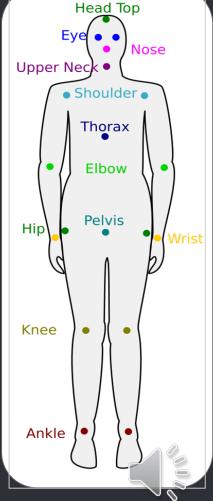

Sources

41076 Images Big Variance

Name	#Images Used	Cropped
MPII Human Pose Dataset [Andriluka et al. (2014)]	26571	Yes
Leeds Sports Pose Dataset [Johnson and Everingham (2010)]	2000	No
Synchronic Activities Stickmen V [Eichner and Ferrari (2012)]	1128	Yes
Short BBC Pose [Charles et al. (2013)]	996	No
Frames Labelled In Cinema [Sapp and Taskar (2013)]	10381	Yes

Cropped Uncropped

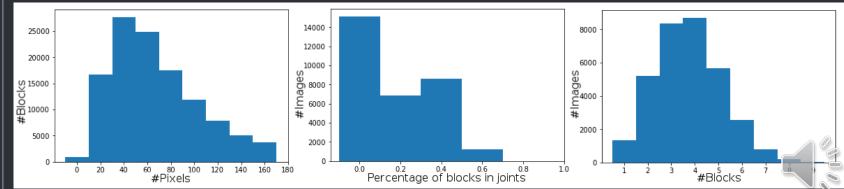




Joints

- No right/left
- Not constant
- Standardized

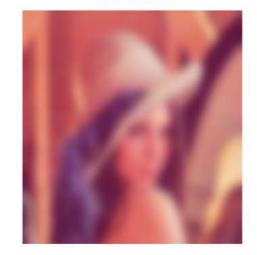
Name	#Joints	$ \infty$	∞	∞	4	5	6	7					
MPII	19	√	\checkmark	√	√	√	\checkmark	✓	✓	✓	✓		
LSP	8	✓	\checkmark	✓			\checkmark	✓	✓	✓	\checkmark		
Synch	6					√	\checkmark	✓	✓	✓	✓		
BBC	4							✓	✓	✓	\checkmark		
FLIC	6			✓					✓	✓	✓	✓	✓



Masks

METRICS

- Introduction
 - Problem
 - Outline
- Dataset
 - Sources
 - Joints
 - o Masks
- Metrics
 - DSSIM, MSE
 - o WNJD
- Analyzed Methods
 - Related work
 - Context Encoders
 - Semantic Inpainting
 - PatchBased
- Results
 - Qualitative
 - Quantitative
 - o Model
- Problems and discussion
 - o Infighting between objectives
 - o Instability
 - o Onion
- Competition
- Conclusions
 - future Work


MSE, DSSIM

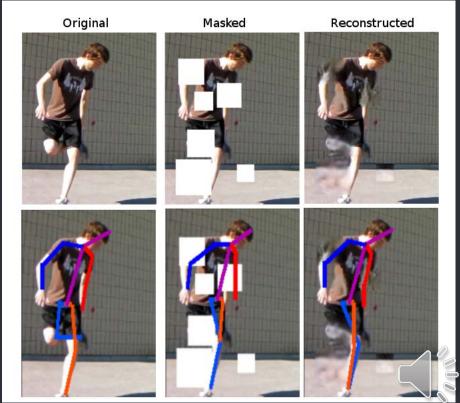
Original

MSE: DSSIM:

 Blur

 $531 \\ 0.40$

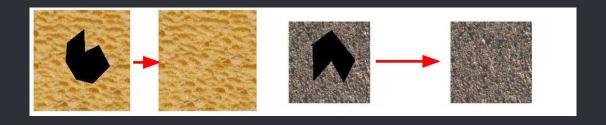
Contrast


548 0.13

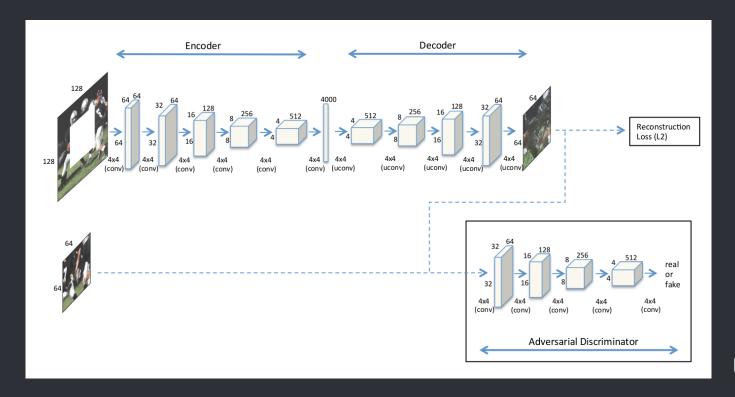
WNJD

Evaluates semantic Knowledge

$$\frac{\sum_{i=0}^{N} |OJoint_i - PJoint_i|}{N ||(w,h)||}$$

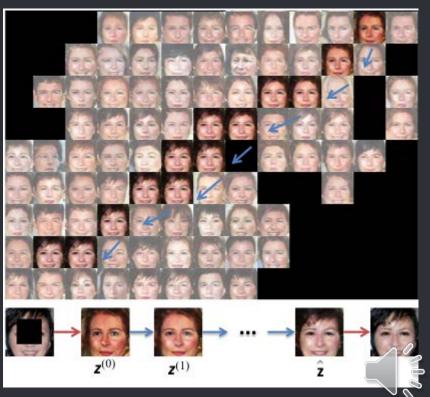

ANALYZED METHODS

- Introduction
 - Problem
 - Outline
- Dataset
 - Sources
 - Joints
 - o Masks
- Metrics
 - o DSSIM, MSE
 - o WNJ D
- Analyzed Methods
 - Related work
 - Context Encoders
 - Semantic Inpainting
 - PatchBased
- Results
 - Qualitative
 - O Quantitative
 - o Model
- Problems and discussion
 - Infighting between objectives
 - o Instability
 - o Onion
- Competition
- Conclusions
 - future Work

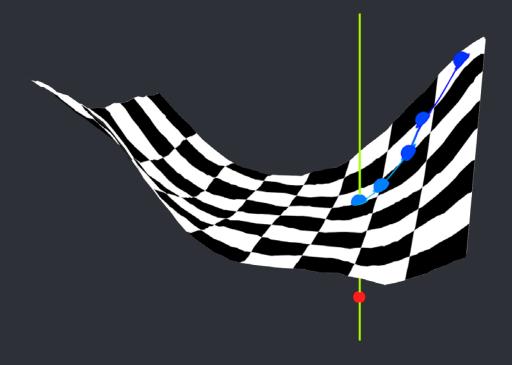

RELATED WORK

- Image quilting
- o Not a lot of comparisons yet

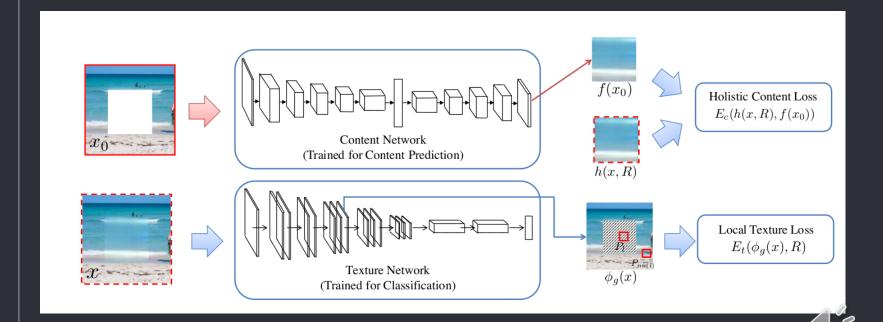
CONTEXT ENCODERS - Architecture


CONTEXT ENCODERS

- Two losses
- Autoencoder learns to reconstruct
- Channel-Wise Fully-Connected Layer


SEMANTIC IMAGE INPAINTING

- GAN
- Two losses
- · Learns manifold


17

SEMANTIC IMAGE INPAINTING

MULTI-SCALE NEURAL PATCH SYNTHESIS

MULTI-SCALE NEURAL PATCH SYNTHESIS

- Uses Context Encoders
- Iterative process increases resolution
- Focuses on textures
- Three losses

RESULTS

- Introduction
 - Problem
 - Outline
- Dataset
 - Sources
 - o Joints
 - o Masks
- Metrics
 - o DSSIM, MSE
 - o WNJ D
- Analyzed Methods
 - Related work
 - Context Encoders
 - Semantic Inpainting
 - PatchBased
- Results
 - Qualitative
 - Quantitative
 - Model
- Problems and discussion
 - Infighting between objectives
 - o Instability
 - o Onion
- Competition
- Conclusions
 - future Work

SETUP

- 60% Train images (24647)
- ° 20% Validation (8214)
- ° 20% Test (8214)

Context Encoders/ Multi-Patch					
Epochs	180				
λrec	0.999				
Overlap	4				
BottleNeck	4000				

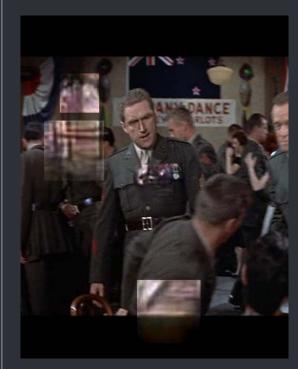
Semantic Image Inpainting				
Epochs	95			
λ	0.2			
Overlap	4			
BottleNeck	2000			

QUALITATIVE

Original

Mask

Context



Semantic

Patch

QUALITATIVE

Context Encoders
Patch

Semantic Inpainting

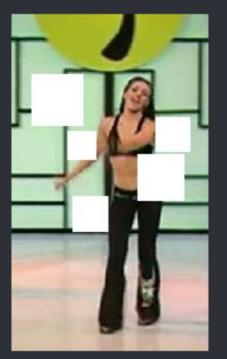
Multi-Scale Neurals

QUANTITATIVE

Name	DSSIM	MSE	WNJD
Context-Encoders (ImageNet Model) Context-Encoders Semantic Image Inpainting Multi-Scale Neural Patch	$\begin{array}{c c} 0.2780 \\ 0.2756 \\ 0.3575 \\ 0.2530 \end{array}$	$ \begin{vmatrix} 0.0393 \\ 0.0412 \\ 0.0472 \\ 0.0251 \end{vmatrix}$	0.2673 0.1489 0.2427 0.1505

MODEL





MODEL

MODEL

400

Semantic Image inpainting default model (trained with faces)

PROBLEMS AND DISCUSSION

- Introduction
 - Problem
 - Outline
- Dataset
 - o Sources
 - Joints
 - Ma sks
- Metrics
 - DSSIM, MSE
 - o WNJ D
- Analyzed Methods
 - Related work
 - Context Encoders
 - Semantic Inpainting
 - o PatchBased
- Results
 - Qualitative
 - O Quantitative
 - o Model
- Problems and discussion
 - Infighting between objectives
 - Instability
 - Onion
- Competition
- Conclusions
 - future Work

INFIGHTING BETWEEN OBJECTIVES

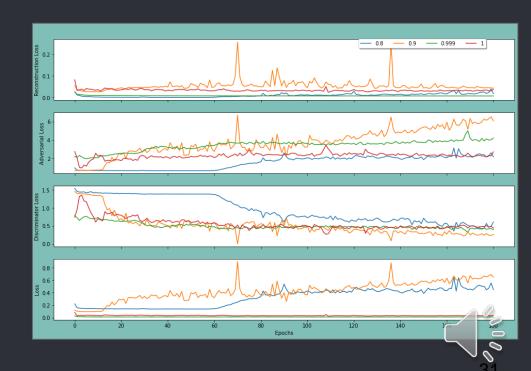
Similarity to original:

High

Low

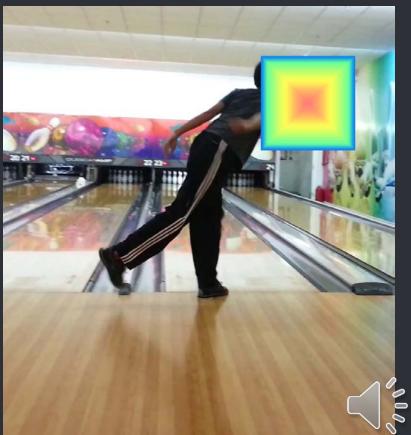
Meh

Similarity to set:

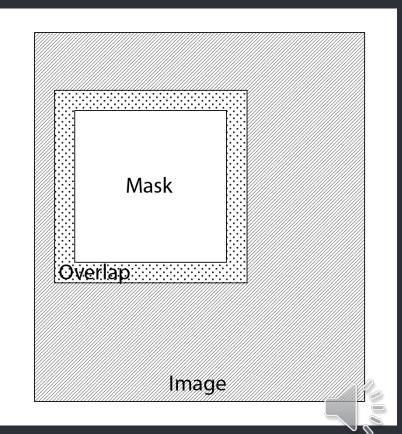

High

High

INSTABILITY



ONION


Erroraccumulation

ONION - HOW THEY DEAL WITH IT

- Overlap
- Weighted Mask



COMPETITION

- Introduction
 - Problem
 - o Outline
- Dataset
 - o Sources
 - Joints
 - Ma sks
- Metrics
 - DSSIM, MSE
 - o WNJ D
- Analyzed Methods
 - Related work
 - Context Encoders
 - Semantic Inpainting
 - PatchBased
- Results
 - Qualitative
 - O Quantitative
 - o Model
- Problems and discussion
 - o Infighting between objectives
 - o Instability
 - Onion
- Competition
- Conclusions
 - future Work

COMPETITION

CONCLUSIONS

- Introduction
 - Problem
 - o Outline
- Dataset
 - Sources
 - Joints
 - Ma sks
- Metrics
 - o DSSIM, MSE
 - o WNJ D
- Analyzed Methods
 - Related work
 - Context Encoders
 - Semantic Inpainting
 - PatchBased
- Results
 - Qualitative
 - Quantitative
 - o Model
- Problems and discussion
 - Infighting between objectives
 - o Instability
 - Onion
- Competition
- Conclusions
 - future Work

CONCLUSIONS

- Problems still left to tackle
- Stability is a bottleneck
- Textures vs semantic

FUTURE WORK

Model qualifying reconstructions

Thanks for listening!

