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Abstract

Action recognition is a very challenging and important problem in computer vi-
sion. Researchers working on this field aspire to provide computers with the abil-
ity to visually perceive human actions – that is, to observe, interpret, and under-
stand human-related events that occur in the physical environment merely from
visual data. The applications of this technology are numerous: human-machine
interaction, e-health, monitoring/surveillance, and content-based video retrieval,
among others. Hand-crafted methods dominated the field until the apparition of
the first successful deep learning-based action recognition works. Although ear-
lier deep-based methods underperformed with respect to hand-crafted approaches,
these slowly but steadily improved to become state-of-the-art, eventually achieving
better results than hand-crafted ones. Still, hand-crafted approaches can be advan-
tageous in certain scenarios, specially when not enough data is available to train
very large deep models or simply to be combined with deep-based methods to fur-
ther boost the performance. Hence, showing how hand-crafted features can provide
extra knowledge the deep networks are not able to easily learn about human actions.

This Thesis concurs in time with this change of paradigm and, hence, reflects it
into two distinguished parts. In the first part, we focus on improving current suc-
cessful hand-crafted approaches for action recognition and we do so from three dif-
ferent perspectives. Using the dense trajectories framework as a backbone: first, we
explore the use of multi-modal and multi-view input data to enrich the trajectory de-
scriptors. Second, we focus on the classification part of action recognition pipelines
and propose an ensemble learning approach, where each classifier learns from a dif-
ferent set of local spatiotemporal features to then combine their outputs following
an strategy based on the Dempster-Shaffer Theory. And third, we propose a novel
hand-crafted feature extraction method that constructs a mid-level feature descrip-
tion to better model long-term spatiotemporal dynamics within action videos.

Moving to the second part of the Thesis, we start with a comprehensive study of
the current deep-learning based action recognition methods. We review both fun-
damental and cutting edge methodologies reported during the last few years and
introduce a taxonomy of deep-learning methods dedicated to action recognition.
In particular, we analyze and discuss how these handle the temporal dimension of
data. Last but not least, we propose a residual recurrent network for action recogni-
tion that naturally integrates all our previous findings in a powerful and promising
framework.
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Resum

El reconeixement d’accions és un repte de gran rellevància pel que fa a la visió per
computador. Els investigadors que treballen en el camp aspiren a proveir als ordi-
nadors l’habilitat de percebre visualment les accions humanes – és a dir, d’observar,
interpretar i comprendre a partir de dades visuals els events que involucren hu-
mans i que transcorren en l’entorn físic. Les aplicacions d’aquesta tecnologia són
nombroses: interacció home-màquina, e-salut, monitoració/vigilància, indexació de
videocontingut, etc. Els mètodes de disseny manual han dominat el camp fins
l’aparició dels primers treballs exitosos d’aprenentatge profund, els quals han acabat
esdevenint estat de l’art. No obstant, els mètodes de disseny manual resulten útils
en certs escenaris, com ara quan no es tenen prou dades per a l’entrenament dels
mètodes profunds, així com també aportant coneixement addicional que aquests úl-
tims no són capaços d’aprendre fàcilment. És per això que sovint els trobem ambdós
combinats, aconseguint una millora general del reconeixement.

Aquesta Tesi ha concorregut en el temps amb aquest canvi de paradigma i, per
tant, ho reflecteix en dues parts ben distingides. En la primera part, estudiem les
possibles millores sobre els mètodes existents de característiques manualment dis-
senyades per al reconeixement d’accions, i ho fem des de diversos punts de vista.
Fent ús de les trajectòries denses com a fonament del nostre treball: primer, ex-
plorem l’ús de dades d’entrada de múltiples modalitats i des de múltiples vistes
per enriquir els descriptors de les trajectòries. Segon, ens centrem en la part de la
classificació del reconeixement d’accions, proposant un assemblat de classificadors
d’accions que actuen sobre diversos conjunts de característiques i fusionant-ne les
sortides amb una estratégia basada en la Teoria de Dempster-Shaffer. I tercer, pro-
posem un nou mètode de disseny manual d’extracció de característiques que con-
strueix una descripció intermèdia dels videos per tal d’aconseguir un millor modelat
de les dinàmiques espai-temporals de llarg termini presents en els vídeos d’accions.

Pel que fa a la segona part de la Tesi, comencem amb un estudi exhaustiu els
mètodes actuals d’aprenentatge profund pel reconeixement d’accions. En revisem
les metodologies més fonamentals i les més avançades darrerament aparegudes i
establim una taxonomia que en resumeix els aspectes més importants. Més conc-
retament, analitzem com cadascun dels mètodes tracta la dimensió temporal de les
dades de vídeo. Per últim però no menys important, proposem una nova xarxa de
neurones recurrent amb connexions residuals que integra de manera implícita les
nostres contribucions prèvies en un nou marc d’acoblament potent i que mostra re-
sultats prometedors.
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Chapter 1

Introduction

In the era of Artificial Intelligence, there are machines that are able to "see". These
vision-enabled machines are in practice capable of dealing with a large variety of
visual problems: recognition and description of visual content [159, 181, 16, 37], au-
tonomous driving [20, 226], inference of apparent personality traits [4, 219], or detec-
tion of cancerous tissue [63, 162], just to name a few. This kind of visual perception
has been researched by the computer vision field, part and parcel of AI, which has
recently shown major advances thanks to deep learning [150], powerful machinery,
and abundance of data. So much so, deep-based image classification networks sur-
passed human accuracy [147]. In some problems, however, computer vision is still
far from the desirable human-level performance.

1.1 Motivation

The recognition of human actions in videos has been studied in computer vision
for nearly 30 years. Earliest works [87, 209, 30] approached the problem by making
numerous oversimplifications about the nature of human actions, e.g. only a few
action categories were being considered, actions were performed in front of a plain
non-cluttered background, no object manipulation, etc. Nowadays, we are able to
deal with much more realistic video datasets collected from movies or Internet mul-
timedia platforms. Current action classification methods, e.g. [16, 35, 45], obtain
more than 90% of accuracy on datasets such as UCF-101 [165] with 101 classes and
over 10,000 examples, and more than acceptable results on harder datasets such as
HMDB-51 [85] or Kinetics [16]. In Figure 1.1, we compare examples of video frames
from UCF-101 categories to the ones from an easier but not much older dataset, KTH
[89]

Action recognition can be posed as a fully-supervised pattern recognition prob-
lem, consisting of a set of subsequent stages: input, preprocessing, feature extrac-
tion, classification, postprocessing, and output. For feature extraction, the so-called
hand-crafted approaches rely on manually and carefully designed feature represen-
tations [100, 29, 88, 10]. Ensuring a reliable hand-crafted representation often re-
quires going through a painful loop of re-design, re-adjustment of parameters, and
re-evaluation. More conveniently, deep learning approaches seamlessly integrate
feature extraction and classification – namely end-to-end training – so an optimal
feature representation is automatically learned to optimize the recognition perfor-
mance. The superior results demonstrated by the latter approach [16, 35, 177, 210,
169] caused a drastic shift in action recognition approaches towards deep-based
methods. However, hand-crafted features are still valuable given their complemen-
tarity with feature learning [66]. Knowing so, most of the deep-based works com-
bine their outputs with the ones from Improved Dense Trajectories (IDTs), obtaining
quite often a substantial boost in performance [94, 45, 44, 177, 177].
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Walking Jogging Running Boxing Hand waving Hand clapping

s1

s2

s3

s4

(A) KTH

(B) UCF-101

FIGURE 1.1: Two examples of action classification datasets. The older
KTH [151] with 9 actions and plain background. In contrast, the
newer UCF-101 [165] is a much more complex dataset consisting of

101 actions and with different backgrounds and objects present
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Optical flow (OF) has been shown to be a particularly useful motion cue in both
hand-crafted and deep-based methods for action recognition. A popular trend is to
combine spatial and motion cues [185, 159, 177, 47]. Besides the spatial and motion
cues obtained from the RGB modality, there exist other kinds of input that are suit-
able for action recognition scenarios. The Depth modality has been vastly exploited
in close-range in-door action classification [38, 137, 193, 99]. Cost-effective RGB-
Depth sensors, e.g. Microsoft Kinect or Intel RealSense, capture continuous streams
of depth maps in real-time where each values indicates the distance of the captured
points to the sensor. Using then its intrinsic parameters, it is possible to reconstruct
the 3D view of the scene and register the 3D points with their corresponding RGB
pixel values. Besides such geometric cue, Depth also provides a fast and robust way
to detect people and infer their skeletal joints positions [157]. The skeletal cue is
widely used for action, activity, and gesture recognition [221, 106, 38].

Prior to classification, the feature representations derived from multiple cues (or
modalities) need to be properly combined to successfully tackle the recognition task.
In hand-crafted approaches, one possibility is to combine the descriptors from dif-
ferent information sources in an early fusion fashion, i.e. the different video de-
scriptors are concatenated in a larger vector and then fed to a classifier [185, 183,
211]. Any missleading source of information might however harm the overall per-
formance of the method. In contrast, deep-based approaches usually adopt the more
convenient late-fusion scheme, averaging the softmax classification scores from the
network streams corresponding to different cues [78, 159, 177]. In this context of
late-fusion, Ensemble Learning brings more sophisticated late-fusion strategies that
can be applied in both hand-crafted and deep-learning based approaches, especially
benefitial as we increase the number of streams/models/classifiers [86].

A crucial aspect in action recognition is to effectively model spatial and temporal
information. While spatial relations and shorter range spatiotemporal dynamics are
easier to capture, modeling longer term temporal information requires more com-
plex models accounting for the temporal dimension. Hand-crafted approaches typ-
ically relied in aggregation processes. such as 3D convolutional networks [16, 177],
deep sequential models [210, 169], or cumbersome mid-level feature representations
in hand-crafted approaches [48]. In particular, 3D-CNNs achieve significantly bet-
ter results than RNNs on shorter videos from current action classification datasets,
3D convolution and 3D poolings operations for very long temporal extents are com-
putationally unfeasible. RNN-like models are, in contrast, able to model very long
temporal sequences, but only modeling temporal information. To get the best of
both worlds, the rich spatiotemporal representation provided by 3D-CNN and the
long range temporal modeling from RNN-like networks, both can be combined [195,
196]. The 3D-CNN can act as a volumetric spatiotemporal feature extractor and the
RNN model the temporal information from the 3D-CNN spatiotemporal descriptors
from video volumes. Also RNN layers can be stacked on top of each other to create
a deep recurrent networks that is able to learn high-order temporal features [94, 35,
221, 37].

1.2 Contributions of the Thesis

In this Thesis, we tackle the challenges of action recognition from both hand-crafted
and deep-learning based approaches. In the hand-crafted scenario, we target dif-
ferent levels of the pattern recognition pipeline, mainly input, feature extraction,
and classification, following different but complementary lines of research. We then
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move towards deep-learning to seamlessly integrate those three lines together. The
contributions of the Thesis can be summarized as follows:

1. Multi-modal and multi-view Dense Trajectories for action detection (input
and feature extraction). In a monitoring scenario, we combine two RGB-Depth
visual sensors with an inertial sensor placed on the dominant hand’s wrist
of the subject to detect performed actions. In the vision module, we com-
pute Multi-modal multi-view Dense Trajectories (MmDT) enriching the set of
trajectory-aligned descriptors from [185] with a geometric descriptor, i.e. His-
togram of Oriented Normals, computed from the depth modality. Then, fol-
lowing a Bag-of-Visual-Words aggregation, we generate a codebook for each
kind of trajectory-aligned descriptor. The codebooks are mined with trajec-
tories from the two views. For the temporal detection, we slide a temporal
window whose descriptor is efficiently computed using integral sum over the
pre-computed per-frame BoVW descriptors. The detection outputs of the vi-
sion module are late-fused with the outputs of the inertial module following
different fusion strategies. The proposed framework is validated in a real-case
scenario with elderly from an elder home, showing the effectiveness of multi-
modal approaches.

2. Ensembling action classifiers (classification and postprocessing). We study
how the late-fusion via an ensemble of classifiers trained on different action
features performs compared to early fusion in an holistic classifier. For the ac-
tion features we base on Dense Trajectories (DT) [185] and space-time interest
point (STIP) [88] features. DT features consist of the four original trajectory-
aligned descriptors, each of very different nature, i.e. on trajectory shape, ap-
pearance, motion, and first derivative of motion. We test both training each
individual classifier on a feature type and training a forest of learners each on
a random subset of the features. During ensemble classification, the late-fusion
strategy bases on the Dempster-Shafer rule of combination instead of simply
averaging the class scores from the classifiers. The method outperforms com-
peting methods in state-of-the-art benchmarking dataset, UCF-101 [165].

3. A novel hand-crafted feature representation to model long-term temporal
dynamics for action classification (feature extraction). We model the evolu-
tion of IDT features[183] not only throughout the entire video sequence, but
also on subparts of the video. Subparts are obtained using a spectral divi-
sive clustering [52] that yields an unordered binary tree decomposing the en-
tire cloud of trajectories of a sequence. We then compute videodarwin [47] on
video subparts, exploiting more finegrained temporal information and reduc-
ing the smoothing degradation from videodarwin. After decomposition, we
model the evolution of features through both frames in subparts and descend-
ing/ascending paths in tree branches, namely node-darwintree and branch-
darwintree. For the final classification, we define our darwintree kernel rep-
resentation and combine it with holistic videodarwin. Our approach achieves
better performance than standard videodarwin and defines the current state-
of-the-art on UCF-Sports and Highfive action recognition datasets.

4. A comprehensive study of current deep-learning based methods for action
recognition. We review both fundamental and cutting edge methodologies re-
ported in the last few years. We introduce a taxonomy that summarizes impor-
tant aspects of deep learning when approaching the task: architectures, fusion
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strategies, and benchmarking results on public datasets. More in detail we dis-
cuss the more relevant works with emphasis on how they treat the temporal
dimension of the videos, other highlighting features, and their challenges.

5. Residual recurrent networks for action recognition (feature extraction, clas-
sification, and postprocessing). After extensively studying current works on
deep-based action recognition, we contribute to the deep-based sequential mod-
eling with our multi-layer Residual Recurrent Neural Network (Res-RNN).
While most RNN-based works base 2D-CNNs to extract per-frame descriptors,
we build on top of the last convolutional layer of a pre-trained 3D-CNN that
provides rich spatiotemporal descriptors of video volumes. We then model the
temporal relationships of such through the stack of multiple recurrent layers
with residual connections between layers. Our novel Res-RNN exploits ap-
pearance and motion cues into two separate streams and the outputs are late-
fused using element-wise product instead of the more common summation
operation. Our method outperforms other deep sequential-based methods in
HMDB-51 and obtains competitive results in UCF-101. We also demonstrate
how the combination with Improved Dense Trajectories (IDTs) [183] further
increases our performance, especially in the case of HMDB-51.

1.3 Publications

This Thesis resulted in the following list of publications (directly or indirectly related
to its central theme):

1.3.1 Journal papers

• Clapés, A., Reyes, M., & Escalera, S. (2013). Multi-modal user identification
and object recognition surveillance system. Pattern Recognition Letters, 34(7),
799-808.

• Reyes, M., Clapés, A., Ramírez, J., Revilla, J. R., & Escalera, S. (2013). Auto-
matic digital biometry analysis based on depth maps. Computers in Industry,
64(9), 1316-1325.

• Cepero, A., Clapés, A., & Escalera, S. (2015). Automatic non-verbal commu-
nication skills analysis: A quantitative evaluation. AI Communications, 28(1),
87-101.

• Palmero, C., Clapés, A., Bahnsen, C., Møgelmose, A., Moeslund, T. B., & Es-
calera, S. (2016). Multi-modal rgb–depth–thermal human body segmentation.
International Journal of Computer Vision, 118(2), 217-239.

• Clapés, A., Pardo, À., Vila, O. P., & Escalera, S. (2018). Action detection fusing
multiple Kinects and a WIMU: an application to in-home assistive technology
for the elderly. Machine Vision and Applications, 1-24.

1.3.2 International conferences and workshops

• Clapés, A., Reyes, M., & Escalera, S. (2012, July). User identification and object
recognition in clutter scenes based on rgb-depth analysis. In International Con-
ference on Articulated Motion and Deformable Objects (pp. 1-11). Springer,
Berlin, Heidelberg.
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• Pardo, À., Clapés, A., Escalera, S., & Pujol, O. (2014). Actions in context:
system for people with dementia. In Citizen in Sensor Networks (pp. 3-14).
Springer, Cham.

• Konovalov, V., Clapés, A., & Escalera, S. (2013, October). Automatic Hand
Detection in RGB-Depth Data Sequences. In CCIA (pp. 91-100).

• Cepero, A., Clapés, A., & Escalera, S. (2013). Quantitative Analysis of Non-
Verbal Communication for Competence Analysis. In CCIA (pp. 105-114).

• Mogelmose, A., Bahnsen, C., Moeslund, T., Clapés, A., & Escalera, S. (2013).
Tri-modal person re-identification with rgb, depth and thermal features. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (pp. 301-307).

• Bagheri, M., Gao, Q., Escalera, S., Clapes, A., Nasrollahi, K., Holte, M. B., &
Moeslund, T. B. (2015). Keep it accurate and diverse: Enhancing action recog-
nition performance by ensemble learning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops (pp. 22-29).

• Escalante, H. J., Ponce-López, V., Wan, J., Riegler, M. A., Chen, B., Clapés,
A., ... & Müller, H. (2016, December). ChaLearn Joint Contest on Multimedia
Challenges Beyond Visual Analysis: An overview. In ICPR (pp. 67-73).

• Ponce-López, V., Chen, B., Oliu, M., Corneanu, C., Clapés, A., Guyon, I., ... &
Escalera, S. (2016, October). Chalearn lap 2016: First round challenge on first
impressions-dataset and results. In European Conference on Computer Vision
(pp. 400-418). Springer, Cham.

• Asadi-Aghbolaghi, M., Clapes, A., Bellantonio, M., Escalante, H. J., Ponce-
López, V., Baró, X., ... & Escalera, S. (2017, May). A survey on deep learning
based approaches for action and gesture recognition in image sequences. In
Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International
Conference on (pp. 476-483). IEEE.

• Clapés, A., Tuytelaars, T., & Escalera, S. (2017, October). Darwintrees for action
recognition. In The IEEE Int. Conf. on Computer Vision (ICCV) (pp. 3169-
3178).

• Asadi-Aghbolaghi, M., Clapés, A., Bellantonio, M., Escalante, H. J., Ponce-
López, V., Baró, X., ... & Escalera, S. (2017). Deep learning for action and
gesture recognition in image sequences: A survey. In Gesture Recognition (pp.
539-578). Springer, Cham.

1.4 Thesis outline

The Thesis is divided into two main parts. The chapters within each part are sim-
ilarly structured, most of them including an introduction, specific related work,
method, and experimental results.

Part I consists of four chapters dedicated to hand-crafted approaches for the task
of action recognition. Chapter 2 is a preamble reviewing the state-of-the-art of lo-
cal spatiotemporal representations and a brief introduction to the Dense Trajectories
framework (backbone of the three following chapters in Part I). Chapter 3 discusses
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the multi-modal and multi-view framework for action detection. Chapter 4 intro-
duces the ensemble learning on action features. Chapter 5 studies the hierarchical
evolution of features as a way to model spatiotemporal information in action classi-
fication.

Part II is divided into two chapters. Chapter 6 motivates the shift from hand-
crafted to deep learning and discusses the state-of-the-art of deep learning in the
field of action recognition. Chapter 7 presents the stacked residual recurrent model
for the task of action recognition.

Finally, Chapter 8 concludes the Thesis with final discussion and conclusions.
Please note the symbol definitions are not shared among the two parts. A unified

set of symbols would have been impractical, so each of them is mathematically self-
contained.
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Part I

Hand-crafted methods
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Chapter 2

Preamble: Local spatiotemporal
feature representations

The latest hand-crafted methods experimentally demonstrated local context repre-
sentations to be highly effective for human action recognition in realistic videos
[183, 185, 129, 47]. Compared to global representations, feature descriptors from
local regions are more invariant to body deformations, heavy occlusions, changes
in the point of view, camera motion, and illumination changes [23, 198, 135, 110].
Moreover, local features avoid relying on error-prone preprocessing steps, e.g. back-
ground subtraction [164, 208] or tracking [91, 114]. The high dimensionality of
videos however leads to the obtention of a large and arbitrary number of local spa-
tiotemporal regions per video/clip. How to sample and describe the spatiotemporal
regions, as well as how to aggregate the resulting descriptors into a compact repre-
sentation for the video/clip, are key issues that need to be addressed.

In this chapter, Section 2.1 reviews different approaches to the location, descrip-
tion, and aggregation of local spatiotemporal features, with special emphasis on the
Dense Trajectories (DT) framework [185, 183]. Then, Section 2.2 introduces Dense
Trajectories more in detail, used in the following chapters as the base of our feature
extraction processes.

2.1 Related work

Local representations typically relied on the detection of sparse spatiotemporal key-
points. The original idea of [62] of corner detection in images was extended to the
spatiotemporal domain by [88]. It defined a spatiotemporal second-moment matrix
composed of first order spatial and temporal derivatives and determined points that
are local maxima to the harris-like function combining the determinant and trace of
that matrix. In practice, these corresponded to local spatiotemporal neighborhoods
with non-constant motion. [36] argued spatiotemporal corners were not well suited
for subtle and gradually changing motion, so they proposed the Cuboid detector
with a response function based on a 2D gaussian smoothing kernel along the spa-
tial dimension and a quadrature pair of 1D Gabor filters in time. It provided the
larger responses on periodic motions, while still being able to detect spatiotempo-
ral corners and avoiding activations on translational motions. [200] localized interest
points both in the spatiotemporal domain at multiple scales simultaneously by using
the determinant of the Hessian matrix as a saliency measure; and doing so efficiently
by removing the iterative scheme from [88].

Differently from those, [186] proposed dense sampling of 3D patches at regu-
lar positions and different scales. The approach outperformed the keypoint-based
localization of local features in realistic datasets, at the expense of producing 15-20
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times more candidate regions. Motivated by these results, [185] defined the Dense
Trajectories (DT) framework, which uses dense optical flow maps to densely sub-
sample regions containing potentially meaningful motion patterns. While still being
a dense form of sampling, it considerabily reduces the computational cost of reg-
ular space-time sampling from [186]. The trajectories are constructed by tracking
every pixel motion following their corresponding optical flow vectors. Then, the
surrounding image patches along 15-frame trajectories are described using appear-
ance and motion descriptors and, finally, concatenated into the trajectory descrip-
tors. The aggregation of trajectory descriptors is done following a Bag-of-Visual-
Words (BoVW) approach, a general pipeline consisting of a codebook generation
(k-Means clustering of trajectories) followed by vector quantization (counting assig-
nation of video/clip trajectories to cluster prototypes). [183] introduced Improved
Dense Trajectories (IDT), which use warped flow [73] to alleviate camera motion
during the optical flow estimation and Gaussian Mixture Models and Fisher Vectors
to replace, respectively, k-Means and vector quantization.

After the success of DT, the more recent efforts have been put into building
mid-level representations to further improve action classification performance. [120]
clusters trajectories into spatiotemporal groups and learn to assign a weight to each
spatiotemporal group in such a way that more discriminative (weighted) fisher vec-
tors are obtained, attenuating the effect of irrelevant groups of trajectories for each
particular action. One criticism on BoVW- and FV-like approaches these do not take
into account spatial and temporal relations among visual words. In order to capture
complex and long-term motions of spatiotemporal parts, as well as their relations,
[52] proposes the hierarchical decomposition of the cloud of trajectories from a video
into a tree. The nodes of a tree define different groupings of trajectories that are ag-
gregated using BoVW. For classification, they define a kernel based on the similarity
between a pair of trees – each representing an action instance – that is on the ac-
cumulated similarities between tree edges (parent-child node pairs). In a similar
fashion, [129] stacks two levels of fisher vectors to model semantic information from
videos in a hierarchical way. In the first layer, fisher vectors are computed over the
IDTs on densely sampled multi-scale cuboids. Then, a second (stacked) fisher vector
representation is computed on FVs from cuboids to obtain the final FV video rep-
resentations. Focused on better modeling temporal information in videos, [47, 48]
compute IDT-based FVs in a per-frame basis. Then a linear/ranking model learns to
regress/rank the orderings of the video frames based on the per-frame representa-
tions.

DTs and IDTs have been successfully applied to different scenarios than action
classification. [145] temporally detect cooking activities using DT+BoVW on a multi-
scale sliding window and detections are filtered using a non-maximum supression
filter. [84] combines a per-frame IDT+FV representation with a composite Hidden
Markov Model to recognize and temporally segment breakfast preparation activi-
ties, where each action unit (or subactivity) is modeled by a different HMM and the
transitions between actions are modeled by a language grammar. In this same con-
text, [142] propose IDT+FV but instead modeling action units via recurrent neural
networks that are combined with a coarse probabilistic. [54] and [215] both locate
actions in space and time generating localizaton (tubelet) proposals from DTs. Fol-
lowing this same idea, the trajectiories DT/IDT have been used to pool deep features
from CNN filter responses [189]. Later in Chapter 6 we discuss the combination of
trajectories with deep-based approaches more in depth.
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2.2 Dense trajectories in a nutshell

The Dense Trajectories framework (DT) [185] is based on the idea of dense sampling
of local spatiotemporal features, but only considering moving parts – as these are as-
sumed to contain the dynamic information that can be relevant for the action recog-
nition task. dense sampling has shown to provide smoother trajectories (illustrated
in Figure 2.1) and hence better results.

Next, we first review the trajectory construction and the trajectory descriptor calcu-
lation, and then the computation of the trajectory-aligned descriptors. The different
steps are depicted in Figure 2.2.

2.2.1 Trajectory construction and shape descriptor

The trajectories are sampled at different spatial scales. For each scale, points are
sampled at regular intervals of W pixels across the two spatial dimensions, and then
tracked during L frames using the directions of dense optical flow vectors [43]. The
length L of the trajectory is limited to a few frames to avoid drifting during the
tracking of the point. Points of subsequent frames are concatenated to form a trajec-
tory (Pt, Pt+1, Pt+2, . . .), where Pt = (xt, yt). The trajectories that reach length L are
removed from the tracking. Also, the framework enforces the sampling of points
when some W ×W neighborhood does not contain any point being tracked. How-
ever, points in homogeneous image regions or those presenting large displacements
are discarded during the trajectory construction.

FIGURE 2.1: KLT feature tracker [172]) versus Dense Trajectories.
Reprinted from [185]

Let describe a trajectory shape T = (∆Pt, . . . , ∆Pt+L−1) by the sequence of dis-
placement vectors ∆Pt = (Pt+1 − Pt). We can now compute the trajectory descriptor
(TS) as follows:

T ′ = (∆Pt, . . . , ∆Pt+L−1)

∑t+L−1
j=t ||∆Pj||

.
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FIGURE 2.2: Trajectory construction and computation of trajectory-
aligned descriptors. Reprinted from [185]

2.2.2 Trajectory-aligned descriptors

Other very robust and reliable hand-crafted descriptors are included to complement
the TS descriptor. More precisely, Histogram of Oriented Gradients (HOG) [29],His-
togram of Oriented Flows (HOF) [88], and Motion Boundary Histogram (MBH) [185]
are computed in the N × N image patches centered at the trajectory points along its
path. This N×N× L spatiotemporal tube is then sub-divided into nx× ny× nt cells,
so the trajectory-aligned descriptors are computed and averaged within their corre-
sponding cells. The final trajectory representation is the concatenation of the four
descriptors (TS, HOG, HOF, and MBH) from the N × N × L spatiotemporal tube is
then sub-divided into nx × ny × nt cells. HOG and HOF orientations are quantized
into 8 and 9 bins respectively. Since MBH computes the derivative of the optical
flow separately for horizontal and vertical motion components, this leads to two
histograms, each of 8 bins.

In the following chapters, we use the default values of the previously described
parameters (W = 5, L = 15, N = 32, nx = ny = 2, and nz = 3). Doing so, the
final trajectory descriptors are of length 436, the 10 first elements being information
associated to the trajectories. The length of TS is L ∗ 2 = 15 ∗ 2 = 30. HOG and
HOF orientations are quantized into 8 and 9 bins respectively. Since MBH com-
putes the derivative of the optical flow separately for horizontal and vertical motion
components, this leads to two histograms, each of 8 bins. Therefore, the length of
these descriptors in the final trajectory description are 2 ∗ 2 ∗ 3 ∗ 8 = 96 for HOG,
2 ∗ 2 ∗ 3 ∗ 9 = 108 for HOF, and 2 ∗ 2 ∗ 3 ∗ 8 = 96 for MBH along each spatial axis.

Since trajectories are local representations, the next step is to aggregate them
into a compact representation for the video. However, we omit these parts of the
framework in here since these processes differ with the problems presented in the
following chapters of this dissertation.
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Chapter 3

Multi-modal and multi-view Dense
Trajectories for action detection

We propose a two-module system combining two RGB-Depth (or RGB-D) visual
sensors together with a wireless inertial movement unit (WIMU) in order to detect
actions of the daily living in a real-world scenario with elderly people. The two
RGB-D sensors face to each other, so to have a complete occlusion-free view of the
scenario. Their streams are processed to compute multi-modal multi-view Dense
Trajectories (MmDT). In particular, the trajectories are enriched with a Histogram of
Oriented Normals (HON) descriptor computed from the depth maps, complement-
ing the trajectory shape (TS), Histogram of Oriented Gradients (HOG), Histogram of
Oriented Flows (HOF), and Motion Boundary Histogram (MBH) descriptors. Trajec-
tories are then bagged into multi-view codebooks. Following the approach of [185],
a codebook is generated for each kind of description. Then, in order to perform the
classification, a multi-class Support Vector Machine (SVM) with Chi-square kernel
combines the descriptions at kernel level. For the detection itself, a sliding window
approach is followed, so that Bag-of-Visual-Words (BoVW) for the windows are built
from the extracted trajectories in an efficient ‘ integral” way.

In parallel, an egocentric module is in charge of performing gesture detection.
In particular, the WIMU used is a Shimmer sensor placed in the elderly’s dominant
wrist. In order to recognize the gesture we first preprocess the data in order to ex-
tract relevant information such as accelerometer, rotation angles, and jerk. Then,
we select a set of models from the sequences, which are used to obtain alignment
distances (costs) by means of a Dynamic Time Warping (DTW) algorithm. During
the process of detecting the gestures, DTW performs the alignments respect to the
models and determines if new gestures being performed by comparing alignment-
to-model costs to a set of learnt thresholds. Finally, the outputs of the two modules
are combined, to provide more accurate detection results.

The system is validated in a real-case dataset with elderly people from the SAR-
Quavitae Claret elder home. We guided the elders on different scripted scenarios
involving gestures while interacting with objects: “taking a pill”, “drinking from a
glass”, “eating from a plate”, and “reading a book”. We recorded a total of 31 differ-
ent sequences of 1-3 minutes of duration each, with 14 elderly people. The dataset
is manually annotated with the begin-end of the actions and gestures. Gestures are
defined at a different level of annotation than actions, so as to be more atomic and
palliate the inherent noisiness from these kind of devices. The obtained results show
the effectiveness of the system. Moreover, the learning-based fusion demonstrates
the success of this kind of multi-modal approaches.

This chapter is organized as follows: Section 3.1 briefly reviews the related work
that is specific to this chapter, more precisely on in-home monitoring systems and
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also works utilizing RGB-D technology and WIMUs for action recognition; Sec-
tion 3.2 describes the dataset, hardware, and acquisition settings; Section 3.3 intro-
duces the system. Both vision and wearable modules are explained more in depth in
Subsection 3.3.1-3.3.2; and, finally, Section 3.4 presents the results got by the different
modules of the system and their integration for final detection output.

3.1 Related work

There exist many vision systems for action/activity monitoring applied to in-home
care. [113] uses location cues to determine actions. Models of spatial context are
learned employing a tracker that uses a coarse ellipse shape and a particle filter to
cope with cluttered scenes seen from a fisheye camera. Despite being tested in a real-
istic environment, the learned models are not transferable to other scenarios. More-
over, the location of the human in the scene is not enough to discern among certain
activities. [39] defines 8 different activities and model the transitions from one to
another by means of a Hidden Markov Model (HMM). They segment people silhou-
ettes by means of simple but adaptive background subtraction and characterize the
silhouette poses in frames with a set of three handcrafted features: height of center of
mass, vertical speed of the center, and sparsity of points. [28] proposes to recognize
events in a knowledge-driven approach by using an event modeling framework. In
knowledge-based approaches, events need to be defined by an human expert.

The apparition of RGB-D devices, such as Kinect – supposed the emergence of
new systems and techniques that could be applied to in-home assistive technology.
In [148], the system monitors human activities while seeking for signs of limb or joint
pain. The work defined a set of 7 pain gestures performed by people on an average
age of 40 and above. They report good results using MLP for classification on the
skeletal features extracted from Kinect. However, the pain gestures are static and in a
highly controlled environment. [11] present a system to monitor and control elderly
people in a smart house environment. It recognizes gestures and communicates
them through the network to a caregiver. They match candidate gestures to template
simply by computing a distance. In this case, quantitative results are not presented.
[32] propose a system capable of recognizing full body actions, such as walk, jump,
grab something from the floor, stand, sit, and lie (on the floor). The action class is de-
termined in a heuristic rule-based fashion based on skeletal joints’ positions. [13] de-
tect pointing gestures in a smart bedroom to facilitate the elderly people interaction
with the environment. In [8], the authors are detecting very simple activities such as
standing, sitting, and the standing-sitting transition. In their work, silhouettes are
subtracted first using a background subtraction algorithm. From these silhouettes,
image moments are extracted, which are then clustered using fuzzy clustering tech-
niques to produce fuzzy labels in the activity categories. During the functioning of
the system, the classification is done by a fuzzy clustering prototype classifier. They
test several imaging technologies with night vision capacities, including Kinect. The
system is tested at a senior house facility with older adults with physical health is-
sues. [220] define a set of 13 activities of the daily living and the skeletal features
are used to generate a codebook of poses. Then, in a BoVW approach, poses from
individual frames are binned in a histogram representing the pre-segmented activ-
ity videos and classified using a SVM classifier. The system is tested in a controlled
environment and is not performing detection in continuous streams. [132] utilize
a Gaussian mixture models-based HMM for human daily activity recognition us-
ing 3D skeleton features. [58] introduce a system prototype for telerehabilitation for
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post-stroke patients. They monitor the range of motion of different limbs during
the realization of daily living activities using a Kinect and accelerometers attached
to objects. However, they only monitor the min and max and compare to the ones
from the previous day and quantify the progress. Their proposal does not tackle
the action recognition task. Nonetheless, being able to recognize particular activities
will make the evaluation of ranges of motions much more meaningful for therapists.

Skeleton features are widely used for action/gesture recognition in the literature
of in-home assistive systems. The systems report very good results using these kind
of features, but most of them are applied in very controlled scenarios in which the
body is fully visible. However, the skeleton is not reliable in the presence of body
occlusions or non-frontal camera angles – as it often occurs when dealing with real
world situations. Fortunately, there exist many approaches to action recognition that
do not require the use of such features in the literature of computer vision. Next, we
review some of the state-of-the-art of action detection and recognition that could
deal with some of the aforementioned problems.

There are also works combining RGB-D vision with the inertial information pro-
vided by WIMUs. [31] combine the Kinect sensor with 5 WIMUs in order to recog-
nize activities. They fuse the multiple modalities in an early fusion fashion. They use
a sliding window approach together with a set of binary trained MLP classifiers to
perform the detection in one-vs-all setup. [98] perform hand gesture recognition fus-
ing the inertial and depth data within a HMM framework, demonstrating an overall
improvement. Nonetheless, the method is tested on a relatively simple dataset of
gestures with 5 gestures, i.e., “wave”, “hammer”, “punch”, “draw an X”, “draw a
circle”, thus with considerable inter-class variability and at a relatively small dis-
tance to the Kinect camera. Our dataset was recorded in a much more uncontrolled
scenario, actions are observed from a farther position, we deal with occlusions, and
have much smaller inter-class variability; in fact, some classes can be only distin-
guished mostly by considering the interacted object, e.g., drinking and taking the
pill. [70] present some preliminary analyses for fusing Kinect and inertial sensors’
data in order to monitor intake gestures. However, they do not present any perfor-
mance on the task, but only some qualitative results.

3.1.1 RGB-D action detection in video

Different approaches exist to action detection in video. Typically, the detection con-
sists in localizing the action within the video either in the temporal domain [53] or
both in space and time [199, 57, 71]. In fact, the spatial localization of the action
makes the problem more demanding. In our case, and since we are not intended to
do that, we focus on reviewing only temporal localization methods. These often use
a variable-size sliding window in which actual action classification is performed.
There exist more cumbersome approaches, like the one of [53], that break down ac-
tions into sub-actions (or actoms) and model explicitly the length of the window for
each class. Unfortunately, it requires expensive manual annotations of actoms. In this
work, we simply convolve a sliding window of different sizes and perform action
classification in it. Next, we review the state-of-the-art methods for action classifica-
tion using depth information.

Many classification works take advantage of the skeleton data provided by Kinect
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[141, 9]. Skeletal data demonstrated their reliability, even outperforming low/mid-
level features when there are not heavy occlusions [75]1. Moreover, the skeleton
representation is low-dimensional data, which makes potentially easier the learning
of transitions in sequential models, e.g. HMM, and also reduces the cost of aligning
action candidates to class exemplars in the DTW. Not only sequential models, but
also template-based methods are also applicable in depth data cue [95, 92]. [95] ex-
tend the energy-based method from [30] to depth data, extracting the motion-energy
features in the three cartesian planes got from depth maps separately to later build
a spatio-temporal pyramid cuboid representation of the action videos.

Regarding local features, [67] propose a Bag-of-Visual-and-Depth-Words frame-
work for gesture recognition. The authors use the STIP detector separately in RGB
and depth modalities, and then describe the color interest points using HOG and
HOF, and the depth interest points with VFH+CRH2. Then, in order to compute the
global representation of gestures they use spatio-temporal pyramids and a Bag-of-
Visual-Words approach. Finally, the global gesture representation is matched to the
training samples using lazy learning.

Despite locally extracted depth features have been used for action/gesture recog-
nition, there is not (to our extent) any work using Dense Trajectories in RGB-D
videos. In this work, we propose to enrich the description of the trajectories con-
sisting of the track’s relative position, HOG, HOF, and Motion Boundary Histogram
(MBH) with a Histogram of Oriented Normals (HON).

Multi-modal fusion techniques

Focusing on the fusion part, there are two different strategies: combine the values
for each modality at the beginning of the pipeline (feature-level), named early fusion
or after computing the prediction values for each of the inputs (decision-level), late
fusion.

State-of-the-art late-fusion strategies use the scores given as outputs from early
stages. [60] use product, sum and weight as fusion strategies for probabilities. [115]
present a bayesian model based on the scores given by the classifiers. [163] using
a SVM trained with the concatenation of the outputs. [224] follow a top-down ap-
proach: in a first stage, a coarse label is generated and, then, it is fed to the fusion
module which gives a fine-grained category. Finally, in [18] two different strategies
are compared, a uniform average and a weighted average, the latter giving better
results.

3.2 Data, hardware, and acquisition setup

This section describes the dataset, the hardware used to record the data, and the
system’s physical settings and software infrastructure.

3.2.1 Data

The SARQuavitae Claret dataset consists of a total of 31 sequences of 1-3 minutes
of duration each, with 14 elderly people performing different scripted scenarios that

1This is not stated in the published manuscript, but in an errata document. Check [75] and the er-
rata document for more detail: http://jhmdb.is.tue.mpg.de/show_file?filename=Errata_JHMDB_
ICCV_2013.pdf

2The concatenation of the Viewpoint Feature Histogram (VFH) and Camera Roll Histogram (CRH).

http://jhmdb.is.tue.mpg.de/show_file?filename=Errata_JHMDB_ICCV_2013.pdf
http://jhmdb.is.tue.mpg.de/show_file?filename=Errata_JHMDB_ICCV_2013.pdf
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Modules
Vision Wearable

Task Action detection Gesture spotting & recognition
(4 actions) (4 gestures)

Hardware 2x RGB-D sensors (Kinect) 1x WIMU (Shimmer)

Type of data
RGB Accelerometer

Depth Gyroscope
Magnetometer

No. sequences 31
No. subjects 14
No. frames 3,747 + 3,701 36,858
No. actions (gestures) 86 (162)
General challenges Elderly subjects, uncontrolled behavior

Specific challenges

Ambient light Gesture intra-inter variability
reflections and shadows Device noise

Small objects
Low framerate

Depth noise

TABLE 3.1: Summary of the SARQuavitae Claret dataset characteris-
tics

involve the realisation of activities of the daily living: “taking pill”, “drinking”, “eat-
ing”, and “reading”. These activities emerge from the interaction with four different
objects: a plastic eating plate that may appear with a plastic fork, a plastic cup, a
photography book, and a small two-lid pillbox. Yet other irrelevant objects appear.
For instance, a juice tetra-brick or the objects the elderly bring to the scene, e.g.,
purses, wallets, or a walking stick. Table 3.1 summarizes the most important aspects
of the dataset.

We defined and manually annotated two levels of annotations: activities and
gestures. Whereas the vision part directly performs recognition on activities, the
wearable module requires more atomic annotations - we named gestures. The num-
ber of gesture classes coincide with the number of activities, those being “spoonful”,
“drink”, “turn page”, and “take-pill”. These more atomic annotations reduce intra-
class variability of the original activities, making the task of the wearable model
easier. Figure 3.1 introduces both the visual data (frames), whereas Figure 3.2 and
Figure 3.3 show respectively the interaction objects and gesture data (accelerome-
ter’s gestures).

For the manual annotation task, we first synchronized the streams of the two
cameras along with the one from the sensor. Then, we annotated both activities and
gestures at frame-level. In the case of the activities, beginning and end coincide
with the interaction with each particular object – an interaction being considered the
intentional manipulation of an object. For instance, for “eating” the activity starts
when the subject reaches the dish and/or fork, continues during a variable number
of spoonfuls, and finishes when the subject drops the fork after the last spoonful. On
the other hand, we defined the beginning and the end of gestures in different ways
depending on the class. For “take-pill”, “drink”, or “spoonful”, the gesture begins
when the hand – already touching either the pillbox, cup, or fork – starts accelerating
towards the mouth of the subject and ends in the very same instant when the hand
starts accelerating again moving away from the mouth. In the case of “turn page”,
the gesture begins when the page starts to be turned and ends when it has been
completely turned.

The dataset presents several challenges that have to be addressed:
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FIGURE 3.1: The visual data acquired, with color frames in the top
row and depth maps in the bottom row. First and third column corre-
spond to view from RGB-D sensor #1, whereas second and fourth to

sensor #2

FIGURE 3.2: Views of the objects the elder is asked to interact with

FIGURE 3.3: Examples of the four gestures’ accelerometer readings in
the three axis, x (red), y (green), and z (blue)
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Objects’ viewpoint variability and size. The objects can present heavy changes in
terms of appearance in the color cue, due to either partial occlusions or the view-
point. The viewpoint might in fact cause also huge variations in the objects’ shape
observed from depth maps. Note the variability of the blue book, opened versus
closed in Figure 3.1. What is more, the relatively small size of some of the objects
causes them to be completely shapeless when observed at 2 meters distance because
of the inherent noise introduced by the Kinect depth sensor.

Uncontrolled behavior and introduction of external objects. Despite the scenar-
ios were scripted to ensure a balance of activities’ examples in the dataset, the partic-
ipants were not always following the given instructions, thus introducing a certain
degree of improvisation in the scenarios; such as, for example, the entrance of exter-
nal objects – like the walking stick in the righmost frame of Figure 3.1.

Direct sunlight and specular surfaces. As seen in Figure 3.1, because of the light
coming from the window, one of the views are darker (second and fourth frame)
than the other (first and third). Moreover, sunlight reflections into shiny objects can
also increase the noisiness of the depth sensor reading. In the view corresponding
to second and fourth frames in Figure 3.1, the table surface reflects ambient infrared
light coming straight from the window.

Inter- and intra-variability of activity/gesture examples. Some of the activities/gestures
we are intended to recognize are quite similar one to another: the arm movement
is very similar in “drinking” and “taking pill” from the perspective of the vision
module. In addition, in the inertial cue, there is also a certain degree of similarity
between gestures of different classes compared to the “no-gesture” – that is, when
the participants are almost steady. On the other hand, the dataset presents a sig-
nificant variability within each category regardless of the data cue utilized. This
becomes particularly evident when observing the recorded instances of “reading a
book”/“turn page”. In addition, dealing with the inertial data becomes even harder
when the sensor is worn by elderly people with shaky hands.

3.2.2 Hardware

We used two RGB-D cameras, each connected to a different laptop computer. Among
the existing RGB-D cameras, we chose the popular Kinect device for its price and re-
liability. The device uses a structured IR light pattern which is projected to the scene
by the emitter and read back by the IR sensor.

Among existing WIMU sensors, we chose Shimmer, which consists of accelerom-
eter, gyroscope, and magnetometer. An IMU is a high-frequency sampling sensor;
and particularly Shimmer is able to sample in a wide range of frequencies, up to
200Hz. In contrast to other IMU providing inertial data in millivolts (mV), the Shim-
mer device converts the mV to standard units, that are m/s2 for accelerometer, rad/s
for the gyroscope, and Gauss for the magnetometer. The device can also stream the
signals to other devices via Bluetooth.

3.2.3 Acquisition setup

The Kinect devices were both elevated at 2 meters height using tripods and pointing
to the table in which the activities took place. In both views, the closest table point
was at 1 meter and the furthest at 1.8 meters. The devices recorded the scene from
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complementary viewpoints with intersecting frustums, so as to obtain the most com-
plete picture of the scenario. However, using such setup, IR patterns interfere with
each other causing the devices to provide unreliable depth measures. The solution
adopted was to use two Kinect for Windows edition, which offered the possibility to
turn on and off the IR-emitter. Since the turn-on/turn-off have to be synchronous,
we implemented a ping-pong recording setup alternating in time the devices’ acqui-
sition. While this solved the problem, it also reduced the sampling rate to 4 FPS (2
frames per second and per view); and the exact time was determined empirically
from an experiment explained in more detail in Section 3.4.1.

The Shimmer sensor was attached with a velcro strap to the right wrist of each of
the participants. We set the sampling rate to 25Hz with the aim to minimize delays
on the communication due to data processing bottlenecks. Since the sensor commu-
nicates over Bluetooth, and this technology has a short range, we used an Android
phone as a bridge for transmitting data from this Personal Area Network (PAN) to
the Local Area Network (LAN) by emitting over WiFi to a laptop computer. The
phone is also responsible of time-labeling the samples using a timestamp. This con-
figuration increases the freedom of the user in the environment and provides a more
realistic setting. Since the magnetometer measurements depend on the sensor’s ori-
entation w.r.t. the magnetic north, we discarded these features so as to make the
gesture recognition magnetic-orientation invariant.

3.3 System

The proposed system consists of two main components, the vision component and
the wearable one. After performing separately, a third component integrates their
outputs in a late fusion fashion, as shown in Figure 3.4.

In the vision module, multi-modal Dense Trajectories (MmDT) are extracted from
the multiple RGB-D streams acquired from the Kinect devices. We refer to the DT
as “multi-modal” since a HON descriptor computed from the depth modality in
addition to the ones from RGB. The additional depth-based descriptor adds extra
geometric/shape information to the appearance or motion information throughout
the trajectory.

Following a Bag-of-Visual-Words approach, we generate next a set of codebooks
for the different kinds of MmDT features: shape features of the trajectories (“TS”
from now on), HOG, HOF, MBH, and HON features; making a total of 5 codebooks.
Codebooks are multi-view, i.e., they are trained using MmDT from different views.

For the detection, we slide a temporal window over the videos. A word repre-
sentation is built for each window and descriptor. We then determine its category
using a SVM classifier. The classifier is trained with examples of each of the activities
(positives) altogether with negative examples.

The wearable module preprocesses the acceleration and angular velocity data as
a first step. Since raw inertial data is inherently noisy, we normalize and filter out
outliers. Then, we extract a set of features that are: raw data from accelerometer,
sorted data from accelerometer, jerk, and complementary filter.

Secondly, the module clusters the data in order to find a set of representative
gesture models. For each model, we learn a distribution of alignment costs (from
a separate data sample), in such a way during the prediction phase we can simply
threshold the alignment cost of any potentially observed gesture instance and hence
determine if it is one of the gesture classes being performed. For the computation of
thresholds, we use a random-selection Montecarlo method.
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FIGURE 3.4: General pipeline of the system consisting of two mod-
ules: a vision module and a wearable module
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Finally, the fusion module takes the binary outputs of the vision and wearable
components and fuses them. This is done by applying the intersection. This is a fast
method which improves the performance over the single modalities.

3.3.1 Vision module

The vision module implements a pipeline with three main stages: the feature extrac-
tion, the construction of a mid-level representation, and the sliding window-based
action detection itself. Next, we explain in more detail each of the stages of the vision
pipeline (illustrated in Figure 3.4).

Multi-modal Dense Trajectories (MmDT)

While Dense Trajectories descriptors (TS, HOG, HOF, and MBH) are computed solely
from the color cue, we compute the surface normals on the RGB-registered depth
maps and summarize the orientations of the normals within trajectory-aligned re-
gions in a Histogram of Oriented Normals (HON) that we add to the usual descrip-
tors from the color modality. Figure 3.6 illustrates the construction of MmDT. Next,
we briefly explain how we compute the HON representation of a depth map.

Histogram of oriented (depth) normals (HON) Based the work of [170], we com-
pute a histogram counting the orientations of normal vectors computed from depth
map. In order to do so, we first transform the map to a point cloud R in which we
have 3D points in “real-world” coordinates (values representing actual distances in
R3). Then, finding the surface normal 3D vector at a given point r = (rx, ry, rz) ∈ R
can be seen as a problem of determining the perpendicular vector to a 3D plane tan-
gent to the surface at r. Let denote this plane by the origin point q and its normal
vector u = (ux, uy, uz) ∈ R3. From the neighboring points K of r ∈ R, we first set q
to be the average of those points:

q ≡ r̄ =
1
|K| ∑

r∈K
r. (3.1)

The solution of u can be then approximated as the smallest eigenvector of the
covariance matrix A ∈ R3×3 of the points inRKr . The sign of u can be either positive
or negative, so we adopt the convention of consistently re-orienting all normal vec-
tors towards the depth sensor z viewpoint. In Figure 3.5, we illustrate the normals
extracted.

The normal vectors already computed are represented in cartesian coordinates
using 3 parameters. However, when expressing them in spherical coordinates (ra-
dius r, inclination θ, and azimuth ϕ), one of the parameters (r) turns out to be
constant in our case. This more compact representation is calculated as follows:
θ := arctan (uz/uy) and ϕ := arccos

√
(u2

y + u2
z)/ux. Hence, the final HON repre-

sentation consists of a two-dimensional δθ × δϕ histogram, with each bin counting
occurrences of pairs of (θ,ϕ). This structure is vectorized an added as the fifth feature
of our MmDT framework.
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FIGURE 3.5: Surface normals computed from a depth map in which
a person tries to reach some objects. Black dots are 3D points and red
lines are vectors representing surface normals (arrow heads are not

drawed for the sake of the visualization)

Mid-level Bag-of-Visual-Words (BoVW) representation

Since MmDT are locally extracted along videos, we need to compute a mid-level
representation for each temporal segment we are intended to classify later during
the detection phase. As in [185], we use a BoVW-like approach. For this purpose, we
generate multi-view codebooks of kvis visual words as K-Means (with the euclidean
distance metric) from a sample of M examples each, one for each of the five trajectory
description types: D = {TS, HOG, HOF, MBH, HON}. From them, we generate the
mid-level representations or words. The words simply count the frequency of each
of the kvis codes in a particular temporal video segment.

Action detection

In order to perform detections in a video sequence, we follow a sliding window
and detection-by-classification approach. We choose BoVW to be particularly con-
venient in the sliding window scenario. Having the BoVW representation computed
at frame-level, it is possible to compute the representation of a window centered at
certain frame in an "integral" efficient way.

Let us denote B ∈ Nkvis×F a matrix-like structure representing the set of BoVW
descriptors for a sequence of F frames as columns. Then, the representation BoVW
representation of a window wt centered at frame t can be computed as follows:

wt :=
t−b s

2 c−1

∑
i=t+b s

2 c
B:,i, (3.2)

where wt ∈ Nkvis , s the width of the window, and B:,i the i-th column of B. Note
however this equation can be efficiently computed using the column-wise accumu-
lated version of B, namely B̃. If we define the t-th column of B̃:,t = ∑t

i=0 B:,i. Then,
wt = B̃:,t+b s

2 c − B̃:,t−b s
2 c−1. Finally, and prior to the classification, each resulting win-

dow descriptors is L1-normalized, ŵ = ||w||1.
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In order to classify a window, we use a non-linear SVM with a RBF with chi-
square kernel. As in [185], the different trajectory descriptors are combined at kernel
level [176]:

K(ŵi, ŵj) := exp

(
− ∑

d∈D
ε(d)

1
ζ̄(d)

ζ(ŵ(d)
i , ŵ(d)

j )

)
, (3.3)

where ζ(ŵi, ŵj) is the chi-square distance between the pair of window descriptors
(ŵi, ŵj), ζ̄(d) is the mean chi-square distance among training d descriptors, and ε(d)

is an experimentally chosen weight assigned to d. The weights sum up to 1. Words
are l1-normalized as suggested for the computation of non-linear kernel maps [178].

Finally, we generate the detection output. Since we slide temporal windows of
different sizes, at a certain position t windows from different sizes can give different
responses. Let us define Y ∈ N|Ω|×F as the response matrix for a particular video,
where Ω is the set of action categories and F the duration of the video. Then, given
a category ω ∈ Ω and temporal instant t, Y is assigned as follows:

Yω,t−b s
2 c:t+b s

2 c := 1{g(ŵt) = ω}, (3.4)

where 1{·} is the indicator function and g(·) is the functional representation of the
multi-class classifier. In other words, if the classifier’s response for the window de-
scriptor ŵt is class ω, the set of positions {(ω, i) | t− bs/2c ≤ i ≤ t + bs/2c} in Y
are marked as positive detection, i.e. 1.

3.3.2 Wearable module

The wearable module takes accelerometer and gyroscope data recorded using the
WIMU and learns the models with the goal of detecting the gestures. First of all,
features are extracted from the raw data, namely, raw acceleration, “sorte” accel-
eration, complementary filter, and “jerk”. The large variability in the execution of
gestures motivates to look for different patterns under the same named class. In
this sense, we apply a clustering strategy over segmenting gestures in order to ob-
tain the most representative models for each class. The detection of gestures in a
sequence requires the elastic comparison of each possible sub-sequence with all the
model gesture patterns. For this task, we use Dynamic Time Warping (DTW). The
final detection of a gesture is obtained when the accumulated aligned similarity be-
tween a sub-sequence and the tested pattern is below an acceptance threshold. The
selection of the threshold is a critical step for obtaining accurate detection results. In
the training step one has to find an acceptance threshold for each candidate gesture.
However, if we use multiple models for each gesture the process becomes consider-
ably more complex. For this reason a Montecarlo optimization technique is used for
establishing the acceptance threshold for each sub-pattern in each gesture.

Next, we describe the details of this module, corresponding to the left part of
Figure 3.4.

Feature extraction

Prior to the feature extraction, we smooth the sequences using a mean filter with
kernel size of 10 samples. Errors in the measurements in the form of outliers that
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largely deviate from the mean are removed by applying a thresholding operation on
values above or below three standard deviations.

With the input signal properly preprocessed, we compute a set of features. These
features are the following:

Raw accelerometer data Data recorded on the scenario regarding only to accelerom-
eter. Used in some works as in [105].

Sorted accelerometer A set of discrete features which account for a relative rank
among the three axis of the accelerometer is defined. For each sample we assign a
value (-1, 0 or 1) according to the ranking of its value compared to the other axis, i.e.
the axis with the lowest value is set to -1, the axis with the largest value is set to 1,
and the remaining one to 0.

Complementary filter The complementary filter mixes gyroscope and accelerom-
eter values in order to get a smoother signal with less noise and transforming acceler-
ation into rotations. In essence, we transform the acceleration vector a = (ax, ay, az) ∈
R3 of each sample into the rotation vector, then we apply a low-pass filter to the ac-
celerometer in order to remove noise, and a high-pass filter to the gyroscope for
removing the drift (an almost constant component). Then we merge both mea-
sures in order to get the orientation of the sensor. The rotation vector from the ac-
celerometer is computed as follows: α := cos−1(ax/||a||2), β := cos−1(ay/||a||2), and
γ := cos−1(az/||a||2). Then, for each sample i we are able to apply the complemen-
tary filter defined on the next equation:

C(i)
x := σψ

(i)
x + (1− σ)α(i), (3.5)

C(i)
y := σψ

(i)
y + (1− σ)β(i), (3.6)

C(i)
z := σψ

(i)
z + (1− σ)γ(i), (3.7)

where (ψx, ψy, ψz) represent the gyroscope values, while the value of σ controls the
response of the filter. As demonstrated in [81], the complementary filter reduces
drift and noise presented by accelerometer and gyroscope while maintaining the
computational complexity (compared to Kalman Filter [101]).

Jerk We use Jerk, which is the derivative of the acceleration j(t) = da(t)
dt . It shows

the transitions of the acceleration and is numerically computed using centered dif-
ferences [17].

Sequence similarity using Dynamic Time Warping

The DTW algorithm aligns two time-series of different length and returns an align-
ment cost [180]. This particular property makes possible to compare sequences with
different duration without losing information. This procedure is used in two differ-
ent steps in our system. First, it will be used as a similarity metric in the definition of
the sub-patterns in each gesture category. And second, it will be used when check-
ing the sequence against each sub-pattern, both in the training step for the threshold
selection and then in the test step for the detection.
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Sub-gesture selection

As previously commented, we observe a large variability in the way a gesture is
performed. This motivates the search of a set of models under each gesture category.
In order to perform this task we use K-Medoids algorithm using DTW as a distance
function. The training sequences are segmented in order to obtain the individual
gestures. Then, we compute the DTW alignment costs for all of them. Because DTW
is not a proper metric (it is not symmetric) we define a pseudo-metric by adding to
the DTW matrix its transpose. The result of the K-Medoids is a set of kwear training
examples. These examples will be considered as different model prototypes, Mi, for
the gesture.

Gesture detection

The dynamic programming matrix from DTW enables the reconstruction of the match-
ing path. This provides the temporal extent of the matched pattern within a se-
quence of observations. Because we want to detect full patterns inside the sequence,
we need to set the first column of the dynamic programming matrix to infinity. In
this way we ensure the best alignment to always start at the first row. Also, we want
the algorithm to detect the pattern as a sub-sequence inside our full sequence. For
doing so, we set the first row to 0, then we allow a gesture to begin at any position.

A cell {i, j} of the DTW matrix is computed by taking the minimum of the three
upper-left neighbours min({i − 1, j}, {i, j − 1}, {i − 1, j − 1}) and adding the eu-
clidean distance between the two corresponding frames. Since the last row of DTW
matrix represents the alignment cost of a certain pattern against a sub-sequence, we
should expect that a gesture will have lowest value than other parts of the sequence.
Then, we use a threshold per model for detecting the gestures. Next, we explain
Montecarlo optimization for the selection of those thresholds.

Montecarlo threshold optimization As commented, the main difficulty for learn-
ing the acceptance thresholds is the multiplicity of models for each gesture. The
problem lies in the fact that the groundtruth data only defines the gesture category.
However, because we have several models per gesture we do not know which model
best represents that gesture in a given sequence. The naive strategy for solving this
problem would be to select a single acceptance threshold for all models in a ges-
ture. However this severely hinders the expression power of each of the models. We
opt for learning a different threshold per gesture model. Thus the learning problem
needs to find the best acceptance threshold for the best model among the models for
each gesture. In order to solve this problem we use Montecarlo optimization.

We assume that given a sequence, there will be a unique model for each gesture,
since that sequence is performed by a single user. Then, for each gesture, we com-
pute all the DTW matrices associated to all the models of that gesture. We will have
as many matrices as number of models for each sequence.

Montecarlo optimization is based on randomly generating solutions of the prob-
lem at hand and choosing the solution that optimizes the objective function. This
kind of optimization technique is specially suitable when the objective function is
easily computed and the solutions are complex, for example, structured solutions.
The convergence speed of this method is very slow, of the order of the square root
of the number of samples generated.

In our problem the objective function is the F1 score. Given a set of S sequences
and Nwear models per gesture, a solution is composed by S pairs model-threshold
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{Mi, τi} out of the Nwear models, one for each of the sequences. If we order all
the sequences, this is easily illustrated as a graph in which, for each sequence we
have a node for every model. Then, a solution is the combination of the path that
goes through all sequences combined with the corresponding thresholds selection
for each model. An example of the graph is shown in Figure 3.7. Observe that
each path defines the correspondence of a single model for each sequence. Thus,
a path may involve the same model applied on different sequences. For example,
in Figure 3.7, the blue path considers M1 in sequence 1 and 2. Given a path, the
threshold selected for each model is the one that maximizes the average F1 score
over all sequences that consider that model. Each path is then scored according to
the average F1 score achieved applying the selected thresholds. The final solution
corresponds to the path that achieves the highest average F1 score.

M1

M2

Mn

...

M1

M2

Mn

...

M1

M2

Mn

...

…

…

…

Sequence 1 Sequence 2 Sequence m

Path 1 => Avg. F1 for the selection [ (S1,M1), (S2, M1), …, (Sm, M2)]

Path 2 => Avg. F1 for the selection [ (S1,M1), (S2, M2), …, (Sm, M1)]

Path 3 => Avg. F1 for the selection [ (S1,M2), (S2, M2), …, (Sm, Mn)]

FIGURE 3.7: The montecarlo threshold-selection method

As a practical note, in order to define the range of thresholds we evaluate for
each model, we compute the DTW matrices corresponding to each model over each
training sequence. Using the annotations of the groundtruth, we can get the align-
ment costs of each of the gestures. We take not only those values but also, the ones
corresponding to the frames close to the end point defined by the groundtruth. All
these values will be used as positive samples. By doing so, we allow a certain dis-
tortion on the gestures. The parameter that controls the number of points we take is
called tolerance and is a percentage over the length of the gesture. We also consider
all values corresponding to negative points. The range of thresholds to be evaluated
goes from the minimum value of the positive samples up to the first quartile value
of the negative ones.

3.3.3 Integration module: learning-based fusion

Given a particular time instant, the vision and wearable modules provide a detec-
tion decision for each of the activity/gesture classes. We designed a learning-based
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fusion strategy consisting on stacking a centered window of size around each pre-
dictions of size ωN on a 2ωN-valued feature vector representation that can be input
to a discriminative classifier:

xv+w = [yv
1 , yv

2 , . . . , yv
ωN , yw

1 , yw
2 , . . . , yw

ωN ] ,

where [·] is the concatenation operation and yv ∈ {0, 1} and yw ∈ [0, 1] are predic-
tion values, respectively, from the vision and wearable module. Note the prediction
values from the wearable module are binary, whereas the ones from the vision one
are real-valued confidences. The latter are calculated as the ratio of positive binary
predictions for different sliding window sizes divided by the total number of win-
dow sizes.

In order to perform the classification, we train a neural network per activity class,
consisting of a 2ωN-neuron input layer, two fully connected layers and 2-neuron
output. The net is trained using adam optimizer and cross entropy loss function. For
the output layer, we use a soft-max function.

During the training of each epoch, we feed the net with 80% positive examples
and 20% of negatives. Hence, the loss function is weighted in order to compensate
the bias introduced by this difference.

3.4 Results

First, we illustrate the experiments carried out to establish some settings in the dif-
ferent components of the system and detail which are the system’s parameters. We
also explain different strategies to fuse the outputs of the visual and inertial modules.
Finally, we illustrate the results of the two main modules separately and eventually
the visual-inertial fusion results.

3.4.1 System settings and parameters

In this section, we first present a preliminary experiment for the IR-emitter’s delay
calculation and then we introduce the parametrization of each system’s module.

IR-emitter turn-on time delay

The blocking turn-on instruction of Kinect for Windows does not ensure the IR light
bulb having reached full power before the acquisition of a new depth frame – thing
that causes erroneous depth map readings. In order to determine the “real” re-
activation time, we performed the following experiment: we fixed a sensor in an
indoor still scene and captured 2,500 depth maps, selecting one out of those as a
reference frame. Next, we subtracted the reference frame to each of the rest and cal-
culated for each of those frame differences the accumulation of absolute differences,
i.e. the magnitude of the difference of that frame respect to the reference. Figure 3.8
depicts these magnitudes in function of the turn-on time the blocking instruction
took, as well as the effect of forcing a turn-on delay or none (0 ms) instead of relying
on the instruction’s own optimistic delay. Given the results, and seeking to ensure
a balance in the frames’ quality/quantity trade-off, we decided to force a minimum
time delay of 275 ms.
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FIGURE 3.8: Error introduced by the IR bulb forcing different time
delays in milliseconds (ms) or none (0 ms)

Vision module parameters

In the vision part, we decided to stick to the default parameters for the computation
of DT[185] when possible. The number of words in the multi-view codebooks are
kvis = 4, 000, the sample of trajectories used to compute each codebook is of size
200,000 (100,000 per view), and SVM regularization parameter set to 1. These pa-
rameters have been largely validated in many action recognition datasets and thus
guaranteed to provide state-of-the-art results. Notwithstanding, we set the trajec-
tory length to a lower value of L = 4, more suited to our framerate than the original
value of 15. This was done after experimentally testing different values for L in the
set {3,4,5}.

Some parameters were fixed also for the computation of HON descriptors. The
radius distance when computing the normal vectors was set to 2 cm, this being a
standard value used in object recognition scenarios [1]. For the construction of the
HON histogram, δθ and δϕ were both set to 5.

For the negative mining of examples in the classification, we randomly sampled
temporal segments having less than 0.2 of temporal overlap with activities’ annota-
tions. In particular, we sampled 10 negatives for each positive example. Moreover,
we also included 1 million negative trajectories during the generation of codebooks,
apart from the 200,000 from the positive examples.

Finally, in order to determine the optimal set of weights $ to assign to the dif-
ferent modalities when computing the SVM kernel during the action detection, we
performed an exhaustive search in the training set. For this purpose, we generated
all the possible 5-sized vectors of weights that sum up to 1 with incremental steps of
0.1 and evaluated average classification accuracy on the set of pre-segmented action
gestures. Moreover, the weights were optimized independently for each action.

Wearable module parameters

Regarding the wearable module, there is also some parameters that needed to be
validated. One of them is the parameter that controls the number of clusters (or pro-
totypes) computed by K-Medoids. This depends on the complexity of each gesture
class. We tested 1, 2, and 3 prototypes. No more classes are considered due to the
reduced number of instances per gesture class.

When we are reconstructing our gesture predictions using DTW, it is common
to have more than one reconstruction. This means that there are several matching



3.4. Results 33

paths that reached a cost below the threshold. This phenomenon is caused by having
low values along the DTW matrix spread over their neighbour cells. A parameter
regulates the activation of these reconstructions by thresholding the reconstruction
cost. The tested values were 5, 10, 15, 20, 25, and 30 activations. Moreover, and in
order to avoid short activations, we set a minimum length for considering a gesture.
The values tested are 0, 10, 15, 20, 25, and 30 frames.

A tolerance parameter was introduced in Section 3.3.2 that controlled how many
frames around a gesture end are considered so their values are put inside the positive
bucket. Having a large value here will make our threshold be too large and then we
will let pass a bigger number of false positives. This value has been experimentally
set to 0.2.

Regarding the Montecarlo method, a number of samples has to be defined. We
have set this value to 10K. As it can be seen in the following section, increasing the
number of paths does not involve a large computational effort. The expected error
rate is E = 1√

n . By setting n to 10K, we expect an error rate of 0.01 which we consider
is enough for the system.

3.4.2 Efficiency and computational cost

The vision module is based on the DT framework, which originally runs at 10-12
fps in VGA video. However, we extended the set of descriptors with HON, thus
involving the computation of surface normals. The computation of normals is an
expensive process when done naively, but can be greatly optimized by parallelizing
computations or using approximated methods. If optimized, this module could run
much faster than the 2-fps acquisition rate of the two Kinects.

In the case of the wearable module, there are two expensive processes: DTW ma-
trix computation and Montecarlo threshold optimization. DTW matrix computation
is O(modellength · sequencelength), but it is not easily parallelizable. The Monte-
carlo threshold optimization can also expensive if no optimization is applied. In our
case, we have designed the algorithm in order to first precompute all the needed
values, that is, when computing a path, the algorithm only has to select values, but
do not compute them.

3.4.3 Experimental results on SARQuavitae dataset

We validated the proposed system in the SARQuavitae dataset. We first explain the
validation procedure and then we illustrate the results got by both the individual
modules and the fused results from the fusion module.

In the experiments, we used a leave-one-subject-out cross-validation (LOSOCV)
procedure in order to ensure a proper generalization of the methods. Besides, in
order to validate any of the parameters described in 3.4.1, we used an internal cross-
validation within the training partition of the LOSOCV.

We used two different metrics in order to quantify the performances: F1-score
and intersection-over-union (IoU) overlap. During the computation of the F1-score,
we use a 20% of minimum overlap in order to consider a true positive detection.
These results were calculated at sequence level and averaged within the correspond-
ing LOSOCV’s fold. Then, the final performance was calculated averaging again the
performances of all the folds.

We separately computed the performance for all the classes, so we can better
illustrate performance issues and difficulties of the system. Regarding the F1-score,



34 Chapter 3. Multi-modal and multi-view Dense Trajectories for action detection

Modalities
Action name TS HOG HOF MBH HON Accuracy

Drinking 0.5 0 0 0.3 0.2 91.54%
Eating 0.1 0.1 0 0.4 0.4 86.42%

Reading 0.2 0.1 0.1 0.1 0.5 91.57%
Takingpill 0 0 0.4 0.1 0.5 83.80%

TABLE 3.2: Best performing weight combinations for each of the
classes (in terms of accuracy)

if neither the groundtruth nor the prediction presented any activation, we counted
the F1-score to be 1.

In the case of IoU overlap, an additional parameter is also taken into account,
which is the number of do-not-care frames. This value regulates the amount of dis-
crepancy in the borders of the detections when evaluating respect to the groundtruth.
Since, a system of this nature does not need a perfect matching but only a rough de-
tection, we could afford using relatively large do-not-care values. The maximum
do-not-care value used in the later validation is approximately half of the shorter
action’s duration, i.e., 50 frames.

Vision experiments

As a preliminary analysis was to determine somehow the contribution of the dif-
ferent modalities in the action detection task. Since we need to find the best set of
v weights for each subject, we can average the performance of all the weight com-
binations across the LOSOCV’s training partitions. The set of weights selected per
action is illustrated in Table 3.2. These weights provided us some intuition about
the contribution of HON. It demonstrated to be very relevant for the task of action
recognition and complementary to the other modalities. TS and MBH also demon-
strated to be quite important, in contrast to HOF and HOG, with the latter being the
less relevant in our dataset.

Once we had selected the weights, they were used in the action detection task. In
Figure 3.9a and Figure 3.9b, we illustrate the performance of the detection, respec-
tively, in terms of F1-score and IoU overlap. These results show the performance of
the vision component in detecting quite differs from one action to another. It is able
to more successfully detect “eating” and “drinking” actions, while not doing so well
at “eating” or “takingpill”. Our hypothesis is that the vision part is better at detect-
ing large actions than smaller ones. This causes overlap values to be larger, whereas
in terms of F1 the detector is highly penalized.

Wearable experiments

Regarding the use of K-medoids and Montecarlo methods in order to have more
than one model per class, we performed the same experiments with both modalities.
In Figure 3.9c and Figure 3.9d, we can see the improvement, respectively, over to
Figure 3.9e and 3.9f. This is due to the better representation obtained by establishing
different models per class. Given the nature of this dataset (recorded in the wild,
without constraints), the intra-class variability is expected to be large. From the
results presented in the supplemental material, it is observed that this happens even
with the better representing features we have computed. From these results, we
demonstrate the convenience of computing sub-classes in order to better model the
gestures.
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From the final results, one can see the classifier is outperformed in most off the
cases by the wearable module, something we expected given the difficulties pre-
sented by the module in terms of intra-class variability. The most difficult class in
terms of F1-score (concerned to the number of detections) is taking-pill. As it has
been shown in the supplemental material, it is the one that is more confused against
the others. Nonetheless, eating and drinking, that are the ones obtaining greater
F1-scores, were the ones with less confusion as observed in the distance matrices.
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FIGURE 3.9: Detection performances of single modules
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Integration experiments

The two modules, vision and inertial, are able to provide binary detection outputs
for each of the classes in a particular time instant. Given that, intersection and union
are possible alternatives to our learning-based fusion strategy to come up with the
final integrated detection. We hence report these as baseline results to compare the
learning-based integration.

Recall our goal is to detect actions, not precise temporal localization. Nonethe-
less, we analyze first overlap results. In Table 3.3 and Table 3.4, we show the results
of the three different integration strategies in terms of both F1-score and IoU over-
lap respectively. We found the vision module performing individually was the most
successful in 3 out of 4 classes. Nonetheless, the neural network is able to improve
by 2% respect to the vision module.

More importantly, learning-based approach improves F1-score results respect
single modalities or baseline integrations for all the classes except for “Drinking”
(-4%) and obtained a particularly large improvement for “Taking-pill” (+12%) and
“Reading” (+10%). In average, the learning-based fusion improves the vision mod-
ule by 6%.

For the sake of completeness, we also illustrate the effect of varying the minimum
overlap for TP in detection and the don’t care size (varying the number of frames)
have on learning-based (Figure 3.10a-3.10b), intersection (Figure 3.10c-3.10d), and
union (Figure 3.10e-3.10f) integration strategies.

Single modalities Integration
Vision Wearable Intersection Union Learning-based

Taking-pill 0.93 0.61 0.87 0.51 0.54
Drinking 0.89 0.42 0.80 0.56 0.67

Eating 0.38 0.27 0.27 0.27 0.33
Reading 0.58 0.16 0.57 0.30 0.60

TOTAL (mean) 0.69 0.36 0.63 0.41 0.53

TABLE 3.3: Results in terms of overlap, for each of the classes and for
all the integration strategies

Single modalities Integration
Vision Wearable Intersection Union Learning-based

Taking-pill 0.22 0.04 0.00 0.08 0.34
Drinking 0.46 0.32 0.30 0.37 0.42

Eating 0.48 0.26 0.06 0.22 0.49
Reading 0.05 0.10 0.04 0.05 0.20

TOTAL (mean) 0.30 0.18 0.10 0.18 0.36

TABLE 3.4: Results in terms of F1-score, for each of the classes and for
all the integration strategies

The learning-based integration proved to be the most successful strategy for ac-
tivity detection, achieving better F1-score than single modalities or baseline integra-
tions (union/intersection). In fact, the results in terms of F1-score and IoU overlap
indicate that our system is more effective for action detection than temporally pre-
dicting their temporal extent. For the latter task, the vision module performs bet-
ter. The vision module uses action groundtruth annotations, whereas the wearable
one uses gesture annotations. Therefore, when both modules are fused, the tempo-
ral extent of actions predicted by the integration no longer coincide with the action
groundtruth. Nonetheless, determining if the elder took the medication is far more
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important in a system of this kind than knowing the exact time frames in which the
action occurred.
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Chapter 4

Enhanced action classification via
Ensemble Learning

Action recognition is considered a multi-class classification task where each action
type is a separate target class. A classification system involves two main stages:
selecting and/or extracting informative features and applying a classification algo-
rithm. In such a system, a desirable feature set can reduce the burden of the classifi-
cation algorithm, and a powerful classification algorithm can work well even with a
low discriminative feature set. In here, we aim to enhance the effectivity of the clas-
sification module when recognizing human actions. In particular, we argue that the
discriminative power of encoded information cannot be fully utilized by a single-
classifier recognition technique. And the weakness becomes more evident when
the complexity of the recognition problem increases because of many action types
and/or similarity of actions, i.e. having small inter-class and large intra-class vari-
ance.

We evaluate the performance of an ensemble of action leaners, each perform-
ing the recognition task from a different perspective. The underlying idea is that
instead of aiming a very sophisticated and powerful representation/learning tech-
nique, we can learn action categories using a set of relatively simple and diverse
classifiers, each trained on a different feature set. Combining the outputs of several
learners can reduce the risk of an unfortunate selection of a learner on an unseen
action recognition scenario [86]. Thus having a more robust and general-applicable
framework. In order to improve the recognition performance, the Dempster-Shafer
Fusion combination strategy is utilized based on the Dempster-Shafer Theory, which
can effectively make use of a diversity of base learners trained on different sources of
information. The experimental results show that the strategic combination of these
learners can significantly improve the recognition accuracy.

The chapter is organized as follows: Section 4.1 briefly surveys the related work
on multiple classifiers systems and then introduces Dempster-Shafer Fusion; Sec-
tion 4.2 presents the framework of our multi-classifier fusion for action recognition;
and, finally, Section 4.3 evaluates the proposed method and discusses results.

4.1 Related work

A multiple classifier system [86, 134] is made up of an ensemble of individual clas-
sifiers whose outputs are combined in some way to ideally obtain a more accurate
classification decision. In an ensemble of classifiers, it is expected each base clas-
sifier will focus on different aspects of the data [134]. However, the success of the
ensemble approach depends on the assumption that single classifiers’ errors are un-
correlated, which is known as classifier diversity in the background literature [201].
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If each classifier makes different errors, then the total errors can be reduced by an
appropriate combination of these.

Once a set of classifiers is generated, the next step is to construct a combination
function to appropriately merge their outputs, also refered to as decision optimiza-
tion. The most straightforward strategy is simple majority voting, in which each
classifier votes on the class it predicts, and the class receiving the largest number of
votes is the ensemble decision. Other strategies for combination function include
weighted majority voting, sum, product, maximum, minimum, fuzzy integral, deci-
sion templates, and the Dempster-Shafer (DS) based combiner [82, 86]. Inspired by
the DS Theory of Evidence [33], a combination method is proposed in [144], which is
commonly known as the Dempster-Shafer Fusion (DSF) method. By interpreting the
output of a classifier as a measure of evidence provided by the source that generated
the training data, the DS method fuses an ensemble of classifiers.

In this work, after extracting a set of visual feature sets, we train different action
learning models whose outputs are fused based on the DS fusion algorithm. As a
result, we show that we can merge predictions made from different learners, trained
in different feature spaces, with different dimensionality in both feature space and
action sample length. Following the multiple classifiers philosophy, we show that
the proposed ensemble approach outperforms standard non-ensemble strategies for
action recognition.

Here we introduce the Dempster-Shafer Fusion used to combine the classifiers in
Section 4.2.

4.1.1 Dempster-Shafer Fusion

Let H = {H1, . . . ,HNH} denote an ensemble of already trained classifier models
on a classification problem on Ω = {ω1, . . . , ωNΩ}, i.e. the set of possible category
labels. Given then an unseen instance’s feature descriptor x, each classifier outputs
a class score distribution πi = Hi(x), πi ∈ RNΩ . Without loss of generality, assume
the elements of πi range in [0,1] and their sum is equal to 1. We might see πi,j as a
degree of support for class ωj by classifier Hi. The larger the degree of support, the
more likely the class label ωj.

Following [86], we derive the fusion in terms of decision profile and decision tem-
plates. More concretely, the decision profile of x is defined as

Π(x) =



π1,1 · · · π1,j · · · π1,NΩ
...

...
...

πi,1 · · · πi,j · · · πi,NΩ
...

...
...

πNH ,1 · · · πNH ,j · · · πNH ,NΩ


.

Having set Π(x), we can apply a wide range of techniques to find the overall
support for each ωj so we finally choose the one with the largest support. In partic-
ular, Dempster-Shafer Fusion falls into the class-indifferent category of fusion meth-
ods [86], in which the overall degree of support to ωj – hereinafter denoted as µj(x) – is
derived using the NH × NΩ values in Π(x)1.

1In contrast to these, class-conscious only use the NH degrees of support corresponding to class ωj
in order to compute µj(x) from Π(x). One example of class-conscious are simple statistics, such as
summation, averaging, or weighted averaging a particular class scores from the different classifiers in
the ensemble.
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Next step is to compute the decision templates for the different classes. In particu-
lar, the template Υ(ωj; X) is:

Υ(ωj; X) =
1

η(ωj)
∑

{xk | yk=ωj, xk ∈X}
Π:,j(xk) (4.1)

where X is the set of training instances, η(ωj) is the number of instances from X with
groundtruth class ωj, and Π:,j(xk) is the j-th column of Π(xk).

Having posed the problem in terms of decision profile and templates, we apply
the DS fusion algorithm:

1. Compute the proximity between the decision profile of an instance x and the
different class templates. Let Υi,:(ωj; X) denote the i-th row of the decision
template for class ωj and Πi,: the i-th row of the decision profile of x, then we
define the proximity measure as in [144]:

Φj,i(x) =
(1 + ||Υi,:(ωj; X)−Πi,:(x)||2)−1

∑NΩ
j′=1(1 + ||Υi,:(ωj′ ; X)−Πi,:(x)||2)−1

, (4.2)

where || · ||2 is the euclidean norm.

2. Find the degree of belief, or the amount of evidence on the i-th classifier predic-
tion of x is class ωj:

bj(Πi,:(x)) =
Φj,i(x)∏k 6=j(1−Φk,i(x))

1−Φj,i(x)
[
1−∏k 6=j(1−Φk,i(x))

] . (4.3)

3. The overall degree of support corresponding to label ωj is obtained by us-
ing Dempster’s rule, which states that evidences (degree of belief) from each
source (classifier) should be multiplied to obtain the overall support:

µj(x) = K−1
NH

∏
i=1

bj(Di(x)) (4.4)

where K = ∑NH
j′=1 ∏NΩ

i=1 bj′(Di(x)) is a normalizing constant.

4. The predicted label ŷ for x is the ωj with the largest overall degree of support
µj(x). Hence:

j∗ = argmax
j

µj(x) (4.5)

ŷ = ωj∗ (4.6)

4.2 Method

We define three classification approaches to action recognition. A first (holistic)
model, considers all the features in one and only classifier. This serves as a bench-
marking baseline to the other two ensemble-based strategies we propose. For all the
approaches, we apply the five action descriptors: space-time interest points (STIPs)
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FIGURE 4.1: Ensemble of classifiers (Ensemble II in Section 4.2) com-
bining their outputs using Dempster-Shafer Fusion (DSF).

and the five descriptors from Dense Trajectories (TS, HOG, HOF, and MBH). The ex-
tracted local features are quantized separately using Bag-of-Visual-Words in a 4,000-
bin histogram and L1-normalized.

Holistic classifier (baseline). The straightforward approach to utilize the different
extracted feature sets is to concatenate their 4,000-dimensional descriptors to form a
higher dimensional feature vector. The merged 20,000-dimensional descriptor is fed
into a single classifier to recognize action classes.

Ensemble method I. The 4,000-dimensional vectors from different representation
are fed to their corresponding classifier in the ensemble. Each classifier is hence
focusing on a particular kind of descriptor among the five (STIP, TS, HOG, HOF, and
MBH). Their outputs are fused by means of DS fusion – as detailed in Section 4.1.1.

Ensemble method II. The third approach follows the underlying idea of the Ran-
dom Subspace Method (RSM) [68], in which each classifier in the ensemble is trained
using a random subset of features. We first concatenated the five above mentioned
feature sets and the feature subsets are randomly chosen from 20,000 features. Each
subset is used to train an individual classifier in the ensemble. The outputs of en-
semble of classifiers are then combined using DS fusion. The number of classifiers
as well as the size of the feature subsets need to be experimentally chosen.

Next, we introduce the experimental results on each of the approaches.

4.3 Results

4.3.1 Data and experimental settings

We chose to evaluate our method in the UCF-101 action classification dataset [165].
UCF-101 is a large dataset of manually annotated real action videos collected from
YouTube. More precisely, it consists of 13,320 videos belonging to 101 categories, di-
vided into 5 coarse action categories: human-object interaction, body-motion, human-
human interaction, playing instruments, and sports. Looking at the videos, we can
see there is a large intra-class variation in terms of viewpoint, scale, background
clutter, illumination. Also, as expected, real videos contain camera motion, shaking,
and bad video quality, which contribute to make the problem even harder.



4.3. Results 43

For the experiments, we divided the 13,320 videos into 3 different train/test
splits, following the procedure proposed by [165]. For classification, we adopted
a histogram-intersection kernel SVM [107] as our base classifier.

4.3.2 Classification results

We report the results obtained by three different approaches (from Section 4.2) in Ta-
ble 4.1. As can be seen, the ensemble-based approaches have remarkably improved
the results. Specially, our third approach outperforms other state-of-the-art meth-
ods with an overall accuracy of 75.05% by averaging over the three training/testing
splits. This is slightly better than [130, 112] who reported an average accuracies of
73.39% and 73.10%, and remarkably better than work of Karpathy et al., which is
based on Convolutional Neural Networks (CNNs), presented at CVPR 2014 [78].
In addition, the confusion matrix of the third approach for the UCF-101 dataset is
shown in Figure 4.3. In the figure, image examples of action classes of low and
high confusion are given. In general, the actions which result in the highest amount
of confusions, and thereby the lowest recognition accuracies, are actions videos af-
fected by a high amount of camera and/or background motion.

Figure 4.2 shows the classification accuracy of the third ensemble-based approach
as a function of the ensemble size for UCF-101 datasets. These observation is con-
sistent with the results of many studies, see [123, 68] as few examples, that is, the
ensemble classification performance first improves as the ensemble size increases
and then plateaus after a demarcation point, e.g. a value around 40-50% accuracy.

Method Acc #1 #2 #3
Karpathy et al. [78] 65.4 - - -
Phan, Le, and Satoh [130] 73.39 71.10 73.67 75.39
Murthy and Goecke [112] 73.10 - - -
Rostamzadeh, Uijlings, and Sebe [146] 70.50 70.45 69.80 71.27
Nga, Kawano, and Yanai [117] 66.26 65.16 66.73 66.90
Cho, Lee, and Jiang [25] 65.95 65.22 65.39 67.24
Páez, Vanegas, and Gonzalez [124] 65.68 65.31 65.48 66.23
Chen, Xu, and Corso [22] 64.30 63.41 65.37 64.12
Burghouts et al. [15] 63.46 62.01 63.46 64.90
Nga and Yanai [118] 60.10 - - -
Wang, Li, and Shu [182] 54.74 54.76 55.16 54.29
Soomro, Zamir, and Shah [165] 43.90 - - -
Single feature classifiers
STIP + BoVW 42.56 42.12 41.89 43.67
DT (TS) + BoVW 49.88 49.76 50.05 49.83
DT (HOG) + BoVW 51.10 50.19 51.76 51.35
DT (HOF) + BoVW 46.59 46.47 46.69 46.60
DT (MBH) + BoVW 62.93 62.54 62.78 63.46
Ensembling feature classifiers
Baseline: early feature fusion 60.73 61.13 60.11 60.95
Ensemble I: DS fusion 69.10 69.43 68.09 69.79
Ensemble II: RMS 75.05 75.11 74.80 75.23

TABLE 4.1: Comparison of our proposal to accuracies (%) from state-
of-the-art recognition methods on UCF-101 (global overall accuracy

and on the 3 different train/test splits)
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FIGURE 4.2: Confusion matrix of the ensemble classification system
(third approach) for the UCF-101 dataset. The green and red arrows
point towards image examples of action classes of low (billiards shot,
punch and writing on board) and high (hammer throw and lunges)

confusion, respectively

FIGURE 4.3: Accuracy of ensemble classification method versus the
ensemble size
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Chapter 5

Darwintrees: modeling the
hierarchical evolution of
spatiotemporal dynamics in action
videos

The extra temporal dimension added by videos with respect to images makes it
harder for all kinds of recognition approaches. Among the most successful hand-
crafted methods, we find the Improved Dense Trajectories (IDT) [183] framework.
This improved version presents several advantages over the original work [185]:
(1) estimation global motion between frames to account for camera motion and
(2) aggregation into a more discriminative Fisher Vector (FV) descriptor (replacing
BoVW). Nonetheless, similarly to BoVW, FVs encode local descriptors into a com-
pact representation lacking information about spatial or temporal relations among
trajectories. Fernando et al. [47] proposes modeling the temporal evolution of fea-
tures via a mid-level representation that is able to capture the temporal dynam-
ics. After per-frame IDT+FV feature computation, a linear regressor/ranking model
learns the ordering of per-frame features in the video. The parameters of the model
are then used as a video’s functional representation that can be classified using a
discriminative classifier. The approach demonstrated its effectiveness over IDTs
and other hand-crafted methods in several action benchmarking datasets, especially
when combined with deep-learning [48].

We claim that one of the flaws of this method is a preprocessing step consist-
ing in smoothing the per-frame FV features along the temporal dimension prior to
regression/ranking. This makes the learner/ranker parameters more stable to intra-
class variations. For smoothing, a time-varying mean operation is used: at each
time instant, the per-frame features are averaged with features of previous frames.
However, this same operation has the side effect that for later frames the mean op-
eration vanishes any new information if the representation has already accumulated
so much information. Given that, [47] proposes a fix that performs videodarwin in
the reverse time direction (from the end to the beginning of the video) in order to
capture the information in the end-part of the video that is missed when performing
forward videodarwin. While this makes the method more robust for relatively short
videos, this solution is ill-conditioned for longer ones.

Our hypothesis is that a meaningful spatio-temporal segmentation of the video
would be a simple yet effective way to obtain shorter video parts that would po-
tentially suffer less from the smoothing problem caused by the time varying mean.
Gaidon et al. [52] already proposed an unsupervised algorithm, based on spectral
embedding, to build an unordered binary tree of dense trajectory clusters. They



46
Chapter 5. Darwintrees: modeling the hierarchical evolution of spatiotemporal

dynamics in action videos

compute a bag-of-words representation in each cluster and use a tree-distance ker-
nel for classification. They demonstrate the use of clusters yields a better result in
terms of action recognition.

In this work, action patterns take the form of unordered binary trees of richly
represented nodes, namely darwintrees. First, we cluster trajectories as in [52]. Then,
we use videodarwin to model the evolution of the features not only in the tree nodes,
but also along the tree branches (see Figure 5.1). Using the latter, we model infor-
mation of how the clusters and their parents relate as we keep dividing/grouping
them. This is not only a change of paradigm in videodarwin – initially thought
to model the evolution of features throughout time –, but also a way of describ-
ing variable-sized tree branches that in our experiments demonstrated to be reliable
for classification providing complementary information w.r.t. the node representa-
tions. Figure 5.2 illustrates the different stages of the proposed framework for action
recognition. We achieve state-of-the-art results in UCF Sports Actions and Highfive
datasets. Our darwintree proposal reduces the high computation and memory re-
quirements of deep-learning methods at the same time that achieves state-of-the-art
results on two benchmark datasets. Our method does not require large amounts
of data, neither clipping segments nor temporal resizing of the video. It naturally
handles long-term temporal dependencies and exploits motion information by us-
ing specifically designed motion features (in particular, MBH) for the task of action
recognition.

The remainder of the chapter is organized as follows: Section 5.1 introduces our
approach and Section 5.2 brings details about benchmarking datasets, implementa-
tion, parametrization, results, and final discussion.

5.1 Method

The proposed system for action recognition is shown in Figure 5.2. For a partic-
ular video, we first extract improved dense trajectories (see Section 5.1.1). Then,
we run a divisive hierarchical clustering algorithm based on the spectral embed-
ding using Nyström method on a matrix of tracklet similarities (see Section 5.1.2).
In a third stage, we use the derived binary tree structure to construct two main
mid-level representations: one modeling the evolution of tracklet features on nodes
and another modeling the tracklet features at tree branch level (see Sections 5.1.5
and 5.1.6). As base features, we use the well known Fisher Vectors (FV). In case
of node-videodarwin, FV are computed per frame, whereas in the case of branch-
videodarwin one FV is used as a global node descriptor. We use a kernel function
able to compute the similarity of two trees based on pairwise similarities of mid-
levels (Section 5.1.7). Finally, we apply binary SVM classifiers for the actual action
recognition. Prediction scores from different kernels are fused in an early fusion
approach by using a linear SVM classifier. The method is unsupervised until the
classification part.

Next, we describe in detail each stage of darwintrees.

5.1.1 Extraction of improved trajectories and trajectory-pooled descrip-
tors

For the computation of trajectories, we rely in improved dense trajectories (IDTs)
from [183]. Differently from DTs, improved ones account for camera motion between
consecutive frames. More precisely, feature points from two frames are matched
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FIGURE 5.1: After the extraction of improved dense trajectories
(green), we run a divisive clustering algorithm in order to obtain
meaningful groupings of trajectories. Then, we perform videodarwin
both on nodes (modeling the evolution of node frame features) and
on tree branches (modeling the evolution of node global representa-

tions)
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FIGURE 5.2: Proposed framework for action recognition. First, node
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(SVM) classifier

using a combination SURF descriptors [10] and dense optical flow vectors. Then the
homography explaining the global between those is computed using RANSAC [49].
The global motion between frames is assumed to be caused by the camera and all
the trajectories that are consistent with the homography model are thus discarded.

Among the trajectory-aligned descriptors, we only use the Motion Boundary
Histogram (MBH) descriptor since it proved to be enough to obtain state-of-the-art
results in most action recognition datasets [122] and will save us computation time.
More precisely, the average-pooled MBH descriptor for each of the nx × ny× nt cells
around the trajectory and concatenated them in a feature vector to represent the
trajectory. For the sake of simplicity, the rest parameters and details related to the
trajectory extraction are kept as in [183].

5.1.2 Clustering of trajectory paths into binary tree structures

We cluster the extracted trajectories on each particular video, each trajectory in-
stance being represented by its spatio-temporal positions and velocities, i.e. T =
{tx, ty, tz, tvx , tvy}. Note positions are vectore of size L, i.e. the length of the trajec-
tory’s path, and velocities of L − 1. We also define the mean spatial position of a
trajectory as p̄T = ( p̄x, p̄y, p̄z) = ( 1

L ∑L
i=1 tx,i, 1

L ∑L
i=1 ty,i, 1

L ∑L
i=1 tz,i).

Following the approach of [52], we first filter sparse trajectories within each video
based on a sparsity criterion. A trajectory is filtered out if the average euclidean
distance between its position p̄T and k-nearest neighbor trajectories’ positions, i.e.
1
k ∑p̄′T∈N (p̄T) ||p̄T − p̄′T||2, is greater than the mean and deviation of spatial distances
among all trajectories and their neighbors. The neighbors search N is limited to a
temporal window [ p̄z − r, p̄z + r] and efficiently computed using KD-trees.

Next is to construct a similary matrix between pairs of filtered trajectories, to be
input to the spectral divisive clustering. More precisely, a pairwise similarity ma-
trix is constructed for each feature using a RBF Gaussian kernel: KRFB−gauss(t, t′) =

exp
(
− ||t−t′||2

2d̂

)
, where t ∈ T and d̂ is the median of the distances between the cor-

responding tracklet features. Then, similarity matrices of different features are ag-
gregated via element-wise product: A = Ax �Ay �At �Avx �Avy , which ensures
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the positive-definiteness property of A. This matrix can conveniently be interpreted
as the adjacency matrix of a graph weighting pairwise affinities of trajectories from
which we want to perform optimal recursive bipartitioning cuts in order to eventu-
ally construct our binary tree-form structures.

Given a pairwise affinity matrix such as A, we can use spectral grouping/clustering,
that is, to embed the trajectories into a projection in the eigenvector space from which
we can compute the actual clusters. However, having on the order of T = 106 trajec-
tories makes the computation of A hard for any eigensolver. Nyström approxima-
tion method [51] instead, allows to use a small portion of the trajectories to extrap-
olate the results and obtain the approximate leading eigenvectors we need. After
that, we use the divisive hierarchical clustering algorithm proposed by [52] to re-
cursively threshold on the leading eigenvectors’ values and build the corresponding
unordered binary tree. As in [52], we use set the minimum and maximum number
of trajectories per cluster to be 200 and 2, 000 respectively, which helps keeping the
trees balanced.

5.1.3 Tree-based mid-level representations

At this point, we have obtained a tree-form representation grouping extracted tra-
jectories in a video. We aim next to build two intermediate representations for the
nodes to be further used in the node and branch videodarwin computation.

[52] proposed a bag-of-words (BoW) on the node trajectories as the final repre-
sentation for the nodes. Instead, we exploit the higher discriminant power of FVs
[129], but only as an intermediate representation. More precisely, a FV will be com-
puted for each node and stacked as a prior step to the later branch videodarwin
computation. On the other hand, the node videodarwin requires an intermediate
representation for a node consisting of stacked per-frame FVs.

5.1.4 Holistic Videodarwin

The key idea behind VideoDarwin is to model how features evolve throughout the
video sequence. This temporal modeling demonstrated superior performance over
other representations such as plain fisher vectors [47, 48]. However, the sparsity of
per-frame FVs requires a smoothing in order to make the final VD representation
more robust to noise and hence more invariant across same class sequences. Next,
we briefly explain the videodarwin computation for the entire video sequence, fol-
lowed by node and branch videodarwin variations.

Let denote V = [v1, . . . , vF] ∈ R2DK×F the stack of per-frame feature vectors,
where F is the number of sequence frames. The columns of V are smoothed in both
directions, forward (+) and reverse (-), as follows:

ṽ+
i = $1

1
i

i

∑
j=1

vj

 (5.1)

ṽ−i = $1

1
i

i−1

∑
j=0

vi−j

 (5.2)

where ṽ is the smoothed version of v and $1(·) = ·
||·||1 is the L1-normalization func-

tion.
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After that, we simply train two Support Vector regressor (SVR) models – one
for each smoothing direction – on {(ṽ+

i , i)|1 ≤ i ≤ F} and {(ṽ−i , i)|1 ≤ i ≤ F}
respectively. In particular, we use a linear SVR model1 with C = 1. Finally, the
parameters of the trained regressors, namely Θ+, Θ− ∈ R2DK are concatenated to
obtain the final videodarwin signature: w = [Θ+, Θ−] ∈ R4DK.

The video meta-descriptor w can be input to a discriminative classifier, e.g. SVM,
for video classification. Despite good results have been obtained, we argue that the
time varying mean from Eq. 5.2 can be problematic for longer sequences, by causing
ṽi for i values close to F to be too smoothed by averaging over all larger number
of frames and therefore highly invariant independently from the features at time
i. Next, we see how to compute darwintree over deeper nodes in the tree which
have shorter temporal extents and, thus, alleviate this degradation caused by the
smoothing.

5.1.5 Node videodarwin

Our approach provides an additional solution to the whole-video smoothing degra-
dation provided by the tree decomposition from Section 5.1.2. Nodes with smaller
groups of trajectories are likely to span shorter time intervals within a F-frame video,
The node videodarwin representation of a node is hence computed as explained in
Section 5.1.4 but with inputs [va, . . . , vb], where [a, b] s.t. 1 ≤ a ≤ b ≤ F is the time in-
terval spanned by the node trajectories. Therefore, the two regressors are trained on
the smoothed node representations: {(ṽ+

i , i) | a ≤ i ≤ b} and {(ṽ−i , i) | a ≤ i ≤ b}.
Finally, the node videodarwin is obtained by concatenating the two regressor pa-
rameters: n = [Θ+

node, Θ−node].

5.1.6 Branch videodarwin

Videodarwin was originally intended to model changes in the temporal dimension.
This variation introduces its use in tree branches, i.e. modeling the evolution of node
features. We define a branch as the path from a node up to the tree root. In other
words, the j-th node has its associated branch whose length is exactly log2(j).

In particular, let uj ∈ R2DK be the j-th node global FV representation. Then the
stack of per-node representations from the node itself (j) to the tree root node (1):

Bj = [bj, bj−1, . . . , b1] = [ubj/20c, ubj/21c, . . . , ubj/2log2(j)c] (5.3)

where b·c refers to the floor operation.
Given Bj, the procedure from Section 5.1.4 is also applied. We train two re-

gressors on the smoothed branch representations in both directions {(b̃+
i , i) | 1 ≤

i ≤ j} and {(b̃−i , i) | 1 ≤ i ≤ j} so as to model Θ+
branch and Θ−branch respectively.

Those somehow explain the evolution of u features along the j-th node branch,
either ascending (forward videodarwin) or descending (reverse videodarwin) the
branch. Finally, branch videodarwin representation of the j-th is computed: bj =

[Θ+
branch, Θ−branch] ∈ R4DK.
Note it does not make sense to compute paths of length of 1, hence branch video-

darwin for the root note b1 is not defined. In other words, the final number of
branches is equal to the number of nodes in the tree minus 1.

1The SVR code used is from LIBLINEAR (https://www.csie.ntu.edu.tw/~cjlin/liblinear). In
particular, L2-regularized L2-loss support vector regression (primal) version specified with the pro-
gram argument “-s 11”.

https://www.csie.ntu.edu.tw/~cjlin/liblinear
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5.1.7 Darwintree classification

First of all, note that binary tree structures may have a variable number of nodes
(and branches). In order to perform classification, we need to be able to compute
some measure of similarity between any pair of trees (E , E ′). However, each tree
may have a different number of nodes – or branches. In this context, the authors
of [52] prove the accumulation of pair-wise node similarities to be effective for tree
discrimination on their All Tree Edge Pairs (ATEP) kernel. They also found better
results are obtained by using edge representations, i.e. the concatenation of child
and parent node representations, than by only the child. In our work, we define our
own representation by combining node-branch representations for the computation
of the darwintree kernel.

Given a tree E , let first cast (N ,B) to the set of joint node-branch representations
S . The tree new structure becomes E = {w,S}, where S = {si = [ni, bi] | 1 < i <
|B|, si ∈ R8DK}. Given the node-branch representations, we compute the darwin-
tree kernel based on the pairwise similarity of those merged node representations:

KDT(S ,S ′) = 1
|S||S ′| ∑

si∈S
∑

sj∈S ′
φ(si, sj) , ∀i, j > 1 (5.4)

where φ(·, ·) can be any valid mapping function, e.g. dot product for linear mapping.
The normalization factor 1

|S||S ′| ensures the amount KDT(S ,S ′) remains scaled for
any pair of trees (S ,S ′), independently from the number of nodes in each tree.

5.2 Results

5.2.1 Datasets

We evaluate our approach on UCF sports actions dataset [143], Highfive [126], and
Olympic Sports [121]. UCF sports actions contains 150 examples and 10 classes of
actions from different sports, presenting different backgrounds and camera move-
ment. In our experiments, we used the standard 103/47 train/test split. Highfive
consists of 300 examples of human interactions from TV shows, from which 200
are handshake, high five, hug, kiss, whereas the 100 remaining ones are negative
examples. For validation, we followed the 2-fold cross validation provided along
with the dataset. We report both accuracy and mean average precision (mAP). Fi-
nally, Olympic Sports contains 783 instances from 16 classes partitioned in a 640/143
train/test holdout split. The results obtained are expressed in mAP. In Figure 5.3, we
introduce the three datasets and some general details.

5.2.2 Code implementation

We constructed the unordered binary trees of trajectories using public code2 (with
default parameters) provided by the authors of [52]. On the other hand, we used
the videodarwin implementation3 from [47] as a base for the construction of our
darwintrees. For classification and evaluation metrics, we used Python’s sklearn ma-
chine learning library. In particular, for multi-class classification we choose sklearn’s
one-vs-rest classification over the one-vs-one LibSVM’s implementation. Moreover,
Eq. 5.4 is optimized for GPU computation with Python’s pycuda library.

2Tree structure and hierarchical divisive algorithm for spectral clustering: https://gist.github.
com/daien.

3Videodarwin code: https://bitbucket.org/bfernando/videodarwin.

https://gist.github.com/daien
https://gist.github.com/daien
https://bitbucket.org/bfernando/videodarwin
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(A) No. instances: 150, classes: 10, data partitioning: 103/47 train/test hold-
out, evaluation metric: accuracy

(B) No. instances: 300, classes: 4 positive + 1 negative, data partitioning: 2-fold
cross validation, evaluation metric: mAP

(C) No. instances: 783, classes: 16, data partitioning: 640/143 train/test hold-
out, evaluation metric: mAP

FIGURE 5.3: Illustration and details of the datasets used in our exper-
iments
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FIGURE 5.4: Performance varying the number of maximum tree lev-
els on UCF Sports actions in terms of accuracy (%). Experiments
in the validation dataset showed videodarwin on noisy deeper tree
nodes causes our node representation (N) to underperform in com-
parison to the branch representation (B) that remains much more sta-

ble

Method UCF [143] (ACC) Highfive [126] (mAP)
Fold 1 Fold 2 TOTAL

Node-VD 85.11 76.55 70.41 73.48
Branch-VD 80.85 76.25 72.53 74.39
Darwintree (DT) 91.49 76.04 70.37 73.21
VD+DT 91.49 79.24 72.32 75.78

TABLE 5.1: Results of the different methods in the two benchmark-
ing datasets for node-videodarwin, branch-videodarwin, darwintree

(DT), and the combination of DT with holistic videodarwin (VD)

5.2.3 Trajectory features, GMMs, fisher vectors, and spectral clustering

We extracted MBH features along the trajectories, applied the “square-root trick”
as in [183], and reduced their 192-dimensional descriptors by a factor of 0.5 using
PCA. We observed the other trajectory features (trj, HOG, and HOF) provided a
marginal improvement. For the GMMs, We used 256 mixtures trained on 1 million
randomly sampled MBH descriptors. This yielded fisher vectors of dimensionality
2 · 96 · 256 = 49, 152. As suggested by [48], prior to the videodarwin computation
we applied posneg mapping first to the fisher vectors; this is v =

√
vpos ⊕ vneg,

where vpos is the v with all zeros except for the positive coefficients and vneg all
zeros with all the negatives turned into positive. After posneg mapping, we also
applied l2-normalization. For the spectral clustering, we stick to the parameters
given by [52], except for the maximum number of tree levels (default value is 62).
We experimentally found that in very deep trees, deeper nodes tend to be noisy and
cause great impact in the performance of node-videodarwin. We experimentally
found a value of 4 levels to be a conservative value. Figure 5.4 shows the ablation
experiment on number of levels in UCF Sports Actions.
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Method mAP
Videodarwin (VD) 88.34
Node-vd (N-VD) 83.17
Branch-vd (B-VD) 87.70
Darwintree (DT) 84.38
VD + DT 88.84

TABLE 5.2: Olympic Sports dataset [121]

5.2.4 VideoDarwin, kernel maps, and classification

Since videodarwin representations consist of both forward and reverse videodarwin
(depending on the direction of the mean time varying operation) parts, we come up
with a final representation that doubles the size of the fisher vectors, i.e., 98,304 di-
mensions. This gives a descriptor of 98, 304× F for a video of F frames. For classifi-
cation, we kernel mapped the VideoDarwin representation using “RootSIFT” [3] and
l2-normalized them. As a last step, different mid-level representations were fused
at kernel level and the weights assigned were cross-validated. Also kernel normal-
ization factor is applied to the kernels before the aggregation, consisting of dividing
each kernel by the maximum value of the diagonal. This is because otherwise when
comparing a tree to itself the similarity is not 1. For all our experiments, we fixed the
C parameter of the SVM classifiers to 100.

5.2.5 Quantitative results on action classification

We illustrate our results in the benchmarking datasets on Table 5.1, in which we
compare our different approaches among them: node-videodarwin (N), branch-
videodarwin (B), the combination of both (Darwintree or DT), and the combina-
tion of the latter with the holistic representation (VD+DT). Despite DT and VD+DT
got the same results, we found VD+DT to be potentially better from training data:
+2.81% (79.80 against 76.99) on average. We also compared our approach (VD+DT)
to the holistic videodarwin representation in UCF Sports Actions in which DT ob-
tained better performance: 91.49% vs 87.23%.

To provide more insight about the classification accuracy, we show the results for
the different action classes on UCF sports dataset in Figure 5.5.

Since UCF and H5 are fairly small datasets, we also performed some analysses
on Olympic Sports dataset. In our experiment, we compared H, N, B, NB, and
H+NB representations in Table 5.2. Despite N, B, and the combination NB obtained
poorer results than H, combining NB with H yields slight improvement of +0.5%
mAP points with respect to H.

5.2.6 Confusion matrices

In Figure 5.7, we show confusion matrices for the multi-classification experiment
performed in the test set of UCF Sports Actions dataset, which consists of 47 exam-
ples. Note the errors of VD, nVD, and bVD are often uncorrelated. For instance,
bVD corrects the confusion among true class “Golf Swing” and predicted “Kicking”
in VD and nVD. On the other hand, VD correctly predicts an actual “Kicking” exam-
ple confused in both N and B. When we combine VD+DT, we avoid any confusion
between these two classes. VD and nVD also confuse a “Running” example with
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FIGURE 5.5: Results on the different action classes of UCF Sports ac-
tions in terms of accuracy (%)

FIGURE 5.6: Results for the different action classes in terms of mean
average precision (mAP)
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“Walking”, whereas bVD does not. DT also predicts all “Running” examples cor-
rectly, but then VD reintroduces the error in VD+DT. Nonetheless, VD benefits the
DT representation by correcting the confusion among an example of “Walking” and
“Riding Horse”.

We also show confusion matrices for a multi-classification experiment on High-
five in Figure 5.8. This experiment is independent from the one used to report mAP
results in the main text 4. For this dataset, there is a fifth class containing negative
examples (“negative”), which is introduced only used during training. This class
introduces most of the confusion in the multi-classification: for VD, only 6 out of
100 confusions are among positive classes, the rest being between a positive class
and the negative ones. In particular, nVD and bVD are able to greatly correct the
confusion among “hug” and “negative” from 7 to 12 errors (-41.6% error reduction).
nVD also demonstrated also to be effective by reducing the confusion among “kiss”
and “negative” (-33.3%) and reducing the overall confusion in “highfive” class from
8 to 3 errors (-62.5%).

UCF Sports Actions and Olympic sports are very action-centered, i.e. the camera
is focused on the action being performed, without occlusions or challenging illumi-
nation conditions, which makes the action recognition task easier – as seen from the
results. On the other hand, Highfive contains frequent cutaways and bad illumina-
tion conditions (check “handShake” in Figure 5.3b), making the overall recognition
task much more challenging.

5.2.7 Qualitative results

We visualized sequence frames with overlaid trajectory clusters, along with the pre-
dicted categories by our proposed method. For every sequence shown, 5 frames
are evenly spaced frames were sampled. In Figure 5.9 and Figure 5.10, we illustrate
results on UCF Sports Actions [143] and Highfive [126] datasets. Notice the compact-
ness of the clusters in both space and time and coherence. Also note, similar actions
and viewpoints have similar cluster decompositions (see the two “Golf-Swing-Back”
action examples in Figure 5.9a and Figure 5.9b). In simpler actions, as Figure 5.9d
and Figure 5.9e, the decompositions are fairly simpler. For instance, Figure 5.9d, it
is throughout the temporal dimension (first frames being yellow cluster and latter
ones the blue cluster), whereas in in Figure 5.9e the cluster division is along the spa-
tial dimension (upper body trajectories being yellow versus blue ones in lower body
parts).

Except for the example depicted in Figure 5.9d, VD+DT is able to predict cor-
rectly the actual groundtruth class (GT), despite VD being wrong (only 2/5 hits).
Also note that in all the examples except for 5.9d, bVD predicted the wrong class.
However, for all of those, nVD was able to predict it right despite nVD also being
wrong, as it was the case for 5.9b and 5.9d. This proves DT learns to model the
complementary information provided by nVD and bVD.

DT tends to correct bad results got by VD, as seen in 5.9b or 5.9e. Nonetheless, it
is also possible that the VD representation causes a bad final prediction, as in 5.9d.
In general, however, VD+DT proved to be more effective for the classification task
than only DT.

Here, VD+DT correctly predicts Figure 5.10a-5.10d. In Figure 5.10a, while nVD
and bVD predict the actual class (“kiss”), VD wrongly predicts “negative” (5). VD
faced problems categorizing “hug” – shown in Figure 5.9. We qualitatively illustrate

4Recall that when measuring mAP, a binary classifier is trained per class and the mean of their
Average Precisions (AP) is reported.
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FIGURE 5.7: Confusion matrices from multi-classification experi-
ments on UCF Sports Actions dataset [143]. Numbers in matrix cells

refer to absolute quantities (number of examples predicted)
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FIGURE 5.8: Confusion matrices from multi-classification experi-
ments on Highfive dataset [126]. Numbers in matrix cells refer to
absolute quantities (number of examples predicted). The “negative”
was class only used during training phase, but not predicted during

testing
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(A) Golf-Swing-Back 002. GT=1, H=1, N=1, B=9, NB=1, H+NB=1

(B) Golf-Swing-Back 005. GT=1, H=2, N=2, B=9, NB=1, H+NB=1

(C) Kicking-Front 010. GT=2, H=2, N=2, B=5, NB=2, H+NB=2

(D) Run-Side 001. GT=5, H=9, N=9, B=5, NB=5, H+NB=9

(E) Skate-Boarding-Front 004. GT=6, H=1, N=6, B=1, NB=6, H+NB=6

FIGURE 5.9: Visual data and trajectory clusters on 5 frames evenly
spaced in time on 5 different UCF Sports Actions’ examples [143]. See
in the captions of (a)-(e) of subfigures the groundtruth label (GT) and
the output of our different methods. Classes are (1) “Diving-Side”,
(2) “Golf Swing”, (3) “Kicking”, (4) “Lifting”, (5) “Riding Horse”,
(6) “Running”, (7) “Skateboarding”, (8) “Swing-Bench”, (9) “Swing-

Side”, and (10) “Walking”

this in Figure 5.10b-5.10d. In Figure 5.10b, bVD agrees with VD; however, nVD pro-
vides useful information for correcting this error. In Figure 5.10c and Figure 5.10d,
one can see the effectiveness of the DT fusion, which is able to correct both nVD and
bVD from a wrong prediction even when they agreed in the wrong label. Finally, in
Figure 5.10e, despite the correct prediction of VD, VD+DT missclassifies the example
due to the influence of DT in the fused kernel.

5.2.8 Comparison to state-of-the-art methods

In Table 5.3 and Table 5.4, we compare our approach to state-of-the-art results. As
shown, our method achieves better results in both UCF Sports Actions and High-
five benchmarking datasets using the standard metrics and evaluation protocols,
improving the results in +0.7% and +6.4 points respectively.
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(A) kiss 0038. GT=4, H=5, N=4, B=4, NB=4, H+NB=4

(B) hug 0017. GT=3, H=1, N=3, B=1, NB=3, H+NB=3

(C) hug 0029. GT=3, H=1, N=1, B=1, NB=3, H+NB=3

(D) hug 0002. GT=3, H=5, N=4, B=4, NB=3, H+NB=3

(E) kiss 0040. GT=4, H=4, N=5, B=5, NB=5, H+NB=5

FIGURE 5.10: Visual data and trajectory clusters on 5 frames evenly
spaced in time for 5 different examples on the Highfive dataset [126].
See in the captions of (a)-(e) of subfigures the groundtruth label (GT)
and the output of our different methods. Classes are: (1) “hand-

Shake”, (2) “highFive”, (3) “hug”, (4) “kiss”, and (5) negative class
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Method Accuracy (%)
Karaman et al. [77](2014) 90.8
Ma et al. [103](2015) 89.4
Wang et al. [192](2013) 85.2
Ma et al. [104](2013) 81.7
Raptis et al. [139](2012) 79.3
Ours (VD+DT) 91.5

TABLE 5.3: UCF-sports dataset [143]

Method mAP
Wang et al. [184](2015) 69.4
Karaman et al. [77](2014) 65.4
Ma et al. [103](2015) 64.4
Gaidon et al. [52](2014) 62.4
Ma et al. [104](2013) 36.9
Patron-Pérez et al. [126](2012) 42.4
Ours (VD+DT) 75.8

TABLE 5.4: Highfive dataset [126]

5.2.9 Discussion

Our results demonstrate the effectiveness of combining node and branch videodar-
win in the darwintree representation. In Highfive, the combination of darwintree
with holistic videodarwin pushed further the mAP performance. Our method does
not need lots of training data in order to generalize. Moreover, the divisive cluster-
ing technique based on spectral embedding is an unsupervised technique that does
not require annotated training data.

Interestingly, the proposed pipeline is general enough to be applied to any kind
of video sequence classification problem. Once a representation per time instant is
build, the method can be directly applied.
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Part II

Deep-learning methods
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Chapter 6

Towards deep action recognition

Despite the application of deep learning to action recognition is relatively new, the
amount of research generated is astounding. We think it is critical to compile recent
deep-learning based advances on action recoginition. The present chapter aims at
capturing a snapshot of current trends in this direction, including an in-depth anal-
ysis of the most successful deep models to date, with a particular focus on how these
methods treat the temporal dimension of the video data.

The remainder of this chapter is organized as follows: Section 6.1 presents a tax-
onomy classifying the different deep architectures based on how these deal with the
temporal information and Section 6.2 reviews related work for action recognition.

6.1 Taxonomy

We first present a taxonomy that encomprises the main types of deep-learning archi-
tectures for action recognition. Then, we explore the fusion strategies used in deep
learning-based models for action. After that, we list all the most popular action
recognition datasets with benchmarking results.

6.1.1 Architectures

The most crucial challenge in deep-based human action recognition is to properly
deal with the temporal dimension. Based on the way this is done, we categorize
approaches in a taxonomy that consists of four different groups. The taxonomy is
shown in Figure 6.1. The first group are 2D CNNs, those CNNs that purely exploit
spatial information. For instance, [168, 194] sample several single frames from the
whole video and feed them to a 2D CNN. The predicted class score distributions for
the different frames are then averaged to obtain the final video category. The main

Action recog-
nition methods

2D CNN
[217, 190]

Motion-based input features
[159, 160]

3D CNN (3D conv. & pooling)
[76, 173, 177]

Sequential modeling

2D CNN + RNN [213] / + LSTM [119, 37]

2D CNN + B-RNN + LSTM [160]

2D CNN + H-RNN+ LSTM [38]

2D CNN + D-RNN + LSTM [179]

2D/3D CNN + Auxiliary outputs [76]

2D/3D CNN + Hand-crafted features [189, 177]

FIGURE 6.1: Taxonomy of deep learning approaches for action recog-
nition
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advantage of this kind of models is possibility to use pre-trained 2D CNN models
on large image classification datasets, such as ImageNet [83].

The methods in the second group pre-compute 2D motion features, i.e. opti-
cal flow maps, and utilize them as an additional cue apart from RGB frames [159,
189, 57, 168, 199]. Doing so, these kind of methods take into account the very local
spatiotemporal information from the pre-computed motion features can provide. A
third group extends the 2D filters to 3D, so the convolutional layers produce 3D con-
volutional outputs responses in the convolutional layers [7, 76, 99, 177]. The 3D con-
volution and 3D pooling allow to capture discriminative features along both spatial
and temporal dimensions while maintaining the temporal structure in contrast to
2D convolutional layers. The spatiotemoral features extracted by this kind of mod-
els proven to surpass 2D models trained on the same video data. Figure 6.2a-6.2c
illustrate these first three groups.

Finally, the fourth group combines 2D (or 3D) convolutional nets, which are ap-
plied at individual (or stacks of) frames, with a temporal sequence modeling. Re-
current Neural Networks (RNN) [41] are one of the most used kind of networks
for sequential modeling, being able to take into account the temporal information
using recurrent connections in the hidden layers. The drawback of this network is
its short memory which is insufficient for real world actions. To solve this prob-
lem Long Short-Term Memory (LSTM) networks [55] were proposed. Bidirectional
RNN (B-RRN) [131], Hierarchical RNN (H-RNN) [38], and Differential RNN (D-
RNN) [179] are some successful extensions of RNN in recognizing human actions.
Hidden Markov Models (HMM) have also been used in combination with deep-
based methods [202], in this case for gesture recognition. An example of this fourth
approach is depicted in Figure 6.2c.

6.1.2 Datasets and benchmarking competitions

At the same time new deep-based methods are being proposed, new and larger
datasets appear to fit the requirements of deep learning. That is, basically, hav-
ing large annotated datasets. Table 6.1 lists the most relevant action recognition
datasets. For each entry we specify year of creation; the problems for which the
dataset was defined (“action classification” (AC), “temporal localization” (TL), or
“spatio-temporal localization” (STL)); involved body parts (“U” for upper body, “L”
for lower body, “F” for full body); data modalities available; and, number of classes
and the state-of-the-art result. The last column provides best results to date, provid-
ing a hint of how difficult the dataset is. Figure 6.3 show some frames of some of the
listed datasets.

Table 6.2 and Table 6.3 summarize the most recent approaches that obtained re-
markable results against two of the most well-known and challenging datasets in
action recognition, UCF-101 and THUMOS-14. Reviewing top ranked methods at
UCF-101 dataset, we find that the most significant difference among them is the
strategy for splitting video data and combine sub-sequence results. [194] encodes
the changes in the environment by dividing the input sequence into two parts, pre-
condition and effect states, and then look for a matrix transformation between these
two states. [93] processes the input video as a hierarchical structure over the time
in 3 levels, i.e. short-term, medium-range and long-range. [177] achieves the best
performance by using different temporal 3D convolution temporal extents in both
the RGB and optical flow streams.
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FIGURE 6.3: Sample frames from action datasets
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TABLE 6.1: Action datasets

Year Database Problem Body Parts Modality No.Classes Performance
2004 KTH AC F I 6 98.67% Acc [222]
2006 IXMAS AC F RGB, A 13 98.79% Acc [174]
2007 HDM05 AC F S 100 98.17% Acc [19]
2008 HOHA (Hollywood 1) AC, TL F, U, L RGB 8 71.90% Acc [149], 0.787@0.5 mAP [109]
2008 UCF Sports AC, STL F RGB 10 95.80% Acc [154], 0.789@0.5 mAP [109]
2009 Hollywood 2 AC F, U, L RGB 12 78.50 mAP [96]
2009 UCF11 (YouTube Action) AC, STL F RGB 11 93.77% Acc [129], -
2010 Highfive AC, STL F,U RGB 4 69.40 mAP [184], 0.466 IoU [5]
2010 MSRAction3D AC F D, S 20 97.30% Acc [102]
2010 MSRAction II STL F RGB 3 85.00@0.125% mAP [21]
2010 Olympic Sports AC F RGB 16 96.60% Acc [93]
2011 Collective Activity (Extended) AC F RGB 6 90.23% Acc [2]
2011 HMDB51 AC F, U, L RGB 51 73.60% Acc [187]
2012 MPII Cooking AC, TL F, U RGB 65 72.40 mAP [223], -
2012 MSRDailyActivity3D AC F,U RGB, D, S 16 97.50% Acc [152]

2012 UCF101 AC,TL F, U, L RGB 101 94.20% Acc [190],
46.77@0.2 mAP (split 1) [199]

2012 UCF50 AC F, U, L RGB 50 97.90% Acc [40]
2012 UTKinect-Action3D AC F RGB, D, S 10 98.80% Acc [79]
2013 J-HMDB AC, STL F, U, L RGB, S 21 71.08 Acc [128], 73.1@0.5 mAP [149]
2013 Berkeley MHAD AC F RGB, D, S, A 11 100.00% Acc [19]
2014 N-UCLA Multiview Action3D AC F RGB, D, S 10 90.80% Acc [79]
2014 Sports 1-Million AC F, U, L RGB 487 73.10% Acc [216]
2014 THUMOS-14 AC, TL F, U, L RGB 101, 20 * 71.60 mAP [72], 0.190@0.5 mAP [158]
2015 THUMOS-15 AC, TL F, U, L RGB 101, 20 * 80.80 mAP [93], 0.183@0.5 mAP (a)
2015 ActivityNet AC, TL F, U, L RGB 200 93.23 mAP (b), 0.594@0.5 mAP [111]
2016 NTU RGB+D AC F RGB, D, S, IR 60 {69.20, 77.70}1 Acc [97]

In the Modality column: Depth, Skeleton, Audio, grayscale Intensity, InfraRed.
In Performance column: Accuracy, mean Average, Precision, Intersection over Union.
“*” indicates different number of classes is used for different problems. For TL/STL, “@” indicates
amount overlap with groundtruth considered for positive localization. For instance, @0.5 indicates
a 50% of overlap.
(a) Winner method on http://activity-net.org/challenges/2016/program.html#
leaderboard.
(b) Winner method on http://www.thumos.info/results.html.
1 {cross-subject accuracy, cross-view accuracy}.

http://activity-net.org/challenges/2016/program.html#leaderboard
http://activity-net.org/challenges/2016/program.html#leaderboard
http://www.thumos.info/results.html
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TABLE 6.2: Benchmarking on UCF-101 dataset

Ref. Year Features Architecture Score
[44] 2016 ST-ResNet + iDT 2-stream ConvNet and ResNet 94.6%
[90] 2016 RNN Fisher Vector C3D + VGG-CCA + iDT 94.1%

[177] 2016 Opt. Flow, RGB, iDT LTC-CNN 92.7%
[214] 2016 conv5 2-Stream SR-CNN 92.6%
[46] 2016 conv5, 3D pool VGG-16, VGG-M, 3D CNN 92.5%

[194] 2016 CNN Siamese VGG-16 92.4%
[93] 2016 CNN fc7 2 CNNs (spatial + temporal) 92.2%

[188] 2016 3D CNN + RNN hierarchical local Volumetric R-CNN (DANN) 91.6%
[189] 2015 CNN, Hog/Hof/Mbh 2-stream CNN 91.5%
[108] 2015 CNN feat 3D CNN 89.7%
[12] 2016 Dynamic feat maps BVLC CaffeNet 89.1%
[72] 2015 H/H/M, iDT, FV+PCA+GMM 8-layer CNN 88.5%

[168] 2015 CNN FSTCN: 2 CNNs (spat + temp) 88.1%
[159] 2014 CNN Two-stream CNN (CNN-M-2048) 88.0%
[106] 2016 eLSTM, DCNN fc7 eLSTM, DCNN+LSTM 86.9%
[218] 2016 CNN 2 CNNs (spatial + temporal) 86.4%
[212] 2016 dense trajectory, C3D RNN, LSTM, 3DCNN 85.4%

[127] 2015 CNN fc6, HOG/HOF/MBH VGG19 Conv5
79.52%±1.1% (tr2)

66.64% (tr1)
[78] 2014 CNN features 2 CNN converge to 2 fc layers 65.4%, 68% mAP
[74] 2015 ImageNet CNN, word2vec GMM CNN 63.9%

[199] 2015 CNN Spatial + motion CNN 54.28% mAP

TABLE 6.3: Benchmarking on THUMOS-14 dataset

Ref. Year Features Architecture Score
[72] 2015 H/H/M, IDT, FV+PCA+GMM. 8-layer CNN 71.6%
[218] 2016 CNN 2 CNNs (spatial + temporal) 61.5%
[74] 2015 ImageNet CNN, word2vec GMM CNN 56.3%
[158] 2016 CNN fc6, fc7, fc8 3D CNN, Segment-CNN 19% mAP
[213] 2015 CNN fc7 VGG-16, 3-layer LSTM 17.1% mAP

[42] 2016 fc7 3D CNN C3D CNN net

.084% mAP@50
.121% mAP@100
.139% mAP@200
.125% mAP@500

Looking at the top ranked deep models on the THUMOS 2014 dataset, almost
all the winners in the 2015 challenge edition use different combinations of appear-
ance and motion features. For the appearance ones, most of the methods extract
frame-level CNN descriptors, and video representation is generated using a pooling
method over the sequence. The motion-based features used by the top ranked meth-
ods can be divided into three groups, FlowNet, 3D CNN, and IDTs. [136] provides a
comparison of methods showing 3D-CNN outperform other alternatives.

6.2 Deep-based action recognition

This section reviews deep methods for action (or activity) recognition according to
the way they treat the temporal dimension.

6.2.1 2D Convolutional Neural Networks

In these kind of approaches, action recognition is often performed at frame-level
and then somehow aggregated (averaging the class score predictions on individual
frames). Some works further explore the possibility of using several frames as input.
In particular, [78] studies the different alternatives for considering multiple frames
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in a 2D model; however they concluded there was not a gain in performance using
multiple video frames over averaging single frame predictions. Instead, [190] ran-
domly samples video frames from K equal width temporal segments, obtain K class
score predictions, compute the consensus scores, and use these in the loss function
to learn from video representations directly, instead from one frame or one stack
of frames. [217] convolves each frame of the video sequence to obtain frame-level
CNN features. They then perform spatio-temporal pooling on pre-defined spatial re-
gions over the set of randomly sampled frames (50-120 depending on the sequence)
in order to construct a video-level representation, which is later l2-normalized and
classified using SVM. [205] models scene, object, and more generic feature represen-
tations using separate convolutional streams. For each frame, the three obtained rep-
resentations are averaged and input to a three-layer fully connected network which
provides the final output. [12] collapses the videos into dynamic images, that can be
fed into CNNs for image classification, by using rank pooling [48]. Dynamic images
represent are simply the parameters of a ranking function that learned to order the
video frames. [137] proposes a CNN, not to classify actions in depth data directly,
but to model poses in a view-invariant high-dimensional space. For this purpose,
they generate a synthetic dataset of 3D poses from motion capture data that are later
fit with a puppet model and projected to depth maps. The network is first trained
to differentiate among hundreds of poses to, then, use the features of the penulti-
mate fully-connected layer for action classification in a non-deep action recognition
approach. [119] exploits the combination of CNNs and LSTM for interactional ob-
ject parsing on individual frames. Note LSTMs are not used for temporal sequence
modeling but for refining object detections. For the action detection task, they then
use object detections for pooling improved dense trajectories extracted on temporal
segments.

Note that, independently from the discussed method, 2D convolutional filters
in 2D CNNs only consider spatial inter-relations of pixels, ignoring their temporal
neighborhood. Next we explore the more effective ways of exploiting spatiotem-
poral information in image sequences, which consist in either using pre-computed
motion-based to include implicit temporal information in 2D CNNs or explicitly
modeling temporal information with 3D CNNs or temporal sequence modeling meth-
ods.

6.2.2 Motion-based features

Researchers found that motion based features, such as optical flow, were a rich cue
that could be fed directly as a network input. There are accurate and efficient meth-
ods to compute these kind of features, some of them by exploiting GPU capabilities
[50]. The use of optical flow demonstrated to boost the performance of CNNs on
action recognition-related tasks [159, 125, 218, 57].

[159] presents a two-stream CNN which incorporated both spatial (video frames)
and temporal networks (pre-computed optical flow), and showed that the temporal
networks trained on dense optical flow are able to obtain very good performance
in spite of having limited training data. Along the same lines,[197] proposes a two-
stream (spatial and temporal) net for non-action classification in temporal action
localization. Similarly, [225] uses the same architecture for key-volume mining and
classification in this case for spatio-temporal localization of actions. [24] extracts
both appearance and motion deep features from body part detections instead of
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whole video frames. They then compute for each body part the min/max aggre-
gation their descriptors over time. The final representation consists of the concate-
nation of pooled body part descriptors on both appearance and motion cues, which
is comparable to the size of a Fisher vector. [125] uses the magnitude of optical flow
vectors as a multiplicative factor for the features from the last convolutional layer.
This reinforces the attention of the network on the moving objects when fine-tuning
the fully connected layers. [218] explores motion vectors (obtained from video com-
pression) to replace dense optical flow. They adopted a knowledge transfer strategy
from optical flow CNN to the motion vector CNN to compensate the lack of detail
and noisiness of motion vectors.

[160] uses a multi-stream network to obtain frame-level features. To the full-
frame spatial and motion streams from [159], they add two other actor-centered (spa-
tial and motion) streams that compute the features in the actor’s surrounding bound-
ing box obtained by a human detector algorithm. Moreover, motion features are not
stacks of optical flow maps between pairs of consecutive frames, but among a cen-
tral frame and neighboring ones (avoiding object’s displacement along the stacked
flow maps). [57] and [199] propose a similar an approach for action localization.
They first generate action region proposals from RGB frames using, respectively, se-
lective search [175] on and EdgeBoxes [227]. Regions are then linked and described
with static and motion CNN features. However, high quality proposals can be ob-
tained from motion. [128] shows a region proposals generated by a region proposal
network (RPN) [140] from motion (optical flow) were complementary to the ones
generated by an appearance RPN.

Note some of the works in Section 6.2.3 use pre-computed motion features, which
is not mutually exclusive with using motion features approaches. [177] uses stacks
of 60 pre-computed optical flow maps as inputs for the 3D convolutions, largely
improving results obtained using raw video frames. [193] computes motion-like im-
age representations from depth data by accumulating absolute depth differences of
contiguous frames, namely hierarchical depth motion maps (HDMM).

In the literature there exist several methods which extend the deep-based meth-
ods with the popular dense trajectory features. [189] introduces a video representa-
tion called Trajectory-pooled Deep-convolutional Descriptor (TDD), which consists
on extending the state-of-the-art descriptors along the trajectories with deep descrip-
tors pooled from normalized CNN feature maps. [127] proposes a method based on
a concatenation of IDT feature (HOG, HOF, MBHx, MBHy descriptors) and Fisher
vector encoding and CNN features (VGG19). For CNN features they use VGG19
CNN to capture appearance features and VLAD encoding to encore/pool convolu-
tional feature maps. [138] utilizes dense trajectories, and hence motion-based fea-
tures, in order to learn view-invariant representations of actions. In order to model
this variance, they generate a synthetic dataset of actions with 3D puppets from Mo-
Cap data that are projected to multiple 2D viewpoints from which fisher vectors of
dense trajectories are used for learning a CNN model. During its training, an out-
put layer is placed with as many neurons as training sequences so fisher vectors
from different 2D viewpoints give same response. Afterwards, the concatenation
of responses in intermediate layers (except for last one) provide the view-invariant
representation for actions.

Differently from other works, [116] jointly estimates optical flow and recognize
actions in a multi-task learning setup. Their models consists in a residual network
based on FlowNet [64] with extra additional classification layers, which learns to do
both estimate optical flow and perform the classification task.
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6.2.3 3D Convolutional Neural Networks

The early work of [76] introduces the novelty of inferring temporal information from
raw RGB data directly by performing 3D convolutions on stacks of multiple adjacent
video frames, namely 3D-CNN. Since then, many authors tried to either further im-
prove this kind of models [173, 108, 168, 158, 133, 99] or used them in combination
with other hybrid deep-oriented models [42, 7, 212, 46, 203, 93].

In particular, [173] proposes 3D convolutions with more modern deep architec-
tures and fixed 3x3x3 convolution kernel size for all layers, that made 3D-CNN more
suitable for large-scale video classification. In general, 3D-CNN can be expensive to
train because of the large number of parameters, especially when training with big-
ger datasets such as 1-M sports dataset [78] (which can take up to one month). [168]
factorizes the 3D convolutional kernel learning into a sequential process of learn-
ing 2D spatial convolutions in lower convolutional layers followed by learning 1D
temporal convolutions in upper layers. [108] proposes initializing 3D convolutional
weights using 2D convolutional weights from spatial CNN trained on ImageNET.
This not only speeds up the training but also alleviates the overfitting problem on
small datasets. [177] extends the length of input clips from 16 to 60 frames in order
model more long-term temporal information during 3D convolutions, but reduced
the input’s spatial resolution to maintain the model complexity. [133] introduces a
more compact 3D ConvNet for egocentric action recognition by applying 3D con-
volutions and 3D pooling only at the first layer. However, they do not use raw
RGB frames, but stacked optical flow. In the context of depth data, [99] proposes
re-scaling depth image sequences to a 3D cuboid and the use of 3D convolutions to
extract spatio-temporal features. The network consists of two pairs of convolutional
and 3D max-pooling followed by a two-layer fully-connected layer net.

3D convolutions are often used in more cumbersome hybrid deep-based ap-
proaches. [158] proposes a multi-stage CNN, in this case for temporal action lo-
calization, consisting of three 3D-CNN [173]: a proposal generation network that
learns to differentiate background from action segments, a classification network
that aims at discriminating among actions and serves as initialization for a third net-
work, the localization network with a loss function that considers temporal overlap
with the ground truth annotations. [193] applies 3D-CNN to action recognition from
depth data. The authors train a separate 3D ConvNet for each Cartesian plane each
of which fed with a stack of depth images constructed from different 3D rotations
and temporal scales. [161] proves the combination of both 2D and 3D ConvNet can
leverage the performance when performing egocentric action recognition. [93] uses
3D convolutions from [173] to model short-term action features on a hierarchical
framework in which linear dynamic systems (LDS) and VLAD descriptors are used
to, respectively, model/represent medium- and long-range dynamics.

6.2.4 Deep sequential models

The application of temporal sequence modeling techniques, such as LSTM, to action
recognition showed promising results in the past [6, 59]. Earlier works did not try
to explicitly model the temporal information, but aggregated the class predictions
got from individual frame predictions. For instance [159] samples 25 equally spaced
frames (and their crops and flips) from each video and then averages their predicted
scores.

Today, we find the combination of recurrent networks, mostly LSTM, with CNN
models for the task of action recognition.
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[179] proposes a new gating scheme for LSTM that takes into account abrupt
changes in the internal cell states, namely differential RNN. They use different or-
der derivatives to model the potential saliency of observed motion patterns in ac-
tions sequences. [160] presents a bi-directional LSTM, which demonstrated to im-
prove the simpler uni-directional LSTMs. [213] introduces a fully end-to-end ap-
proach on a RNN agent which interacts with a video over time. The agent observe
a frame and provides a detection decision (confidence and begin-end), to whether
or not emit a prediction, and where to look next. While back-propagation is used
to train the detection decision outputs, REINFORCE is required to train the other
two (non-differentiable) agent policies. [106] proposes a deep architecture which
uses 3D skeleton sequences to regularize an LSTM network (LSTM+CNN) on the
video. The regularization process is done by using the output of the encoder LSTM
(grounded on 3D human-skeleton training data) and by modifying the standard
BPTT algorithm in order to address the constraint optimization in the joint learn-
ing of LSTM+CNN. In their most recent work, [188] explores contexts as early as
possible and leverage evolution of hierarchical local features. For this, they intro-
duce a novel architecture called deep alternative neural network (DANN) stacking
alternative layers, where each alternative layer consists of a volumetric convolu-
tional layer followed by a recurrent layer. [90] introduces a novel Fisher Vector rep-
resentation for sequences derived from RNNs. Features are extracted from input
data via VGG/C3D CNN. Then a PCA/CCA dimension reduction and L2 normal-
ization are applied and sequential feature are extracted via RNN. Finally, another
PCA+L2-norm step is applied before the final classification. [97] extends the tra-
ditional LSTM into two concurrent domains, i.e, spatio-temporal long short-term
memory (ST-LSTM). In this tree structure each joint of the network receive contex-
tual information from both neighboring joints and previous frame. [153] proposes a
part aware extension of LSTM for action recognition by splitting the memory cell of
the LSTM into part-based sub-cells. These sub-cells can yield the models learn the
long-term patterns specifically for each part. Finally, the output of each unit is the
combination of all sub-cells.

6.2.5 Deep learning with fusion strategies

The goal of the fusion is to exploit information complementariness and redundancy
to improve the recognition performance. The fusion may refer to the aggregation
of information from different parts in a segmented video sequence, multiple cues or
modalities, or the combinination with different deep-learning models trained with
different data samples and/or learning parameters.

Some methods have used diverse fusion schemes to improve recognition perfor-
mance of action recognition.

[159] in order to combine the class-level predictions of the two streams (spatial
and temporal), trains a multi-class linear SVM on stacked L2-normalized softmax
scores, which showed to improve the class score averaging. [191], which improves
the former work by making the networks deeper and improving the data augmen-
tation, simply performs a linear combination of the prediction scores (2 for temporal
net and 1 for the spatial net). [190] combines RGB, RGB difference, flow, and warped
flow assigning equal weight to each channel. [46] fuses a spatial and temporal con-
vnets at the last convolutional layer (after ReLU) to turn it into a spatio-temporal
stream by using 3D Conv fusion followed by 3D pooling. The temporal stream is
kept and the two loss functions are used for training and testing. [34] presents a
deep neural-network-based hierarchical graphical model that recognizes individual
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and group activity in surveillance scenes. Different CNNs produce action, pose, and
scene scores. Then, the model refines the predicted labels for each activity via multi-
step Message Passing Neural Network which captures the dependencies between
action, poses, and scene predicted labels. [38] proposes an end-to-end hierarchical
RNN for skeleton based action recognition. The skeleton is divided into five parts,
each of which is feed into a different RNN network, the output of which are fused
into higher-layer RNNs. The highest level representations are feed into a single-
layer perceptron for the final decision. [161] faces the problem of first person action
recognition using a multi-stream CNN (ego-CNN, temporal, and spatial), which are
fused by combining weighted classifier scores. The proposed ego-CNN captures
hand-crafted cues such as hand poses, head motion, and saliency map. [214] in-
corporates a region-of-interest pooling layer after the standard convolutional and
pooling layers that separates CNN features for three semantic cues (scene, person,
and objects) into parallel fully connected layers. They propose four different cue fu-
sion schemes at class prediction level (max, sum, and two weighted fusions). [65]
attempts to investigate human action recognition without the human presence in
input video frames. They consider whether a background sequence alone can clas-
sify human actions. [128] performs action localization in space and time by linking
via dynamic time warping the action bounding box detections on single frames. For
bounding box classification, they concatenate the representations of multiple regions
derived from the original detection bounding box. [44] proposes a two stream archi-
tecture (appearance and motion) based on residual networks. In order to model spa-
tiotemporal information, they inject 4 residual connections (namely “skip-streams”)
from motion to the appearance stream (i.e. middle fusion) and also transform the di-
mensionality reduction layers from ResNet’s original model to temporal convolution
layers. [194] trains two Siamese networks modeling, respectively, action’s precondi-
tion and effect on the observed environment. Each net learns a high-dimensional
representation of either precondition or effect frames along with the linear transfor-
mation per class that transforms precondition to effect. The nets are connected via
their outputs and not sharing weights; i.e. late fusion.
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Chapter 7

Sequential residual learning for
action classification

The success of deep architectures on image recognition tasks inspired many authors
to tackle the problem from a similar perspective. A naive approach might use con-
volutional neural networks to classify individual video frames based on appearance
and then average predictions [78]. However, this does not take into account the
temporal structure of the video and could easily confuse “answering phone” and
“hanging-up phone” actions. Introducing low level motion information can help,
either by inputing clips (instead of single frames) to the network [78] or by exploit-
ing pre-computed optical flow [159]. To more effectively handle the temporality in
clips, 3D-CNN extend the convolutions in time [76, 177, 16]. Also, flow information
demonstrated to complement appearance, especially if incorporated at the precise
network stage [46]. Still, longer range dynamics are ignored.

Effectively modeling temporal dynamics and long-term frame dependencies is
key, especially in longer and more complex videos. Frames can be processed by
powerful deep convolutional networks and the evolution of their outputs be mod-
eled by sequential learning methods, e.g. Long-Short Term Memory (LSTM) [69].
In its turn, LSTM layers can also be stacked to make the sequential models deeper
[216]. However, deeper architectures might suffer from the “degradation problem”
[64]. The skip connections from residual learning provide a solution to that while
being parameter free. Not increasing the number of optimizable parameters is quite
important in action recognition scenarios, in which the amount of training data tends
to be limited to a few thousands of videos (10K in the most popular benchmarking
datasets, UCF-101 and HMDB-51).

In this chapter, we extend multi-layer LSTMs with residual connections and ex-
plicitly learn appearance and motion into two separate streams. As input we use fea-
tures extracted from a 3D-CNN, which provide a much richer representation than
2D and reduce redundancy observed by the LSTMs on top. The predictions of the
two-stream residual LSTMs are late fused using element-wise dot aggregation as
opposed of adding the final score predictions. Experimental results show that the
proposed pipeline obtains state of-the-art results for RNN-like architectures on the
challenging HMDB-51 dataset and achieves competitive results on UCF-101. To our
extent, residual LSTM have not been applied in action recognition scenarios, but
only on speech processing [80].

The chapter is organized as follows: Section 7.2 introduces the proposed two-
stage pipeline and data generation; Section 7.1 briefly reviews deep sequential learn-
ing approaches that are closely related to our approach; and, finally, Section 7.3 cov-
ers the experimental protocol and discusses the results.
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7.1 Related work

Averaging predictions from a few randomly sampled frames (or clips) may arise
several problems. The sampled portions could be insufficient or irrelevant to the
action class. [216] explores various temporal pooling layers in order to obtain a
per-video global description – instead of per-clip. Their best strategy (“Conv Pool-
ing”) performed max-pooling over the last convolutional layer map responses of a
2DCNN across all the frames of the video. Another difficulty is that frames from dif-
ferent classes could present none or very subtle differences. In other words, some ac-
tions classes could share some subaction patterns; when classification is performed
on frames/clips these are uniquely assigned to a particular class, but should be as-
signed to multiple action classes. Inspired by this idea, ActionVLAD [56] aggregates
local spatiotemporal descriptors over the whole spatial and temporal extent of the
video by softly assigning them to subaction anchors. The feature extractor, the an-
chors, and the classifier are jointly trained.

A more natural way to handle temporal dynamics is sequence modelling, such as
recurrent neural networks. A preliminary work [7] processed each frame in a rather
shallow 3D-CNN and modelled the output responses using a LSTM. The models
were trained separately. More recently, [216] proposed an end-to-end trained archi-
tecture combining 2D CNN + 5-layer LSTM.

Given the success of LSTM on sequence modelling, many other out-of-the-box
variations started to appear. Gated-recurrent Units (GRU) [26] are a very popular
less-complex variation of LSTMs. GRUs consist of two gates (update and reset gates)
instead of three and the internal state (output state) is fully exposed. Despite the
reduced complexity, empirical studies found there is no significant difference in per-
formance between the two [27]. The more recent Convolutional LSTMs [206] replace
the fully connected layers in input-to-state and state-to-state transitions with convo-
lutional layers. This allows to maintain the spatial structure of either input frames
or convolutional maps from input to output. Also, substituting the fully connected
layer with convolutions, reduces spatial data redundancy. [167] takes advantage of
such models in first person interaction recognition. In their case, every pair of frames
in the video is passed through two 2D CNN with shared weights, their outputs are
then connected in a 3D convolutional layer, and passed to a ConvLSTM. [94] propose
ConvALSTM, which combines the benefits of both ConvLSTM and Attention-LSTM
[207, 155], but in contrast to ALSTMs, relies on a shallow convolutional network for
the soft-attention mechanism. The L2STM model [169] extends the original LSTM
formulation to learn independent hidden state transitions of memory cells for indi-
vidual spatial locations.

7.2 Method

In this section we present the proposed stacked residual network (depicted in Fig-
ure 7.1) and the data generation process. We also present our approach for model
selection and evaluation.

7.2.1 The two-stage pipeline

Let V ∈ Rmx×my×lv be a video of duration lv that represents an action and whose
frames have size mx × my pixels. Let Kv = b lv

r c − 1, be the number of clips in V,
where r is the stride between each clip. Let each clip Si ∈ Rmx×my×s have a duration
s empirically defined so that Si captures a gesture in V. A gesture is a movement
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FIGURE 7.1: The proposed residual stacked RNN architecture. The
input video, V, is divided into clips from which spatiotemporal fea-
tures are extracted with a 3D CNN. The residual stacked RNN learns
temporal dependencies between an action class and elements of a

sampled subset of features, x0, of duration T

of body parts that can be used to control and to manipulate, or to communicate.
A temporal concatenation of gestures composes an action [14]. Unlike frame-level
predictions [216], we aim to encapsulate each Si with a latent representation of much
lower dimension, ai ∈ Rd f , which is expected to encode a gesture.

Let the spatiotemporal features of Si be extracted1 with a 3D CNN [190, 16],
as ai = E(Si) ∈ Rd f , thus obtaining a = {ai|i = 1 . . . Kv; ai ∈ Rd f }, from which
we extract a subset x0 of size T: x0 = {x0

t = aσ(t)|t = 1, . . . , T; aσ(t) ∈ a}, where
σ(t) = 1 + b(t− 1)Kv−1

T−1 c.
The final step learns the temporal dependencies between the input sequence x0

using the residual recurrent neural network. Instead of fitting an underlying map-
ping H(x), the same stack of layers in residual learning generates H(x) to fit another
mapping F(x) = H(x) + x. The network learns a residual mapping F(x) to approx-
imate H(x) rather than F(x). Given a stack of recurrent neural units of depth L, at
layer l and timestep t the input is xl−1

t . The previous memory and cell states for layer
l from timestep t− 1 are ml

t−1 and cl
t−1, respectively. Then, ml

t and cl
t are calculated

using the recurrent equations e.g. LSTM [69], and the input to layer l + 1 at timestep
t is xl

t = ml
t + xl−1

t .
Each RNN layer in the residual RNN part has index l ∈ {1, . . . , L}. The dimen-

sion of the input at time t in layer l must be the same as the memory ml
t since the

addition in the residual equation is performed element-wise. The overall structure
is the same as in [204] (see Figure 7.1b).

Let Θl be the parameter of the recurrent model at layer l, and L the total number
of LSTM layers. If P is total number of action classes, ml

t, xl
t ∈ Rd f , y ∈ RP, and

Wy ∈ Rd f×P is a fully connected layer, then the recurrent part of our hierarchical

1Note that our architecture is independent from the particular CNN structure and other models can
be used as extractor, e.g. TSN [190] or I3D [16] (see Figure 7.1a).
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residual RNN model is updated using:

cl
t, ml

t = LSTMl(cl
t−1, ml

t−1, xl−1
t ; Θl)

xl
t = ml

t + xl−1
t

(7.1)

where T is number of time steps. At the l-th layer we obtain the hidden state from
LSTMl using the input xl−1

t , the input at the (l + 1)-th layer is the residual equation:
xl

t = ml
t + xl−1

t . We obtain the final score ŷ through a softmax layer at the last time
step T using

ŷ = softmax((mL
T)
>.Wy). (7.2)

Under this formulation, our residual RNN model will learn the temporal depen-
dencies of each clip Si and perform a video level prediction by adding a softmax
layer on top of the last LSTM unit at the last time step T (see Figure 7.1b).

7.2.2 Fusion

We extend the multi-layer residual LSTM to handle two streams, namely the RGB
video, V, and the optical flow, which has been shown to be useful for CNN based
models [46]. Girdhar [56] explored three fusion methods to combine RGB and Flow
CNN models.

Given two feature vectors u, v ∈ Rm, we consider for fusion the element-wise
sum and the element-wise product. For the element-wise sum, ⊕, the fusion is u⊕
v = (u1 + v1, . . . , um + vm). This method is expected to help if the two responses
have high scores, whereas small perturbations in either vector will be ignored. The
element-wise product, �, is u� v = (u1.v1, . . . , um.vm). This scheme encourages the
highest scores and tends to diminish small responses.

We feed the input video, V, to a pre-trained 3D-CNN, xc = 3D-CNNc(V), and
the optical flow, V f , through a pre-trained flow model, x f = 3D-CNN f (V f ). With
mid fusion, x0 = {x0

t = xc
t ◦ x f

t |t = 1, . . . , T}, where ◦ ∈ {⊕,�}. We then train a
Res-LSTM model using x0 as input. With late fusion, we use the input xc (x f ) to train
a Res-LSTM for the appearance (optical flow) network. Once the models are trained
we obtain the softmax predictions, ŷc and ŷ f , for each modality network. The final
prediction is ŷ = ŷc ◦ ŷ f , where ◦ ∈ {⊕,�}. Results of these fusion methods are
shown in Table 7.2.

7.2.3 Data generation

We consider two strategies of data augmentation [169], depending on the CNN ar-
chitecture used. The first strategy consists of fixing the spatial dimension and vary-
ing the temporal axis of the input stream,

VS = {V(1)
clip, V(2)

clip, . . . , V(v)
clip|V

(i)
clip ∈ Rmx×my×lt}, (7.3)

where lt ≤ lv and we let r to be a fixed stride between each clip V(i)
clip ⊂ V. The second

strategy consists of sampling a fixed set of spatial crops with a temporal length of
T < lv. We select 10 crops from four corners and the center of each frame, along with
their mirrors. We thus sample a new set VS ∈ R10×mx×my×T for a given input video
V. After a forward pass through the CNN, we obtain our spatiotemporal matrix of
descriptors A ∈ R10×T×d f , where d f is the spatiotemporal feature dimension. Finally,
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the input to the recurrent network is obtained as follows:

x0 = {x0
t ∈ Rd f |t = 1, . . . , T}, (7.4)

where
x0

t =
1

Kc
∑

k=1,...,Kc

A(k, t, :), (7.5)

where Kc is the number of crops (in our case Kc = 10). We found that the mean over
the features of crops is preferable to just considering each crop separately.

7.3 Results

We will first introduce the datasets, evaluation measures, and implementation de-
tails. Then we will discuss the choice of key parameters of the proposed method
and compare with both static (non-sequential) and sequential state-of-the-art ap-
proaches.

We carried out the experiments on HMDB-51 [85] and UCF-101 [165]. HMDB-
51 consists of 6, 849 videos of 51 categories, each category containing at least 101
instances. Actions can be categorized into 5 groups: facial actions, facial actions in-
volving objects, body movements, body movements involving objects, and human
interactions. UCF-101 provides 13,320 videos from 101 action categories, that can be
categorized into: human-object interaction, body-motion only, human-human inter-
action, playing musical instruments, and sports. Results will be reported in terms of
accuracy (%) over the split-1 on both datasets, as in [173].

For the parameter discussion in the next section we used as feature extractor a
C3D pre-trained on Sports-1M [173]. Input clips were of temporal length |Si| =
16, with a stride of r = 8 between them. For our final architecture features were
extracted using the TSN [190] model, and the sparse features were of size 25. For
training the residual recurrent network we used the RMSProp optimizer [171] with
a learning rate of ε = 10−3.

7.3.1 Parameters and settings

In this section we discuss the choice of the hidden layer size, the depth, the duration,
and the fusion strategy for the deep residual network.

We varied the hidden layer size h, given the 4, 096-dimensional spatiotemporal
features extracted by the pre-trained C3D [173]. The best validation performance of
the model increased before h = 1024 and stagnated after this value (Figure 7.2 (a)).
We therefore used h = 1024 as a base parameter to our models.

A number of works [16, 61, 35] have shown that longer temporal window over
the input of the 3D-CNN input leads to better performance. In Table 7.1, we can
see that even for LSTM, longer time inputs lead to better performance. However,
we may face the vanishing gradient problem using this class of model for very long
sequence input. As for the temporal duration, T = 25 and T = 352 are the best
choices for HMDB-51 and UCF-101, respectively. After these values the model starts
overfitting.

To analyze the impact of the residual connections in the stacked recurrent neural
networks context, we reduce the dimensionality of the 4, 096 input features. The

2Note however, that the final scores we report are for T = 25 to allow for a fair comparison with the
TSN model [190].
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FIGURE 7.2: Influence of size and depth parameters on the perfor-
mance of the LSTM

dimensionality of input and output need to match in order to perform the residual
addition. To do so, we apply PCA over the initial feature of shape 4, 096 (extracted
from a pre-trained C3D model) to fit with the dimension of the residual RNN. We
select a set of dimensions D = {Rdm |dm ∈ [256, 512, 1024, 2048]}, and we train our
hierarchical RNN, with and without residual part3. Figure 7.2 shows that the resid-
ual connections help generalization in both datasets: even when dropping on per-
formance, the residual RNN still performs better.

We tested stacking 2, 3, and 4 recurrent layers (Figure 7.2(b)-(c)): stacking only
two layers provides the best depth for the residual model as working with 3D-CNN
reduces the number of feature samples per-video and thus a model with more layers
is more likely to overfit the data. In contrast, for 2D-CNN feature extraction, the
dataset is quite large because each frame is a feature and therefore the residual RNN
model will have enough data to tune its parameters for more layers. This is why the
authors in [216] were able to train 5-layers RNN.

TABLE 7.1: Impact of the value of the time step T on accuracy

T 5 15 25 35
HMDB-51 59.5 60.2 61.5 61.4
UCF-101 77.9 79.9 79.5 80.9

Finally, late fusion outperforms mid fusion on HMDB-51 using Res-LSTM. For
point-wise addition the gain is near 6% and for point-wise product it is 13%, with a
clear benefit of the product aggregation "�". We use the same weights as the original
TSN [190], i.e. (w1, w2) ∈ (1.5, 1) (see Table 7.2).

7.3.2 Final model evaluation

We evaluate our model on coarse UCF-101 categories as well as on complex action
classes, following [169]. Table 7.3 shows that our model outperforms L2STM in the
coarse categories they reported and also in Mixing Batter with a gain of 4.41. How-
ever, the performance drops for the complex classes Pizza Tossing and Salsa Spins,

3We discarded the 4, 096 feature vector because of computational requirements.
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TABLE 7.2: Impact on accuracy of different mid and late fusion strate-
gies on the 2-layer Res-LSTM on the HMDB-51 dataset

Strategy Mid Late
fusion fusion

⊕ (element-wise sum) 59.3 65.2
� (element-wise product) 56.5 68.0

w1.Flow + w2.RGB − 63.3

probably because of the speed of the actions that our model was not able to cap-
ture well. Figure 7.3 shows the classification of some of the examples with the top
confidences for each video example.

TABLE 7.3: Comparison on Split-1 of UCF-101 with complex move-
ments

Data Types L2STM Res-LSTM Gain
Human-Object Interaction 86.7 88.2 ↑ 1.5
Human-Human Interaction 95.4 96.9 ↑ 1.5
Body-Motion Only 88.6 90.7 ↑ 2.1
Playing Instrument - 97.3 -
Sports - 93.2 -
Pizza Tossing 72.7 66.7 ↓ 6.0
Mixing Batter 86.7 91.1 ↑ 4.4
Playing Dhol 100 100 ≡
Salsa Spins 100 97.7 ↓ 2.3
Ice Dancing 100 100 ≡

Basketball
Basketball
TennisSwing
SoccerJuggling
TrampolineJumping
HandstandWalking

PlayingDhol
PlayingDhol
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IceDancing
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FIGURE 7.3: Sample video classification results showing the top-5
class predictions based on confidence. First row: correctly classi-
fied videos; second row: miss-classified videos. Key – blue bar:
groundtruth class; green bar: correct class prediction; red bar: incor-

rect class prediction
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FIGURE 7.4: Confusion matrices with rearranged classes to group
coarse categories. For UCF-101: human-object interaction (HO),
body-motion only (BM), human-human interaction (HH), playing
musical instrument (PI), and sports (S). For HMDB-51: facial actions
(F), facial actions w/ object manipulation (FO), body movements
(BM), body movements w/ object interaction (BO), and body move-
ments for human interaction (HH). (a) Res-LSTM confusion matrix

on UCF-101, (b) Res-LSTM confusion matrix on HMDB-51

Also, we compare our final model to other RNN-like architectures. Table 7.4 lists
the performances and pre-training used by each solution. Our Res-LSTM outper-
forms the LSTM solutions in HMDB-51, while still being close to L2STM [169] and
Pre-RNN [210] performances on UCF-101.

In addition, Figure 7.4 reports the confusion matrices of our model on UCF-101
and HMDB-51. The classes in both datasets are rearranged using the coarse category
labels provided in each dataset.

We also combined our method with IDT, following other state-of-the-art ap-
proaches [177, 56, 94]. From the combination, we obtained an improvement of ac-
curacy of, respectively, +0.5% and +8.9% in UCF-101 and HMDB-51. In order to
analyze the larger improvement in HMDB-51, we illustrate the confusion matrix for
the combination in Figure 7.5a and the subtraction of the confusion matrices before
and after the combination in Figure 7.5b. Finally, Figure 7.6 illustrates the per-class
accuracy improvement on the HMDB-51 categories after the combination with IDT
which improved (or maintained) the accuracy on 45 of the 51 categories, while only
getting worse performance on 7.

Finally, we compare to a broader set of works, either sequential or non-sequential
(static) models in Table 7.5. Most of them only report results over the three splits in
both UCF-101 and HMDB-51. Those that provide the accuracy in Split-1 are marked
with “*”. We can see sequential-model based solutions are about 5 to 10% less accu-
rate than the most successful static models pre-trained on very large datasets. How-
ever, our approach came quite close to those preformances obtained by static mod-
els. In the future, we will investigate how our model can be trained end-to-end in a
larger dataset such as the one from [16] and, eventually, see if we are able to further
improve the results.
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FIGURE 7.5: Confusion matrices after combining our Res-LSTM with
IDT on HMDB-51. The ordering of classes in (a) and (b) is rearranged
as in Figure 7.5a. (a) Res-LSTM� IDT confusion matrix on HMDB-51,
(b) Subtraction of Res-LSTM � IDT and Res-LSTM confusion matri-
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FIGURE 7.6: Per-class accuracy improvement after combining our
Res-LSTM with IDT on HMDB-51.

TABLE 7.4: Performance comparison of RNN-like architectures. UCF-
101 accuracies are over split-1, except for [169] that only reports accu-
racy over the three splits. “*” indicates that the method may or not

use a pre-trained model, depending on the CNN used

Method Pre-training UCF-101 HMDB-51
ImageNet 1M Sports

TwoLSTM [216] 3 3 88.3 -
VideoLSTM [94] 3 7 89.2 56.4
L2STM [169] 3 7 93.6 66.2
Pre-RNN [210] 3 7 93.7 -
Res-LSTM * * 92.5 68.0
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TABLE 7.5: Comparison on UCF-101 and HMDB-51

Model Method UCF-101 HMDB-51

St
at

ic
m

od
el

s

FST-CNN [168] 88.1 59.1
TDD [189] 90.3 63.2

KV-CNN [225] 93.1 63.3
LTC [177] 91.7 64.8

TDD + IDT [189] 91.5 65.9
ST-ResNet [44] 93.4 66.4

STM-ResNet [45] 94.2 68.2
LTC + IDT [177] 92.7 67.2

TSN [190] 94.2 69.4
ST-ResNet + IDT [44] 94.6 70.3

STM-ResNet + IDT [45] 94.9 72.2
STC-ResNext [35] 95.8‡ 72.6‡

I3D [16] 98.0 80.7

Se
qu

en
ti

al
m

od
el

s

LRCN [37] 82.9 -
AttLSTM [156] 77.0* 41.3

UnsuperLSTM [166] 84.3* 44.0‡

RLSTM-g3 [106] 86.9 55.3
TwoLSTM [216] 88.3* -
VideoLSTM [94] 89.2* 56.4

VideoLSTM + IDT [94] 91.5* 63.0
L2STM [169] 93.6 66.2

PreRNN [210] 93.7* −
Res-LSTM (ours) 92.5* 68.0*

Res-LSTM (ours) � IDT 93.0* 76.9*
‡ Only RGB modality is used
* Evaluation on split-1



87

Chapter 8

Final discussion and conclusion

We have seen two very different approaches to action recognition: hand-crafted
and deep-learning based methods. Hand-crated approaches dominated the field
for a long time, especially the ones based on local spatiotemporal feature repre-
sentations. These kind of features, often aggregated using a Bag-of-Visual-Words
approach, demonstrated their robustness and reliability for the task. A particular
instantiation of Bag-of-Visual-Words (BoVW) has been the dense trajectories (DT)
framework. The feature extraction step of DTs was inspired by regular dense sam-
pling strategies, but merely focusing on moving parts: pixels are tracked during
15 frames at different spatial scales using dense optical flow maps. The sampled
trajectories are then described using a diverse set of feature descriptors: trajectory
displacements, HOG, HOF, and MBH, respectively providing trajectory shape, ap-
pearance, motion, and motion boundary information about the actions observed.
After this feature extraction step, codebook generation and feature encoding from
BoVW, provide a global representation for the whole video based on each of those
four different kinds of descriptors.

The combination of several sources of information proved to be very effective for
action recognition. One way of combining them is simply concatenating the different
video descriptors and using them in a holistic classifier. However, the combination
not only enlarges the feature space but can also reduce the class separability of the
classification examples because of the different nature of the individual represen-
tations, eventually confusing the classifier. Ensemble learning provides a solution
for that. We showed that having one classifier for each type of feature (or any re-
duced subset of features) and then combining their outputs can be more effective
than holistic action representations. Each classifier specializes in a kind of features
and their outputs combined via DS theory-based fusion. In particular, this kind of
fusion not only takes into account the scores of the different classifiers, but also uses
those scores as evidence to measure how confident they are in the classification so
the contribution to the final decision is adapted. As shown, dense trajectories and
space-time interest points can also both benefit from such approach.

We explored other modalities than RGB. In particular, depth and inertial infor-
mation. On the one hand, depth provides geometric shape information that can
also be relevant for action recognition. In the monitoring scenario we presented, the
main challenge was not large intra-class variability but very low inter-class variabil-
ity. We showed how geometric information can be integrated in the dense trajec-
tories framework to enhance recognition. On the other hand, inertial information
also shown to be a highly complementary cue to vision-based recognition, provid-
ing very precise information of hand movements and helping to discriminate very
look-a-like actions.
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Given the success of dense trajectory framework in all sorts of action recogni-
tion problems, we decided to overcome on of their drawbacks. Their inability to
model long-term temporal information. For that, we proposed modeling the evolu-
tion of iDT features on groupings of trajectories. The groupings were obtained by
using a recursive clustering algorithm that performed a hierarchical decomposition
of the video’s cloud of trajectories and build a tree representation. Then, we mod-
eled the evolution of features throughout both nodes and branches of trees. For the
final classification, we constructed a kernel representation combining the two pro-
posed representations. Moreover, our method shows further improvement when
used together with holistic videodarwin. We achieved better results than current
state-of-the-art on two benchmark datasets (UCF Sports Actions and Highfive) for
action recognition. The pipeline is applicable to any pattern recognition problem
once a rich representation is obtained at a given time instant. Also, following the
trend of combining hand-crafted and deep-learning methods, we could explore the
integration of CNN features as an additional cue in darwintrees.

Deep-learning based has become state-of-the-art for action recognition. We in-
troduced a comprehensive state of the art for action recognition and the very related
gesture recognition problem. We categorized the approaches in a taxonomy of deep
models: 2D-CNN, motion-based CNNs, 3D-CNN, and temporal models. In it, we
showed the importance of pre-computed motion cues and the promising results of
3D-CNN over 2D-CNN given their better ability to model spatiotemporal features
in videos. Moreover, current trends show how 3D-CNN are able to model the tem-
poral information in action recognition videos and perform better than temporal
modeling based ones. However, the former could challenged with longer and se-
mantically richer complex videos, requiring more and more data and computational
time to perform better than the latter.

Finally, we defined a two-stream multi-layered residual recurrent neural net-
work that incorporated residual connections between layers. The streams processed
RGB and motion independently and then late-fused the class score predictions us-
ing element-wise multiplication. Our solution obtained state-of-the-art against other
LSTM solutions on the HMDB51 dataset and competitive results in UCF101.

As future work, we are intended to explore better ways of combining 3D-CNNs
with sequential modeling based ones, so we can have increased performance and
the ability to perform better than purely 3D-CNN models in longer videos while
keeping low the computational cost of the approach.
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