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Super Resolution

* I[deally: increasing the size of an image without losing fidelity.

* Restore a hypothetical High Resolution image from a Low
Resolution image.

* Given an actual LR and HR pair, the restored Super Resolution
image given by LR should be identical to the HR image.

Downsampling




Classic SR Methods: Dictionary methods

* Create a database of low resolution patches and high
resolution patches.

* Input is processed and defined in terms of the low resolution
patches.

* The coefficients used to define the input using the low
resolution patches are applied to their corresponding high
resolution patches and the image is reconstructed.



New Approach: SRCNN

* Using example LR and HR pairs, let the network learn the
desired upsampling function on its own.

* Much less handcrafted than dictionary approaches.

 Most of current SR work is based on CNNSs.




SRCNN based application: Waifu2x

* Trained with digital art (mainly anime).

* Input is upscaled before processing and then deblurred by the
network, making it capable of using any scale (with
diminishing results as the scale increases and thus the
blurriness of the input increases).

* Requires different models for different noise levels.



Residual Learning

* Used to mitigate the vanishing/exploding gradient problem.

* Skip connections are added to the network to allow outputs
from earlier layers to affect deeper layers.

* Allows for very deep architectures and thus highly complex
models.
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Figure 2. Residual learning: a building block.



SRResNet and SRGAN

SRResNet: modified ResNet model for Super Resolution tasks.

SRGAN: Generative Adversarial Network using SRResNet as a

generator, and a discriminator to determine whether or not a
generated SR image looks “natural”.
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Starting point: EDSR

* Modification of SRResNet.
* Batch Normalization layers are removed.

* Thanks to reduced memory and computational requirements, the
network can be deeper, and convolutional layers can have a higher
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Figure 2: Comparison of residual blocks in original
ResNet, SRResNet, and ours.



Starting point: CinCGAN

* Model that uses two CycleGANs along with a SR network (EDSR
in the case of the paper).

* Unsupervised super-resolution (no HR-LR pairs needed in
training).

* Unsupervised denoising.

Ground Truth Bicubic EDSR [17] BM3D+EDSR  CinCGAN
PSNR/SSIM  29.42/0.82 28.95/0.76 30.94/0.91 31.01/0.92



Denoising: BM3D

* BM3D is a method proposed in a 2007 paper based on
collaborative filtering.

* The method processes an image in blocks by matching them
with similar blocks and using collaborative filtering, in other
words, estimating a clean block from all the similar blocks.

* Still popular despite its age, it’s used as a reference in the
CinCGAN paper when paired with EDSR for denoising tasks.



Denoising: DnCNN

An adaptation of the VGG network for denoising.

* Deep network

* Residual
learning

* Blind denoising

* Deblurring as a
means of SR

(e) MLP / 26.12dB (f) TNRD / 26.16dB (g) DnCNN-S / 26 48dB (h) DnCNN-B / 26 48dB

Fig. 5. Denoising results of the image “parrot” with noise level 50.



Denoising: DnCNN

Noisy Image

Fig. 1. The architecture of the proposed DnCNN network.
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* CNTKis an open source deep learning framework developed by

Microsoft.
* It has Brainscript, Python and C# APlIs

* Plenty of tutorials and examples available.




Implementation

The implementation started by modifying a code example for

SRResNet to inc
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Implementation

Training is done with pairs of HR and
LR images, for every pair created the
LR patch will be either:

e Saved as a PNG (clean)
* Saved as a JPEG with random quality

* Saved as a PNG with random
gaussian noise




Considerations

* EDSR: State of the art super resolution, no denoising.
* EDSR + BM3D denoising as “state of the art” (CinCGAN paper)

* DnCNN: State of the art denoising, SRCNN style super
resolution, outdated.

* Solution: EDSR super resolution with DnCNN style denoising to
create a model beyond the current state of the art.



Considerations
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Results

Bicubic

Waifu2x
(best result)
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* Great restoration of detail in complex artwork.

* Good quality denoising, especially with Gaussian noise.

* Performance comparable or superior to waifu2x, possible
overfitting issue in low complexity art, room for more
complexity (additional noise patterns)
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