MASTER IN ARTIFICIAL INTELLIGENCE

MASTER THESIS

Deep 3D Pose Regression of Real Objects
Trained With Synthetic Data

Author: Supervisor:
Pau BRAMON MORA Dr. Sergio ESCALERA
GUERRERO

Facultat d’Informatica de Barcelona (FIB)
Universitat Politecnica de Catalunya (UPC) - Barcelona Tech

Facultat de Matematiques de Barcelona
Universitat de Barcelona (UB)

Escola Tecnica Superior d’Enginyeria
Universitat Rovira i Virgili (URV)

April 24,2019



MASTER IN ARTIFICIAL INTELLIGENCE

Abstract

Deep 3D Pose Regression of Real Objects Trained With Synthetic Data

by Pau BRAMON MORA

Deep Learning has achieved outstanding results in several applied computer vision
areas. However, for manufacturing settings, it is still complicated to use Deep Learn-
ing techniques, because these applications usually lack of sufficiently large datasets.
In this thesis, we generate synthetic objects under different 3D configurations and
visual point of views to train deep models to detect and regress 3D poses of asso-
ciated real objects in manufacturing settings. In particular, the approach is to use
domain randomization in the synthetic generation to bridge the reality gap, so that
the proposed deep model can generalize to real images in test. Moreover, this work
proposes a new multi-task Neural Network for the pose regression task, which uses
a new loss function to reduce the errors produced by view ambiguities and symme-
tries.

The results obtained in this work prove that it is possible to obtain good results in
the pose regression task exclusively using synthetic images. Using the architecture
and the generation pipeline defined in this thesis, the prediction of the location and
regression of different objects can be regressed fairly accurately.
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Chapter 1

Introduction

1.1 Motivation

The industrial automation sector is rapidly evolving every day and adopting new
technological trends. A promising technique that is becoming very popular in au-
tomation companies is Deep Learning (DL). DL and, particularly, Neural Networks
(NNs) have proven very effective in many tasks, achieving even human-like perfor-
mance in some of them.

Computer Vision is one of the areas where DL has achieved great success. Deep Neu-
ral Networks (DNNS5s) solve vision problems with a much higher level of abstraction
than classical computer vision algorithms, achieving in some tasks astonishing re-
sults. It is not surprising that computer vision companies in the automation sector
are starting to use DL as one of their tools for tasks such as quality inspection and
object classification.

Regressing the 3D location and orientation of objects (also known as 3D pose or
6D pose regression, which will be used interchangeably throughout this work) is
a crucial task in many manufacturing settings. Many robotic applications (such as
robot manipulation or inspection tasks among others) need to know the translation
and rotation of objects to be performed. However, the 6D pose regression task is
extremely challenging. Objects can have very complex shapes, many ambiguous
viewpoints and the light conditions can totally change the projected shades and re-
flections in the obtained image. Considering the success in other tasks, some see in
DL a promising way to tackle this complex problem.

The main concern in the use of DL for real applications is the availability of data.
It is well-known that training deep models needs huge amounts of annotated data,
which sometimes are very hard to obtain. Without the proper data, it is not possible
to train deep models and, in real applications, there usually are not many avail-
able datasets. This is specially problematic in the 6D pose regression task, where
obtaining images with the ground truth location and rotation tends to be very com-
plicated. This is probably the reason why computer vision companies still rely on
complex hardware like stereoscopic 3D cameras or RGB-D sensors to perform this
concrete task.

The goal of this project is to create an end-to-end system able to regress the 6D pose
of different objects for industrial automation applications using DL techniques. In
order to solve the task without available datasets, the system will synthetically gen-
erate its own training data to train a DNN. Therefore, for a given object, the system
first generates a dataset of synthetic images and then it trains a Deep Model with it.
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This master thesis aims to prove that the proposed system can achieve good results
in pose regression tasks and that this methodology could be useful in real world
industrial applications.

Probably the most challenging part of the project is to obtain good results with real
images using a model trained exclusively with synthetic ones. The concept of reality
gap refers to this challenge and is widely studied in the literature [45, 47, 41]. Even
though this is a complex problem to solve, the idea of focusing on manufacturing
settings makes the system feasible. Manufacturing configuration settings have the
following properties that make them more suitable for this system:

e The environment in industrial applications has a lot less variability than in
other applications.

e The objects to regress are very similar to the 3D models used to generate the
images, making it possible for the render to generate fairly realistic synthetic
datasets.

e We can moderately control the environment, meaning that we can add ele-
ments that could help to regress the pose more accurately (adding references,
choosing the right light conditions, using specific background colors, etc.).

This work also aims to obtain a system computationally feasible. The goal is to de-
sign a system that could be used in real applications, therefore the computational
times of the synthetic generation process have to be also practicable. Throughout
this project, this was kept in mind, comparing the computational time and the com-
plexity when choosing the right generation procedure.

The DL model proposed in this master thesis is a multi-task Neural Network. In
particular, the network is composed by a main feature extractor followed by three
branches regressing the bounding box of the object, the translation with respect to
the camera and the rotation with respect to a reference position. Furthermore, the
architecture presented in this thesis also introduces a new loss function to solve the
problem of view ambiguities.

1.2 Related Work

This section analyses other papers that are somehow related to the work presented
in this master thesis. First of all, we explore some of the datasets available for the
6D pose regression task and the available tools to create new synthetic datasets. Sec-
ondly, we summarize some of the most relevant papers working on the 6D pose
regression task using DL techniques. Finally, we focus on the literature addressing
the reality gap problem when using synthetic data to train deep models.

1.2.1 Datasets

Since object detection and pose estimation has become a very popular problem to
solve using Deep Learning techniques, there are plenty of available datasets in the
literature to test proposed solutions in different scenarios [22, 21, 29, 6]. However,
the aim of this work is to create an end-to-end system able to solve completely new
problems in manufacturing settings. Consequently, the idea is to create a specific



Chapter 1. Introduction 3

dataset for simulating an industrial setting, instead of using any of the available
ones for generic problems. Furthermore, the data used to train the deep models will
be synthetically generated using a rendering software.

There are many available tools to create images from 3D models (e.g. [46, 49, 28,
35]). In this work, we will use Blender [5], because it is open-source, has a python
interface and it has a large range of possibilities for rendering (from very simple but
fast renders to very complex but computationally expensive ones).

1.2.2 6D Pose Regression

Many recent papers tackle the problem of regressing the 3D location and rotation
using deep models. In this section we describe some of the most relevant ones at the
time of writing. At the end of the section, a comparison of all the models is given for
the most used dataset in the literature: the LINEMOD dataset [21].

SSD-6D

The interesting work presented in [26] explores the use of a modified version of the
Single-Shot Detector (SSD) network [33] to obtain the 2D detection of objects and
infer fairly accurate 6D poses of them. In a second step process, they refine the 6D
poses using either the RGB images with an edge-based approach or RGB-D data with
a cloud-based Iterative Closest Point (ICP) approach. The main idea is treating the
pose regression as a classification problem with discrete number of viewpoints and
in-plane rotations. Interestingly, in this work they also train the DNN exclusively
with synthetic images.

The architecture described in this work uses an InceptionV4 network [43] with pre-
trained weights as the backbone of an SSD network, from which they obtain six
different feature maps to apply the method at six different scales. Following a fully
convolutional SSD like method, they can obtain, at each scale and location in the
image, different tensors describing the object class, discrete viewpoint, discrete in-
plane rotation and a refinement of the four bounding box corners. Therefore, instead
of directly predicting the orientation, they treat the pose regression as a classification
problem with a discrete number of viewpoints and in-plane rotations. This network
is trained using synthetic images, generated using a 3D model over a random back-
ground image (using randomly selected images from the MS COCO dataset [32]).

The results from the network provide, for each object in the image, a pool of 6D
hypothesis with the most confident viewpoints and in-plane rotations. In this second
step, they use the 6D hypothesis with its bounding box to render the 3D models and
compare the obtained projections with the actual test image. Using either the RGB
image alone or also the RGB-D data, an accurate pose can be inferred.

BBS8

In the work presented in [36], they propose a three-stage process to regress the pose:
first they find the location of the objects in 2D, secondly they perform an estimation
of the 3D poses and, finally, they refine them. For the localization step, instead of
searching for the bounding boxes, they use an object segmentation approach.
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Once they have the objects in the image isolated, they use another network to find
the bounding box points of each object. Using a PnP algorithm with the regressed
bounding box points, they can infer the pose of the object in 3D, which can then be
refined using another Convolutional Neural Network (CNN) proposed in the paper.
A very interesting contribution of the work is the strategy to deal with symmetric
objects, which is a common problem in most of the papers solving this task. In
the paper, they achieve remarkable results in the LINEMOD [21] dataset and the
challenging T-LESS [22] dataset, which contains complex symmetric objects.

In the localization step, instead of using standard 2D object detection and localiza-
tion methods, they use an object segmentation approach. This segmentation is done
as a two-level, coarse-to-fine, object segmentation. The first level uses a network
based on a VGG architecture [42] to obtain a low resolution segmentation of each
object. The second level is a simple 2-layer CNN that obtains a finer segmentation
for each object separately.

In the second part, they use the segmentation obtained previously to isolate the ar-
eas containing the different object in the scene. Using a modified version of a VGG
network, they are able to regress the pose of each object separately. This regression
is tackled as a regression of 3D-to-2D correspondences. The network first regresses
the 2D coordinates of the 3D bounding boxes and, with a Perspective-n-Point (PnP)
algorithm, they are able to infer the 3D pose of each object.

Finally, as a separate step, they propose another network to perform a refinement of
the poses. The proposed refinement is an iterative process using a network specific
for each object class. This network uses the area of the image containing the object
and a mask generated from the current estimation of the pose. This network will
produce at each iteration an update of the current estimation of the pose.

Real-Time Seamless Single Shot

While the above papers require a second step process to refine the obtained pose,
the work presented in [44] proposes a single-shot deep CNN to directly obtain an
accurate prediction without a posteriori refinement. Their implementation is based
on You Only Look Once (YOLO) [39] and it is able to directly predict nine 2D coor-
dinates (the eight bounding box corners and the centroid of the object’s 3D model)
from which they can infer the 6D pose with a PnP algorithm.

They follow an architecture similar to the fully convolutional YOLO v2 architecture
presented in [38], that takes a single color image and divides it into a regular grid
producing SxS cells. Each location of the grid will provide the 2D coordinates of the
9 points (bounding box and center), an overall confidence value and the class proba-
bilities. For the objects with a certain confidence value, they can directly regress the
pose of the objects with a simple PnP algorithm using the 9 points found in 2D.

In order to improve the results, they us passthrough layers to use features from
earlier layers in the prediction and they train the network with different input res-
olutions (choosing multiples of 32, since the network downsamples the image by a
factor of 32).
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PoseCNN

The papers described above find points in the 2D image to do the pose regression
using a PnP algorithm and the 3D model. Alternatively, the work presented in [50]
proposes a network that is able to directly predict the location and rotation of multi-
ple objects in the scene. In order to accomplish this, the network implicitly performs
three different tasks: an object segmentation task to find all objects in the scene, a
prediction of the 3D translation vector and a regression of the quaternion describing
the rotation of the object.

The network consists of a base network of 13 convolutional layers and 4 max-pooling
layers, followed by the three different branches that perform the three tasks de-
scribed before. The first branch of the network does a semantic segmentation of
the image, labelling each pixel as one of the objects in the scene. The information
obtained in this branch is then used in the following ones to perform the 6D pose
estimation.

The second branch aims to find the 3D translations of the different objects within
the image. In this part, they first localize the centres of each object instance and esti-
mate its depth (distance from the camera). Using this information, the network can
easily infer the 3D translation and the bounding boxes of each object. This branch
uses a Hough voting layer to obtain the 3D location of the different objects. Using
this layer, they claim that the regression is more robust to occlusions than directly
predicting a vector with the position.

Finally, the last branch uses a Region of Interest (Rol) pooling layer [17] with the
bounding boxes found before to extract the features describing the object. This way,
they regress the rotation using only the features contained in the are of the object,
making branch smaller. Using fully connected networks, the branch directly outputs
a quaternion representing the rotation of the object with respect to a known orienta-
tion.

Furthermore, in order to deal better with symmetric objects, they propose an spe-
cial loss function that compares volumes. In training, they combine all the different
losses of the network and they train it end to end.

Deep-6DPose

Inspired by the Mask-RCNN [20] implementation for object instance segmentation,
the work presented in [11] proposes the use of Region Proposal Network (RPN)[40]
in the 6D pose regression task. The network presented in this work consists of two
different parts, the first one is a generic feature extractor to obtain the necessary
features and the second part contains the branches performing the necessary tasks
of the network. These two parts are connected using the RPN, which find the parts
in the image that are more likely to contain objects.

The backbone of the network is based on the VGG architecture, which extracts the
features of the image. Using RPN attached to the VGG, they obtain areas likely to
contain objects. Using a Rol pooling layer, they extract the different features within
the proposed areas, which are then evaluated with the second part of the network.

The second part consists of three different branches that find the necessary infor-
mation for the pose regression. The first branch performs a bounding box regression
and a class classification of the proposed region. This determines whether the region
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actually contains an object or not, and it regresses a tighter bounding box.

The second branch finds a segmentation of the object within the proposed region.
Together with the information of the bounding box and class, the objects are per-
fectly located within the image.

Finally, the third branch regresses a 4D vector with the necessary information to
regress the final location and rotation. One element of this vector is the z component
of the translation vector, which together with the bounding box and object informa-
tion allow them to perfectly regress the precise translation of the object. The three
remaining elements of the regressed vector are Lie algebra associated with the rota-
tion matrix of the pose.

DeepIM

As it was already explained, in most of the literature, once a first estimation have
been obtained, some algorithm to refine it can be used to improve the results. There
are many different alternatives to refine the pose based on classical computer vision
techniques (like edge based methods or ICP). The refinement process can be done
with the same RGB images used for the prediction, but also with depth information.
The work presented in [31] shows another method for refinement based on Deep
Learning (DL). Here, the authors present a network to obtain a pose correction using
the image, the 3D model of the predicted object and an initial estimation.

The main idea of this work is to use the original image and a synthetic render of the
object in the predicted pose, to find the adjustment that makes the two images match.
In order to do that, they use the two images (original and synthetic) concatenated
together with two foreground masks of the two images as the input tensor of the
network. Using the FlowNetSimple architecture [13] as base, the network is trained
to predict the optical flow between the pair of images. This network can be used
iteratively to refine the pose more precisely. Using this technique, the paper achieve
large improvements on the results obtained in [50].

Comparison

Table 1.1 shows a summary of the related work presented above. In this table, the
results are obtained for the LINEMOD dataset [21] and compared using the ADD
metric [21]. The results shown are achieved using only RGB images. Notice that this
table only shows the accuracy of the results, but not the computational time. While
methods like [26, 31] obtain better results in terms of precision, others like [44, 11]
claim to be faster to compute.

Apart from [26], all methods use part of dataset for training (around 15% — 30%
depending on the paper). Since the dataset is not very large, strong data augmen-
tation techniques are used in all of them (random background, rotation and scale
variations, changes in illumination, etc.). Some of them also use synthetic images to
enlarge the dataset.

On the contrary, the SSD-6D[26] is trained exclusively on synthetic images, obtaining
remarkable results after some refinement. Notice that this network only produces
6D hypothesis without refinement, because the problem is treated as a classification
problem instead of a regression. Since the output is the discretized viewpoint and
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‘ Work ‘ Description | Refinement | Results |
SSD-6D [26] InceptionV4 for SSD approach to get bounding box hypothesis None 2.42
SSD-6D [26] InceptionV4 for SSD approach to get bounding box hypothesis Edge based 76.3
BB8 [36] Segmentation + CNN to detect bounding box corners None 43.6
BBS [36] Segmentation + CNN to detect bounding box corners CNN per object | 62.7
Tekin [44] YOLO based approach to predict bounding box corners and centroid None 55.95
Deep-6DPose [11] Extended Mask R-CNN for pose estimation None 65.2
PoseCNN [50] Semantic labelling + directly estimating location and pose None 62.7
PoseCNN [50] + DeepIM [31] Semantic labelling + directly estimating location and pose DeepIM [31] 88.6

TABLE 1.1: Related work results with the LINEMOD dataset [21] us-
ing only RGB images.

in-plane rotation, it cannot find a precise output and, therefore, the results without
refinement are pretty low.

1.2.3 Bridging the Reality Gap

As we will explain in detail in Chapter 2, one of the major obstacles in using syn-
thetic data to train neural networks is the so called reality gap. The reality gap is
a subtle but important discrepancy between real and synthetic data, that prevents
neural networks trained with synthetic images from generalizing to real ones. Even
though this is a relatively new and complex problem, there are some papers in the
literature that have found very useful methods to close that gap and make the net-
works generalize.

In [45], the authors propose an alternative to improve the results in networks trained
exclusively with synthetic data. It explores the use of domain randomization in
simulated environments. Domain randomization consists of randomly varying the
characteristics of the simulated environment, such that the network only learns the
important and invariant features. With this technique, they are able to train a deep
neural network to do detection and pose estimation for robotic tasks using only syn-
thetic data. In the paper they can achieve similar results to the ones obtained with
real data, but only using simulated images. In their approach, differently from oth-
ers using simple backgrounds, they create coherent scenes as similar as possible to
what the camera will see in real test cases. Then, they make the simulator introduce
many variations so that the network learns only the important features of the scene.

Similar to the previous paper, the work presented in [47] shows how using domain
randomization can achieve better results than using photorealistic synthetic images
alone. In this paper, they focus only on the object detection task for the Real Im-
age KITTI dataset [16], training different architectures with complex photorealistic
images from Virtual KITTI dataset [14] or simpler ones but using domain random-
ization. The results show how using domain randomization actually obtains better
results, achieving even better results when the network is fine tuned with a few real
images.

With the same idea of closing the reality gap between models trained with synthetic
images and real ones, a very interesting solution is presented in [37]. In this paper,
the authors propose the use of a network to adapt features obtained with real and
synthetic images. They basically add an intermediate network between a feature ex-
tractor and a pose predictor that learns how to map features of real images into the
synthetic feature space. They propose to learn this mapping using pairs of synthetic
and real images in similar poses.
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FIGURE 1.1: Overview of the system.

In the paper they show how their solution is able to improve the results in two dif-
ferent problems: 3D object pose estimation and 3D hand pose estimation. They use
implementations from other works for the feature extractor and the pose prediction
networks, but the idea of creating a network to adapt features could be used with
any implementation.

One of the main problems in the solution presented in [37] is obtaining the pairs of
real images and synthetic ones in similar poses. Another alternative is proposed in
[41], which bridges the reality gap using only unlabeled real data. The approach
here is using adversarial networks to add realism to the synthetic datasets. The ad-
vantage of this approach is that the adversarial network just needs unlabeled real
data, without the costly annotations needed in the previous work.

In this paper, they use Generative Adversarial Networks (GANs) to add realism to
synthetic images, in order to later use them to train other deep models. They qual-
itatively show how, using those models, they can generate highly realistic images.
Using those improved images for training, the network is able to generalize a lot
better to real images. This work demonstrates a significant improvement over using
synthetic images alone, and achieves state-of-the-art results on the gaze estimation
dataset MPIIGaze [51] without any labeled real data.

1.3 Description of the System

The proposed application in this work is an end-to-end system able to regress the
location and rotation of objects in industrial settings using a NN. The idea is train-
ing the system only with synthetic data, making use of the domain randomization
method. The synthetic datasets will be generated in Blender[5] and enlarged with
simple data manipulation in Python. Furthermore a new DL architecture able to
regress the 6D pose of single objects is proposed and evaluated. Figure 1.1 shows an
overview of the proposed system.

The first part of the system is the generation of data. First, the work proposes the
pipeline for the synthetic data generation. The pipeline should be able to produce
training datasets autonomously and efficiently. Autonomously means that the system
should be able to create the datasets almost automatically, without the need of hu-
man designers crafting the perfect 3D scene for each new applications. Efficiently
means that the generation of images should be as fast as possible. The main reason
for the use of synthetic datasets is to satisfy the rapid and constant evolution of the
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industrial needs. Since factories have to constantly be able to produce new prod-
ucts, industrial applications are always changing and adapting. For this reason, the
system should be fast and totally automatable, reducing as much as possible the
rendering times and the necessary work to set up a new product or application.

Chapter 2 details the synthetic data generation pipeline and the methods used to
overcome the generalization problem. In addition, this work contributes with a new
annotated dataset of real images for the pose regression task and a small interface to
manually create other datasets for the same problem. Even though the deep models
of this work are trained with synthetic data alone, in order to test the performance of
the system in real images, an annotated dataset of real images is obviously necessary.
This chapter also describes the new dataset and the interface to manually create
others.

The second part of the system is the design of a DNN able to correctly solve the
3D pose regression task. As it can be seen in Figure 1.1, the network predicts three
different vectors: the bounding box in 2D, the location of the object with respect
to the camera and the orientation of the model with respect to an initial position.
The proposed network is a multitask network that will perform various operations
using the same feature extractor, combining the different losses of all the tasks to
obtain a more efficient training. The work also introduces a new loss function for
the pose regression task, that helps to deal with view ambiguities. This loss is called
Projection Loss and aims to imitate the matching of silhouettes that humans do when
trying to understand the pose of an object. This new loss and the whole design of
the network is studied in Chapter 3.

In Chapter 4 the generation pipeline and the proposed DNN are evaluated on the
created dataset. In this chapter, different evaluations are performed. On the one
hand, a qualitative evaluation is shown. The 6D regression task is an intuitive task
for humans, so a visual evaluation of the results is necessary to understand the prob-
lems the system faces. As it will be observed, a visual inspection of the results pro-
vides valuable information about the effects of the different elements of the system.
On the other hand, a quantitative evaluation is also performed. This evaluation will
be performed using the most common metric in the literature and it will be essen-
tial to compare the different architectures or generation pipelines. Even though the
qualitative results give important insights about the problems of the network, to
compare different implementations some kind of metric is indispensable.

Finally, Chapter 5 gives some conclusions about the implemented system and the
obtained results. In this chapter, some future work or research lines are stated, so as
to give continuity to this work.
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Chapter 2

Datasets

This chapter focuses on the dataset generation for both training and test. The first
part is focused on the creation of training datasets. As it was stated, the work aims
to train neural networks with synthetic data. Here the main generation pipeline is
detailed and the main issues regarding the generalization problems are addressed.
The second part is instead focused on the test datasets. In order to evaluate the per-
formance of the network, a test dataset with real annotated images is necessary. First,
the interface developed to manually annotate real images with 3D pose labels is pre-
sented. Secondly, the annotated dataset that will be used to evaluate the network in
Chapter 4 is described.

2.1 Synthetic Data

Training deep networks for computer vision tasks typically requires an enormous
amount of labeled training data. Consequently, obtaining good results in deep learn-
ing usually implies spending a lot of time manually annotating data. This could be
fine for some applications or research experiments, but it may become a problem in
many real applications.

First, some tasks are harder to label than others. In some cases, the labeling pro-
cess can be very complex and time-consuming. For example, for the pose regression
task, manually finding the pose of an object requires a lot of time, for example, find-
ing the known 2D points to apply a PnP algorithm. Furthermore, training a deep
model to regress the pose of an object usually requires a lot more data than a simple
classification of the same object, since the task is much more complex.

Secondly, if we are implementing a system to work in the industrial automation
sector, which is continuously changing and usually needs quick implementations,
manually annotating data for each problem may be not the best option. The aim of
this work is creating a system that could work in real applications, so we cannot rely
exclusively on manually annotated data.

A promising approach to overcome this limitation is to use synthetic images instead
of real data. The idea is to create datasets of artificially generated images using a
simulator or a rendering software. With this approach, very large datasets could
be created in a much shorter time, even for tasks with very complex labels. Conse-
quently, we would overcome one of the main issues regarding Deep Learning, which
is the availability of data.
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In this work, we explore the use of synthetic data to train deep models for the pose
regression task. First, this section explains the problem called reality gap, the main
issue that arises when training neural networks with synthetic data. It exposes two
ways to deal with it and the approach chosen in this work. Secondly, the section
describes the generation pipeline used to create the datasets. This pipeline will be
used through the rest of the work to create any synthetic dataset needed. Finally,
the section focuses on the domain randomization approach and how the pipeline
described before uses it. The domain randomization will be a key element in our
system and its effects will be experimentally studied in Chapter 4

2.1.1 Reality Gap

Using synthetic images instead of real ones seems a promising idea, but, unfortu-
nately, this approach does not always work as expected. If the datasets are not cre-
ated carefully, the networks can end up learning just the synthetic representation
and not the real one. If the images in the training dataset differ from the real ones,
the network will not generalize and the results in test will be poor. The differences
between the synthetic data used for training and the reality is called the reality gap,
and it is the main problem in the use of synthetic data for deep learning. In order to
bridge this reality gap, we need to either create very realistic datasets or find a way
to force the network to learn just the important characteristics of the data.

If we want to create very realistic datasets, there exist some simulators and render-
ing tools which are able to create highly realistic scenes. Mastering these tools, we
could apparently overcome the generalization problem creating datasets just like
the real images. There are many examples where photorealistic images have been
successfully used as training datasets for deep learning models [48, 15, 24].

However, even though photorealistic images may seem a good solution, creating
large datasets of them can be extremely complex. First of all, creating very realistic
images is computationally expensive. Both the hardware and the software tools for
rendering are improving every day, but the time required to do it is still significant.
For example, the time needed to create the image in Figure 2.1, using Blender Cycles
rendering engine with a NVIDIA GeForce GTX TITAN Black 1050, is still larger than
60 seconds. This is a lot of time for a single image with such a powerful GPU; if we
have to generate a dataset to train a deep model, we need many images like this and
the time to create them will be huge. Even if rendering much simpler objects and
using multiple GPUs in parallel, creating a big dataset to train a deep model would
require a lot of resources and time.

Secondly, obtaining photorealistic images also requires designers to carefully pre-
pare the scene to capture its realism. Obtaining a photorealistic image is not auto-
matic at all and the time needed to model those scenes can be comparable to the time
needed to manually label real data. Spending this time doing it is only worth if the
labels are extremely hard to obtain in real images. The creation of this kind of scenes
is not helpful otherwise.

In this work we propose to use a different approach called Domain Randomization,
which has proven to be very successful in the generation of synthetic data for deep
models. Instead of using highly realistic images to bridge the reality gap, this ap-
proach uses simpler representations with a wide variety of random changes in the
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FIGURE 2.1: Example of a photorealistic scene used in [4] to compare
rendering times in Blender with different hardware.

il ] Al

(A) Original Image (B) Photorealistic (¢) Random

FIGURE 2.2: Example of two methods to bridge the reality gap. The

first image is real data, which should be labeled manually. The sec-

ond have been created using Blender Cycles and adding the same

background to the image. Finally, the third approach is using domain
randomization.

environment. Adding random variations in the scene, the network learns just the
important and invariant features of the dataset.

Figure 2.2 shows a simple example to understand the idea behind domain random-
ization. The first image is the real data, which has to be manually labeled. The sec-
ond one is a photorealistic approach, where the image tries to match the real scenario
as much as possible. In this case we used Blender Cycles to obtain the object and we
added the same background image as in the original one. Finally, the third approach
is the domain randomization. This is much easier to obtain, since we do not really
look for the exact same appearance. In this case, we randomize the background,
the light conditions and the color of the image, so the trained network ignores those
features.

The idea is that if we add enough variability to the synthetic images, the network
will generalize better to real ones. [45, 47] are examples of the use of Domain Ran-
domization to train deep models for different tasks. In this work, we will follow this
approach using one of the simpler rendering engines available in Blender [5], called
Blender Render. This engine will allow us to create fairly realistic images without
much designing effort and little computational time.
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2.1.2 Synthetic Data Generation

Since the work is focused on regressing the pose of single objects in an image, the
generation method is fairly simple. In order to create images of a given object in mul-
tiple positions, we fix the camera location and rotation, and we move the object in a
random way around the scene. The images are saved in Portable Network Graphics
(PNG) format, so we are able to extract a mask if we want to get the segmentation
image.

The generation of ground truth values is totally automatic using synthetic data. For
each image, we record the following labels:

e Segmentation Image: For each image we create a transparency mask, defining
which pixels contain the image and which ones are background. This is very
useful when implementing the domain randomization, because we are able to
easily change the background image.

e Center: For each image, we compute the center of the object as the centroid
of all the pixels in the segmentation image. Therefore, using the transparency
mask we can easily find the centroid by finding the mean position of all points
in (x,y). This centroid value is normalized, so it is not affected by the image
size.

e Bounding Box: For each image we also compute the bounding box of the
object in the image. The bounding box is described as (x;,y;, x;,1;) where
subindex i stands for initial point and subindex I stands for length.

e Location: We then compute the location (x,y,z) of the object with respect to
the camera. Since we place the camera at location (0,0,0), the position of the
object is simply the same position of the object in Blender in world coordinates.

¢ Rotation: Finally, in order to capture the pose of the object, we use the rotation
of the object with respect to an initial position. Since the Euler angles suffer
from the well-studied problem of gimbal lock [2], we use Quaternions to express
the rotation as (41, 92, g3, g4 )-

Generation Pipeline

The location where the object is placed at each instance is decided randomly. How-
ever, in order to generate images in Blender efficiently, we need to ensure that the
objects are never placed outside the camera view frame. In order words, we limit
the position of the object within the camera view frustum. In order to do so, we first
compute the vectors defining the camera view from the origin point onwards. Then
we randomly pick a distance between the object and the camera frame. Thus, we
project this distance to the projection vectors and compute the plane defining the
camera view at that distance. Finally, we will randomly pick a point within that area
and set it as the new location of the object. Figure 2.3 shows an illustration of the
image generation scene.

In order to pick the rotation at each distance with a uniform distribution, we fol-
low the approach described in [2]. Therefore, we can get a uniform distribution of
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view frame

view frustum
projection vector

FIGURE 2.3: Illustration of the image generation scene.

quaternions with the following equation:

g=+/1—uy-sin(2mwuy) + /1 — uy - cos(27muy)i

+ \/u1 - sin(27muz)j + /uy - cos(27mtus)k (2.1)

One of the main benefits of creating synthetic images is that the process can be com-
pletely parallelized. In order to speed up the generation process we create multiple
threads to work in parallel. In this work, we have only used one computer but,
in real-world applications, this process could be distributed in multiple devices to
create the synthetic dataset much faster.

Rendering Engine

There are many rendering engines available in Blender, from the well known OpenGL
to third party engines that allow much more complex and realistic renderings. For
this work we used different ones and, experimentally, we found the Blender Render to
be the best option for our system. Blender Render is the internal engine of this soft-
ware and, even though it cannot generate photorealistic images, it can obtain fairly
accurate results. This engine produces much more realistic images than OpenGL and
it is clearly much faster than any other complex rendering engine. For our purposes,
this has the best trade-off between realism and acceptable computational time.

Figure 2.4 shows three examples with the three most usual rendering engines in
Blender. As we can see, there is a huge difference in realism between OpenGL and
the other two, specifically in the shading. In Blender, the OpenGL engine is very sim-
ple and it only allows environmental lighting (uniform lighting without bounces),
so it is hard to create shadings with that engine!. With the other ones, two spotlights
where placed in the scene to create the illumination and the shading. Notice that
Blender Cycles only needs the two sources of light to create a natural and realistic

IBlender does not provide the exact computation time when rendering in OpenGL because it is
considered real-time rendering. This time is the average time of generating the image 1000 times using
the python APIL.

!OpenGL in Blender is only used as a display feature, but there are libraries in OpenGL that allow
to create spotlights just like the other engines. These were not explored in this work.
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(A) OpenGL1 (B) Blender Render (C) Blender Cycles

FIGURE 2.4: Examples of three rendering results with the three most

usual engines in Blender. All results are 1000 x 1000 images that were

computed with an Intel® Core™ i7-7700HQ CPU (x8) at 2.80GHz

and a NVIDIA GeForce GTX 1050. But only Blender Cycles uses GPU,
the other two only use CPU.

image, because it computes a lot of bounces of the light forming a kind of environ-
mental illumination. In Blender Render, we added this environmental illumination
externally to obtain a better result as it is shown in Figure 2.5.

As we can observe in Figure 2.4, Blender Cycles clearly generates a more realistic
image, but the computational time needed to create the image was also a lot higher.
Blender Cycles was about 30 times slower than Blender Render in CPU. Notice that,
even though we have not studied the resource usage in detail, doing the experiment,
Blender Cycles entirely used all resources of the system, while Blender Render used
less than a 30%. This difference is also very important, since the pipeline can use
multiple threads to parallelize the process.

2.1.3 Domain Randomization

As it was explained in the first part of this section, this work focuses on domain
randomization to reduce the reality gap between real images and synthetic ones.
Therefore, instead of trying to produce realistic results to match the real images, we
generate a simpler representation and randomize all the features we do not want the
network to learn. With the above generation process, it is fairly easy to add domain
randomization to the images. There are three basic modifications we apply to the
images: background, light and object randomization.

Background Randomization

This is the simplest strategy to prevent the network from overfitting to background
features during training. It simply consists in using absolutely random images as
background. In our pipeline, this process is done after the rendering process. Since
the image generated in Blender is in PNG format with transparent background, we
can directly paste the object over a random image. As random images, we use ran-
dom crops from the PascalVOC dataset [12] and from the DTD dataset[9]. In order
to increase the variability even more, we also apply some random changes in bright-
ness, contrast and saturation to both background and foreground images.
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FIGURE 2.5: Simplification of the lighting used in Blender.

In manufacturing settings, the real background of the system in test time is usually
known. If that is the case, those images are used in the synthetic generation process
with a certain probability. However, note that even if the background is completely
known, it is still important to use random images with a high probability and not just
the real ones. Backgrounds usually have shades and reflections that are very hard
to model with renders, so domain randomization will force the network to ignore
those effects. In Chapter 4 we study the effect of either using simple backgrounds or
random ones.

Light Randomization

One of the key elements that makes an image look real is the illumination. In the real
world, the illumination comes from the direct rays produced by the different sources
of light, but also from the indirect lighting produced by the bounces of those rays.
Simulating those bounces is extremely hard and it is one of the reasons why pho-
torealistic renders are so computationally expensive. In order to generate datasets
relatively fast, we need to find a better way to produce that illumination.

The approach we follow with the illumination is much different. We want to create
images that do not differ a lot from the real ones, but we want to simplify the illu-
mination part. In order to do so, we limit the number of bounces and shades that a
ray can produce, and we add an environmental illumination to produce the indirect
lighting. This is much faster to produce than a complete simulation and it still gen-
erates results close to realistic. Figure 2.5 shows an illustration of the simplification.

A comparison between the complex lighting and this simplification can be seen in
Figure 2.4 above. While the render obtained with Blender Cycles in Figure 2.4c did
a complete simulation of the lighting, Figure 2.4b was obtained with the Blender
Render combining simpler direct light and environmental light. As we can see, even
though Blender Cycles generated a more realistic image, the other one produced a
fairly good approximation. Notice that Blender Render also have the option to create
a more complex scene like Cycles, but it also increases a lot the computational time.

Using this simplification we can speed up the rendering process, but we need to
ensure that there is enough variation in the illumination. In order to achieve good
results with domain randomization, we need to ensure that there are as many combi-
nations of lights as possible. This is achieved by placing many spotlights uniformly
distributed over the scene and randomly activating some of them. During the gen-
eration process, the illumination comes from a random number of spotlights, with
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random light intensities. Of course, this lighting does not affect the background, be-
cause there is no background in the rendered scene. However, using the background
randomization described above we overcome this limitation.

Object Randomization

Finally, we need to add some variations to the object itself. The color, materials and
shape of real objects are very hard to match. Even spending a lot of time modeling
real objects, in real manufacturing settings, there are always deviations between dif-
ferent instances. The idea of object randomization is to apply small variations to this
properties to make the network more robust to those differences. This is achieved
by using Gaussian distributions for the color and shape values. Therefore, instead
of a unique color, the rendered color is a random pick for each RGB color selected
from a Gaussian distribution with mean equal to the nominal value. Similarly, we
apply small deformations to the shape, by varying the 3D scale vector, also using a
Gaussian distribution for each element.

In the case of objects with image textures like serigraphs, the same variations can be
applied to the colors of the texture. In addition, when rendering objects with those
kind of textures, we also vary the relative position of the image with respect to the
object. Therefore, in the case of a serigraph, the image would appear slightly shifted
on each instance.

2.2 Dataset Creation

This work contributes with a new dataset and a framework for manually annotat-
ing new data for 6D pose regression tasks. First, this section describes the program
called 6D-Labeler, which can be used to quickly create new annotated datasets. Sec-
ondly, this section describes the dataset created using this program that will be used
to test our system in Chapter 4.

Even though the available datasets in the literature are perfectly valid for evaluating
deep models, having a way to create new datasets provides much more flexibil-
ity. The idea behind this framework is to generate labeled images with the same
conditions that we would find in real-world industrial applications. The proposed
framework allows us to prepare datasets with the exact conditions and objects that
we want to test.

Most of the available datasets described above have either cluttered scenes, very
complex backgrounds, poor light conditions or even semi-occluded objects. We pro-
pose a much more controlled scenario, where there is only one object in the scene,
the background is fixed and the light conditions are good. This is usually the case in
many industrial automation applications.

2.2.1 e6D-Labeler

6D-Labeler is a program developed in Python 3 and OpenCV [7] that can be used
to create annotated datasets for 6D Pose Regression tasks for RGB images. This is
accomplished by manually clicking known points of the object in each image and
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FIGURE 2.6: Screenshots of the Model Preparation Interface. The first

image shows the main menu, where we can add or edit the points

and images describing them. The second image shows the interface
for setting the 3D coordinates for one point.

applying a PnP algorithm to regress the pose. This program offers an easy interface
for defining interest points for objects, finding those points in RGB images, calibrat-
ing the camera and generating the final dataset.

The main advantage of this framework is that it can regress the pose of an object
without any other reference than the object itself and without the need of depth in-
formation. This means that the final image does not need calibration markers (like in
the LINEMOD [21] or the T-LESS [22] datasets) and it can be obtained with a simple
camera.

The process to create a new dataset is divided into two steps: the model preparation
and the manual annotation. The first part prepares a new model to be labeled. This
means the user have to define the interest points of the model that will later be used
to label the images. The interface allows the user to input some images where the
interest points are visible and use those images to define the set of interest points.
The second part is an interface that allows the user to manually click on each of
the interest points visible on the image. This interactive interface allows the user to
quickly find the defined interest points and check the final result.

Model Preparation

In this part, we can prepare a new model to be labeled. With an intuitive interface,
we define which is the object of the dataset and which are the interest points that
will be used to regress the pose in the manual annotation step. Figure 2.6 shows two
screenshots of this interface: the main menu and the editing of interest points.

In this step we need to specify as many interest points as possible to simplify the
manual annotation in the following part. For each point, the interface asks for the
3D coordinates of that point in the model, which can be easily obtained using a 3D
visualizer like Blender [5].

Manual Annotation

The second part of the program is an interface to manually label images using the
model defined previously. By relating 2D points in the images to 3D coordinates in
the model, we can easily regress the location and rotation with a PnP algorithm. The
algorithm used to compute the regression is an iterative method based on Levenberg-
Marquardt optimization, already implemented in the OpenCV library [7].
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FIGURE 2.7: Screenshots of the Manual Annotation Interface. The
first image is the menu where we can manage the images added to
the dataset, label new images, calibrate the camera or finally creating
the dataset. The second image is an example of manual annotation,
where we can relate 2D points in the image with 3D coordinates.

FIGURE 2.8: Example of two verification images generated by the 6D-
Labeler.

Defining just four points per image should be enough to correctly predict the pose
without ambiguity. However, since the manual annotation might not be exact and
the points defined might be coplanar, the algorithm might fail using only four points.
In practice, it is better to set more than four points per image to ensure the pose is
correctly predicted.

Figure 2.7 shows some screenshots of the interface. The first image is the main menu,
where we can manage the images being labeled, save the work done and generate
the final dataset. The second image is the interface where we can relate 2D points in
the RGB image with 3D coordinates of the model.

After every annotated image, the interface shows a verification image to check the
predicted pose. In this check, the original image is blended with a render of the 3D
model in the predicted pose. Therefore, if the manual annotation was incorrect, we
could see it in the verification image and correct it. Figure 2.8 shows two examples
of verification images.

Finally, in the main panel, there is a button to calibrate the camera. Selecting images
of a calibration grid, the interface will be able to compute the camera matrix and the
distortion coefficients using the OpenCV library [7]. These parameters are necessary
to precisely regress the pose with the PnP algorithm.
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FIGURE 2.9: Dataset objects.

2.2.2 6D-Single Object Dataset

This work contributes with a new dataset called 6D-Single Object Dataset (6DSO),
created using the 6D-Labeler. This dataset contains three different objects with a
very simple background and good light conditions. Each image contains a single
object with no occlusions. This dataset intends to simulate a common industrial
automation environment, where the light conditions are good, the background is
simple and nearly static, and the system can ensure there is only one object per
image.

So far, the dataset only contains three different objects, but it could be extended in
the future. The three objects have different characteristics that tries to emulate the
problems that the system we propose could face in real industrial applications:

e Toy: this object has a complex shape, where two photos of the same object
might be completely different depending on the pose. This shape has a lot of
small details that produces a lot of different and complex shades. It is inter-
esting because it is similar to what we could find in manufacturing settings.
Figure 2.9a shows an image of this object.

e Box: this object is a regular box with a concrete serigraph. The complexity
of this class is that the real object and the 3D model are not exactly the same.
The box is deformable, therefore it is impossible to have an exact model of it.
Furthermore, the serigraph may not be exactly at the same place as in the 3D
model. We want the network to absorb all these differences. Figure 2.9b shows
an image of this object.

e Symmetric: this object is very similar to the Toy, but it have an axis of sym-
metry. The reason to include this object in the dataset is to see the effect of
symmetries in the training of the network. Figure 2.9c shows an image of this
object.

The dataset contains 1000 images per object in various locations and rotations. The
illumination changes so the images contains many variations in the shading and
light intensity.
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Chapter 3

Network

This chapter defines the structure and details of the proposed network for the 6D
pose regression task. In the first section, we give an overview of the network and its
multi-task structure. In the second one, we analyze in detail the different parts of the
network and the way they are trained. In the third section, we propose the use of a
new loss function for the pose regression task, that reduces the errors produced by
view ambiguities and symmetries. Finally, in the fourth section, we provide some
details of the network implementation and the data augmentation process.

3.1 Overview of the Network

As it was already stated, the system is intended to work in industrial environments
and the task is to regress the location and rotation of isolated objects. Consequently,
in this work, it is assumed that the input image only contains one object of interest
at a time. The defined network is trained to produce a prediction of the 6D pose for
a unique object and ignore any other element appearing in it. The network could be
extended in the future to be able to regress multiple instances of the same object class
or even to detect different classes. However, for this work, the network is limited to
one class and one instance at every input image. In fact, this is a very common
scenario in many manufacturing configurations, where the camera is carefully set to
take photos of isolated incoming products.

The input of our network is an RGB image with fixed size, containing one object
to be regressed. This size can be defined depending on the quality of the images
or the relative size of the object within the scene. On the one hand, making the
image bigger gives the network more details of the object to regress. But on the
other hand, increasing the size of the image also increases the number of parameters
of the network, increasing the complexity of the optimization process, the inference
time and the memory size.

The network regresses the location of the object with respect to the camera and the
rotation of the model with respect to an original orientation. It is assumed that the
object’s 3D model is available as a matrix of 3D point locations Mp3, where P is the
number of mesh points and each point is defined with three coordinates (x,y,z). On
the one hand, the predicted location vector t is defined as the position of the origin of
the model coordinate system with respect to the camera location. On the other hand,
the predicted rotation vector q is defined as the rotation of the model coordinate
system from its initial orientation. The prediction for the rotation is expressed as the
quaternion applied to the model coordinates to obtain the pose in the input image.
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FIGURE 3.1: Architecture of the proposed network.

Figure 3.1 illustrates the architecture of the proposed network. As it can be observed,
the network is composed of a main backbone, which extracts all the necessary fea-
tures from the image, and three branches to perform three different tasks.

The first task is the bounding box prediction, locating within the image the 2D coor-
dinates of a box tightly containing the object to regress. Even though this is not the
aim of the network, this information is useful to guide the optimization process.
The second branch finds the rotation vector q defined above, which defines the
quaternion that tells how the mesh should be rotated to match the input image.
Notice that this task does not use all the features extracted by the backbone, but only
the ones contained within the bounding box. This is done by means of a Rol pooling
mask, which crops the tensor coming from the backbone to the bounding box area
predicted above.

Finally, the third branch finds the location of the object with respect to the camera t.
This task uses again all the features extracted by the backbone.

In the architecture shown in Figure 3.1, it can be noticed that the backbone of the
network follows an structure similar to the VGG16 network [42], which uses 13 con-
volutional layers and 4 max pooling layers. We add another pooling layer to reduce
the size of the last layer before the bounding box and location predictions. Using
this common structure we can use available pre-trained weights from other works
to get a faster training.

Concretely, this network uses the following two main concepts to properly regress
the 6D pose:

e Firstly, the use of a multi-task neural network to separate as much as possible
the different sub-processes necessary for the pose regression. The reason to
use a multitask network is that the optimization process can be guided more
precisely with many different loss functions. In the literature, there are sev-
eral works using similar architectures [50, 11] and this work focuses on this
approach.

e Secondly, the use of a new loss function that we call Projection Loss, which aims
to reduce the errors produced by view ambiguities in some objects. In the
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literature, other works propose different methods to deal with those errors,
from treating the problem as a classification task [26] to adding other kind of
losses [50]. The Projection Loss is inspired by some refinement methods [31,
36], which compares the foreground masks of the predicted and ground truth
poses to correct an initial prediction. We propose to integrate this comparison
directly into the multi-task neural network and train the system end-to-end.

3.2 Multi-task network

As it can be observed in Figure 3.1, the proposed network performs three different
tasks separately. The idea is simple, the first branch is intended to locate the object
within the image, the second branch computes the rotation vector q and the third
regresses the translation vector t. The loss of the network is the weighted sum of the
independent losses of the three tasks, a new loss we define as Projection Loss and a
regularization loss. Therefore, the total loss to minimize can be computed as follows:

Etotal = /\bﬁb + Aq['q + ALy + ApLLpL + Areg/:'reg (3-1)

where Ly, L, and L; are the losses of the bounding box, rotation and translation task
respectively. The Lpy is the new Projection Loss defined in the following section and
the L;.¢ is an L2 regularization loss of the fully connected layers. The A parameters
weight the contribution of each loss to the final loss and they are selected such that
all losses contribute similarly.

3.2.1 Bounding Box Prediction

Accurately regressing the bounding box of an object is not the purpose of the net-
work itself, but this task is very useful for the other two. Firstly, because the bound-
ing box is used in the rotation prediction branch to select only the features from
within the area of the object. Secondly, because adding the bounding box loss to the
training process also helps to train the feature extractor of the network faster. Find-
ing where an object is in the image is an implicit task when regressing the location
and rotation, so adding this separate loss helps the training process.

This part of the network is pretty straightforward; the network uses all features from
the backbone as the input to three fully connected layers. In order to do that, the last
layer is flattened and connected to a fully connected layer with 512 neurons with
Rectified Linear Unit (ReLU) activations. Using another hidden layer of 256 fully
connected neurons with ReLU activations and a linear output layer of four units,
we obtain the bounding box prediction. This last four neurons correspond to the
bounding box vector b. This vector is formed by two normalized points describ-
ing the top-left corner (y1,x1) and bottom-right corner (v, x2) of the bounding box

(y1, X1, Y2, xz)-

The bounding box loss is then simply computed as the Euclidean Distance:

Ly = ||b—b] (32)

where b and b are the ground truth and estimated bounding box vectors.
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3.2.2 Rotation Prediction

The second branch of our network is intended to predict the rotation of the object
appearing in the image. As we already stated, we define this as a quaternion that
describes how the 3D model should be rotated to obtain the pose shown in the im-
age.

Intuitively, it is clear that the information needed to compute this quaternion is only
contained within the bounding box area. So all features from any other part of the
image are obviously not useful and therefore discarded. This is why we used a Rol
pooling layer in this branch, which only picks the features within the bounding box
area and discard all the rest. Then, the network resizes the crops obtained from the
Rol pooling layer to a fixed size and flattens the neurons to be inputted into a fully
connected layer with 512 units and ReLU activations. Finally we use another fully
connected layer with 512 units and ReLU activations, and an output linear layer with
4 units. The four neurons in the output layer form the quaternion vector q.

In order to compute the loss for this task, we cannot naively use the euclidean dis-
tance like in the bounding box one. The first problem of comparing quaternions
using a distance metric is that we need to take into account that two quaternions
q and —q represent the same orientation. This is very important in an optimization
process, because we need to be consistent in the computation of the loss; if the image
visually contains the same object with the same orientation as the prediction, the loss
must be zero. In order to overcome the problem, we could restrict the quaternions to
be always positive. We could ensure the uniqueness of rotation for each quaternion
(91,92, 93,94), by forcing the first element g, to be always positive [30] (considering
that g1 will never be exactly 0).

However, there is another problem in using a simple distance metric to compare
two rotations (either using quaternions or Euler angles). As we already stated, the
computation of the rotation loss have to be always consistent: similar poses should
produce a lower loss and different poses should produce a higher one. Since we de-
fined the orientation of the object as the rotation with respect to a rest pose, the loss
would not be consistent using directly a distance metric. Two similar poses can be
reached with very different rotation vectors and, consequently, produce a high loss
when it should not. For example, the two rotation vectors r1 = (179°,0°,0°) (with
an approximate quaternion q; = (0.009,1,0,0)) and r, = (—179°,0°,0°) (with an
approximate quaternion q2 = (0.001, —1,0,0)), would produce a high loss but the
poses would be in fact very close (just 2° in x).

Since directly comparing the rotation vectors does not seem a good solution, we fol-
lowed a completely different approach. We experimentally found that an approach
similar to [50] produces a much more consistent loss and it makes the training much
more efficient. We define the rotation loss as the mean distance between the points
of the 3D model in the predicted and ground truth poses:

L= ¥ |Rx—Rx| (33)

p xeM

where M is the set of points of the 3D model (i.e. all the rows in the Mp 3 matrix) and
P is the total number of points in the set. R and R are the ground truth and predicted
rotation matrices respectively, which can be easily obtained from its corresponding
quaternions as follows:
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1—-2s(43+4q3) 259293 — qaq1)  25(9294 + q341)
R = |2s(q2q3 + qaqn) 1—2s(g3+4q3) 2s(qaqs — G241) (3.4)
25(q294 — q391)  25(q3q4 + q2q1) 1 —2s(q3 + 43)

where the quaternion has the form q = (41,42,93,94) and the parameter s is the
inverse of its square module || q||2.

Intuitively, this loss seems much more consistent than a distance metric; the farther
the prediction from the ground truth, the higher the loss is. Notice that in practice,
for computational reasons, we will use just a subset of points from the 3D model to
compute this loss, because using all the points does not add much more information.

3.2.3 Location Prediction

For this task we use the same approach used with the bounding box. This branch
uses all the features from the last layer of the backbone with three fully connected
layers to regress the location. The last layer of the backbone is flattened and in-
putted to a fully connected layer with 512 neurons and ReLU activations. Then,
another fully connected layer with 256 units with ReLU activations is used and an
output linear layer with 3 outputs produces the final translation vector t. As we al-
ready stated, this will directly be the location of the object with respect to the camera
coordinates.

The computation of the location loss is pretty straightforward. Just like we did with
the bounding box loss, we will use the euclidean distance between the predicted and
ground truth vectors. Therefore, the location loss will be computed as follows:

L=t (35)

where t and t are the ground truth and predicted location vectors (x, v, z).

3.3 Projection Loss

Even though the network defined in the previous section would already obtain good
results in the 6D pose regression task, this section introduces the Projection Loss to im-
prove a bit more the results. We experimentally found that the network is not able
to properly learn some scenarios with ambiguous views, because, for these situa-
tions, the optimization process gets stuck in very poor local minima. The aim of this
loss is to address this problem by adding a loss that compares the projection of the
predicted and ground truth poses.

3.3.1 Dealing with view ambiguity and symmetries

The 6D pose regression task sometimes has to deal with view ambiguities. Many
objects have some views from where it is impossible to determine its pose. Figure
3.2 shows a very simple example of an object that have an ambiguous view. As
we can observe in the figure, if we look at the image from point A, it it impossible
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View 1 View 2

FIGURE 3.2: Illustration of the view ambiguity problem.

to deterministically regress the pose, because the useful information is simply not
visible. Since the network only uses a single RGB image, the only solution in these
cases is to randomly pick one of the valid options (either View 1 or View 2 in the
figure example).

Ambiguities like the one shown in Figure 3.2 are impossible to solve with single
RGB images, but they are just extreme cases. For example, the object in that figure
just have an ambiguous view when the photo is taken from point A. In most of the
cases, the view will show some other part of the object that will break the ambiguity,
making the problem deterministic again. Furthermore, the problem is simply un-
solvable with the information available, so there is no other solution than making a
random guess.

However, we experimentally found that these ambiguities hugely affect the opti-
mization process. During training, the network is learning what features determine
the pose of an object and how these features are related spatially. When the network
gets an image like the one shown in Figure 3.2, it has to make a prediction that will
be evaluated with the losses defined previously. The problem is that, only with the
current losses, the result is not consistent and for the same input and output images,
the loss can be different.

In the best case scenario, where we can perfectly predict the pose, the loss after an
ambiguous image like the example will still be high with a 50% chance. This means
that, even though the features responsible for the prediction during the forward pass
were correct, with a 50% chance, the gradients during the backward pass will try to
modify them. This effect will not only slow down the training process, but it will
also lead to bad results. With the losses defined previously, the network might end
up learning to predict a pose in between the two valid options, because it finds that
the minimum error is at that middle point. In the evaluation chapter we will see this
effect in some real examples.

The Projection Loss aims to solve this problem by comparing the projection of the
3D model over the camera frame for the prediction and the ground truth poses.
Intuitively, this loss seeks to match the silhouette of the predicted pose with the
silhouette of the object in the image. The hypothesis is that the loss will improve
the learning by forcing the network to pick one of the valid views in an ambiguous
case and eliminate the local minimum in between. For example, in the scenario
described in Figure 3.2, this Projection Loss would force the network to predict one
of the ambiguous views, helping the optimization process.
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FIGURE 3.3: Illustration of the Projection Loss calculation using the
Pinhole Camera Model.

Symmetric objects are just an extreme case of ambiguous views. All images in a
symmetric object have two or more possible poses that looks exactly the same. If
the object is perfectly symmetric, these ambiguities can be eliminated by restricting
the poses used for training to the poses of just the non-symmetric part of the ob-
ject. However, if the objects are not exactly symmetric, this trick cannot be applied.
With the Projection Loss we aim to solve this issue in a generic way, for perfectly
symmetric objects and for almost symmetric ones.

3.3.2 Definition of the Projection Loss

We define the Projection Loss as a measure that compares the projections to the cam-
era image plane of the pose prediction and the ground truth values. The measure to
evaluate the similarity of the two projections is the Intersection Over Union (IoU).
Transforming this measure into a loss value, we can compare whether the two sil-
houettes match or not. This is more or less the same as checking how similar the
object in the predicted pose would look from the point of view of the camera. Figure
3.3 shows an illustration of the projection loss calculation, where we use the basic
pinhole camera model [19]. Intuitively, this loss is similar to the process we humans
do when trying to figure out the position of an object; we can only compare the poses
we predict with what we actually see in the image.

In order to use this loss to train neural networks, we need to define not only how the
loss is computed in the forward pass, but also how it behaves in the backward pass.
The forward pass, is the obvious calculation, we define the value of the loss given the
prediction and the ground truth. But from computation of the loss itself, we need to
define how this loss affects the update of the network’s weights. In other words, we
need to define how the gradients will flow backwards during the backpropagation
phase.
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Forward Pass

The forward pass defines how the loss is computed using the predicted pose and the
ground truth pose. The first step is to compute the projection of the two poses to a
theoretical camera frame. Using the basic pinhole camera model [19, 8] (as shown
in Figure 3.3), the projection of every point of the 3D model can be computed. The
pinhole model allows a very simple mapping of points from Euclidean 3-space R?
to Euclidean 2-space IR?. In this model, each 3D point is mapped to the image plane
where the line joining the 3D point and the center of the camera (the pinhole) meets
the image plane. Using the pinhole camera model and considering the camera in the
origin of the coordinate system pointing straight down the z-axis, the 2D projections
of the 3D model points of an object at a given rotation and location can be calculated
as follows:

X
u fx 0 cx| |rin r2 r3 t y
S |10 = 0 fy Cy T21 T22 123 tz - (36)
1 0 0 1 31 T3 Taz I3 1
which can be expressed as:
x
u
s |o| =K[R|Y Z 3.7)
1 1

where R is the rotation matrix, t is the translation vector and K is the so called camera
calibration matrix or matrix of intrinsic parameters. The values u and v are the coordi-
nates of the projected point in the image plane (see the illustration in Figure 3.3) and
s is the scale factor. With this equation, we can easily find, for each point of the 3D
model (x,y, z), the projection in the image plane of a simplistic pinhole model.

In the equations above, K is defined by the intrinsic parameters: fy, f,, cx and c,.
(cx,cy) is the principal point in pixels, which corresponds to the point where the line
from the camera center perpendicularly meets the image plane. Ideally, this will be
exactly the image center, but in real cameras there is usually some displacement. The
two other parameters ( fy, f,) are the focal length (f in Figure 3.3) in pixels. The reason
for using two different focal lengths is that the pixels in real cameras are usually
rectangular rather than square, so the distance of f in pixels is usually different for
the two dimensions.

However, for the Projection Loss, obtaining a precise projection using the parameters
of a real camera is not very important. This loss is comparing two projections (the
predicted and the ground truth), so differences between a real camera and an ideal
one will be the same for the two. Therefore, this loss will simply use an ideal matrix
of intrinsic parameters with f;, = f, = 1and ¢, = ¢, = 1/2, to obtain the normalized
2D positions (u, v). There will be obviously differences between the projected image
in the Projection Loss and the real one in the input image, but the differences will be
equally present in both the predicted projection and the ground truth one.

Furthermore, notice that in real scenarios, the pinhole model is also not very accu-
rate. Instead of a single point, real cameras uses lenses to gather more light, which
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FIGURE 3.4: Illustration of the implementation of the first part of the
loss as a batch operation. This part finds for each point of the 3D
model, its projection on to the camera image plane.

makes the pinhole model inaccurate. Real lenses usually add distortion (radial and
tangential distortion [8]), so the correspondences of 3D points in the 2D plane are not
direct projections as in the pinhole model. Therefore, using the real camera matrix
would not lead to precise results either, because the model is already a simplification.
For the Projection Loss, the simplest model with ideal parameters will be enough to
compare the two projections.

This first part of the loss was directly implemented in TensorFlow [1]. In order to do
an efficient training, the operations described above where implemented for batches
instead of single images. Figure 3.4 shows an illustration of the implementation as a
batch operation. In the image, it can be seen that the tensors have to be rearranged
and reshaped in order to perform all the necessary matrix multiplications for multi-
ple images at the same time.

First, the points of the 3D model are transformed to the correct position in the cam-
era coordinates. In order to perform this operation, the 3D tensor containing the
pose matrix [R|t] for each batch is transformed to a single matrix by concatenating
one batch after another. This allow us to perform the matrix multiplication between
the pose matrix and the set of point coordinates, resulting in the new coordinates for
each point and batch.

Secondly, the points of the 3D model in the transformed position are projected to the
camera image plane. The projection is performed by multiplying the ideal camera
matrix described above with each point of the 3D model. In order to do this op-
eration, we need to use the result from the first multiplication with shape [B - 3, P|
(being B the number of batches and P the number of points) and rearrange the ma-
trix such that each column contains a 3D point (transforming the matrix to a shape
[3, B - P]). The result of this multiplication is the left part in Equation 3.6, from which
we can easily extract the normalized 2D coordinates (u, v).

The implementation shown in Figure 3.4 is the first part of the Projection Loss com-
putation and it will be used for both the predicted and ground truth values. The
second part uses the obtained projected points to generate the two masks and com-
pare them with the IoU metric. This part is a bit more complex and it is harder to
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FIGURE 3.5: Graph of the Projection Loss implementation. The graph

has two main parts, the first part is directly implemented in Tensor-

Flow with the operations described in Figure 3.4 and the second part
is implemented in CUDA C[34]

implement directly in TensorFlow. As it is described in the following section, this
second step of the loss is directly implemented in CUDA C[34] and integrated into
the TensorFlow implementation. Figure 3.5 shows the complete picture of the Pro-
jection Loss computation.

As it can be seen in Figure 3.5, the second part takes the 2D coordinates and, defining
an arbitrary resolution, it creates two binary masks corresponding to the silhouette
of the two poses. The input tensor is a [B, P, 3] tensor, where for each batch element
and point, a vector (1,v,1) can be extracted. Notice that the third dimension is used
to normalize the 2D coordinates, because from this dimension we can extract s in
Equation 3.6.

Being V the set of pixels of the predicted images, X € {0,1}" the predicted binary
mask and Y € {0,1}" the ground truth binary mask, the IoU measure can be com-
puted as follows:

1%,
Iol = m (3.8)

where I(X,Y) and U(X, Y) are the intersection and union of the two masks, and can
be written as:
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I(X,Y)=) Xo Y, (3.9)
veV

UX,Y)=) Xo+Yo—Xo- Y, (3.10)
veV

Using the IoU measure, the Projection Loss is computed as:

Lpr = 1— IoU (3.11)

being zero when the two projections perfectly match and one when they do not
intersect at all.

The main problem of this loss is that we are using a discrete number of points to cre-
ate the projections (a finite number of points from the 3D model), so the projections
might not be continuous. In order to use the IoU to compare the two silhouettes, the
objects should be represented as a compact and continuous area in the image plane,
rather than a scattered set of projected points. On the contrary, small variations be-
tween the two projections could produce big projection losses, because the scattered
points would not be exactly at the same pixel.

To reduce this problem, there are basically two different options. On the one hand,
we could use a huge number of points to represent the 3D model'. Using an enor-
mous amount of points would clearly avoid the scattering problem, but it would be
computationally expensive.

On the other hand, we can reduce the number of pixels in the projected image. Mak-
ing the projected image smaller, the 2D points would be close enough to form a
continuous area. However, making the image too small would create undefined
masks that would not provide relevant information for the pose prediction. Figure
3.6 shows an illustration of this problem, where in D the resolution is too high and
in B the resolution is too low.

In practice, we need to find a balance between obtaining defined images and being
computationally efficient. Increasing the number of points in the model will allow
us to use higher resolutions in the projected image and, consequently, have better
defined masks. Reducing the size of the projected image will allow us to reduce the
number of points of the model, making the computation of the loss faster.

Finally, notice that another problem affecting the projection loss is the use of 3D
models with unevenly distributed point clouds. Usually, 3D models have higher
concentrations of points in some parts of the object than in others. This is a prob-
lem because it can lead to some parts of the object to be poorly represented in the
projected image. This problem can be solved by using a modified version of the 3D
model with uniformly distributed points to compute the projection loss. This modi-
fied point cloud can be easily created with any three-dimensional computer graphics
editor and it only have to preserve the main traits of the original model and not the
small details.

!With any three-dimensional computer graphics editor like Blender [5], it is fairly simple to increase
the number of points in a 3D model
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(A) 3D view (B) Grid 1

(C) Grid 2 (D) Grid 3

FIGURE 3.6: Illustration of the scattering problem with the Projection

Loss. While the projection in B does not really look like the silhouette

of the original image, the projection in D is too scattered and would
not work for the IoU measure.
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FIGURE 3.7: Illustration of the gradient propagation in the Projection

Loss layer. The first part of the network are basic operations in Ten-

sorFlow, so the libraries have the backward pass already defined. The

second part needs to be implemented manually, applying the chain

rule to backpropagate the gradient coming from the following opera-
tions.

Backward Pass

As any other layer of the network, the Projection Loss also has to be defined for the
backward pass. We need to define how the gradients coming from L, will flow
through the layers we just defined. In other words, we need to define the local gra-
dients of the gates defined in Figure 3.5.

The first part of the loss (first half in Figure 3.5) is simply a combination of matrix
multiplications and tensor manipulations. All these operations are differentiable
and, therefore, the local gradients are already implemented in the TensorFlow li-
braries. However, the second part of the loss is not differentiable and it needs to be
computed differently. Concretely, the part not differentiable is the transformation
from the 2D coordinates to the projected image via sampling, which is a discrete
operation that would kill the gradients in the backward pass.

Figure 3.7 shows an illustration of the gradient propagation through the Projection
Loss layer. As shown in the image, the only part that needs to be defined is the
derivative of L,y with respect to the predicted 2D coordinates. Notice that, obvi-
ously, the gradients do not propagate to gates that do not depend on the weights of
the network. This is why the gradients do not go to gates coming from ground truth
values or to the 3D model points.

In order to obtain the derivative of L1,y with respect to the 2D coordinates, we sepa-
rate the gradient into two steps with the chain rule. In the first step, we will compute
the gradient of the loss with respect to each pixel of the predicted projection. In the
second step, we use an approximation to find the derivative of each pixel with re-
spect to each 2D coordinate.
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For the first step, we follow a similar approach as the outlined in [3] to obtain the
derivative of Lj,;; from Equation 3.11 with respect to the predicted image at each
pixel v € V . Being V the set of pixels of the images to compare, X € {0,1}" the
predicted mask and Y € {0,1}" the ground truth mask:

Ly _ 9 [, LX)
0X, 90X, ux,y
oI(X, J ,
XN U(X,Y) - HMEO (X, )

_ T (3.12)

from Equations 3.9 and 3.10, we can easily derive:

AI(X,Y)

X, Yo
BU(X,Y) -
ox, Ve

so, the derivative of Lj,;; with respect to the predicted pixel v € V can be written as:

WLy (X, Y)(1-Y,) —U(X, Y)Y,

= A
e Uix, Y2 (3.13)
since Y, € {0,1}, the equation can be simplified for the two possible cases as:
dLou - u()l( y fYe=1
= q 3.14
90Xy % otherwise (14

The second step to obtain the final local derivative is a bit more complex. Figure
3.8 shows an illustration of the problem. As we can see, due to the discrete nature
of the operation, the derivative of it is zero for all points except the boundaries of
the pixel. In this situation, the gradient from the L,y loss is multiplied by zero in
all cases except the exact boundaries, therefore the effect of the loss is almost never
propagated to the 2D coordinates and, consequently, to the weights of the network.

In order to obtain a better propagation of the error signal, we follow an approxima-
tion similar to the ones presented in [25] and [23], where the derivative of each pixel
with respect to each coordinate is approximated such that the gradients can propa-
gate backwards. In our case, we define the value of a pixels X as a linear intensity
going from the middle of the adjacent pixels to the center of X,. Therefore, at the
very center, the intensity of the pixel is 1 and decreases linearly until the middle of
the adjacent pixel. This is obviously just an approximation, but it will allow us to
obtain a better derivative of each pixel with respect to each coordinate.

Then, considering that each pixel has the following relation with each (u;,v;) 2D
coordinate:

Xy (uj,v;) = max(0,1— |m — D - u;|)max(0,1— |n — D - v;|) (3.15)



Chapter 3. Network 35

Value of the

pixel with ;
Uj
Derivative of
the pixel w.r.t
Uj .
T u'l,
Approximation
of the pixel
value with %;
Uj
Derivative of the
approximation H : :
w.rt Ui .
T ul

FIGURE 3.8: Illustration of the approximation of the derivative of
each pixel with respect to the coordinates of the points. This is a sim-
ilar approach to the one proposed in [25].

Where m and n are the centers of the pixel X, and D is the dimension of the projected
image. So we can define the derivative of each pixel X, with respect to each point
coordinate (u;,v;) as:

D-max(0,1—|n—D-v;]) iD-u;<m
=< —D-max(0,1—|n—D-v;|) ifD-u;>m (3.16)
0 ifln—D-u| >1

0X,
aui

where the same process can be used similarly for the derivation in v;.

However, in practice, our projected images are binary masks and X, € {0,1}. There-
fore, in the backpropagation process, we will check if the evaluated pixel can change
its value or not. Gradients for pixels containing already another coordinate point
will be set to zero. Furthermore, pixels containing more than one point will only
propagate to one of the points.

Therefore, the final local gradient of the gate for each 2D point of the predicted pose
can be computed with the two partial derivatives described above. By applying
chain rule, we can compute the derivative of the loss with respect to each 2D point
for all pixels of the image. This can be implemented in CUDA as we will explain in
the following section.

In the forward pass, we will store the projected images of the prediction and ground
truth values, so that, in the backward pass, the above gradients can be computed.
Notice that this is just the local gradient of the gate, in order to compute the gradi-
ent flowing out of the gate, we need to apply the chain rule and multiply the local
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gradient by the gradients coming into the gate as well.

Finally, notice that the inputs of the £j,;; Computation gate are the predicted 2D co-
ordinates and the ground truth coordinates, which are expressed as tensors with
shapes [B,P,3]. The 3D vector for each point and batch corresponds to [u,v,1],
where the first two dimensions contain the 2D coordinates and the third one is just
used in previous operations to normalize the coordinates. Obviously, the gradient
for the third dimension is set to zero, because it is constant at the input of the gate.

3.3.3 CUDA Implementation

As it was already stated, the second part of the Loss, corresponding to the Loy
Computation in Figure 3.5, cannot be easily implement using the available opera-
tions in the TensorFlow library. However, since this operation is used many times
during training, its implementation must be very efficient. This is the reason why
this part is implemented using Parallel Programming in CUDA [34], whereby mul-
tiple threads can be executed directly in NVIDIA Graphics Process Units (GPUs).

CUDA C allows developers to perform parallel programming in NVIDIA CUDA ar-
chitectures using a high-level programming language. Using this platform, we can
implement new operations in C that leverages NVIDIA GPUs to solve complex com-
putational problems in a highly parallelized way. The new operations can be then
integrated into the already implemented networks. Most operations in the Tensor-
Flow library are in fact implemented using CUDA and adding new operations to the
library is fairly simple.

As it was explained in the previous section, the second part in the Figure 3.5 takes
the 2D coordinates of two different poses, creates the projected image and computes
the L,11 loss. This can be seen as another graph operation or gate into the network,
so we need to define its forward and backward pass as two different programs in
CUDA C. The TensorFlow API' provides the framework to integrate the two pro-
grams as the forward and backward pass, and store all necessary tensors for the
backpropagation step.

Forward Pass

Figure 3.9 shows an illustration of the forward pass implementation. In order to
compute the loss, three different kernels are created to perform small tasks in a com-
pletely parallelized way. A kernel is a small code that runs in parallel in multiple
GPU cores. As we can see in the illustration, we create three different kernels to
draw the points of the predicted and ground truth poses, and count the intersection
and union values.

The first thing to notice in the figure is the use of blocks and threads. This is nothing
new in the Parallel Programming community, it is just the way it is organized in
CUDA. In order to use parallel programming in a GPU, the kernels are launched in
multiple threads to perform all the operations as parallel processes. Blocks are sim-
ply groups of multiple threads, which in more complex implementations of CUDA

ITensorFlow documentation: Adding a New Op.
https://www.tensorflow.org/guide/extend/op
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FIGURE 3.9: Forward pass implementation of the £jo;; computation

in CUDA. The implementation uses three different kernels to paral-

lelize three tasks in the GPU. a) Computes the point projections of

the predicted pose. b) computes the point projections of the ground

truth pose. c) counts the intersection and union pixels in each image.
Notice that the constant P1 should be lower than P2.
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FIGURE 3.10: Illustration of the evaluation of the input pose vector
using blocks and threads.

can be used to access certain shared memories quicker. In all the kernels imple-
mented for this loss, all threads perform independently and the shared memory is
not used.

Using blocks and threads makes the iteration over an input array a bit different.
Figure 3.10 shows an illustration example of how to use these calls to evaluate a
long input array. In this example, the input vector is one of the inputs in the Loy
computation gate (see Figure 3.5), and it is evaluated using N blocks of T threads
each. Knowing the initial position and the total number of processes launched, each
thread creates a loop to evaluate certain positions of the input vector, collectively
exploring the whole data array.

In Figure 3.9, the first operation is the initialization of the projected images of the
batch as a vector of zeros. The vector contains B - D - D elements, where B is the
number of batches and D is the size of the projected image. Once initialized, the
result is a batch of black images like the one shown at the beginning of Figure 3.9.

The second operation is the call to the first kernel, which generates the projection of
the predicted pose (named ProjectPredicted in the figure). This kernel is launched in
the GPU using as many blocks as possible (with a maximum of N = 65535, which is
the hardware limit) of T = 1024 threads each. Each thread iteratively draws points
of the projected pose until all points have been evaluated. This kernel execution
modifies the batch of projected images to contain the silhouette of the predicted pose
as it is shown in the illustration.

The third operation is very similar to the previous one. In this case, the kernel gen-
erates the projection of the ground truth pose on the projected images. In order to
do it, the kernel is called just like the previous one, using as many blocks as possible
of 1024 threads each. In this case though, the kernel is a bit different and combines
the previous projections with the new ones. Pixels containing both predicted and
ground truth points are set to P1 + P2 and pixels containing just one of the poses are
set to ether P1 or P2.

Using the images generated in the previous two operations, the third kernel basi-
cally computes the intersection and union values. This kernel is launched using as
many blocks as elements in the batch. Each block contains a single thread, which
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GPU

for each pixel x in image b:
compute px
if proj_image[px]>P1+P2

B blocks
CPU 1 thread

intersection[b] ++
union[b] ++

if proj_image[px]>0
union[b] ++

//Initialize Intersection and Union vectors [B]
set intersection and union to 0s
// Count intersection and union pixels

launch Kernel ComputeloU / a)

synchronize GPU threads

N blocks GPU
1024 threads
for predicted points with
/I Project points of the ground truth pose index i:

launch Kernel PrepareMask compute px

assigned[px]=i;
synchronize GPU threads \
b)

N blocks
// Project points of the ground truth pose 1024 threads GPU
launch Kernel ComputeGradients

synchronize GPU threads for each points in
assigned:
compute px
compute gradient for all
adjacent pixels and px
B batch size
)

D projected image dimension

N Max number of blocks of the GPU

P1-P2 Image values for the predicted and
label points (e.g. 80 and 175).

FIGURE 3.11: Backward pass implementation of the £j,; computa-
tion in CUDA. The implementation uses two different kernels to par-
allelize two tasks in the GPU. a) Counts the intersection and union
pixels of each projected image stored during the forward pass. b) Se-
lects for each active point in the predicted projection, the coordinate
that will propagate the error signal. ¢) Computes the gradient going
backwards to each coordinate of the assigned array.

counts the intersecting pixels (elements with a value of P1 4 P2) and the union pixel
(any element bigger than 0) for each image. At the end of this execution, the inter-
section and union values for each image are completely defined. Using those values,
the final loss can be easily computed. This final calculation is performed directly in
the CPU, because the number of operations is not very large.

Notice that this third kernel could be implemented more efficiently, using more
threads to truly leverage the power of the GPU. However, since a detailed study
of computational time was not carried out, a more efficient implementation of this
loss is left for future work.

Backward Pass

The backward pass implementation of the Lj,;; computation operation is very sim-
ilar to the forward pass. Figure 3.11 shows an illustration of this implementation in
CUDA. As we can see, the backward pass also uses three kernels, one for the com-
putation of the intersection and union pixels, another one to obtain the index of the
pixels in the projected image and one to compute the gradient for each coordinate.
Therefore, this implementation uses the projected images stored in memory during
the forward pass.
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The first operation performed during the backward pass is the computation of the
intersection and union pixels. This is the same kernel used before in the forward
pass and uses the same number of threads. Since the projected images during the
forward pass are available, this kernel just counts for each image the number of
pixels with value P1 + P2 (intersection) and the number of pixels with value grater
than 0 (union).

The second operation prepares the mask for the gradient computation. The projected
image is a binary image, so each pixel can be either be 1 or 0. Therefore, even though
there can be multiple points in the area of one pixel, the value does not change.
Therefore, in the backward pass, the gradients of that pixel will just propagate to one
of the points (chosen randomly). This kernel selects from each point of the mask, the
coordinate point that will be used to propagate the gradients.

Finally, the third operation computes the gradient defined earlier using the projected
image and the intersection and union values. In this kernel, we check the conditions
of each pixel individually to compute the gradient defined in Equation 3.16. The
only coordinates that propagates the error signal are the ones computed in the kernel
PrepareMask. This computation is pretty efficient, because, for each coordinate point,
the computation of the gradients is just computed for the adjacent pixels.

3.4 Implementation Details

This section summarizes the main technical details of the network implementation.
In the first part, the details of the network architecture, optimization process and
weight initialization are given. In the second part, the main techniques used for
data augmentation are explained.

3.4.1 Network Details

Most of the network was implemented in TensorFlow [1], except for part of the Pro-
jection Loss implementation that was directly programmed in CUDA C. The algo-
rithm used to update weights was the Adam Optimizer [27] with a learning rate of
1-10~%. The initialization for the weight of the fully connected layers was the Xavier
initialization [18], using a normal distribution with 0 mean and standard deviation:

T =4/ L (3.17)
in + out

where in and out are the number of input and hidden neurons of the layer. The
weights of the 13 convolutional layers in the feature extractor part are initialized
using pre-trained weights. Since the backbone of the network has the same architec-
ture as the well-known VGG network [42], trained weights on the ImageNet dataset
[10] can be used as initial parameters.

Finally, all fully connected layers, except the linear ones, uses dropout of 15%



Chapter 3. Network 41

3.4.2 Data Augmentation

Even though the datasets used to train the NN are created synthetically, rendering
scenes is still time consuming. In order to increase the size of dataset without any
increment in the computational time, we use data augmentation as a first prepro-
cessing step of the network.

The most simple way perform data augmentation is by randomly changing the
brightness, contrast and sharpness of the image. The brightness and contrast will
surely change in test time, so adding them in the training dataset will make our net-
work more robust. Using random brightness and contrast, the network will be able
to absorb more changes in the illumination of the scene. The sharpness of the image
is an extra property that can be modified in the image to boost the performance of
the network in test, helping to reduce the reality gap issue described in the previous
chapter. We visually found that synthetic images looked more similar to the real
ones increasing the sharpness. However, trying to find the perfect sharpness effect
that would work for all images is a tedious task that must be done manually. There-
fore, we add variations of it as a data augmentation change, so that the network can
absorb variations of this kind in test.

Another strategy to increase the variability of a dataset in training is to add noise.
During the preprocessing step, we can create a white noise image and add it to the
input one with a certain weight. This creates a resulting image with what is com-
monly called salt-and-pepper noise. During training we add this noise to make the
network more robust in test.

Finally, an obvious way to increase the dataset in training is rotating the image.
However, in order to do it for the 6D pose regression task, the ground truth values
have to be corrected accordingly. In our implementation, the image can be rotated by
0°,90°,180° and 270°, making the dataset four times bigger. In order to apply these
changes to the labels, considering the camera in the origin of the coordinate system
pointing straight down the z-axis, the new position and rotation of the objects can
be computed as:

t =R, -t (3.18)
9 =da-q (3.19)

where t' and q’ are the modified translation and rotation vectors. R, and q, depend
on the rotation of the image:

1, = (0,0,—%) = qa = (%2,0,0,—¥2) if rotated 90° clockwise
r, =(0,0,—m) = qa = (0,0,0,—1) if rotated 180° (3.20)
ra=(0,0,5) = qa= (—72,0, 0, —72) if rotated 270° clockwise

and R, can be obtained using q, and equation 3.4.
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Chapter 4

Results

This chapter evaluates the implementation described in Chapter 3, trained with the
synthetic images created with the generation pipeline explained in Chapter 2. First,
the main evaluation methods to compare the different variations are described. Sec-
ond, an ablation study analyzing the main contributions of this work is performed.
Finally, results on 6DSO are provided.

4.1 Evaluation Method

In order to evaluate the performance of the network with different hyperparameters,
we perform two different evaluations: a quantitative evaluation and a qualitative
evaluation. For the first one, we use the most common metrics in the literature,
which are the ADD and the ADD-S score. For the qualitative evaluation instead, we
visually compare the two poses, by rendering the predicted pose and comparing it
to the ground truth values.

The ADD score, proposed in [21], computes the average 3D distances between the
predicted pose and ground truth pose as:

m=1 Y [[(Rx+t) - (Rx + )| @1)

p XeEM

where M is the set of points of the mesh and P is the total number of points. R and
R are the predicted and ground truth rotation matrices respectively. T and t are the
predicted and ground truth translation vectors.

The ADD score considers a predicted pose correct if the value m is smaller than a
predefined threshold. In the literature, the threshold is set to a certain percentage of
the 3D model diameter. For the quantitative evaluation of this work, the threshold
set to 10% of the diameter, which is the most common value.

A variation of the ADD score is the ADD-S score, also defined in [21]. This match-
ing score compares how two volumes match and it is more useful when comparing
symmetric objects or objects with some ambiguous views. For the ADD-s score, the
average is computed using the closest point between the two meshes:

1 - -
m= — min ||(Rx; +t) — (Rxp +t 4.2
p L min (Rx +) = (Ra + 9] (42)
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For the qualitative evaluation, for each trained model we compare some of the best
predictions and some of the worst ones. With this comparison, we aim to analyze the
reasons for the prediction errors and understand why some approach works better
than another.

Finally, in the ablation study, we use three different datasets: training, validation
and real. The training dataset contains only synthetic images and it has been en-
larged with the data augmentation techniques explained in Chapter 3.4.2. The val-
idation dataset also contains only synthetic images, but no data augmentation has
been used. Finally, the real dataset contains only real images from the 6DSO dataset.
In the ablation study we use half of the real dataset during training, so that we can
visualize the effect of the domain randomization. Later, in Section 4.3, the other half
of the dataset is used to give the final results in test.

4.2 Ablation Study

This part of the evaluation analyzes the two main contributions of the work sepa-
rately. Concretely, the first section studies the effect of the domain randomization in
the synthetic generation and the second section focuses on the effect of the Projection
Loss on the final results.

4.2.1 Effect of the domain randomization

As we already mentioned, the main problem of using synthetic data for training
NN is the reality gap. If the synthetic images are not exactly as the real ones, the
network may not generalize well in test. The proposed solution in this work is to use
domain randomization in the generation process. This section analyzes the effect of
the different variations introduced in the generation process. For the analysis, we
use the Toy object from the 6DSO dataset.

Evidence of the Reality Gap

Figure 4.1 shows results for a very naive synthetic generation of images. For this
experiment, the generation system simply used solid backgrounds, fixed light con-
ditions and no object variations. As we can observe, even though the results in
validation are good, the results for real images are very poor. This figure perfectly il-
lustrates the reality gap problem, where the network learns the pose regression task
for synthetic images but not for real ones.

Analyzing the results closely, it can be seen that the network is not even able to
locate the object within the image. The bounding box error in this experiment is over
0.6, which means that the box prediction used in the Rol pooling layer is not very
good. Considering that the bounding box error is the Euclidean distance between
the predicted and ground truth b vectors, it is clear that the crops of the Rol pooling
layer are not even close to the object in most of the cases. Therefore, for real images,
it is impossible to predict the rotation, because the features used in that branch are
not the same as the ones used during training.
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FIGURE 4.1: Example of a naive synthetic generation. In this exam-
ple, the synthetic images uses solid colors as background, fixed light

conditions and fixed object properties.
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FIGURE 4.2: Results from the network in Figure 4.1. To visualize the

results, two different objects at the predicted (red) and ground truth

(blue) are created and rendered together, for synthetic test images (a)
and real ones (b). The predicted bounding box is shown in red.

Note that the validation error is lower than the training error. This effect is due to the
fact that the training dataset has been pre-processed with a lot of data augmentation.
As it was explained in Chapter 3.4.2, images used for training are randomized using
brightness and contrast variations, and salt-and-pepper noise.

Figure 4.2 shows examples of predictions with synthetic images and real ones. In
order to visualize the two examples we synthetically generate two objects at the
predicted (red) and ground truth (blue) poses. In the figure, it can be observed that,
while the network accurately regresses the pose for synthetic images, it is not able
to perform the task correctly for the real ones. In fact, the results for real images
are always centered and in a random orientation, probably because the prediction
of bounding box is completely incorrect and the features cropped with the Rol layer
contain a lot of background. In the figure, we also show the bounding box prediction
for each test instance, showing that it is almost perfect for synthetics images and it
is completely erratic for the real ones.

Effect of the different domain randomization strategies

From the above experiment, it seems obvious that a naive generation of synthetic
images is not working. In this work, we propose the use of domain randomiza-
tion to close the reality gap. In order to analyze the effect of each randomization
method described in Chapter 2.1.3, we perform several experiments partially re-
moving some variations during the synthetic generation. Concretely, the different
generation pipelines compared are:
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FIGURE 4.3: Comparison of different variations of the domain ran-
domization process. The solid and dashed lines show the results for
the real and validation datasets respectively.

e Complete: This generation pipeline creates completely randomized datasets.

For the background, it uses random images from the PASCAL VOC dataset[12],
from the DTD dataset[9] and from a small collection of real images of the back-
ground. For the illumination, it uses a combination of spotlights and a global
environmental light, randomly changing the position and intensity of the dif-
ferent sources of light. Finally, this generation system also introduces varia-
tions on the object itself, slightly changing its shape and color.

Fixed Light: This second synthetic generation system uses the same variations
as Complete except for the lighting conditions. Instead of using a combination
of spotlights and an environmental light, the synthetic images are created just
with a constant environmental light.

Real Background: This generation pipeline uses as background only real im-
ages, randomly selecting crops of the same background it will be seen in test.
The pipeline introduces the same variations in the lighting and the object as
the Complete one.

Fixed Object: Finally, this is the same generation pipeline as the Complete one,
but fixing the object conditions. In the synthetic images generated with this
setup, the object does not vary its shape and color, using just the nominal val-
ues.

Figure 4.3 shows the results for the validation and real datasets of the different gen-
eration pipelines described above. As it can be observed, the domain randomization
clearly makes the reality gap smaller. The more randomization is added to the train-
ing dataset, the smaller the difference between the synthetic and real images is in
test. While adding variations slightly increases the error for the validation dataset,
the error for the real images clearly drops as more randomization is added.

Table 4.1 summarizes the ADD and ADD-S for all the generation pipelines. As it can
be observed, the effect of the domain randomization is crucial to obtain good results
with real images.
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SYNTHETIC IMAGES | REAL IMAGES
ADD ADD-S ADD | ADD-S
Complete 67.8 71.9 43.9 48.7
Fixed Light 78.4 81.3 21.7 29.6
Real Background 81.3 84.7 24.3 27.0
Fixed Object 725 76.9 41.2 44.7
‘ Without Randomization ‘ 81.3 ‘ 84.7 ‘ 0.0 ‘ 0.0

TABLE 4.1: Performance with the different synthetic generation
pipelines.

4.2.2 Effect of the Projection Loss

In this section, the effect of the projection loss on different settings is studied. In
order to first ensure that the backpropagation defined in Chapter 3.3.3 is updating
the weights correctly, the training shown in Figure 4.4 is performed. In this experi-
ment, we train the network exclusively using the Projection Loss and the bounding
box loss, finding that it actually improves the IoU of the projected and ground truth
poses.

However, in Figure 4.4 we can see that the loss only achieves some improvement
on the location prediction, but not on the rotation one. This makes a lot of sense,
because, while the location of the object can be more or less estimated only compar-
ing its silhouette, predicting the rotation with that information alone is much more
complex. Intuitively, without prior knowledge, learning the different view of an ob-
ject only using the silhouettes seems extremely difficult. We believe that this loss
will help in the rotation prediction after the main features of the object have been
learned. Therefore, the Projection Loss needs the rotation loss to be useful and it
cannot work by itself.

Note that the bounding box loss has no effect on the prediction of the location and
rotation. It was added in the training because it is necessary to perform the correct
crops in the Rol pooling layer.

In order to compare the results with the Projection Loss and without it, we train
the network for the Symmetric object of the 6DSO dataset. This object has multiple
ambiguous views, so the effect of the loss should be clearly visible in this case. The
Projection Loss should help the network to decide one of the two possible symmet-
ric orientations and prevent the update to erroneous poses. Figure 4.5 shows the
experiment for the validation dataset over 100 epochs.

As it can be seen in Figure 4.5, there is a small improvement in the rotation error,
which is smaller for the network using the projection loss. However, the difference
between the two rotation errors is pretty small and only affecting the rotation in the
last steps of the training. This effect makes a lot of sense, because the Projection Loss
is not actually able to find the correct ground truth value for ambiguous cases, but
it just helps the network to decide one of the possible orientations. The ambiguous
views are obviously impossible to determine, so the network using the projection
loss just chooses one possible solution, but not necessarily the correct one.

The main difference can be seen in the projection loss itself. Using the projection loss,
the intersection over union of the predicted and ground truth silhouettes match a lot
better, which means that for ambiguous scenarios the performance is better. This
loss clearly helps the ambiguous cases.
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FIGURE 4.4: Results for the network trained exclusively using the
Projection Loss and the bounding box loss. The object used here is
the Toy object defined in Section 2.2.2
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FIGURE 4.5: Training of the network for the Symmetric object defined
in Section 2.2.2. The curves were obtained with the validation dataset.
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(A) Original Image (B) Without Projection Loss (C) With Projection Loss

FIGURE 4.6: Examples of predictions for the two networks shown

in Figure 4.5. The first two examples are cases where the projection

loss helped to correctly decide one of the correct view. In the third

example, the network without the projection loss actually predicted

one of the correct views, but the network with the projection loss did
not help and performed slightly worse.

From the trained network in Figure 4.5, we can perform a qualitative study with
some real images. Figure 4.6 shows some predictions of the two networks for am-
biguous views. As we can see in the first two examples, while the network without
the Prediction Loss failed to predict one of the correct view, the one with the new
loss estimated correctly one of the correct poses. However, as we can see in the third
example, in some cases the network without the loss is able to regress one valid
orientation and the new loss does not help.

In the qualitative evaluation we notice an issue with the projection loss. Some am-
biguous views cannot be corrected with it, because the projected silhouettes do not
contain enough information of the orientation. The Symmetric object is a clear ex-
ample of this problem, because the projected image for this object is just a square in
many cases and does not provide useful information. In those cases, the IoU met-
ric can be very similar even though the predicted and ground truth orientations are
completely different, so the effect of the new loss loses importance.



Chapter 4. Results 51

| | ADD | ADD-S |
Without Projection Loss | 34.5 51
With Projection Loss 36.2 60.7

TABLE 4.2: Comparison between the two networks shown in 4.5 for
real images.

Performing a quantitative study of the two networks, we obtain the results shown
in Table 4.2. As it can be observed, the Projection Loss improves the results for both
metrics, but more clearly for the ADD-S measure. On the one hand, the first metric
does not take into account the symmetries, so the score for both networks is pretty
low. Even though the new loss improves a bit the results even for this metric, the
difference is very small. The reason for this is that even perfectly picking one of
the valid options, the ground truth orientation could be completely the opposite,
making ADD score lower.

On the other hand, the ADD-S metric is more or less like comparing volumes at the
predicted and ground truth poses. With this measure, the effect of the Projection
Loss is much more noticeable, because just predicting one of the valid orientation
results in a low distance between the closest points. Therefore, if the two volumes at
the predicted and ground truth poses are exactly the same, the ADD-S will be high.
The results shown in that table evidences the benefits of the new loss for ambiguous
cases.

4.3 Results on the created dataset

Finally, we evaluate our system on the three objects from the 6DSO dataset. The re-
sults for the two metrics on the three objects are shown in Table 4.3. For the two ob-
jects that are not symmetric, the network can predict the pose with an error smaller
than 10% of the diameter in 44% and 69% of the cases for the Toy object and the Box
respectively. The symmetric object was already studied in the above section and the
network would predict a valid pose 60% of the time. However, looking at the pre-
dicted images, it seems clear that using some refinement method as many do in the
literature [36, 26, 31], we could improve quite a lot the results.

| [ADD | ADD-S |
Toy 439 | 487
Box 69.0 | 743

Symmetric | 36.2 60.7

TABLE 4.3: Final results for the 6DSO dataset.

Figure 4.7 and 4.8 show the three best predictions and the three worst predictions
of the network for each object. From the obtained results, we can clearly state that
the Box object is the one producing the best results. Even the worst results are fairly
accurate and could be easily improved with some refinement method. This is prob-
ably due to the fact that the box is a simple object and that it has a serigraph. Even
though the synthetic images of the box are visibly different than the real ones, since
the serigraph is added in the scene as an image texture, the final render contains
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many real features that can be used by the network. In order to achieve better gen-
eralization, during the synthetic generation we also introduced small variations on
the position, reflectivity and color intensity of the serigraph.

Contrarily, the worst results are clearly obtained for the Toy object. Even though
some views are always predicted correctly, this object contains some other views
that the network cannot regress properly. The main hypothesis is that this object has
a very complex shape, which creates many strange shades on the object itself and on
the ground. Probably, these shades projected on the same object cause variations on
the appearance that are complex to reproduce with the render. Similary, the shades
on the ground create fake silhouettes very similar to the object, which probably in-
troduces some error in the bounding box prediction.

In future works, a possible solution could be the one presented in [47], which im-
proves the domain randomization using random textures on the objects and flying
distractors on the background. With the random textures they introduce many unre-
alistic variations on the object itself, making the network generalize better. With the
flying distractors, they add on the background shapes that are similar to the object,
which forces the bounding box regression to be more robust.

Finally, the Symmetric object is predicted fairly accurately in most of the tests, but
the network cannot be as precise as with the Box. The hypothesis here is that the
symmetries still make the optimization process inefficient. Most of the predictions
are slightly rotated on the symmetric axis, which means that the projection loss is not
enough to correct the issue. As it was stated in Chapter 3, for completely symmetric
objects, this problem can be easily corrected by modifying the quaternion labels to
limit the pose to just some part of the rotation space. However, this is not applicable
when the objects are not entirely symmetric, containing some small details breaking
the symmetries.

For future works, we propose to extend the projection loss to compare complete
rendered projections and not simply the silhouettes. Using a differentiable rendering
layer as the one proposed in [25], the Projection Loss could be extended to compare
the two poses with full 2D projection images.
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FIGURE 4.7: Best three predictions for each object of the 6DSO
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FIGURE 4.8: Worst three predictions for each object of the 6DSO
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Chapter 5

Conclusion

5.1 Summary of Contributions

The preceding chapters have presented novel approaches for the 6D pose regression
task using Deep Learning. The main contributions of the work were a generation
pipeline to create synthetic datasets for training, a visual interface to manually label
images for the pose regression task, a new test dataset with manually annotated real
images and a new architecture with a novel loss function to predict the rotation and
location of objects from RGB images.

First, the problem of obtaining sufficiently large datasets for optimizing deep models
was addressed using synthetic data for training. The work presented a generation
system to create fairly realistic datasets in computationally feasible times. In order
to achieve good results with real images and overcome the so called reality gap prob-
lem, domain randomization techniques were used during the synthetic generation
process.

Second, the work contributed with a visual interface to quickly find the pose of ob-
jects in real images. Even though the task of manually annotating real data is still
very slow, the visual interface created in this work can simplify it and speed up
the process. Furthermore, the work also contributed with a new dataset with three
different objects, which could be extended in future works.

Finally, a new multi-task Neural Network architecture was proposed for the 6D pose
regression task. The proposed network separately predicted the localization of the
object within the image, the regression of the 3D location with respect to the camera
and the regression of the 3D rotation with respect to a reference orientation. In order
to improve the results for ambiguous and symmetric views, a new loss function was
presented, which helped the network to better match the predicted and ground truth
projected silhouettes.

All these different approaches have proven to be effective at obtaining the pose of
objects from simple RGB images. In the evaluation section, it was proven that it
is possible to infer the pose of real objects with networks that were trained exclu-
sively with synthetic images. The value of the domain randomization methods were
demonstrated, obtaining fairly close results in validation with synthetic images and
in test with real ones. Furthermore, the benefits of the new loss function proposed
to deal with ambiguous views were proven. Even though the results were far from
perfect, with the proper refinement methods, the 6D pose regression could be imple-
mented in real automation applications in a near future.
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5.2 Directions for Future Work

This section outlines several promising directions for future work and potential ex-
tensions of the work presented in the preceding chapters.

Synthetic generation with random textures and flying distractors

As it was shown in the evaluation chapter, the results with real images are still not as
good as the ones obtained with synthetic ones. Following the work proposed in [47],
the synthetic generation pipeline could be extended to incorporate random textures
for the objects and flying distractors on the background. On the one hand, the use
of random textures for the objects would probably make the network more robust
to variation in color, shape and illumination changes. We propose to use the DTD
dataset[9] as new textures for the objects in the generation pipeline.

On the other hand, the presence of flying distractors would help the network to
ignore the shades of the object projected on the ground. For future works we propose
to improve the randomization methods by adding the silhouettes of the object itself
on the background image.

Generative Adversarial Networks to add realism

A promising approach to tackle the reality gap problem is the use of GANs to add
realism to the synthetic images. As it is shown in [41], more realism to synthetic
images can be added using adversarial networks trained with unlabeled real data.
We propose to use as the training dataset, a combination of synthetic images with
domain randomization and realistic synthetic images improved with a GANs.

Render Loss

Even though the Projection Loss improved the results of the initial architecture, the
ambiguous views still produce erratic predictions. The new loss can help to improve
the prediction for some ambiguous views, but comparing only the silhouettes is not
useful for all cases. In some situations, the foreground mask does not contain the
important information to lead the optimization to the correct direction. We propose
to extend the Projection Loss to compare not only the silhouettes, but the complete
projected image. We propose to adapt the differentiable render presented in [25] for
the pose regression task.

In addition, our implementation of the Projection Loss for the backward pass sim-
plified the gradients of the projected images to just nearby projected coordinates. As
it is shown in [25], the differentiable render can compute the influence of each 2D
coordinate for all pixels of the projected image. We propose to update the backprop-
agation of the Projection Loss with this new approximation.

Multi view 6D pose regression

Training deep models using synthetic images expands the possibilities for the 6D
pose regression task. With the generation pipeline, the images for training can be
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created effortlessly for one or multiple cameras at the same time. We propose to
extend the proposed architecture to work with multiple views at the same time.
Using multiple cameras would probably eliminate most of the ambiguous views
and it would surely achieve much better results. Future work lines could combine
multiple architectures like the one proposed in this work to create a multi-view 6D
pose regression system.
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