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Abstract

Master in Artificial Intelligence

Multi-Scale Super Resolution With Blind De-noising Using Residual Learning
For Digital Art

by Santiago MAZAGATOS PEREZ

In the fields of illustration and digital art, it is imperative that an image be of high
quality when being used for printing, as a wallpaper or for another kind of deco-
rative purpose, however, high resolution, clean images are often unavailable, either
because the form in which the original work was rendered is deemed subpar by to-
day’s standards, or because all available copies have been subject to lossy compres-
sion or downsampling. Super Resolution is an increasingly active field of research in
machine learning with the aim of providing a computational model that can achieve
what is impractical or impossible with human means, the recreation of available im-
ages or other kind of visual data in the highest possible quality, in this work the
author makes use of state-of-the-art Super-Resolution methods and denoising meth-
ods to try and create a comprehensive solution for all use cases related to digital art
restoration.

Super-Resolution, Residual Learning, Deep Learning, Denoising
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Chapter 1

Introduction

Technical limitations are as common to technology as technology itself, what was a
vast amount of storage a decade ago is little more than what one would expect from
a basic cloud storage plan today, that being the case one often comes face to face
with yesterday’s limitations, chief among them processing power and storage.

In an era in which the most common removable storage medium had no more
than 1.44 Megabytes of space and the average processor had its performance mea-
sured in Megahertz and whether or not it had a math co-processor, image use was
accompanied by lossy compression, like in the case of JPEG (Hamilton, 1992) files,
to save the most amount of space, and cheap downsampling methods that wouldn’t
overburden the CPU.

Nowadays storing images in PNG (Boutell, 1997) format with its lossless com-
pression and downsizing using methods such as Lanczos resampling (Wikipedia
contributors, 2019) to prevent aliasing is a reasonable proposition, but the previous
methods of saving space and cycles are still present, and there’s no way of knowing
whether an illustration created by a digital artist today with a high definition display
will end up being dwarfed by screens 10 years into the future.

If one wanted to print an illustration onto a T-shirt, or a poster, or use it as a
wallpaper on a 4K display, such file would need to have a very high resolution and
no compression artifacts or noise to look good, however such files can often only be
sourced from the artist, if they even exist; recreating the work in a way that achieves
the required quality would require a substantial amount of time and effort by some-
one with the skill set to do so, while it would be expensive for someone who lacks
it to commission someone for it, furthermore the result might still be unsatisfactory,
with the recreated image having a slightly different aesthetic feel to it.

1.1 Waifu2x

Waifu2x (nagadomi, 2019) is a web based application that performs upscaling and
denoising of anime style images and photos, however, it uses different models for
different levels of noise, relying on the user to select the correct denoising level, and
it only allows upscaling up to 2 times the original image size.

While there is a Caffe port of waifu2x (lltcggie, 2019) that supports upscaling
beyond 2 times and has an auto-denoising feature, it is not explained how the soft-
ware determines the best denoising level for a particular image, this port runs on
the user’s computer and is able to take advantage of any CUDA enabled graphics
cards present, making it well suited for batch processing images since the original
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web application has no such feature and requires a captcha to be resolved for every
processed image.

1.2 Goals

The goals of this project are simple, to create a model that is able of upscaling and
denoising an image (digital art) without any prior knowledge of level or type of
noise (if any) present on the input image/s with results on par or superior to those
of the best available alternative (Waifu2x).
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State of the art

2.1 Super-Resolution

Initial works in the world of Super-Resolution relied primarily on Dictionary based
approaches, with low resolution and high resolution dictionaries in which a high
resolution image is obtained by matching the low resolution representation to items
in the LR dictionary and translating those similarities using the HR dictionary to the
final HR image.

Dictionary based methods have undergone a great deal of transformation, with
a wide array of improvements designed to improve the dictionary learning process
(He, Qi, and Zaretzki, 2013), or the LR to HR mapping in terms of speed and mem-
ory with approaches like Anchor Neighborhood Regression (Timofte, De, and Gool,
2013), with its subsequent improvements(Timofte, De Smet, and Van Gool, 2015,
Timofte, Rothe, and Gool, 2015, Perez-Pellitero, Salvador, Ruiz-Hidalgo, and Rosen-
hahn, 2016), Sparse Coding (Yang, Wright, Huang, and Ma, 2010, Wang, Liu, Yang,
Han, and Huang, 2015) and Super-Resolution Forests (Salvador and Pérez-Pellitero,
2015, Schulter, Leistner, and Bischof, 2015).

Along with all the methods reliant on external information came the ones reliant
in information intrinsic to the images being processed (Huang, Singh, and Ahuja,
2015) and more hybrid approaches with external pre-training and internal fine tun-
ing (Wang, Yang, Wang, Chang, Han, Yang, and Huang, 2015.

However, present works rely on less engineered solutions with maps of LR and
HR dictionaries and instead have networks learn the mapping functions directly in
a non-linear way, the specifics still vary depending on which mapping function has
to be learned, the primary example of this new avenue of research is SRCNN (Dong,
Loy, He, and Tang, 2016), which has been the subject of some improvements (Shi,
Caballero, Huszér, Totz, Aitken, Bishop, Rueckert, and Wang, 2016, Dong, Loy, and
Tang, 2016).

As models were made deeper in order to learn more complex mappings, skip
connections like the ones displayed in ResNet (He, Zhang, Ren, and Sun, 2015) were
added to avoid exploding/vanishing gradients (Tai, Yang, and Liu, 2017, Kim, Lee,
and Lee, 2015a, Ledig, Theis, Huszar, Caballero, Aitken, Tejani, Totz, Wang, and
Shi, 2016, Lim, Son, Kim, Nah, and Lee, 2017), recursive architectures have also
been successfully implemented, among other things as a way to mitigate overfitting
(Kim, Lee, and Lee, 2015b), which have then been improved upon (Tai, Yang, and
Liu, 2017)
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Additionally, new models have been using Generative Adversarial Networks as
a way of guiding networks towards producing results belonging to the natural im-
age manifold, avoiding results that are good number-wise (as in having a low Mean
Squared Error, or high PSNR and SSIM), but look "soft" and artificial to humans.
(Ledig, Theis, Huszar, Caballero, Aitken, Tejani, Totz, Wang, and Shi, 2016, Wang,
Yu, Dong, and Loy, 2018, Yuan, Liu, Zhang, Zhang, Dong, and Lin, 2018).

2.1.1 Denoising

Modern denoising methods often double as SISR models, such as TNRD (Chen and
Pock, 2017) and RED30 (Mao, Shen, and Yang, 2016), and despite its age, BM3D
(Dabov, Foi, Katkovnik, and Egiazarian, 2007) is still relevant and being revisited,
either to propose an alternative (Burger, Schuler, and Harmeling, 2012), or a modern
adaptation (Yang and Sun, 2018).

2.2 Deep Learning libraries

There are a variety of Open Source machine learning libraries for Python with CUDA
support:

¢ TensorFlow: Developed by the Google Brain Team, TensorFlow is a very pop-
ular library, especially when used as a backend with Keras, it is in fact taught
in this Master’s Deep Learning course. (tensorflow, 2019)

¢ PyTorch: Based on Torch and merged with Caffe2, it is developed by Face-
book’s Al research group. (pytorch, 2019)

¢ Theano: While no longer in development and a relatively minor player, the
fact that it was developed by the Montreal Institute for Learning Algorithms
might attract those who might be displeased with the corporate ties of other
libraries. (Theano, 2019)

* Microsoft Cognitive Toolkit: Microsoft’s CNTK library has both a Python API
and a C# API, which makes it much easier to integrate with Universal Win-
dows Platform, Windows Forms and ASP.NET applications. (Microsoft, 2019)
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Methodology

3.1 Choice: EDSR vs. CinCGAN

At the start of this master thesis project my advisor gave me two papers as good state
of the art methods that would do nicely EDSR (Lim, Son, Kim, Nah, and Lee, 2017)
and CinCGAN (Yuan, Liu, Zhang, Zhang, Dong, and Lin, 2018) offer fundamentally
different approaches to Super Resolution:

EDSR builds on SRResNet (Ledig, Theis, Huszar, Caballero, Aitken, Tejani, Totz,
Wang, and Shi, 2016), which is an adaptation of ResNet (He, Zhang, Ren, and Sun,
2015) for SISR, removing Batch Normalization layers, thus reducing the computa-
tional and memory burden of the network on hardware and allowing for a deeper
architecture and more complex non-linear model to be learned for LR/HR mapping.

CinCGAN uses CycleGAN's (Zhu, Park, Isola, and Efros, 2017) idea of image to
image translation to create an unsupervised model that can denoise and upsample
images without training with LR/HR pairs by first denoising the input in LR space,
and then upscaling it with a state of the art SISR model, in this case EDSR.

While CinCGAN achieves performance comparable to SRGAN, I personally find
CinCGAN's results visually un-appealing since it seems to introduce artifacts of its
own.

(a) ground truth (b) bicubic (c) EDSR* (d) SRGAN [16] (e) BM3D+EDSR (f) CinCGAN (ours)
PSNR/SSIM 26.81/0.83 30.28/0.88 29.05/0.85 26.84/0.86 28.26/0.84

FIGURE 3.1: While SRGAN+'s result is not as sharp as the ground
truth or CinCGAN'’s result, the lines in the latter case look distorted
(Taken from the CinCGAN paper)
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Ground Truth Bicubic EDSR [17] BM3D+EDSR CinCGAN
PSNR/SSIM 29.42/0.82 28.95/0.76 30.94/0.91 31.01/0.92

FIGURE 3.2: While Bicubic and EDSR models can’t denoise the image
and BM3D+EDSR’s result looks soft and blurry, the CinCGAN seems
to introduce its own noise (Taken from the CinCGAN paper)

Since EDSR already performed the SR task inside CinCGAN and I didn’t like the
visual quality of the results given by the latter I chose to work with EDSR as a SR
method, and would later think of a way of performing denoising.

3.2 Choice: Denoising

Denoising is a much more established and "stable" field, so when faced with the
need to choose a denoising method I chose to look for extensively cited papers first
instead of prioritizing state-of-the-art brand new ones.

DnCNN (Zhang, Zuo, Chen, Meng, and Zhang, 2017) is a residual neural net-
work capable of handling gaussian noise and JPEG compression, its architecture ac-
cording to the authors is a modified VGG (Simonyan and Zisserman, 2015) network,
adapting it for denoising instead of image recognition and implementing residual
learning (He, Zhang, Ren, and Sun, 2015), the result is strikingly similar to SRRes-
Net, and therefore, to EDSR, although SR tasks in DnCNN are performed by upscal-
ing a LR image to HR size using bicubic interpolation and feeding it to the network.

The way training data is created for DnCNN is to create patches with noise in
the ranges of [0,55]c for gaussian noise and [5,99] quality for JPEG deblocking.

I hypothesized that I could take the training method in DnCNN and use it with
the EDSR architecture, since the only major differences were the lack of Batch Nor-
malization layers, and the deconvolution and transpose process at the very end of
EDSR, making its output larger than its input.
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DnCNN had been tested without Batch Normalization and it was shown that
with Adam (Kingma and Ba, 2015), the training and performance impact of not using
BN layers was small, so that wouldn’t be a significant issue.
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FIGURE 3.3: Impact of training DnCNN with and without BN (Taken
from the DnCNN paper)

3.3 Final decision

I chose to use the EDSR architecture with a mixed training approach, the images in
the training set would be split into overlapping patches, augmented with 90 degree

rotations and then treated randomly in one of three ways (in all cases the HR patch
is saved as a PNG intact):

* Clean save: the extracted patch would be downscaled using Lanczos resam-
pling and saved as a PNG to preserve its quality.

* JPEG save: the extracted patch would be downscaled using Lanczos resam-
pling and saved as a JPEG with a quality varying from 5 to 99.

* Gauss save: the extracted patch would be downscaled using Lanczos resam-
pling, gaussian noise would be added to the patch with a standard deviation
value between 0 and 55 and then saved as a PNG file.

The network will follow the EDSR architecture and be trained with the Adam
optimizer (learning rate: le-4, with it being halved every 200.000 updates, momen-
tum: 0.9, variance momentum: 0.999, e: 1e-8) for 300.000 updates with a minibatch
size of 16, for the loss function, L2 is used (as in SRResNet) instead of L1 (EDSR).
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32 Residual Blocks

-

256 Filiers for Convalutional layers 3 Filters (RGB)

FIGURE 3.4: Implemented Architecture for 2x and 3x scales

This for 4X upscaling has one more ConvolutionTranpose layer, this is especially
useful for reusing the 2X model’s weights to train a 4X model since the parameters
of the layer remain the same.
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Development

4.1 Dataset

To train the model to work with digital art and illustrations a dataset other than the
usual photograph based datasets like the ones used on the EDSR paper (DIV2K, Set5,
Set14, B100, Urban100), to do that I considered a variety of digital art imageboards:
Danbooru, Gelbooru, Yandere, €621, Sankaku Channel and Derpibooru.

I needed images that were in PNG format, for practicality reasons the selected
board had to work well with an automatic downloader (Bionus, 2019), the board
from which the images were going to be downloaded also needed to have reliable
tagging and preferably, an active community that would use the often underutilized
scoring system present in (nearly) all imageboards.

Danbooru and e621 were the best candidates among all imageboards considered
but due to the prevalence of japanese artists in Danbooru and their infamous cen-
sorship practices I chose €621 over Danbooru to ensure no mosaic filters ended up
in the training patches.

I downloaded the 1,600 highest scored images on e621 with the assumption that
due to their popularity they would be more representative of what the final use case
would be.

4.2 Network implementation

Microsoft’'s CNTK has a greater amount of instructional materials, including exam-
ples and tutorials than TensorFlow (in my experience), and has a guide on how to
implement various SISR models such as VDSR, DRRN, SRResNet and SRGAN and
how to use them later to upscale images (Vukorepa, 2017)

The reason why 1,600 images were downloaded (an excessive amount) is because
I initially considered adding a discriminator to EDSR, effectively applying EDSR’s
improvements over SRResNet to SRGAN and I would use 800 images to train the
generator, and 800 to train the GAN, however SRGAN relies on a pre-trained VGG
network which is trained on different data (photographs) and training the discrimi-
nator from scratch, fine tuning the balance in the loss function between discriminator
and generator was a dangerous timesink.

Due to memory constraints on my GTX 1060 (6 GB), the LR patch size for the
network had to be reduced to 32 x 32, down from EDSR’s LR patch size of 48 x 48.
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FIGURE 4.1: Training curve for 2X scale, Training time was: 1 day, 22
hours, 53 minutes

Geometric Self Ensemble as used in Lim, Son, Kim, Nah, and Lee, 2017 and ex-
plained in Timofte, Rothe, and Gool, 2015 was implemented, however I haven’t used
it for testing purposes, my concerns being that each patch needs to be predicted 8
times and the same concerned expressed by Ledig, Theis, Huszar, Caballero, Aitken,
Tejani, Totz, Wang, and Shi, 2016 in section 1.1.3, being that averaging all possible
solutions for a specific patch might cause a loss of detail and overly smooth the im-
age as a whole, since EDSR doesn’t have a discriminator to ensure a good perceptual
loss value, this issue is especially relevant.

4.3 Graphical User Interface

Using waifu2x-caffe as an inspiration I created a graphical user interface designed
not only to use my EDSR models, but any CNTK model that takes low resolution
patches and outputs high resolution ones, the code only needs to know the output
patch size and the upscaling coefficient and it will deconstruct input images into ap-
propriately sized patches and reconstruct a high resolution image from the results,
additionally, unlike waifu2x-caffe, this GUI presents a real time preview of the up-
scaling process, a lack of feedback can often be upsetting to users especially if the
model is being run on slow hardware.
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[C U oreDme oo = epsAx

Output Directory

[C:\Userstsanti\OneDrive\Desktophout ][ Browse

Model Properties

Selected Mode!: Models\EDSR_Noise_600000 model
Figh Resolution Dimensions: [
Upscale Coeficient: 2

Now Processing: C:\Users\santi\OneDive\Deskiop\in\be 15968553390b1126723¢8773910e 1 png

FIGURE 4.2: Screenshot of the CNTK Upscaler GUI

The upscaler also supports using Geometric Self Ensemble since it isn’t depen-
dent on the model, and models can be added by placing them on the 'Models’ folder
of the application along with a JSON file with the necessary information, the appli-
cation automatically loads all models present in the folder at startup.

{
"ModelName": "EDSR 2X",
"File": "EDSR_Noise_600000.model",
"OutDimensions": 64,
"UpscaleCoefficient": 2

b

FIGURE 4.3: An example JSON file
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Chapter 5

Evaluation

To evaluate the trained EDSR with blind-denoising I hand picked 7 pictures with
varying styles and complexity and created low resolution versions with specific
gaussian noise levels and JPEG qualities; for Gaussian noise the ¢ values were: 0,
15, 25 and 50. And for JPEG quality levels, the values were: 25, 50, 75 and 100, in
total that is 56 low resolution images per model to test.

(¢) LR image with JPEG noise (50) (D) EDSR result

FIGURE 5.1: trained denoising capabilities
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(F) Waifu2x (level 2) (G) Waifu2x (level 3)

FIGURE 5.2: Results of Waifu2x and my trained model on a clean
version (GAUSS_0) of one of the images
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FIGURE 5.5: PSNR and SSIM results on the shown image
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FIGURE 5.6: PSNR and SSIM results on the shown image
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FIGURE 5.7: PSNR and SSIM results on the shown image
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FIGURE 5.8: PSNR and SSIM results on the shown image
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(A) High Resolution

s
%o P, g, g, Ay,
g, Qs Qs Qo Tage

EDSR -JEIE: 36.340 33.671 [ERNEL]

.-b

BICUBIC -|ESKEIN 23.974 22.144 18.174 25.233 BICUBIC - 34.438 ' 34.563 33.744 32.538 33.821

ECREDN  34.784 32.862

Waifu2X (level 0) - 22.545 20.320 15.860 24.363 Waifu2x (level 0) |

36.429 33.326

36.273 g 34.005 [EBR:I)

Waifu2x (level 3) -JEGR:ERS 23.932 22.645 18.879 25.573 Waifu2x (level 3) -JESRAYE FECRLY ﬁ 34.130

Waifu2X (level 1) -|EEAFEN 22.568 20.497 16.203 24.487 waifu2x (level 1) -

Waifu2x (level 2) - 22,437 20.615 17.108 |24.674 Waifu2x (level 2) -

(B) PSNR results with gaussian noise (c) PSNR results with JPEG noise

By
Gope Hus. Yog. My, A o, Frg | P Peg |
%o N2s L2y 5 g Mog s RS (25 e

[ 0.968 0.952 0.954 EDSR -| 0.941 0.931 0.910 0.934

:TeV:]lel 0.967 0.683 0.472 0.202 H BICUBIC -| 0.924 | 0.925 0.914 0.893  0.914
‘Waifuzx (level 0) , 0.525 0.298 0.100 | 0.473 WaifuzX (level 0) -JUEEE]

0.530 0314 0.112 0.481 WaifuzX (level 1) -JUEEE]

0.940 0.925 0.897

Waifuzx (level 1) -oEld:] 0.944 0.932 0.908 0.935

Waifuzx (level 2) -JiEEE] 0.491 0.304 0.144 | 0477 ‘Waifuzx (level 2) -JRUEEES 0.943 0.936 0.921 [EAEL:

Waifu2X (level 3) -JieEEE] 0.879 0.707 0.308 0.711 ‘Waifu2X (level 3) -JESEEED 0.943 0.937 0.923 0.938

(D) SSIM results with gaussian noise (E) SSIM results with JPEG noise

FIGURE 5.9: PSNR and SSIM results on the shown image
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Chapter 6

Conclusion

My model achieves performance comparable to the best waifu2x model match for a
given noise level for JPEG tasks, while dominating in gaussian denoising, I suspect
the reason why it doesn’t consistently outperform it in JPEG denoising (apart from
the average score) is that the patch size is overly small (32 x 32), I used the L2 metric
as a "safe" option since I was adding new functionality to the network apart from
just uscaling, despite L1 having empirically better results (Lim, Son, Kim, Nah, and
Lee, 2017) and the lack of Batch Normalization layers, which are proven to degrade
performance slightly (Zhang, Zuo, Chen, Meng, and Zhang, 2017), however the fact
that my model performs substantially better when the picture has a lot of fine detail
5.2 suggest that there might actually be an overfitting issue, after all EDSR is a highly
complex model, and artwork is generally not as complex as photographs.

6.1 Future work

I have found a small handful of images with compression artifacts that differ from
JPEG compression, I will try to find the optimizer that generated those artifacts and
include it in the training data, as well as other downsampling methods to fix aliasing
or other issues that might occur on low resolution images.
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List of Abbreviations

CNN
GAN
GUI
JSON
SR
HR
LR
SISR
PSNR
SSIM

Convolutional Neural Network
Generative Adversarial Network
Graphical User Interface

Java Script Object Notation
Super Resolution

High Resolution

Low Resolution

Single Image Super Resolution
Peak Signal to Noise Ratio
Structural SIMilarity Index
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FIGURE A.6: PSNR and SSIM results on the shown image
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FIGURE A.7: PSNR and SSIM results on the shown image
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FIGURE B.1: PSNR and SSIM results on the shown image
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FIGURE B.3: PSNR and SSIM results on the shown image
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FIGURE B.6: PSNR and SSIM results on the shown image
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