

LSTA: Long Short-Term Attention for Egocentric Action Recognition Swathikiran Sudhakaran Sargio Escalora Cowald Long

LONG BEACH June 16-20, 2019

Swathikiran Sudhakaran, Sergio Escalera, Oswald Lanz

sudhakaran@fbk.eu sergio@maia.ub.es lanz@fbk.eu

1. Goal

Recognition of fine-grained egocentric actions involving object manipulations by an end-to-end trainable architecture with video-level supervision alone

2. Motivation and Architecture

- Encoding of long-range temporal information: Recurrent Neural Network
- Encoding of spatio-temporal features of relevant regions: Spatial Attention

3. Analysis of LSTM

- Fully-connected gates in standard LSTM results in propagation of spatially unstructured memory state: Addressed by ConvLSTM
- Spatial features are localized. Attention filtering is performed by gating neurons and requires pre-filtering of input: Addressed by Spatial Attention
- Memory tracking is controlled by output gating. Improving the output gating results in better memory propagation: Addressed by Output Pooling

LSTA integrates the above solutions into a novel Recurrent Neural Unit

3. Long Short-Term Attention (LSTA)

LSTA enhances LSTM with:

- In-built recurrent attention: Weight selector (c) selects attention weights from a pool of learnable weights. Standard RNN tracks the attention map generated across frames
- Novel output pooling: Constraints the model to expose a distilled view of internal memory resulting in a smooth and focused tracking of the latent memory state across the sequence

$$\mathbf{o_t} = \sigma(W_o * [\nu_c \odot \mathbf{c_t}, \mathbf{o_{t-1}} \odot \eta(\mathbf{c_{t-1}})])$$

4. Cross-modal Fusion

- · Feature from one stream is used to control the bias of LSTA gates of the other stream
- · Motion stream consists of single stack of optical flow

5. Results

Datasets:

- 1.GTEA61 2.GTEA71
- 3.EGTEA Gaze+
- 4.EPIC-Kitchens

Fig. Ablation Study on the fixed split of GTEA61

Method	GTEA61*	GTEA61	GTEA71	EGTEA	EPIC-S1	EPIC-S2
Li et al. [1]	66.8	64	62.1	46.5	-	-
Ma et al. [2]	75.08	73.02	73.24	-	-	-
Two Stream	57.64	51.58	49.65	41.84	13.23	7.31
TSN	67.76	69.33	67.23	55.93	20.54	10.89
eleGAtt	59.48	66.77	60.83	57.01	-	-
ego-rnn	77.59	79	77	60.76	-	-
LSTA-RGB	74.14	71.32	66.16	57.94	30.16	15.88
LSTA	79.31	80.01	78.14	61.86	32.60	18.71

Tab. Comparison with state-of-the-art techniques

Fig. Attention maps generated by the network

[1] Y. Li, Z. Ye, and J.M Rehg. Delving into Egocentric Actions. CVPR 2015 [2] M. Ma, H. Fan, and K.M. Kitani. Going deeper into first-person activity recognition. CVPR 2016

