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- Fig. Ablation Study on the fixed split of GTEA61
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3. Analysis of LSTM
Appearance

e Fully-connected gates in standard LSTM results in propagation of spatially
unstructured memory state: Addressed by ConvLSTM

e Spatial features are localized. Attention filtering is performed by gating
neurons and requires pre-filtering of input: Addressed by Spatial Attention

e Memory tracking is controlled by output gating. Improving the output gating
results in better memory propagation: Addressed by Output Pooling

LSTA integrates the above solutions into a novel Recurrent Neural Unit

4. Cross-modal Fusion

e Feature from one stream is used to
control the bias of LSTA gates of the
other stream

e Motion stream consists of single stack of
optical flow
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Fig. Attention maps generated by the network
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