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Abstract

Facial expressions are vital ways of communication between humans in social contexts.
They are used as conversational markers and they convey information about affective and
cognitive state. Many applications would benefit from the advance of automatic facial
expression recognition (AFER). Robust AFER would improve human-computer interaction,
it would increase driving safety, would help medical personal to better take care of patients
with impaired communication ability and could transform online education. In recent
years significant advancement has been undertaken in AFER with the use of deep neural
networks (DNN). Unfortunately this increase in performance came with increased opacity.
The current status of DNNs as ”black-box” model hinders the advancement of the field. In
this dissertation, we propose a new general framework for analysing deep neural networks
based on the systematic study of their topology while they are learning patterns in the
data. We use this framework to study a newly proposed DNN, specially built for Action
Unit recognition which results in better understanding, control and increased performance.
In summary, this dissertation has the following main contributions: a) Definition of
comprehensive taxonomy of automatic computer vision approaches to automatic facial
expression recognition followed by an extended review of historical and current trends in
AFER. b) Proposal of a model that learns representation, patch and output structure
of the face end-to-end e) Introduction of a structure inference topology that replicates
inference algorithm in probabilistic graphical models by using a recurrent neural network
c¢) Extended ablation study and experimental analysis of the newly proposed architecture
d) Analysis and improving performance of the previously proposed architecture for facial
expression architecture using the new theoretical framework. e) Formulation of novel
general framework for analysis of deep neural networks based on algebraic topology f)
Analysis of fundamental topological differences between DNNs that learn and DNNs that
memorize g) Demonstrating the use of newly proposed analytical framework on facial

action unit recognition using DSIN.
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Chapter 1
Introduction

The face is a fundamental component of human identity. By looking at someone’s face
humans can almost instantly tell if they know the person, her gender and age, where is
she looking and if they are in pain or amused. On whatever airport you would be in the
world, in order to verify your identity, a customs officer will look at you and compare your
face to a reference photo you have in the passport. The same thing will happen if you get
stopped by the police on the street, if you request some service in an office of the local
administration, or if you are trying to get a reduction fee when entering into a museum
because maybe you are a student. In marketing, when famous artists or athletes endorse
some company, product or cause, it will be their face that you will see on a billboard or
a TV commercial. The face entered even into politics, many western countries having
endless debates and even passing laws regulating if people have the right to cover their
faces in public.

Facial shape has great diversity and uniqueness among humans. The specific morphology
of the skull and of the soft tissues, muscles, fat and skin that cover it, is unique to every
person and changes only very slowly with age. But besides its rigid shape conveying
essential information about human identity, faces are also highly morpho-dynamic being a
vital conveyor of social signals. Faces are very important in the way we communicate, we
picture ourselves and we think about emotion. For example, one of the most used forms
of depicting human emotion in art is through facial expressions (see Fig.1.1). By looking
at someone’s face, we can most times tell if that person is sad or happy, if they are in
doubt, if what they say is ironic or serious or if they might be in pain. In general the face
is a very rich source of affective and cognitive information and an important channel of
communication. In this context it is interesting to note that newborn babies are able to
recognize and mimic their mother facial expressions years before they are able to speak or
walk. Facial expressions are one of the first motor coordination skills that humans posses.
Recognizing facial expressions is essential for being able to tell what others feel and think

and to influence their actions which has high importance for survival.



Figure 1.1: It has always been very common in art to portray emotion as facial expression.
Sculptures by Franz Messerschmidt, 18th century artist.

This amazing human capability is largely taken for granted. We rarely think how
it is possible to be able to recognize so many different facial expressions with such
precision and robustness. But as for many other cognitive capacities, their complexity only
becomes obvious when we are trying to replicate them into a human engineered device
like a computer. How a computer could replicate these amazing capacities with higher
performance and increased transparency is the topic of this dissertation.

Imagine for a second a lunch with friends. At a certain point one of you grabs her
smart phone, takes a photo and shares it on some social media network. Maybe the picture
looks something like in Fig. 1.2. What everybody else will see is a nice image with a bunch
of dear friends around a table full of great food. A more interested observer will infer
an amazing amount of things just by taking a glance at this photo. They will recognize
that you are sharing a salad and most of you are having a glass of wine. They will notice
what kind of clothes you wear and combined with the strong light coming through the
window will probably think that the weather is warm. By the background, they will also
think that you are in someone’s living room, not in a restaurant and the context is casual.
Then by looking at the persons they will easily be able to tell that there are three women
and three men around the table and that they are around 30 years old. Closer attention
they would pay to everyone’s faces more social cues will become obvious. One can tell
where people are looking, if they are about to say something and with whom are they
interacting to. And by the facial expressions, one could also infer cognitive and affective
states and markers of conversation. For example, that some are slightly amused, others
slightly impressed and at least one guy tries to falsely act disgusted.

Overall, the amount of information our brains are capable of extracting from a single
image is truly impressive especially if one would like to replicate this capacity in an
engineered device like a computer. All the things that your friend ”sees” are inferences

that she is making in her head, starting from the early visual system to the visual cortex



Figure 1.2: A human can infer a lot of information from a static image like object
recognition, semantic segmentation, 3D scene reconstruction. In this thesis we focus on
automatic facial expression recognition (AFER). Replicating this ability into a machine is
challenging.

and beyond. Strictly speaking the image itself of a facial expression is only a collection of
numbers with a specific grid-like structure (see Fig. 1.3). The main focus of computer
vision is to try to reach a higher level understanding of images. This can be used for object
recognition, scene parsing, semantic segmentation or facial expression recognition from
this simple collection of numbers represented by an image. OQur focus is on Automatic
Facial Ezpression Recognition (AFER) from images.

Let’s think for a while at the challenges. Look at Fig. 1.2 again. Probably the large
majority of humans, if asked, would agree that the man on the left and the blonde lady
on the right are slightly amused. But this is the results of a complex pattern recognition
algorithm built in our brains. But the collections of numbers contained in the photos
would be very different from face to face due to different identity, different poses and
different occlusions or hair styles. A robust algorithm would have to learn what relevant
information to consider and what to ignore in order to make a decision. These problems
are common in any kind of pattern recognition tasks be it from images, audio, or any
other type of signal.

In late years, a very powerful model, called Deep Neural Networks (DNN), achieved
unprecedented performance in a myriad of tasks, usually when a large amounts of data is
available. Unfortunately, at the same time these learning models, as they became more
powerful they also became more compler and opaque.

Neural networks is not a new idea. The intuition that the designers of a learning
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Figure 1.3: An image is a structured collection of numbers. A computer able to gain
understanding from an image will need to implement robust pattern recognition algorithms.
This is the aim of computer vision. This thesis focuses on improving performance and
interpretability of deep learning algorithms that recognize facial expressions from images.

algorithm should look for inspiration to the mammalian brain, was a central way of
thinking since the beginning of Artificial Intelligence (AI) in the 1940s. Scientists and
innovators focused on greatly simplified mathematical models that describe a biological
neuron behaviour. It was theoretically shown that given the right scale, these simplified
neurons, when put together are able to approximate any kind of function, no matter how
complex. Unfortunately this brings up an important problem. Although the code for
specifying the architecture and training of a model can be simple, the results can be very
complex, oftentimes effectively resulting in ”black boxes”. When a DNN looks at a picture
and decides that it contains the face of a person that looks "happy” or ”"sad” (see Fig.
1.4), the exact functional processes that generate these outputs are hard to interpret even
to the scientists who generated the algorithms in the first place, although some progress
in interpretability is being made. Finally we end up with a paradoxical situation, in which
we have models that perform well but we do not really know how and why. We are thus
interested in improving performance in AFER from images using DNNs and at the same

time gain understanding about how these models learn.

1.1 Motivation and Objectives

We previously outlined the main motivation of this thesis. We restate it here together
with the main objectives that consequently derive. The whole manuscript is structured

along these lines:

1. Facial expressions (FE) are vital signaling systems of affect, conveying

cues about the emotional and cognitive state of humans. If we want to
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Figure 1.4: Increased performance of deep neural networks in a myriad of computer vision
problems also came with greater opaqueness. In this thesis, we propose a novel framework
that provides new insight into how deep neural networks learn, with applications into
improved facial expressions recognition.

gain better understanding of humans we should improve performance in facial

expression recognition. This is the main objective of this thesis.

2. Deep neural networks (DNN) are increasingly opaque as they grow in
performance and complexity. They are regarded as ”black-box” models. For
better performance, usability and general public acceptance it is important to gain
understanding into what does it mean to learn in deep neural networks.
While this is a general objective and we propose a general framework, applicable to
a myriad of problems, we focus our attention to our initial motivation and objective,
namely into what does it mean to learn facial expressions in deep neural

networks and how could this be used for increased performance.

1.2 Contributions and Thesis Outline

We present several contributions to the problem of facial expression recognition. They are
grouped in three main categories: contributions related to the taxonomy of facial expres-
sion recognition, contributions to improving performance of automatic facial expression
recognition and contributions related to interpretability of deep neural networks. There is
a direct correspondence between this categorization and the outline of this manuscript.

The contributions are the following:

1. Automatic Facial Expression Recognition. General Framework, Evolu-

tionary Perspective and Trends. We define a comprehensive taxonomy of



automatic computer vision approaches for automatic facial expression recognition
(AFER). The definition and choices of the different components are analyzed and
discussed. This is complemented with a section dedicated to the historical evolution
of FE approaches and an in-depth analysis of latest trends. Additionally, we provide
an introduction into affect inference from the face from an evolutionary perspective.
We emphasize research produced since the last major review of AFER in 2009. Our
focus on inferring affect, defining a comprehensive taxonomy and treating different
modalities is aiming at proposing a more general perspective on AFER and its

current trends. The main contributions are:

(a) An evolutionary perspective of affect inference from the face (Chapter 2.2).

(b) Definition of comprehensive taxonomy of automatic computer vision approaches

to automatic facial expression recognition (Chapter 2.3).

(c¢) Extended survey of historical and current trends in AFER (Chapter. 2.4).

. Performance in Facial Expression Recognition. We propose a deep neural
architecture that tackles local representation learning and class structure learning
by combining learned local and global features in its initial stages and replicating a
message passing algorithm between classes similar to a graphical model inference
approach in later stages. We show that by training the model end-to-end with
increased supervision we improve state-of-the-art facial action unit recognition. The

main contributions are:

(a) Proposal of a model that learns representation, patch and output structure of
the face end-to-end (Chapter 3.3).

(b) Introduction of a structure inference topology that replicates inference algorithm
in probabilistic graphical models by using a recurrent neural network (Chapter
3.3).

(c) Extended ablation study and experimental analysis of the newly proposed
architecture (Chapter 3.4).

. Interpretability in Facial Expression Recognition. We derive a novel approach
to define what it means to learn in deep networks. We show how this defines the
ability of a network to generalize to unseen testing samples and, most importantly,

why this is the case. More concretely, there are three main contributions:

(a) Formulation of novel general framework for analysis of deep neural networks

based on algebraic topology (Chapter 4).

(b) Analysis of fundamental topological differences between DNNs that learn and
DNNs that memorize (Chapter 5).



(c¢) Analyze and improving performance of the previously proposed architecture for

facial expression architecture using the new theoretical framework (Chapter 6.)






Chapter 2

Automatic Recognition of Facial
Expressions and Facial Action Units:
Taxonomy, Related Work and Trends

Facial expressions are an important way through which humans interact socially. Building
a system capable of automatically recognizing facial expressions from images and video
has been an intense field of study in recent years. Interpreting such expressions remains
challenging and much research is needed about the way they relate to human affect. This
chapter presents a general overview of automatic facial expression analysis. We define a
new taxonomy for the field, encompassing all steps from face detection to facial expression
recognition, and describe and classify the state of the art methods accordingly. We also
present the important datasets and the bench-marking of most influential methods. We
conclude with a general discussion about trends, important questions and future lines of

research.

2.1 Introduction

Facial expressions (FE) are vital signaling systems of affect, conveying cues about the
emotional state of persons. Together with voice, language, hands and posture of the
body, they form a fundamental communication system between humans in social contexts.
Automatic FE recognition (AFER) is an interdisciplinary domain standing at the crossing
of behavioral science, neurology, and artificial intelligence.

Studies of the face were greatly influenced in premodern times by popular theories
of physiognomy and creationism. Physiognomy assumed that a person’s character or
personality could be judged by their outer appearance, especially the face [168]. Leonardo
Da Vinci was one of the first to refute such claims stating they were without scientific

support [29]. In the 17th century in England, John Buwler studied human communication



Figure 2.1: In the 19th century, Duchenne de Boulogne conducted experiments on how
FEs are produced. From [37].

with particular interest in the sign language of persons with hearing impairment. His book
Pathomyotomia or Dissection of the significant Muscles of the Affections of the Mind was
the first consistent work in the English language on the muscular mechanism of FE [78].
About two centuries later, influenced by creationism, Sir Charles Bell investigated FE
as part of his research on sensory and motor control. He believed that FE was endowed
by the Creator solely for human communication. Subsequently, Duchenne de Boulogne
conducted systematic studies on how FEs are produced [37]. He published beautiful
pictures of sometimes strange FEs obtained by electrically stimulating facial muscles (see
Figure 2.1). Approximately in the same historical period, Charles Darwin firmly placed
FE in an evolutionary context [36]. This marked the beginning of modern research of FEs.
More recently, important advancements were made through the works of researchers like
Carroll Izard and Paul Ekman who inspired by Darwin performed seminal studies of FEs
[90, 48, 50].

2.2 Inferring affect from FEs

Depending on context FEs may have varied communicative functions. They can regulate
conversations by signaling turn-taking, convey biometric information, express intensity of

mental effort, and signal emotion. By far, the latter has been the one most studied.

10



2.2.1 Describing affect

Attempts to describe human emotion mainly fall into two approaches: categorical and
dimensional description.

Categorical description of affect. Classifying emotions into a set of distinct classes
that can be recognized and described easily in daily language has been common since
at least the time of Darwin. More recently, influenced by the research of Paul Ekman
[48, 49] a dominant view upon affect is based on the underlying assumption that humans
universally express a set of discrete primary emotions which include happiness, sadness,
fear, anger, disgust, and surprise (see Figure 2.2). Mainly because of its simplicity and
its universality claim, the universal primary emotions hypothesis has been extensively

exploited in affective computing.

Figure 2.2: Primary emotions expressed on the face. From left to right: disgust, fear, joy,
surprise, sadness, anger. From [8].

Dimensional description of affect. Another popular approach is to place a par-
ticular emotion into a space having a limited set of dimensions [79, 172, 227]. These
dimensions include valence (how pleasent or unpleasent a feeling is) activation! (how
likely is the person to take action under the emotional state) and control (the sense of
control over the emotion). Due to the higher dimensionality of such descriptions they
can potentially describe more complex and subtle emotions. Unfortunately, the richness
of the space is more difficult to use for automatic recognition systems because it can be
challenging to link such described emotion to a FE. Usually automatic systems based on
dimensional representation of emotion simplify the problem by dividing the space in a

limited set of categories like positive vs negative or quadrants of the 2D space [243].

2.2.2 An evolutionist approach to FE of affect

At the end of the 19th century Charles Darwin wrote The Fxpression of the emotion in
Man and Animals, which largely inspired the study of FE of emotion. Darwin proposed
that FEs are the residual actions of more complete behavioral responses to environmental

challenges. Constricting the nostrils in disgust served to reduce inhalation of noxious or

1 Also known as arousal.
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harmful substances. Widening the eyes in surprise increased the visual field to see an
unexpected stimulus. Darwin emphasized the adaptive functions of FEs.

More recent evolutionary models have come to emphasize their communicative functions
[65]. [191] proposed a process of exaptation in which adaptations (such as constricting
the nostrils in disgust) became recruited to serve communicative functions. Expressions
(or displays) were ritualized to communicate information vital to survival. In this way,
two abilities were selected for their survival advantages. One was to automatically display
exaggerated forms of the original expressions; the other was to automatically interpret the
meaning of these expressions. From this perspective, disgust communicates potentially
aversive foods or moral violations; sadness communicates request for comfort. While some
aspects of evolutionary accounts of FE are controversial [14], strong evidence exists in
their support. Evidence includes universality of FEs of emotion, physiological specificity
of emotion, and automatic appraisal and unbidden occurrence [47, 105, 143].

Universality. There is a high degree of consistency in the facial musculature among
peoples of the world. The muscles necessary to express primary emotions are found
universally [186, 77, 25], and homologous muscles have been documented in non-human
primates [218, 220, 219]. Similar FEs in response to species-typical signals have been
observed in both human and non-human primates [46].

Recognition. Numerous perceptual judgment studies support the hypothesis that FEs
are interpreted similarly at levels well above chance in both Western and non-Western
societies. Even critics of strong evolutionary accounts [173], [93] find that recognition of
FEs of emotion are universally above chance and in many cases quite higher.

Physiological specificity. Physiological specificity appears to exist as well. Using
directed facial action tasks to elicit basic emotions, Levenson and colleagues [118] found
that HR, GSR, and skin temperature systematically varied with the hypothesized functions
of basic emotions. In anger, blood flow to the hands increased to prepare for fight. For
the central nervous system, patterns of prefrontal and temporal asymmetry systematically
differed between enjoyment and disgust when measured using the Facial Action Coding
System (FACS) [52]. Left-frontal asymmetry was greater during enjoyment; right frontal
asymmetry was greater during disgust. These findings support the view that emotion
expressions reliably signal action tendencies [67, 155].

Subjective experience. While not critical to an evolutionary account of emotion, evidence
exists as well for concordance between subjective experience and FE of emotion [51, 246].
However, more work is needed in this regard. Until recently, manual annotation of FE or
facial EMG were the only means to measure FE of emotion. Because manual annotation
is labor intensive, replication of studies is limited.

In summary, the study of FE initially was strongly motivated by evolutionary accounts

of emotion. Evidence has broadly supported those accounts. However, FE more broadly

12



figures in cultural bio-psycho-social accounts of emotion. Facial expression signals emotion,
communicative intent, individual differences in personality, and psychiatric and medical
status, and helps to regulate social interaction. With the advent of automated methods of

AFER, we are poised to make major discoveries in these areas.

2.2.3 Applications

The ability to automatically recognize FEs and infer affect has a wide range of applications.
AFER, usually combined with speech, gaze and standard interactions like mouse movements
and keystrokes can be used to build adaptive environments by detecting the user’s affective
states [45, 140]. Similarly, one can build socially aware systems [212, 39], or robots with
social skills like Sony’s AIBO and ATR’s Robovie [89]. Detecting students’ frustration
can help improve e-learning experiences [103]. Gaming experience can also be improved
by adapting difficulty, music, characters or mission according to the player’s emotional
responses [13, 203, 21]. Pain detection is used for monitoring patient progress in clinical
settings [136, 101, 88]. Detection of truthfulness or potential deception can be used
during police interrogations or job interviews [174]. Monitoring drowsiness or attentive
and emotional status of the driver is critical for the safety and comfort of driving [215].
Depression recognition from FEs is a very important application in analysis of psychological
distress [75, 185, 98]. Finally, in recent years successful commercial applications like
Emotient [3], Affectiva [1], RealEyes [7] and Kairos [5] perform large-scale internet-based

assessments of viewer reactions to ads and related material for predicting buying behaviour.

2.3 A taxonomy for recognizing FEs

In Figure 2.3 we propose a taxonomy for AFER, built along two main components:
parametrization and recognition of FEs. These are important components of an automatic
FE recognition system, regardless of the data modality.

Parametrization deals with defining coding schemes for describing FEs. Coding schemes
may be categorized into two main classes. Descriptive coding schemes parametrize FE
in terms of surface properties. They focus on what the face can do. Judgmental coding
schemes describe FEs in terms of the latent emotions or affects that are believed to generate
them. Please refer to Section 2.3.1 for further details.

An automatic facial analysis system from images or video usually consists of four main
parts. First, faces have to be localized in the image. Second, for many methods a face
registration has to be performed. During registration, fiducial points (e.g., the corners
of the mouth or the eyes) are detected, allowing for a particularization of the face to
different poses and deformations. In a third step, features are extracted from the face with

techniques dependent on the data modality. The approaches are divided into geometric
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Figure 2.3: Taxonomy for AFER in Computer Vision. Red corresponds to RGB, green to 3D, and purple to thermal.
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or appearance based, global or local, and static or dynamic (Section 2.3.2.1). Other
approaches use a combination of these categories. Finally, machine learning techniques are
used to discriminate between FEs. These techniques can predict a categorical expression
or represent the expression in a continuous output space, and can model or not temporal
information about the dynamics of FEs (Section 2.3.2.2).

Modern FE recognition techniques rely on labeled data to learn discriminative patterns
for recognition and, in many cases, feature extraction. For this reason we introduce in
Section 2.3.3 the main datasets for all three modalities. These are characterized based on

the content of the labeled data, the capture conditions and participants distribution.

2.3.1 Parameterization of FEs

Descriptive coding schemes focus on what the face can do. The most well known
examples of such systems are Facial Action Coding System (FACS) and Face Animation
Paramters (FAP). Perhaps the most influential, FACS (1978; 2002) secks to describe nearly
all possible FEs in terms of anatomically-based facial actions [53, 56]. The FEs are coded
in Action Units (AU), which define the contraction of one or more facial muscles (see
Figure 2.4). FACS also provides the rules for visual detection of AUs and their temporal
segments (onset, apex, offset, ordinal intensity). For relating FEs to emotions, Ekman
and Friesen later developed the EMFACS (Emotion FACS), which scores facial actions
relevant for particular emotion displays [66]. FAP is now part of the MPEG4 standard and
is used for synthesizing FE for animating virtual faces. Is is rarely used to parametrize
FEs for recognition purposes [161, 10]. Its coding scheme is based on the position of
key feature control points in a mesh model of the face. Maximally Discriminative Facial
Movement Coding System (MAX) [91], another descriptive system, is less granular and
less comprehensive. Brow raise in MAX, for instance, corresponds to two separate actions
in FACS. It is a truly sign-based approach as it makes no inferences about underlying
emotions.

Judgmental coding schemes, on the other hand, describe FEs in terms of the latent
emotions or affects that are believed to generate them. Because a single emotion or
affect may result in multiple expressions, there is no 1:1 correspondence between what
the face does and its emotion label. A hybrid approach is to define emotion labels in
terms of specific signs rather than latent emotions or affects. Examples are EMFACS and
AFFEX [92]. In each, expressions related to each emotion are defined descriptively. As
an example, enjoyment may be defined by an expression displaying an oblique lip-corner
pull co-occurring with cheek raise. Hybrid systems are similar to judgment-based systems
in that there is an assumed 1:1 correspondence between emotion labels and signs that

describe them. For this reason, we group hybrid approaches with judgment-based systems.
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Figure 2.4: Examples of lower and upper face AUs in FACS. Reprinted from [8].

2.3.2 Recognition of FEs

An AFER system consists of four steps: face detection, face registration, feature extraction
and expression recognition. As it is out of scope for this thesis, we will not consider the

first two steps in detail. We focus instead on feature extraction and expression recognition.

2.3.2.1 Feature extraction

Extracted features can be divided into predesigned and learned. Predesigned features are
hand-crafted to extract relevant information. Learned features are automatically learned
from the training data. This is the case of deep learning approaches, which jointly learn
the feature extraction and classficiation/regression weights. These categories are further
divided into global and local, where global features extract information from the whole
facial region, and local ones from specific regions of interest, usually corresponding to AUs.
Features can also be split into static and dynamic, with static features describing a single
frame or image and dynamic ones including temporal information.

Predesigned features can also be divided into appearance and geometrical. Appear-
ance features use the intensity information of the image, while geometrical ones measure
distances, deformations, curvatures and other geometric properties. This is not the case of
learned features, for which the nature of the extracted information is usually unknown.

Geometric features describe faces through distances and shapes. These cannot be
extracted from thermal data, since dull facial features difficult the precise localization of
landmarks. Global geometric features, for both RGB and 3D modalities, usually describe
the face deformation based on the location of specific fiducial points. For RGB, [160]
uses the distance between fiducial points. The deformation parameters of a mesh model
are used in [187, 109]. Similarly, for 3D data [205] use the distance between pairs of 3D
landmarks, while [151] uses the deformation parameters of an EDM. Manifolds are used in
[28] to describe the shape deformation of a fitted 3D mesh separately at each frame of a
video sequence through Lipschitz embedding.

The use of 3D data allows generating 2D representations of facial geometry such as
depth maps [17, 214]. In [180] Local Binary Patterns (LBP) are computed over different

2D representations, extracting histograms from them. Similarly, [81] uses SVD to extract
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the 4 principal components from LBP histograms. In [242], the geometry is described
through the Conformal Factor Image (CFI) and Mean Curvature Image (MCI). [117]
captures the mean curvatures at each location with Differential Mean Curvature Maps
(DMCM), using HOG histograms to describe the resulting map.

In the dynamic case the goal is to describe how the face geometry changes over time.
For RGB data, facial motions are estimated from color or intensity information, usually
through Optical flow [229]. Other descriptors such as Motion History Images (MHI) and
Free-Form Deformations (FFDs) are also used [107]. In the 3D case, much denser geometric
data facilitates a global description of the facial motions. This is done either through
deformation descriptors or motion vectors. [114] extracts and segments level curvatures,
describing the deformation of each segment. FFDs are used in [179] to register the motion
between contiguous frames, extracting features through a quad-tree decomposition. Flow
images are extracted from contiguous frame pairs in [61], stacking and describing them
with LBP-TOP.

In the case of local geometric feature extraction, deformations or motions in localized
regions of the face are described. Because these regions are localized, it is difficult to
geometrically describe their deformations in the RGB case (being restricted by the precision
of the face registration step). As such, most techniques are dynamic for RGB data. In
the case of 3D data, where much denser geometric information is available, the opposite
happens.

In the static case, some 3D approaches describe the curvature at specific facial regions,
either using primitives [222] or closed curves [139]. Others describe local deformations
through SIFT descriptors [17] extracted from the depth map or HOG histograms extracted
from DMCM feature maps [117]. In [76] the Basic Facial Shape Components (BFSC) of
the neutral face are estimated from the expressive one, subtracting the expressive and
neutral face depth maps at rectangular regions around the eyes and mouth.

Most dynamic descriptors in the geometric, local case have been developed for the RGB
modality. These are either based on landmark displacements, coded with Motion Units
[32, 31], or the deformation of certain facial components such as the mouth, eyebrows and
eyes, coded with FAP [161, 10]. One exception is the work in [233] over 3D data, where
an EDM locates a set of landmarks and a motion vector is extracted from each landmark
and pair of frames.

Although geometrical features are effective for describing FEs, they fail to detect
subtler characteristics like wrinkles, furrows or skin texture changes. Appearance features
are more stable to noise, allowing for the detection of a more complete set of FEs, being
particularly important for detecting microexpressions. These feature extraction techniques
are applicable to both RGB and thermal modalities, but not to 3D data, which does not

convey appearance information.
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Global appearance features are based on standard feature descriptors extracted on the
whole facial region. For RGB data, usually these descriptors are applied either over the
whole facial patch or at each cell of a grid. Some examples include Gabor filters [122, 123],
LBP [190, 184], Pyramids of Histograms of Gradients (PHOG) [198, 40|, Multi-Scale Dense
SIFT (MSDF) [198] and Local Phase Quantization (LPQ) [40]. In [138] a grid is deformed
to match the face geometry, afterwards applying Gabor filters at each vertex. In [80] the
facial region is divided by a grid, applying a bank of Gabor filters at each cell and radially
encoding the mean intensity of each feature map. An approach called Graph-Preserving
Sparse Non-negative Matriz Factorization (GSNMF) [254] finds the closest match to a set
of base images and assigns its associated primary emotion. This approach is improved in
[238], where Projected Gradient Kernel Non-negative Matriz Factorization (PGKNMF) is
proposed.

In the case of thermal images, the dullness of the image makes it difficult to exploit
the facial geometry. This means that, in the global case, the whole facial patch is used.
The descriptors exploit the difference of temperature between regions. One of the first
works [236] generated a series of Binary Differential Images (BDI), extracting the ratio of
positive area divided by the mean ratio over the training samples. 2D Discrete Cosine
Transform (2D-DCT) is used in [106, 237] to decompose the frontalized face into cosine
waves, from which an heuristic approach extracts features.

Dynamic global appearance descriptors are extensions to 3 dimensions of the already
explained static global descriptors. For instance, Local Binary Pattern histograms from
Three Orthogonal Planes (LBP-TOP) are used for RGB data [248]. LBP-TOP is an
extension of LBP computed over three orthogonal planes at each bin of a 3D volume
formed by stacking the frames. [198] uses a combination of LBP-TOP and Local Phase
Quantization from Three Orthogonal Planes (LPQ-TOP), a descriptor similar to LBP-
TOP but more robust to blur. LPQ-TOP is also used in [82], along with Local Gabor
Binary Patterns from Three Orthogonal Planes (LGBP-TOP). In [129], a combination of
HOG, SIFT and CNN are extracted at each frame. The first two are extracted from an
overlapping grid, while the CNN extracts features from the whole facial patch. These are
evaluated independently over time and embedded into Riemannian manifolds. For thermal
images, [132] uses a combination of Temperature Difference Histogram Features (TDHFs)
and Thermal Statistic features (StaFs). TDHFs consist of histograms extracted over the
difference of thermal images. StaF's are a series of 5 basic statistical measures extracted
from the same difference images.

Local appearance features are not used as frequently as global ones, since it requires
previous knowledge to determine the regions of interest. In spite of that, some works use
them for both RGB and thermal modalities. In the case of static features, [70] describes

the appearance of grayscale frames by spreading an array of cells across the mouth and
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extracting the mean intensity from each. For thermal images, [207] generates eigenimages
from each region of interest and uses the principal component values as features. In
[84] Gray Level Co-occurrence Mazrices (GLCMs) are extracted from the interest regions
and second-order statistics computed on them. GLCM encode texture information by
representing the occurrence frequencies of pairs of pixel intensities at a given distance. As
such, these are also applicable to the RGB case. In [224] a combination of StaFs, 2D-DCT
and GLCM features is used, extracting both local and global information.

Few works consider dynamic local appearance features. The only one to our knowledge
[130] describes thermal sequences by processing them with SIF'T flow and chunking them
into clips. Contiguous clip frames are wrapped and subtracted, spatially dividing the clip
with a grid. The resulting cuboids with higher inter-frame variability for either radiance
or flow are selected, extracting a Bag of Words histogram (BoW Hist.) from each.

Based on the observation that some AU are better detected using geometrical features
and others using appearance ones, it was suggested that a combination of both might
increase recognition performance [206, 158, 107]. Feature extraction methods combining
geometry and appearance are more common for RGB, but it is also possible to combine
RGB and 3D. Because 3D data is highly discriminative and robust to problems such as
shadows and illumination changes, the benefits of combining it with RGB data are small.
Nevertheless, some works have done so [164, 251, 252]. It should also be possible to extract
features combining 3D and thermal information, but to the best of our knowledge it has
not been attempted.

In the static case, [206] uses a combination of Multi-state models and edge detection to
detect 18 different AUs on the upper and lower parts of the face in grayscale images. [35)]
uses both global geometry features and local appearance features, combining landmark
distances and angles with HOG histograms centered at the barycenter of triangles specified
by three landmarks. Other approaches use deformable models such as 3DMM [164] to
combine 3D and intensity information. In [251, 252] SFAM describes the deformation of a
set of distance-based, patch-based and grayscale appearance features encoded using LBP.

When analysing dynamic information, [35] uses RGB data to combine the landmark
displacements between two frames with the change in intensity of pixels located at the
barycenter defined by three landmarks.

Learned features are usually trained through a joint feature learning and classification
pipeline. As such, these methods are explained in Section 2.3.2.2 along with learning.
The resulting features usually cannot be classified as local or global. For instance, in the
case of CNNs, multiple convolution and pooling layers may lead to higher-level features
comprising the whole face, or to a pool of local features. This may happen implicitly, due
to the complexity of the problem, or by design, due to the topology of the network. In

other cases, this locality may be hand-crafted by restricting the input data. For instance,
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Figure 2.5: General execution pipeline for the different modality fusion approaches.
The tensor product symbols represent the modality fusion strategy. Approach-specific
components of the pipeline are represented with different line types: dotted corresponds
to early fusion, dashed to late fusion, dashed-dotted to direct data fusion and gray to
sequential fusion.

the method in [131], selects interest regions and describes each one with a Deep Belief
Network (DBN). Each DBN is jointly trained with a weak classifier in a boosted approach.

2.3.2.2 FE classification and regression

FE recognition techniques are grouped into categorical and continuous depending on the
target expressions [142]. In the categorical case there is a predefined set of expressions.
Commonly for each one a classifier is trained, although other ensemble strategies could
be applied. Some works detect the six primary expressions [122, 109, 187], while others
detect expressions of pain, drowsiness and emotional attachment [11, 125, 136], or indices
of psychiatric disorder [33, 108].

In the continuous case, FEs are represented as points in a continuous multidimensional
space [243]. The advantages of this second approach are the ability to represent subtly
different expressions, mixtures of primary expressions, and the ability to unsupervisedly
define the expressions through clustering. Many continuous models are based on the
activation-evaluation space. In [26], a Recurrent Neural Network (RNN) is trained to
predict the real-valued position of an expression inside that space. In [154] the feature space
is scaled according to the correlation between features and target dimensions, clustering
the data and performing Kernel regression. In other cases like [64], which uses a RNN for
classification, each quadrant is considered as a class, along with a fifth neutral target.

Expression recognition methods can also be grouped into static and dynamic. Static
models evaluate each frame independently, using classification techniques such as Bayesian
Network Classifiers (BNC) [32, 31, 187], Neural Networks (NN) [236, 206], Support Vector
Machines (SVM) [122, 109, 17, 117, 207], SVM committees [84] and Random Forests
(RF) [35]. In [80] k-Nearest Neighbors (kNN) is used to separately classify local patches,
performing a dimensionality reduction of the outputs through PCA and LDA and classifying
the resulting feature vector.

More recently, deep learning architectures have been used to jointly perform feature

extraction and recognition. These approaches often use pre-training [86], an unsupervised
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layer-wise training step that allows for much larger, unlabeled datasets to be used. CNNs
are used in [165, 167, 128, 100, 195]. [126] proposes AU-aware Deep Networks (AUDN),
where a common convolutional plus pooling step extracts an over-complete representation of
expression features, from which receptive fields map the relevant features for each expression.
Each receptive field is fed to a DBN to obtain a non-linear feature representation, using
an SVM to detect each expression independently. In [131] a two-step iterative process is
used to train Boosted Deep Belief Networks (BDBN) where eacn DBN learns a non-linear
feature from a face patch, jointly performing feature learning, selection and classifier
training. [83] uses a Deep Boltzmann Machine (DBM) to detect FEs from thermal images.
Regarding 3D data, [87] transforms the facial depth map into a gradient orientation map
and performs classification using a CNN.

Dynamic models take into account features extracted independently from each frame
to model the evolution of the expression over time. Dynamic Bayesian Networks such
as Hidden Markov Models (HMM) [32, 10, 107, 114, 179, 230, 161] and Variable-State
Latent Conditional Random Fields (VSL-CRF) [216] are used. Other techniques use RNN
architectures such as Long Short Term Memory (LSTM) networks [229]. In other cases
[209, 208], hand-crafted rules are used to evaluate the current frame expression against a
reference frame. In [35] the transition probabilities between FEs given two frames are first
evaluated with RF. The average of the transition probabilities from previous frames to the
current one, and the probability for each expression given the individual frame are averaged
to predict the final expression. Other approaches classify each frame independently (eg.
with SVM classifiers [70]), using the prediction averages to determine the final FE.

In [187, 61] an intermediate approach is proposed where motion features between
contiguous frames are extracted from interest regions, afterwards using static classification
techniques. [129] encodes statistical information of frame-level features into Riemannian
manifolds, and evaluates three approaches to classify the FEs: SVM, Logistic regression
(LR) and Partial Least Squares (PLS).

More redently, dynamic, continuous models have also been considered. Deep Bidirec-
tional Long Short-Term Memory Recurrent Neural Networks (DBLSTM-RNN) are used in
[82]. While [182] uses static methods to make the initial affect pedictions at each time
step, it uses particle filters to make the final prediction. This both reduces noise and

performs modality fusion.

2.3.3 FE datasets

We group datasets’ properties in three main categories, focusing on content, capture
modality and participants. In the content category we refer to the type of content and
labels the datasets provide. We signal intentionality of the FEs (posed or spontaneous), the

labels (primary expressions, AUs or others where is the case) and if datasets contain still
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Figure 2.6: Historical evolution of AFER.

images or video sequences (static/dynamic). In the capture category we group datasets
by the context in which data was captured (lab or non-lab) and diversity in perspective,
illumination and occlusions. The last section compiles statistical data about participants,
including age, gender and ethnic diversity. In Tables 2.1 and 2.2 the reader can refer to a
complete list of RGB, 3D and Thermal datasets and their characteristics.

RGB. One of the first important datasets made public was the Cohn-Kanade (CK)
[102], later extended into what was called the CK+ [135]. The first version is relatively
small, consisting of posed primary FEs. It has limited gender, age and ethnic diversity
and contains only frontal views with homogeneous illumination. In CK+, the number of
posed samples was increased by 22% and spontaneous expressions were added. The MMI
dataset was a major improvement [160]. It adds profile views of not only the primary
expressions but most of the AU of the FACS system. It also introduced temporal labeling
of onset, apex and offset. Multi-PIE [163] increases the variability by including a very large
number of views at different angles and diverse illumination conditions. GEMEP-FERA
is a subset of the emotion portrayal dataset GEMEP, specially annotated using FACS.
CASME [232] is an example of a dataset containing microexpressions. A limitation of
most RGB datasets is the lack of intensity labels. It is not the case of the DISFA dataset
[145]. Participants were recorded while watching a video specially chosen for inducing
emotional states and 12 AUs were coded for each video frame on a 0 (not present) to 5
(maximum intensity) scale[145].

While previous RGB datasets record FEs in controlled lab environments, Acted Facial
Expressions In The Wild Database (AFEW) [41], Affectiva-MIT Facial Expression Dataset
(AMFED) [146] and SEMAINE [148] contain faces in naturalistic environments. AFEW
has 957 videos extracted from movies, labeled with six primary expressions and additional
information about pose, age, and gender of multiple persons in a frame. AMFED contains
spontaneous FEs recorded in natural settings over the Internet. Metadata consists of
frame by frame AU labelling and self reporting of affective states. SEMAINE contains
primitive FEs, FACS annotations, labels of cognitive states, laughs, nods and shakes
during interactions with artificial agents.

3D. The most well known 3D datasets are BU-3DFE [234], Bosphorus [181] (still
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Table 2.1: A non-comprehensive list of RGB FE datasets.

RGB
CK+ | MPIE | JAFFE | MMI | RU_FACS | SEMAINE | CASME | DISFA | AFEW | SFEW AMFED

= | Intention(Posed/Spontaneous) P P P P S S S S S S S
2 Label(Primary /AU/DA) P/AU P P AU+T P/AU P/AU/DAY | P/AU [AU+I| P/ P PJ/AU/Smile
S | Temporality (Static/Dynamic) D S S D D D D D D S D
. | Environment(Lab/Non-lab) L L L L L L L L N N N
3 Multiple Perspective o . o . . o o o . . .
5‘ Multiple Illumination o . o . o o o o . . .

Occlusions o . o o . o o o . . o
R # of subjects 201 337 10 75 100 150 35 27 220 68 5268
§ Ethnic Diverse . . o . o o o . . . .
£ [ Gender(Male/Female(%)) 31/69 [ 70/30 100/0 50/50 - 62/38 37/63 44/56 - - 58/42
? Age 18-50 | p =279 - 19-62 18-30 22-60 pn=22 18-50 1-70 - -

o= Yes, o = No, - = Not enough information. DA: Dimensional Affect, I = Intensity labelling, T = Temporal segments.

Other labels include Laughs, Nods, Epistemic states(e.g. Certain, Agreeing, Interested etc.) etc. Refer to original paper
for details [148]. 2 Pose, Age, Gender. Refer to original paper for details [41].

Table 2.2: A non-comprehensive list of 3D and Thermal FE datasets.

3D RGB+Thermal
BU-3DFE | BU-4DFE | Bosphorus | BP4D | IRIS | NIST | NVIE | KTFE
2 | Intention(Posed /Spontancous) P P P S P P S/P S/P
H Label(Primary /AU) P+1 r P/AU AU P r P P
S [ Temporality (Static/Dynamic) S D S D S S D D
, | Environment(Lab/Non-lab) L L L L L L L L
E Multiple Perspective . . - . . . . .
g Multiple Illumination o o o o . . . .
Occlusions . o . o . . . .
. # of subjects 100 101 105 41 30 90 215 26
3 Ethnic Diverse . . o . . - o o
2 [ Gender(Male/Female(%)) 56/44 57/43 43/57 56/44 - - 27/73 | 38/62
? Age 18-70 18-45 25-35 18-29 - - 17-31 12-32
o= Yes, o = No, - = Not enough information, I = Intensity labelling.

images), BU-4DFE [235] (video) and BP4D [246] (video). In BU-3DFE, 6 expression from
100 different subjects are captured on four different intensity levels. Bosphorus has low
ethnic diversity but it contains a much larger number of expressions, different head poses
and deliberate occlusions. BU-4DFE is a high-resolution 3D dynamic FE dataset [235].
Video sequences, having 100 frames each, are captured from 101 subjects. It only contains
primary expressions. BU-3DFE, BU-4DFE and Bosphorus all contain posed expressions.
BP4D tries to address this issue with authentic emotion induction tasks [246]. Games,
film clips and a cold pressor test for pain elicitation were used to obtain spontaneous
FEs. Experienced FACS coders annotated the videos, which were double-checked by the
subject’s self-report, FACS analysis and human observer ratings [246].

Thermal. There are few thermal FE datasets, and all of them also include RGB
data. The first ones, IRIS [4] and NIST/Equinox [6], consist of image pairs labeled with
three posed primary emotions under various illuminations and head poses. Recently the
number of labeled FEs has increased, also including image sequences. The Natural Visible
and Infrared facial Expression database (NVIE) contains 215 subjects, each displaying six
expressions, both spontaneous and posed [223]. The spontaneous expressions are triggered
through audiovisual media, but not all of them are present for each subject. In the Kotan:
Thermal Facial Emotion (KTFE) dataset subjects display posed and spontaneous motions,

also triggered through audiovisual media [153].
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2.4 Historical evolution and current trends

2.4.1 Historical evolution

The first work on AFER was published in 1978 [199]. It was tracking the motion of
landmarks in an image sequence. Mostly because of poor face detection and face regis-
tration algorithms and limited computational power, the subject received little attention
throughout the next decade. The work of Mase and Pentland and Paul Ekman marked
a revival of this research topic at the beginning of the nineties [99, 54]. The interested
reader can refer to some influential surveys of these early works [177, 159, 62].

In 2000, the CK dataset was published marking the beginning of modern AFER [206].
While a large number of approaches aimed at detecting primary FEs or a limited set
of FACS AUs [32, 10, 109, 122], others focused on a larger set of AUs [206, 160, 107].
Most of these early works used geometric representations, like vectors for describing the
motion of the face [32], active contours for describing the shape of the mouth and eyebrows
[10], or deformable 2D mesh models [109]. Others focused on appearance representations
like Gabor filters [122], optical flow and LBPs [190] or combinations between the two
[206]. The publication of the BU-3DFE dataset [234] was a starting point for consistently
extending RGB FE recognition to 3D. While some of the methods require manual labelling
of fiducial vertices during training and testing [222, 196, 204], others are fully automatic
[117, 76, 214, 242]. Most use geometric representations of the 3D faces, like principal
directions of surface curvatures to obtain robustness to head rotations [222], and normalized
Euclidean distances between fiducial points in the 3D space [204]. Some encode global
deformations of facial surface (depth differences between a basic facial shape component
and an expressional shape component) [76] or local shape representations [180]. Most
of them target primary expressions [222] but studies about AUs were published as well
[183, 180].

In the first part of the decade static representations were the primary choice in both
RGB [206, 122], 3D [222, 221, 204, 76, 17, 117] and thermal [84]. In later years various
ways of dynamic representation were also explored like tracking geometrical deformations
across frames in RGB [109, 160] and 3D |28, 114] or directly extracting features from RGB
[107] and thermal frame sequences [153, 223].

Besides extended work on improving recognition of posed FEs and AUs, studies
on expressions in ever more complex contexts were published. Works on spontaneous
facial expression detection [137, 187, 211, 244], analysis of complex mental states [57],
detection of fatigue [96], frustration [103], pain [124, 11, 125], severity of depression [75]
and psychological distress [133] opened new territory in AFER research.

In summary, research in automatic AFER started at the end of the 1970’s, but for

more than a decade progress was slow mainly because of limitations of face detection and
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face registration algorithms and lack of sufficient computational power. From RGB static
representations of posed FEs, approaches advanced towards dynamic representations and
spontaneous expressions. In order to deal with challenges raised by large pose variations,
diversity in illumination conditions and detection of subtle facial behaviour, alternative
modalities like 3D and Thermal have been proposed. While most of the research focused
on primary FEs and AUs, analysis of pain, fatigue, frustration or cognitive states paved

the way to new applications in AFER.

In Figure 2.6 we present a timeline of the historical evolution of AFER. Next we will

focus on two important recent trends.

2.4.2 AFER for detecting non-primary affective states

Most of AFER was used for predicting primary affective states of basic emotions, such as
anger or happiness but FEs were also used for predicting non-primary affective states such
as complex mental states [57], fatigue [96], frustration [103], pain [124, 11, 125], depression
[75, 134], mood and personality traits [19, 178].

Approaches related to mood prediction from facial cues have pursued both descriptive
(e.g., FACS) and judgmental approaches to affect. In a paper from 2009, Cohn et
al. studied the difference between directly predicting depression from video by using
a global geometrical representation (AAM), indirectly predicting depression from video
by analyzing previously detected facial AUs and prediction depression from audio cues
[33]. They concluded that specific AUs have higher predictive power for depression than
others suggesting the advantage of using indirect representations for depression prediction.
The AVEC, a challenge, is dedicated to dimensional prediction of affect (valance, arousal,
dominance) and depression level prediction. The approaches dedicated to depression
prediction are mainly using direct representations from video without detecting primitive
FEs or AUs [228, 192, 189, 94]. They are based on local, dynamic representations of
appearance (LBP-TOP or variants) for modelling continuous classification problems.
Multimodality is central in such approaches either by applying early fusion [189] or late
fusion [94] with audio representations.

As humans rely heavily on facial cues to make judgments about others, it was assumed
that personality could be inferred from FEs as well. Usually studies about personality
are based on the BigFive personality trait model which is organized along five factors:
openness, conscientiousness, extraversion, agreeableness, and neuroticism. While there are
works on detecting personality and mood from FEs only [19, 178] the dominant approach is
to use multimodality either by combining acoustic with visual cues [19, 20] or physiological
with visual cues [9]. Visual cues can refer to eye gaze [15, 18], frowning, head orientation,

mouth fidgeting [15], primary FEs [19, 178] or characteristics of primary FEs like presence,
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frequency or duration [19]. In [19], Biel et al. use the detection of 6 primary FEs and of
smile to build various measures of expression duration or frequency. They show that using
FEs is achieving better results than more basic visual activity measures like gaze activity
and overall motion of the head and body; however performance is considerably worse than
when estimating personality from audio and especially from prosodic cues.

In summary, in recent years, the analysis of non-primary affective states mainly focused
on predicting depression. For predicting levels of depression, local, dynamic representations
of appearance were usually combined with acoustic representations [228, 192, 189, 94].
Studies of FEs for predicting personality traits had mixed conclusions until now. First, FEs
were proven to correlate better than visual activity with personality traits [33]. Practically
though, while many studies have showed improvements of prediction when combined
with physiological or acoustic cues, FEs remain marginal in the study of personality trait
prediction [19, 15, 20, 18].

2.4.3 AFER in naturalistic environments

Until recently AFER was mostly performed in controlled environments. The publication
of two important naturalistic datasets, AMFED and AFEW marked an increasing interest
in naturalistic environment analysis. AFEW, Acted Facial Fxpressions in the Wild dataset
contains a collection of sequences from movies labelled for primitive FEs, pose, age and
gender among others [41]. Additional data about context is extracted from subtitles for
persons with hearing impairment. AMFED on the other hand, contains videos recording
reactions to media content over the Internet. It mostly focuses on boosting research about
how attitude to online media consumption can be predicted from facial reactions. Labels
of AUs, primitive FEs, smiles, head movements and self reports about familiarity, liking
and disposal to rewatch the content are provided.

FEs in naturalistic environments are unposed and typically of low to moderate intensity
and may have multiple apexes (peaks in intensity). Large head pose and illumination
diversity are common. Face detection and alignment is highly challenging in this context,
but vital for eliminating rigid motion and head pose from facial expressions. Not sur-
prisingly, in an analysis of errors in AU detection in three-person social interactions, [74]
found that head yaw greater than 20 degrees was a prime source of error. Pixel intensity
and skin color, by contrast, were relatively benign.

While approaches to FE detection in naturalistic environments using static representa-
tions exist [71, 42], dynamic representations are dominant [129, 193, 128, 216, 127, 100].
This follows the tendency in spontaneous FE recognition in controlled environments where
dynamic representations improve the ability to distinguish between subtle expressions. In
[128], spatio-temporal manifolds of low level features are modelled, [193] uses a maximum

of a BoW (Bag of Words) pyramid over the whole sequence, [100] captures spatio-temporal

26



information through autoencoders and [216] uses CRF's to model expression dynamics.

Some of the approaches use predesigned representations [71, 193, 42, 127, 43] while
recent successful approaches learn the best representation [131, 100, 128] or combine
predesigned and learned features [129]. Because of the need to detect subtle changes in
the facial configuration, predesigned representations use appearance features extracted
either globally or locally. Gehrig et al. in their analysis of the challenges of naturalistic
environments use DCT, LBP and Gabor Filters [71], Sikka et al. use dense multi-scale
SIFT BoWs, LPQ-TOP, HOG, PHOG and GIST to get additional information about
context [193], Dhall et al. use LBP, HOG and PHOG in their baseline for the SFEW
dataset (static images extracted from AFEW) [42] and LBP-TOP in their baseline for the
EmotiW 2014 challenge [43], and Liu et al. use convolution filters for producing mid-level
features [128].

Some representative approaches using learned representation were recently proposed
[131, 100, 128, 129]. In [131], a BDBN framework for learning and selecting features
is proposed. It is best suited for characterizing expression-related facial changes. [100]
proposes a configuration obtained by late fusing spatio-temporal activity recognition
with audio cues, a dictionary of features extracted from the mouth region and a deep
neural network for FEs recognition. In [129], predesigned (HOG, SIFT) and learned (deep
CNN features) representations are combined and different image set models are used
to represent the video sequences on a Riemannian manifold. In the end, late fusion of
classifiers based on different kernel methods (SVM, Logistic Regression, Partial Least
Squares) and different modalities (audio and video) is conducted for final recognition
results. Finally, [216] encodes dynamics with a Variable-State Latent Conditional Random
Fields (VSL-CRF) model that automatically selects the optimal latent states and their
intensity for each sequence and target class.

Most approaches presented target primitive FEs. Methods for recognizing other affective
states have also been proposed, namely cognitive states like boredom, confusion, delight,
concentration and frustration [22], positive and negative affect from groups of people
[44] or liking /not-linking of online media for predicting buying behaviour for marketing
purposes [147].

In summary, large head pose rotations and illumination changes make FE recognition
in naturalistic environments particularly challenging. FEs are by definition spontaneous,
usually have low intensity, can have multiple apexes and can be difficult to distinguish from
facial displays of speech. Even more, multiple persons can express FEs simultaneously.
Because of the subtleness of facial configurations most predesigned representations are
dynamically extracting the appearance [71, 193, 127, 43]. Recently successful methods
learn representations [131, 100, 128, 129] from sequences of frames. Most approaches target

primitive FEs of affect, but others recognize cognitive states [22], postive and negative
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affect from groups of people [44] and liking/not-linking of online media for predicting
buying behaviour for marketing purposes [147].

2.5 Conclusion

By looking at faces humans extract information about each other, such as age, gender, race,
and how others feel and think. Building automatic AFER systems would have tremendous
benefits. Despite significant advances, automatic AFER still faces many challenges like
large head pose variations, changing illumination contexts and the distinction between
facial display of affect and facial display caused by speech. Finally, even when one manages
to build systems that can robustly recognize FEs in naturalistic environments, it still
remains difficult to interpret their meaning. In this chapter we have focused in providing a
general introduction into the broad field of AFER. We have started by discussing how affect
can be inferred from FEs and its applications. An in-depth discussion about each step in
a AFER pipeline followed, including a comprehensive taxonomy and many examples of
techniques used on data captured with different video sensors (RGB, 3D, Thermal). Then,
we have presented important recent evolutions in recognition of non-primary affective
states and analysis of FEs in naturalistic environments. In the next chapter we will focus
on improving facial action unit recognition by proposing a novel deep neural network

architecture.
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Chapter 3

Learning Facial Action Units with
the Deep Structure Inference
Network

Facial expressions are combinations of basic components called Action Units (AU). Rec-
ognizing AUs is key for general facial expression analysis. Recently, efforts in automatic
AU recognition have been dedicated to learning combinations of local features and to
exploiting correlations between AUs. We propose a deep neural architecture that tackles
both problems by combining learned local and global features in its initial stages and
replicating a message passing algorithm between classes similar to a graphical model
inference approach in later stages. We show that by training the model end-to-end with
increased supervision we improve state-of-the-art by 5.3% and 8.2% performance on BP4D

and DISFA datasets, respectively.

3.1 Introduction

Facial expressions (FE) are important cues for recognizing non-verbal behaviour. The
ability to automatically mine human intentions, attitudes or experiences has many appli-
cations like building socially aware systems [212, 39], improving e-learning [103], adapting
game status according to player’s emotions [13], and detecting deception during police
interrogations [112].

The Facial Action Unit System (FACS) [55] is a descriptive coding scheme of FEs that
focuses on what the face can do without assuming any cognitive or emotional value. Its
basic components are called Action Units (AU) and they combine to form a complete
representation of FEs. The reader can refer to Sec. 2.3.1 for a detailed introduction to
these concepts.

AUs are patterns of muscular activation and the way they modify facial morphology

29



Neutral Neutral

Neutral Neutral

Figure 3.1: Patch and structure learning are key problems in AU recognition. (a) By
masking a region an expressive face becomes indistinguishable from neutral. (b) Multiple,
correlated AUs can be active at the same time.

is localized (Fig. 3.1). While initial AU recognition methods (like JPML [249] and APL
[255]) were using shallow predefined representations, recent methods (like DRML [250],
ROI [119] and GL [60]) applied deep learning to learn richer local features that capture
facial morphology. Therefore one could predict specific AUs from informative face regions
selected depending on the facial geometry. For instance, contrary to non-adaptive methods
like DRML [250] and APL[255], ROI [119] and JPML [249] extract features around facial
landmarks which are more robust with respect to non-rigid shape changes. Patch learning
is challenging as the human face is highly articulated and different patches can contribute
to either specific or groups of AUs. Learning the best patch combination together with
learning specific features from each patch could be beneficial for AU recognition.

AU recognition is also multi-label. Several AUs can be active at the same time
and certain AU combinations are more probable than others (Fig. 3.1). AU prediction
performance could be improved by considering probabilistic dependencies. In deep learning
approaches, correlations can be addressed implicitly in the fully connected layers (e.g.
DRML [250], GL [60] and ROI [119]). However, structure is not learned explicitly and
inference and sparsity are implicit by design. JPML [249] treats the problem by including
pre-learned priors about AU correlations into their learning. Learning structured outputs
has also been studied by using Graphical Models [249, 217, 58]. However, these models
are not end-to-end trainable.

In this chapter, we claim that patch and the structure learning are key problems
in dealing with AU recognition. We propose a deep neural network that tackles those
problems in an integrated way through an incremental and end-to-end trainable approach.
First, the model learns local and holistic representations exhaustively from facial patches.
Then it captures structure between patches by predicting specific AUs. Finally, AU
correlations are captured by a structure inference network that replicates message passing
inference algorithms in a connectionist fashion. Tab. 3.1 compares some of the most

important features of the proposed method to the state-of-the-art (specifically JPML
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method LRL | AP | PL | SL | EE method LRL | AP | PL | SL
APL [255] X X | vV | x| X GL [60] X X | v | X
JPML249] | x | v | v | x| x | ROT[119] | v | ¥ | v | x
DRML [250] | v | v | x | x | v | DSIN (owrs) | v | v | v | ¢

t
SENENjE

Table 3.1: Features of our model and related work. LRL: local representation learning, AP:
adaptive patch, PL: patch learning, SL: structured learning, EE: end-to-end.

[249], APL [255], DRML[250], GL[60] and ROI[119]). We show that by separately treating
problems in different parts of the network and being able to optimize them jointly, we
improve state-of-the-art by 5.3% and 8.2% performance on BP4D and DISFA datasets,
respectively. Summarizing, our 2 main contributions are: 1) we propose a model that learns
representation, patch and output structure end-to-end, and 2) we introduce a structure
inference topology that replicates inference algorithm in probabilistic graphical models by
using a recurrent neural network.

This chapter is organized as follows. Sec. 3.2 presents related work. Sec. 3.3 details

the proposed model and Sec. 3.4 the results. Sec. 3.5 concludes the chapter.

3.2 Related Work

Related work is discussed in relation to patch learning or structure learning.

Patch Learning. Inspired by locally connected convolutional layers [202], Zhao et al.
[250] proposed a regional connected convolutional layer that learns specific convolutional
filters from sub-areas of the input. In [119], different CNNs are trained on different parts of
the face merging features in an early fusion fashion with fully connected layers. Zhao et al.
[249] performed patch selection and structure learning with shallow representations where
patches for each AU were selected by group sparsity learning. Jaiswal et al. [95] used
domain knowledge and facial geometry to pre-select a relevant image region for a particular
AU, passing it to a convolutional and bi-directional Long Short-Term Memory (LSTM)
neural network. Zhong et al. [255] proposed a multi-task sparse learning framework
for learning common and specific discriminative patches for different expressions. Patch
location was predefined and did not take into account facial geometry.

Structure Learning. Zhang et al. [245] proposed a multi-task approach to learn
a common kernel representation that describes AU correlations. Elefteriadis et al. [58]
adopted a latent variable Conditional Random Field (CRF) to jointly detect multiple AUs
from predesigned features. While existing methods capture local pairwise AU dependencies,
Wang et al. [226] proposed a restricted Boltzmann machine that captures higher-order AU
interactions. Together with patch-learning, Zhao et al. [249] used positive and negative
competitions among AUs to model a discriminative multi-label classifier. Walecki et al.

[217] placed a CRF on top of deep representations learned by a CNN. Both components are
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trained iteratively to estimate AU intensity. Wu et al. [231] used a Restricted Boltzman
Machine that captures joint probabilities between facial landmark locations and AUs.
More recently, Benitez et al. [60] proposed a loss combining the recognition of isolated

and groups of AUs.

3.3 Method

Let D = {X,Y} be a set of pairs of input images X = {xy,...,x)/} and output AU labels
Y = {yi,...,ynm} with M number of instances. Each image x; is composed of P patches
{I,...,Ip} and output label y; is a set of N AUs {1, ..., yn} taking a binary value {0, 1}.
Several AU classes can be active for an observation as a multi-label problem. Predicting
such output is challenging as a softmax function can not be applied on the set of outputs
contrary to the standard mono-label /multi-class problems. In addition, using independent
AU activation functions in losses like cross-entropy, ignores AU correlations. Including the
ability to learn structure in the model design is thus relevant.

Two main ways of solving multi-label learning in AU recognition are either capturing
correlations through fully-connected layers [250, 60, 119] or inferring structure through
probabilistic graphical models (PGM) [249, 217, 58]. While the former can capture
correlations between classes, this is not done explicitly. On the other hand, PGMs offer an
explicit solution and their optimization is well studied. Unfortunately, placing classical
PGMs on top of neural network predictions considerably lowers the capacity of the model
to learn high order relationships since it is not end-to-end trainable. One solution is to
replicate graphical model inference in a conectionist fashion which would make possible
joint optimization. Jointly training CNNs and CRFs has been previously studied in
different problems [253, 30, 38]. Following this trend, in this work we formulate AU
recognition by a graphical model and implement it by neural networks, more specifically
CNNs and recurrent neural network (RNN). This way, AU predictions from local regions
along AU correlations are learned end-to-end.

Let G = (V, £) denote a graph with vertices V = y specifying AUs and edges € CV xV
indicating the relationships between AUs. Given the Gibbs distribution we compute

conditional probability P(y|x,©) as:

1
P(y[x,0) = 7——gre "W

—(y, x.0) , (3.1)

where © are model parameters, Z is a normalization function and F is an energy function.

The model can be updated by introducing latent variables p as:

P(yx,0) =Y P(y,p[x,0), (3.2)
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where p is given as the output of CNN. The vertices and edges in the graph G can be
updated as V =yUp and £ = &, U E,, UE,. Although edges £, can be defined by a prior
knowledge taken from a given dataset, we use a fully connected graph independent to the
dataset and assign a mutual gating strategy to control information passing through edges
(more details in Sec. 3.3.3). We define &,, as edges between p and y, and use a selective
strategy to define edges in this set. Finally, edges &, is an empty set, since in our model
an independent CNN is trained on each image patch I; and we do not assign any edge

among p. Given this assumption, probability distribution P(y, p|x, ©) is given by:
P(y,plx,0) = P(y|p,x,0) [ [ P(p:[x.©). (3.3)
k

As in CRF, energy function E(.) is computed by unary and pairwise terms as:

E(y,p,%,0) =Y ¢pprx.m)+ Y Upinrmd) + Y Yyiyiw),  (34)
k (4,k) EEpy (4,5)€Ey

where ¢(.) is a unary term, 1,(.) are pairwise terms and © = 7 U ¢ Uw. Fig. 3.2 presents
our Deep Structure Inference Network (DSIN). It consists of three components each
designed to solve a term in Eq. 3.4. We refer to the initial part as Patch Prediction (PP),
whose purpose is to exhaustively learn deep local representations from facial patches and
produce local predictions. Then, the Fusion (F) module performs patch learning per AU.
The final stage, Structure Inference (SI), refines AU prediction by capturing relationships
between AUs. The DSIN is end-to-end trainable and CNN features can be trained based

on gradients back-propagated from structure inference in a multi-task learning fashion.

3.3.1 Patch Prediction

Given image patches x, unary terms ¢,(p,x, 7) provide AUs confidences for each patch

which are defined as the log probability:

©p(p,x, m) = log P(p|x, 7). (3.5)

Probability P(p|x, ) is modeled by independent patch prediction functions {II;(; m;) },,
where [; is input image patch and 7; are function parameters. Each II; is a CNN computing
N AUs probabilities through sigmoid function at last layer. P independent predictions
are provided at this stage, each being a vector of AU predictions. Although image patches
may overlap, we assume independence to let each network be expert at predicting AUs on
local regions. By learning independent global representations and local representations,
we can better capture facial morphology and address AU locality.

In Fig. 3.3(a) we detail the topology of the CNNs used for learning the patch prediction

functions. Many complex topologies have been proposed in recent years and searching for
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Figure 3.2: Deep Structure Inference Network (DSIN) learns independent AU predictions from
global and local learned features. It refines each AU prediction by taking into account correlation
to the other AUs. Each input image is cropped into a set of patches {Ii}f;l which is used for
training an independent CNN for producing a probability vector p; for N AUs (¢, in Eq. 3.4).
From s; (the patch predictions for a specific AU) we learn a combination for producing a single
AU prediction f; (simplified v, in Eq. 3.4). Final predictions y; are computed by inferring
structure among AUs through iterative message passing similar to inference in a probabilistic
graph model (¢, in Eq. 3.4).

the best is out of the scope of this work. The chosen topology, a shallow network, follows
the intuition behind well known models like VGG [194].

3.3.2 Fusion

Computational complexity to marginalize pairwise relationships in &, is high. In our
formulation, we simplify edges such that &,, becomes directed from nodes in p to nodes
in y. It means we omit mutual relationships among p and y. Therefore, nodes in y are
conditioned on the nodes in p. However, we want each AU node in y to be conditioned on
the same AU nodes in p from different patches. It means different patches can provide
complementary information to predict target AU independent to other AUs. Finally,
Uy (¥, P, @) is defined as the log probability of P(y|p,¢) which is modeled by a set of
independent functions, so called fusion functions {®;(s;; gbj)}éy:l, where s; C p corresponds
to the set of j-th AU predictions from all patches and ¢, is function parameters. We
simply model each function ®; with 2 fully connected layers with 64 hidden units, each
followed by a sigmoid layer, as shown in Fig. 3.3(b). We found 64 hidden units works well
in practice while higher dimensionality does not bring any additional performance and

quickly starts over-fitting. The output of each ®; is the predicted probability f; for j-th
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Figure 3.3: (a) Topology of patch prediction CNNs. Each convolutional block has stride 2 and
batch normalization. Number of filters followed by the size of the kernel are marked. The last
layers are fully-connected (FC) layers marked with the number of neurons. All neurons use ReLU
activations. (b) Each fusion unit is a stack of 2 FC layers. (c) A structure inference unit. For

better visualization, we just show the interface of the unit without the inner topology. See details
in Sec. 3.3.3

AU.

3.3.3 Structure Inference

Up to now, we computed individual AU probabilities in a feed-forward neural network
without taking AU relationships explicitly into account. The goal is to model pairwise
terms 1, such that the whole process is end-to-end trainable in a compact way. Belief
propagation and message passing between nodes is one of the well known algorithms for
PGM inference. Inspired by [38], which proposes a connectionist implementation for action
recognition, we build a Structure Inference (SI) module in the final part of DSIN.

The SI updates each AU prediction in an iterative manner by taking into account
information from other AUs. The intuition behind this is that by passing information
between predictions in an explicit way, we can capture AU correlations and improve
predictions. The structure inference module is a collection of interconnected recurrent
structure interference units (SIU) (see Fig. 3.3(c)). For each AU there is a dedicated SIU.

We denote the computations done by SIU by a function 2. Let {Qj}év:l be the set of SIU
functions Q; : RN*2 — R? where:

) IR 1 i1
g5,mf = Q(f;,miThmy L miG g w)). (3.6)

At each iteration ¢, {2; takes as input the initial prediction f; for its class, a set of incoming
messages {m;’l};v:l from the SIUs corresponding to the other classes and its own previous
prediction yj;-_l. Each function 2; has two inline units: producing j-th AU prediction
g% and message m/; for next time step. In this way, predictions are improved iteratively
by receiving information from other nodes. Computationally, we replicate this iterative
message passing mechanism in the collection of SIUs with a recurrent neural network that

shares function parameters €2; across all time steps. We show a SIU unit in Fig. 3.3(c).
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A message unit basically corresponds to the distribution of the AU node. A message
unit from a SIU is a parametrized function of the previous messages, the initial fused

prediction and the previous prediction of the same SIU:

mf = o (W' [wm{™omiGh, f 007 + 67 (3.7)
where ¢(.) is the sigmoid function, y(.) is the mean function, wi* € R® and ;" € R are
message function parameters. Messages between two nodes at each time step have a
mutual relationship which can be controlled by a gating strategy. Therefore, a set of

correction factors are computed as:

X; =0 (OJ;] [M(mtp -'-amg\f)vfhg;_l} + 5;7) ) (38)

where wf € R® and 3] € R are gating function parameters. Then, a message m/_,; that is

passed from AU node ¢ to 7 will be updated by the mutual factors of the gate between

nodes 7 and j as:

5 = p(XG, X5)mij- (3.9)

Finally, updated messages coming to the j-th node along with initial estimation f; are

used to produce output prediction g} as:

;= o (w] [u(my, ... my), f;] +57) (3.10)
where w? € R* and Y € R are prediction function parameters. By doing this, we are
able to combine representation learning in function II, patch learning in function ® and
structure inference in the €2 in a single end-to-end trainable model. We introduce our

training strategy in Sec. 3.4.1.

3.4 Experimental Analysis

In the following, we describe experimental settings and results.

3.4.1 Experimental Setting

Data. We used BP4D [247] and DISFA [144] datasets. BP4D contains 2D and 3D videos
of 41 young adults. It has 328 videos (8 videos for 41 participants) with 12 coded AUs,
resulting in about 140k valid face images [247]. DISFA contains 27 adults (12 women and
15 men) with ages between 18 to 50 years and relative ethnic diversity. The data corpus
consists of approximately 130k frames in total. AU intensity is coded for each video frame

on a 0 (not present) to 5 (maximum intensity) ordinal scale. For our purpose we consider
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Figure 3.4: Each input image is aligned and cropped into 5 patches.

all labels with intensity greater than 3 as active and the rest as non-active. Both datasets
are widely used in most recent AU recognition works.

Preprocessing. For each image, facial geometry is estimated using [104]. From all
neutral faces we compute 3 reference anchors as the mean of the eyes and the mouth
landmarks. Faces are resized to 224 x 224 x 3 and a rigid transformation is applied for
registering to the anchors, reducing variance to scale and rotation. We crop 5 patches
of size 56 x 56 x 3 around points defined by the detected landmarks (see Fig. 3.4). For
reducing redundancy we ignore corresponding, symmetrical patches like the left eye and
cheek.

Training. We incrementally train each part of DSIN before end-to-end model training.
During training we use supervision on the patch prediction p, the fusion f and the structure
inference outputs §. On p we use a weighted Ls loss denoted by Ly (p,y). The weights
are inversely proportional to the ratio of positives in the total number of observations for
each AU class in training. The weighting gives more importance to the minority classes
in each training batch which ensures a more equal gradient update across classes and
overall better performance. On the fusion and structure inference outputs we apply a
binary cross-entropy loss (denoted by Le(f,y) and Lo(7,y)). For the structure inference
we include a regularization on the correction factors (denoted by x in Eq. 3.8 and Eq.
3.9) to force sparsity in the message passing. Details of the training procedure are shown
in Alg. 1. We use an Adam optimizer with learning rate of 0.001 and mini-batch size 64
with early stopping. Experimentally, we found the individual loss contributions w; = 0.25,
we = 0.25 and w3 = 0.5 to work well in training. For both datasets we perform a subject
exclusive 3-fold cross-validation. Similarly to [119], on DISFA we take the best CNNs
trained for patch prediction on the BP4D and retrained fully connected layers for the new
set of outputs. We fix the convolutional filters throughout the rest of the training.

Methods and metrics. We compare against CPM [241], APL [255], JPML [249],
DRML [250], and ROI [119] state-of-the-art alternatives. We evaluate F'1-frame score as
F1= 2%, where P = ﬁ, R = #, tp being true positives, fn false negatives and
fp false positives. All metrics are computed per AU and then averaged. Targeted AUs
shown in Fig. 6.1.
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Algorithm 1 Training procedure of DSIN.
Training data: {{I},,y}
Model parameters: patch prediction: {m;}Z, fusion {¢;}Y,, structure inference {w; }

N
i=1
Step 0: random initialization around 0: 7, ¢, w < N(0, %)

Step 1: train patch prediction: m; <— min, (L (IL;(1;m)),y), Vi € {1, ..., P}
Step 2: freeze patch prediction; train fusion: ¢ <— ming Lo (P (I1; ¢), y)
Step 3: train patch prediction and fusion jointly:

m, ¢ « ming o (Lu(IL(1; 7)), y) + Lo (2(I1; ¢), y))
Step 4: freeze patch prediction and fusion; train structure inference:

w < miny, Lo(Q(P;w),y)
Step 5. train all:
T, ¢, w = ming o, (w1 L (I(1; 7)), y) + waLe(P(1L; ¢), y) + w3 La(UP;w),y))
Output: optimized parameter: 7% ¢°Pt, Pt

3.4.2 Results

In the following, we explore the effect design decisions included in the DSIN followed by
comparison against state-of-the-art alternatives in Sec. 3.4.2.2 and qualitative examples in

Sec. 3.4.2.3.

3.4.2.1 Ablation Study.

We analyze DSIN design decisions in the following.

Class balancing. In both datasets, classes are strongly imbalanced. This can be
harmful during training. To alleviate this, we use a weighted loss on patch prediction
CNNs. Tab. 3.2 shows results with and without class balancing. This overall improves
performance, especially on poorly represented classes. On BP4D the classes with ratios of
positives in the total of samples lower than 30% are AUO1, AU02, AU04, AU17, AU24.
These are the classes that are improved the most. AUs like AUO7 or AU12 have positives
to total rations higher than 50%. Balancing can reduce performance on these classes.

Choice of prediction topology. In Tab. 3.2 we compare the proposed CNN for
patch prediction (PP(face)) against VGG-16. The VGG-16 model used was trained for
face recognition [162] and fine-tuned on our data for AU recognition. Our model shows
superior performance.

Targeting subsets of AUs. We explore the effect of the considered target set on the
overall prediction performance. In Tab. 3.2 we show prediction results from the right eye
and from the mouth patches when training either on the full set of targets ([method)]) or
on individual targets ([method]™®). When training on individual AUs the decision for the

classifier is simpler. On the other hand any correlation information between classes that
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method AUO01 | AUO2 | AUO4 | AU06 | AUO7 | AU10 | AU12 | AU14 | AU15 | AUL7 | AU23 | AU24 | avg
VGG(face)’* | 35.2 | 31.2 | 254 | 73.1 [ 72.1 | 80.1 | 59.2 | 35.1 | 32.1 | 52.3 | 26.1 | 36.2 | 46.5

PP (face)"® 35.1 | 38.1 [ 53.9 [ 77.2 | 70.7 | 83.1 | 86.2 | 56.1 | 39.8 | 54.5 | 37.2 | 31.4 | 55.3
PP(right eye)™ | 46.8 | 40.4 | 453 | 68.3 | 69.2 - - - - - - - -

PP (mouth)™? - ) : - - 78.6 | 82.0 | 54.2 [ 38.6 | 54.7 | [39.3] | 43.3 [ -
PP(right eye) | 38.0 [ [37.7] | 483 | 69.5 | 71.0 | 724 | 774 | 50.7 | 15.0 | 38.9 [ 138 | 15.3 | 45.7

n, | PP(between eye) | 41.7 | 34.8 | 45.9 [ 64.9 | 655 | 72.1 | 739 | 549 [ 190.7 | 33.9 | 13.9 | 7.0 | 440
A& [ PP(mouth) 124 | 73 [ 224 | 755 | 70.5 | 789 | 81.3 | 66.2 | 358 | 59.6 | 37.6 | [42.8] | 49.3
PP(right cheek) | 30.5 | 184 | 41.8 [ 752 | 73.2 [ 79.1 | 81.9 | [61.9] | 35.7 | 55.1 | 35.5 | 35.7 | 52.0
PP(nose) 416 | 284 | 464 [ 71.1 | 705 | 788 | 78.0 | 57.1 | 21.3 | 43.7 | 340 | 20.3 | 49.3
PP(face) 438 | 375 | [54.9] | 77.4 [ [71.2] | [79.2] | 84.0 | 56.6 | [39.7] [ [39.7] | 39.2 | 39.5 | [56.9]
PP+F [44.8] | 35.8 | 57.1 | [76.7] | 74.3 | 79.6 | [83.7] | 56.6 | 41.1 | 61.8 | 42.2 | 40.1 | 57.8
DSIN; 46.7 | 34.1 | 62.0 | 76.5 | 74.1 | [83.1] | 84.9 | 60.9 | 36.0 | 57.1 | 43.3 | 36.1 | 57.9

7z, DSIN, 47.7 1 36.5 | 55.6 | 76.3 [ [73.7] | 80.1 | 85.0 | 64.0 | [39.2] | 60.6 | [43.1] | 39.9 | 58.2
7 DSIN; [49.77] 36.3 | 57.3 | 76.8 | 73.4 | 81.6 | 84.5 | [64.7] | 38.5 | [63.0] | 39.0 | 37.3 | B85
A DSIN;, 51.7 | [40.4] | 56.0 | 76.1 | 73.5 | 79.9 | [85.4] | 62.7 | 37.3 | 62.9 | 38.6 | [41.6] | [58.9]
DSING) 51.7 | 41.6 | [F8.1] [ [76.6] | 74.1 | 85.5 | 87.4 | 72.6 | 40.4 | 66.5 | 38.6 | 46.9 | 61.7

Table 3.2: Recognition results on BP4D. PP([patch]) stands for patch prediction on the indicated
patch. F stands for the fusion and DSIN is the final model. We indicate the results when training
on individual AUs with [method]™¢, fine tuning on the validation dataset of the decision
threshold by DSIN*, number of iterations of the structure inference by DSIN7 and training
without correction factors as DSIN"*/. VGG (face)/* is a pre-trained VGG-16 [162] fine-tuned on
BP4D. PP(face)"® is a patch prediction without class balancing. All results are obtained by
3-fold cross-validation on BP4D.

could be captured by the FC layers is ignored. In certain cases the individual prediction is
superior to the exhaustive prediction. In the case of the right eye patch this is particularly
true for AUOL. But this is rather the exception. On average and across patches training
on groups of AUs or on all AUs is beneficial as correlation information between classes
is employed by the network in the fully connected layers. Additionally, predicting AU
individually with independent nets would quickly increase the number of parameters with
considerable effects on the training speed and final model performance.

Tab. 3.2 and 3.3 show AU recognition results on both datasets trained on patches.
That proves the locality assumption. When training on the mouth the performance on the
upper face AUs is greatly affected. Similarly, training on the eye affects the performance
on the lower face AUs. This is expected as the patch prediction can only infer the other
AUs from the ones visible in the patch.

Learning Local Representations. On average, face prediction compared to patch
prediction performs better on the entire output set. However, when individual AUs are
considered, this is no longer the case. For BP4D, the performance on AU15 and AU24 are
considerably higher when predicting from the mouth patch than from the face (see Tab.
3.2). On DISFA the prediction from the whole face is the best on just 3 AUs (see Tab.
3.3). The nose patch is better for predicting AU06 and AUQ9, the mouth patch is better
for AU12, AU25 and AU26, and the between eye patch for AUOL.

Patch Learning. Tab. 3.2 and 3.3 show results of AU-wise fusion for BP4D and
DISFA (PP+F). On both, patch learning through fusion is beneficial, but on DISFA
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Figure 3.5: Different levels of regularization on the mean u(x) (white line) and standard
deviation o(x) (envelope) of the correction factors during training. Small regularization values
force the correction factors to diverge faster. Increasing regularization collapses the correction
factors hurting the message passing.

method AUO1 | AUO2 | AU04 | AUO6 | AU09 | AU12 | AU25 | AU26 avg
PP(right eye) 27.2 15.4 58.8 8.0 18.2 53.6 73.3 9.1 33.0
PP (between eye) 34.6 13.2 59.7 15.4 21.1 50.9 72.9 8.5 34.5
PP (mouth) 75 64 | 446 | 285 | 239 | 72.1 | 875 | [27.3] | 372
PP(right cheek) 24.6 12.2 46.1 31.2 45.2 71.5 84.5 22.4 33.8
PP(nose) 21.9 19.1 52.0 32.0 50.9 66.5 76.6 8.9 41.0
PP(face) 29.8 (31.4] 64.6 26.8 21.3 70.1 87.0 20.3 43.9
PP+F [40.1] | 186 | 70.8 | 254 | 42.1 | [71.8] | [88.8] | 26.4 | [48.0]
DSIN 42.4 | 39.0 | [68.4] | [28.6] | [46.8] | 70.8 | 90.4 | 42.2 | 53.6

Table 3.3: Results of DSIN on DISFA. PP([patch]) stands for patch prediction on the indicated
patch. F stands for the fusion. DSIN is the final model. For DISFA we only show the DSIN with
T = 10, the best performing on BP4D.

benefits are higher. This might be due to the fact that prediction results on DISFA are
considerably more balanced across patches. Overall on BP4D the fusion improves results
on almost all AUs compared to face prediction. This shows that even though the other
patches perform worse on certain classes, there is structure to learn from their prediction
that helps to improve performance. However, the fusion is not capable to replicate the
result of the mouth prediction on AU14. On DISFA, in almost every case fusion gets
close or higher to the best patch prediction. In both cases, fusion has greater problems in
improving individual patches in cases where input predictions are already very noisy.

Structure Learning. Tab. 3.2 and 3.3 show results of the final DSIN model. For
BP4D, we also perform a study of the number of iterations T considered for structure
inference. Since parameters w; are shared across iterations, more iterations are beneficial
to capture AU relationships in a fully connected graph with a large number of nodes (12
in our case). We also trained DSIN without correction factors (Eq. 3.9 is not applied in
this case). Results are inferior compared with the same model with correction factors. In
the case of DISFA, we only applied the structure inference with the best previously found
T = 10 steps. Structure inference is beneficial in both cases. On BP4D, it considerably
improves AU2 and AU14. For DISFA, the results are even more conclusive. Adding the
structure inference brings more than 5% improvement over the fusion.

Correction factor regularization. Fig. 3.5 shows the effect of increasing regulariza-

tion applied on the correction factors y. Overall, regularizing x does not bring significant

40



90

¥
. . vv.‘ ‘
: .

AUO1 AUO02 AU04 AU06 AUO07

X _, 60
i
A .
&
|

AU09 AU10 AU12 AU14 AU15 °

30
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T
—— AUOL —— AUO4 —— AUO7 —— AUI2 AULS  --- AU23
—— AU02 —— AUO6 —— AUI0 —— AU14 —— AUL7 -~ AU24

AU17 AU23 AU24 AU25 AU26

80

Figure 3.7: 7 vs AU performance on BP4D validation
Figure 3.6: Facial Action Units tar- set. Black circles denote best score.
geted in this work.

method | AUOL | AU02 | AU04 | AUO6 | AUO7 | AU10 | AUI2 | AUL4 [ AUL5 | AULT | AU23 [ AU24 | AVG
JPML [249] | 326 | 25.6 | 374 | 423 | 50.5 | 722 | 741 | [65.7] | 38.1 | 40.0 | 30.4 | [42.3] | 45.9
DRML [250] | 36.4 | 41.8 | 43.0 | 55.0 | 67.0 | 66.3 | 65.8 | 54.1 | 332 | 48.0 | 3L.7 | 30.0 | 483
CPM [241] | [434] | 40.7 | 433 | 592 | 61.3 | 62.1 | 685 | 525 | 36.7 | 543 | 39.5 | 37.8 | 50.0
ROI[119] | 36.2 | 31.6 | 43.4 | 77.1 | [73.7] | [85.0] | [87.0] | 62.6 | 45.7 | 58.0 | 38.3 | 37.4 | 56.4
DSIN 51.7 | 404 | [56.0] | 76.1 | 735 | 79.9 | 854 | 62.7 | 37.3 | [62.9] | [38.8] | 41.6 | [58.9]
DSIN" | 51.7 | [A1.6] | 58.1 | [76.6] | 74.1 | 85.5 | 87.4 | 72.6 | [40.4] | 66.5 | 38.6 | 46.9 | 61.7

Table 3.4: AU recognition results on BP4D. Best results are shown in bold. Second best results
are shown in brackets. For the proposed model we show an additional set of results (DSINy)
obtained when the decision threshold is tuned per AU.

benefits. When comparing r = 1072 with no regularization the differences are minimal.
The network has the ability to learn sparse message passing by itself without regularization.
Still, small values of r lead to faster divergence of x and faster convergence of the network.
The difference in performance is not significant. On the other hand values of r > 5 x 1072
negatively affect performance as most of x get closer to 0 and no messages are passed
anymore. For these reasons, we keep r =5 x 1073,

Threshold Tuning. Prediction value per AU takes values between 0 and 1. In all
results, we compute the performance by binarizing the output with respect to threshold
7 = 0.5. Although class balancing as a weighted loss is beneficiary, it does not totally
solve data imbalance. Fig. 3.7 shows performance in terms of 7 for validation set of BP4D.
As shown, a threshold 7 = 0.5 is not an ideal value. For most classes 7 € [0.1,0.3] is
preferable. Exception is AU0O4. Tables 3.2 and 3.3 show the performance of the proposed
model after tuning 7 per class (DSIN®). This way 2.8% and 3.1% of performance is gained
on BP4D and DISFA, respectively.

3.4.2.2 Comparison with state-of-the-art.

Tables 6.2 and 6.3 show how our model compares against the state-of-the-art related
methods on BP4D and DISFA, respectively. DSIN and ROI are the best performing in

both datasets. Both methods learn deep local representations and patch combinations
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method AUO1 | AUO2 | AU04 | AU06 | AU09 | AU12 | AU25 | AU26 avg

APL[255] 11.4 12.0 30.1 12.4 10.1 65.9 21.4 26.0 | 23.8
DRML [250] | 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
ROI [119] 41.5 26.4 66.4 | 50.7 8.5 89.3 | 88.9 15.6 | 485
DSIN [42.4] | [39.0] | [68.4] | 28.6 | [46.8] | 70.8 | [90.4] | [42.2] | [53.6]
DSIN? 46.9 | 42.5 | 68.8 | [32.0] | 51.8 | [73.1] | 91.9 | 46.6 | 56.7

Table 3.5: AU recognition results on DISFA. Best results are shown in bold. Second best results
are shown in brackets.

end-to-end. The worst performing methods, JPML on BP4D and APL on DISFA, use
predefined features and are not end-to-end trained. Comparing DSIN and ROI with DRML
one can observe the advantage in learning independent local representation. Both ROI
and our model learn independent local representations, while DRML disentangles the
representation learning in just one layer of their network. Interestingly though, there is
also an exception. On BP4D, CPM performs slightly better than DRML even though it is
not a deep learning method. When comparing our proposed model with ROI on BP4D our
CNN trained just on face without class balancing has inferior results. When we include
class balancing and patch learning our topology improves performance, further enhanced
by structure inference and end-to-end final training. In the case of DISFA, single CNN
trained on the whole face with class balancing has a performance of 43.9, being 4.6%
lower than ROI. When we add patch prediction fusion (PP+F) we get just 0.5% lower
than ROI while the addition of the structure inference and threshold tuning improves ROI
performance. Finally, DSIN shows the best results on both datasets. For BP4D, from the
12 AUs target it performs best on 5 and second best on additional 5. In the case of DISFA
the improvement over ROI is greater, DSIN performing best in all but one AU. Overall,
we obtain 5.3% absolute and 9.4% relative performance improvement on BP4D and 8.2%

absolute and 16.9% relative performance improvement on DISFA, respectively.

3.4.2.3 Qualitative results.

Fig. 3.8(a) shows examples of how structure inference tends to correct predictions following
AU correlations. We show the magnitude of AU correlations on BP4D in Fig. 3.8(b). In
the first 3 column examples, AU06 and AUQ7 are not correctly classified by the fusion
model (middle row). Both these AUs are highly correlated with already detected AUs like
AU10, AU12 and AU14. Such correlation could be captured by SI (bottom row). The
rightmost example shows how AU17, a false positive, is corrected. As shown in Fig. 3.8(b),
AU17 is negatively correlated with AU4, which was already detected. In Fig. 3.8(c) we
show a class activation map [188] for AU24 of the patch prediction (left) vs. the DSIN
(right). Contrary to very localized patch prediction, the attention on right expands to a
larger area of the face where possible correlated AUs might exist.

In Fig. 3.9 and 3.10 we show more examples of predictions produced by DSIN. For
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Figure 3.8: (a) Examples of AU predictions: ground-truth (top), fusion module (middle) and
structure inference (bottom) prediction (e: true positive, e: false positive). (b) AUs correlation
in BP4D (e: positive, : negative). Line thickness is proportional with correlation magnitude. (c)
Class activation map for AU24 that shows the discriminative regions of simple patch prediction
(left) and DSIN (right). Best seen in color.

each example, we first show the real AU values (GT), the values predicted by each of
the patch prediction CNNs (PP([patch])), the predictions of the fusion (F) and the final
prediction that includes the Structure Inference (DSIN). We discuss each of them in the
following.

Patch Prediction In general the patch predictions have a tendency to be more accurate
for predicting the AUs visible in the patch and less accurate on the other AUs. For example,
in the case of DISFA, the right eye patch prediction usually produces false positives on
the lower face AUs like AU12 (see Fig. 3.9(c,d,h)) and AU25 (see Fig. 3.9(c,g,h)). The
same tendency can be observed on the between eye patch prediction (false positives for
AU25 on Fig. 3.9(b) and AU12 on Fig. 3.9(e,g)) and nose patch prediction (false positives
for AU25 Fig. 3.9(c,g) and AU12 Fig. 3.9(g)).

In the case of BP4D, the right eye patch prediction produces false positives for AU10
(Fig. 3.10(c,e,h)), AU12 (Fig. 3.10(d,f)) and AU17 (Fig. 3.10(e)). Similarly the between
eye patch prediction is falsely predicts lower-face AUs like AU10 (Fig. 3.10(f)), AU12 (Fig.
3.10(f)) and AU17 (Fig. 3.10(h)). In the case of the nose or mouth two clear examples of
false positives are for AU7 in Fig. 3.10(b). It might be interesting to the reader to compare
these mouth and nose patch predictions of AU7 in Fig. 3.10(b) with false positives on the
same AU, this time predicted on the right eye (Fig. 3.10(e)) or the between eye patch
(Fig. 3.10(d)). In the first case the eye is wide opened but not visible to the mouth or
nose patch. In the second case, AU7 is visible to the patch but the eyes are more closed

which might have confused the model.
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Some additional comments can be made about the limitations of patch prediction. In
the case of DISFA, an interesting example can be seen in Fig. 3.9(e) where AU25 (Lips
Apart) is not predicted by any of the patches except the between eye where it is not even
visible (AU25 is highly correlated with AU12). This is a confusing example, because the
subject has his tongue between the lips. In the case of the face prediction, some other
examples of false negatives can be seen in Fig. 3.9(c,g,h,i). A particularly interesting
example is shown in Fig. 3.9(g) where none of the patches is able to predict AU4, despite
being quite visible. Also on DISFA| in Fig. 3.9(j), the mouth prediction is not capable to
detect AU12, the Lip Corner Puller.

On BP4D as well, we can refer to several examples where the patch prediction fails to
detect visible AUs. For example, in Fig. 3.10(b) the face prediction, fails to detect AU2 or
in Fig. 3.10(c), the mouth prediction fails to detect AU12, AU15, AU23 and AU24. There
are also cases like Fig.3.10(e) where even-though marked as active in the ground-truth,
AU1 and AU4 have low intensity and are not really visible. Some of the patches (like the
face) have problems detecting them.

On DISFA, the ground-truth is an intensity label from 0 (neutral) to 5 (most intense).
In order to keep results comparable with the related work, we have considered the low
intensity levels (below 3) as neutral samples and all the other as active. This can be
misleading to the model. Some examples can be found in Fig. 3.9(g,i). In both these cases,
AUI12 (Lip Corner Puller) has low intensity and not marked in our binarised ground-truth.
Nevertheless the mouth patch prediction detects it. The same is true for AU25 (Lips Apart)
for Fig. 3.9(i). Another interesting example is Fig. 3.9(h). The AU23 (Lip Tightener) is
not targeted in the case of DISFA but nevertheless it is present in this example.

Fusion In general in the fusion predictions, two general tendencies can be observed.
The fusion gives more weight to AUs that have been independently predicted by most
patches and also to patch predictions that have higher probability of being correct.

In the case of DISFA, the majority vote can be observed on Fig. 3.9(a) for AU12 and
AU25, on Fig. 3.9(b) for AU4, in Fig. 3.9(c) for AU1, AU2, AU12, AU25, just to name
a few. In the case of BP4D, some examples can be found in Fig. 3.10(a) where AUT is
predicted by the fusion but AU2 not, or in Fig. 3.10(b) where AU10 is predicted but AU12
and AU14 not. Counter-examples can be found as well, for example in Fig. 3.10(e) AU10
is falsely predicted by several patches, some of them expert in this AU (e.g mouth) but
nevertheless the fusion manages to correct it.

The fusion might also take into account if the probability of a patch to produce accurate
predictions for a specific AU is high. For example, in the case of DISFA the between eye
patch prediction of AU4 in in Fig. 3.9(a) is propagated to the fusion but the prediction of
AU25 in Fig. 3.9(b) is not. This might happen because the between eye patch prediction

has more confidence when predicting AU4 than AU25. A similar example can be found in
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Figure 3.9: Examples of predictions of DSIN on DISFA. GT: ground truth (y), PP: patch
prediction ({p;}¥,), F: fusion (f), DSIN: final predictions (7), : true positive, : false
positive.
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Figure 3.10: Examples of predictions of DSIN on BP4D. GT: ground truth (y), PP: patch
prediction ({p;}¥,), F: fusion (f), DSIN: final predictions (7), : true positive, o: false
positive.

Fig. 3.9(d). There the nose patch prediction falsely detects AU4 and AU9. This patch
usually has high confidence on these AUs and thus the fusion takes it into account. In
the case of BP4D a suggestive example can be seen in Fig.3.10(b) where AU1 and AU2
are predicted by two different highly confident patches (right eye and between eye) and
AU7 by two different low confidence patches (mouth and nose). The AU1 and AU2 get
propagated by the fusion while AU7 not.

Structure Inference Finally, we present DSIN predictions. For helping the reader we
include the AU correlations calculated on the BP4D and DISFA train dataset (Fig.3.11).
Due to the stimulus used to elicit affect during the data collection process, these correlations

might slightly vary between datasets. Nevertheless, on these datasets there is structure
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Figure 3.11: AU correlations on BP4D (a) and DISFA (b). e: positive correlation, e:
negative correlation. Thicker the line, higher the correlation.

consistency on the shared AU subset (AU1, AU2, AU4, AU6 and AU12). AU1 and AU2
or AU6 and AU12 are two examples of AU pairs that strongly correlate on both datasets
and AU4 and AU12 is a good example of negatively correlated AU pair.

In general the structure inference manages to correct some false positives or negatives
following correlations between classes shown in Fig. 3.11. In the case of DISFA some
suggestive examples can be found in Fig. 3.9 (a) and Fig. 3.9(c) where AU4 and AU25
respectively are correctly predicted as non-active. Both these AUs are negatively correlated
to already detected AUs. In the case of BP4D, in Fig. 3.10(a) AU14 is added to the
final prediction, in the case of Fig. 3.10(c) AU7 and AU12. In general, if one looks at
the real predicted confidence number per AU (not displayed here), when the prediction
is ambiguous (around 0.5) the structure inference uses the other classes to take a better
decision. This is less the case for samples were the DSIN has high confidence (close to 0
or 1).

3.5 Conclusion

We proposed the Deep Structured Inference Network, designed to deal with both patch
and structure learning for AU recognition. DSIN first learns independent local and global
representations and corresponding predictions. Then, it learns relationships between
predictions per AU through stacked fully connected layers. Finally, inspired by inference
algorithms in graphical models, DSIN replicates a message passing mechanism in a

connectionist fashion. This adds the ability to capture correlations in the output space.
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The model is end-to-end trainable and improves state-of-the-art results by 5.3% and 8.2%
performance on BP4D and DISFA datasets, respectively.

In the next two chapters (Chapter 4 and Chapter 5) we will make a detour from the
problem of facial action unit recognition. We will first define a novel generic theoretical
framework for analysing deep neural network behaviour during optimization. This new
tool opens the “black-box” of neural networks, giving important cues about how they
learn and most importantly when do they start memorizing. We will use this new insights
in Chapter 6 for training DSIN with improved control, performance and without the need

of validation data.
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Chapter 4

A Novel Framework for Analysing
Deep Neural Networks

In this chapter we introduce a novel generic theoretical framework for analysing deep
neural networks. The basic idea is to project a deep network into a topological space and
then use established methods in Algebraic Topology to count non-trivial patterns in this
space. We will show in next chapters that this new perspective sheds light on fundamental
aspects in learning theory, namely the overfitting problem (or learning vs memorization)

and the generalization gap.

4.1 Preliminaries

Let G = (V, E) be an undirected graph that consists of a pair of finite sets (V, E), where
the elements v; of V' are called the vertices, and the elements e;; of E are called the edges.

A n-clique, 0 C G is a subset of n + 1 vertices of G that are connected to each other,
and n is the degree of the clique. Any subgraph ¢ C o of a n-clique is itself a clique of
lower degree and is called a face of that clique. A clique that is not a face of a clique of
larger degree, is called a mazimal clique.

The clique complez of a graph G is the collection of all its cliques, S(G) = {So(G), S1(G),

.. Su(G)}, where Sk(G) is the set of all (k + 1)-cliques in G [197]. A clique complex
defines a topological space.

The geometric realization of this topological space is an object. A few examples of
such objects are shown in Figure 4.1(a). As seen in this figure, a O-clique is realized by a
single node, a 1-clique by a line segment (i.e. edge) connecting two nodes, a 2-clique is the
filled triangle that connects three nodes (i.e. the three edges of the three nodes define a
filled triangle, that is, a 2D face), etc.

The geometric realizations of cliques in a clique complex intersect on common faces

forming a well-defined object as shown in Fig. 4.1(b).
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Figure 4.1: (a) Shown here are examples of a 0O-clique (a point or node of a graph),
1-clique (two nodes connected by a 1D undirected edge), 2-clique (three nodes connected
by the 1D edges and 2D faces filling in the space between the edges), and 3-clique (four
nodes connected by their 1D edges, 2D faces, and a 3D solid filling in the space between
the faces). These simplicies correspond to topological realization of a 0O-clique, 1-clique,
2-clique, and 3-clique, respectively. Note that a n-clique defines a nD space. (b) Examples
of clique complexes: cliques glue on common faces to form topological objects. (¢) Example
cavities in the topological space. (d) The boundary operator of a chain surrounding a
clique complex (top) and a cavity (bottom). (e) Persistent homology detects birth and
destruction of a cavity (shown with dashed line) during the mapping of a weighted graph

onto binary graphs (Algorithm 2).
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We define the correlation activation of nodes in a DNN as topological objects, as those
illustrated in Fig. 4.1(a-c).

We study the topological properties of these objects. For this, we turn to several
concepts necessary to compute homology, a method in algebraic topology capable of

counting cavities in topological objects.

4.2 Homology and cavities

We define a chain complex C(S) of a clique complex, to be the sequence {C,,(S,F2)},>0
(abbreviated C,,), where C,, is the Fy-vector space whose bases are the (n+1)-cliques
o €S,,¥n >0, and Fy = {0,1}. In other words the elements of C,, are interconnections of
(n+1)-cliques in S. For example, elements of C} are linear combinations of edges (2-cliques)
and elements of Cy are linear combinations of filled triangles (3-cliques, i.e. 2D faces).
For each n > 1, there exists a linear transformation called a boundary operator that

maps C), onto a lower dimensional chain complex:

Dyt Co = Cous, (4.1)
with .
On(001,..n) = Zao,l,...,k—l,k-l—l,...,n- (4.2)
k=0

Geometrically, the boundary of a n-clique is the set of (n — 1)-cliques bordering it. Fig.
4.1(d) shows an example. Hence, the boundary operator takes a collection of n-cliques
and maps them to their boundary, i.e., a collection of (n — 1)-cliques.

Similarly, a n-cycle is a path in our graph that forms closed structures, , vy = vy —
vs — v1. Since the boundary of any clique is a cycle, the boundary operator provides a
mechanism to compute cycles. Formally, a n-cycle is given by any element [ € C,, that
satisfies 0,,(1) = 0, Fig. 4.1(d).

Let us call the subset of n-cycles, k(9,). And, let the n-cycle that defines the boundary
of C,, be b(0y,).

Note that two n-cycles, [1, 1y € C,,, are equivalent if their sum in Fy defines the boundary
of a path of n 4 1 vertices, i.e., a (n + 1)-chain.

Formally, we define this homology of dimension n as,

for n > 1, and
Hy(S) = Cy/b(Dr). (4.4)
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Figure 4.2: The Betti numbers are sequences of natural numbers counting the cavities of a
topological object in a corresponding dimension. Low dimensional Betti numbers have
intuitive interpretation: [y counts connected components, 5; 2D cavities, 35 3D cavities.
We show several examples of clique simplices and corresponding Betti numbers. By
adding edges, lower dimensional cavities are destroyed while higher dimensional are formed.
For example, note how a first cavity ly = (vg, vy, ..., vg) is formed (middle row, second
column), then by adding two more edges (va,v4) and (vg,v4) four new cavities appear
li = (vo, v, V5,06), lo = (Vg,v1,V2,03,04), I3 = (va,v3,04,v5) and Iy = (vg, v1, V2, Vs, Vg)
(middle row, third column). By definition, a geometrical realization of a clique always
includes all the enclosed space between the nodes (simplices). Adding another edge (v, vs)
fills [;, thus 8y drops to 3. Some edges are dashed for facilitating visualization.
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Therefore, H,, defines the vector space spanned by the class of n-cycles. Its dimension-
ality is the number of non-trivial n-cycles; i.e., the number of (n + 1)-dimensional cavities
in the objects (graphs) in Fig. 4.1(c). And a cavity is a non-filled face of dimensionality n,
Fig 4.1(d).

Since cycles are chain complexes that map to () by the boundary operator, cavities are

the nullspace of this boundary operator, null(d,) = k(0,) C C,,.

4.3 Projecting a DNN into the Topological Space

The above is defined in binary graphs, i.e., in F5. For weighted graphs we will compute all
the possible binary graphs. Let us define an approach to achieve this.

Let G = (V. E) be the graph defining the DNN we wish to study, and X = {x;,y;},",
the labeled training samples, with m the number of samples, x; € R?, and y; € Z in
classification and y; € R? in regression (¢ > 1).

Passing the sample vectors x; through the network (i = 1,...,m), allows us to compute
the correlation ¢;; between the activation (a;,a;) of each pair of nodes (v;,v;) of G. That

is given by,

§ (0= )03 = ) .
- SaiSa;
where p and ¢ indicate the mean and standard deviation over X on the given node.

Let us now order the absolute values of these correlations from largest to smallest:
|Civi| = |Cinial = -+ > |cipj.| > T, where r the number of correlations larger than 7" in G
given X. In this notation, the subscripts of each correlation indicate the node pairs in
that correlation: (vj,,vj,), ..., (vi,,vj.).

Binary graphs are obtained by iteratively adding a node pair at a time. We start by
adding the nodes with largest correlation, (v;,,v;,), and continue adding node pairs up to
the last one, (v;,,v;,).

We will refer to the number of edges included in a binary graph as its density, pp = k/r
where k is the number of non-zero correlations (|¢;;| > 0, Vi and j > i) and r is the total
possible number of correlations. Thus, the density of our binary graph will increase at
each iteration (as we add more and more nodes).

This process allows us to investigate how the homology of the graph defining the DNN
of interest evolves as a function of the density, Fig. 4.1(e).

This approach is summarized in Algorithm 2. This algorithm maps a DNN defined by
a weighted graph onto the set of binary graphs {Gj,...,G,}. And, these binary graphs
are topological objects as shown in Fig. 4.1.

Algorithm 1 allows us to compute any topological property of a DNN given X as a

function of learning.
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Algorithm 2 Weighted to binary graph mapping.

P

I Let G = (V,E), X ={x;,y:};~,, and define T' > 0.

2: Let r = {[ciyji|, [Ciggal, - - leig |}, 8.8 i | 2 i) 2 -+ 2 Jeiy | > T

3: Let Gy = () and k=0.

4: repeat

5: k=k+1.

6: Gy = Gr_1U{vi,, é;vj,}, with é;; the undirected edge defining v;, — v;
. pp=k/r.

8 until £ =r.
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Chapter 5

What Does It Mean to Learn in
Deep Neural Networks?

The flexibility and high-accuracy of Deep Neural Networks (DNNs) has transformed
computer vision. But, the fact that we do not know when a specific DNN will work
and when it will fail has resulted in a lack of trust. A clear example is self-driving cars;
people are uncomfortable sitting in a car driven by algorithms that may fail under some
unknown, unpredictable conditions. Interpretable and explainable approaches attempt to
address this by uncovering what a DNN models, i.e, what each node (cell) in the network
represents and what images are most likely to activate it. This can be used to generate, for
example, adversarial attacks. But these approaches do not generally allow us to determine
where a DNN will succeed or fail and why does this learned representation generalize to
unseen samples. In this chapter, we use the theoretical framework proposed in Chapter
4 to define what it means to learn in deep networks, and how to use this knowledge to
detect adversarial attacks. We show how this defines the ability of a network to generalize

to unseen testing samples and, most importantly, why this is the case.

5.1 Introduction

Deep Neural Networks (DNNs) have enough capacity to learn from very large datasets,
without the need to define hand-crafted features, models or hypotheses for every problem.
This has revolutionized computer vision and other areas of Artificial Intelligence (AI) [116].

Using high-capacity DNNs to learn from huge datasets, however, does not tell us how
the network learns what, it does and why. This so called “black-box” problem has resulted
in a lack of trust [27, 213]. For example, why did a given DNN identified a specific deep
representation as more appropriate than other possible representations?

Interpretability and explainability methods [210] allow us to see what a DNN has

learned, but not how and why it learned it. For example, if the goal is to know what type
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Figure 5.1: Given a DNN its functional graph is defined by the correlation of activation of
distant nodes. This allows us to compute binary graphs defining local and global topological
properties of the network (Algorithm 2). Global topological properties define generalization,
while local properties identify overfitting (Algorithm 3). The same topological properties
are used to detect adversarial attacks.

of image activates a specific node (cell) of the network, one can optimize the DeepDream
or other related criteria [2]. When our goal is to generate plausible class output images,
optimizing softmax and related objectives may be performed [170]. But neither method
tells us how and why these deep features (representations) were chosen by the network
and where they may fail.

The main problems of lack of interpretability and explainability are: 1. If we do not
know how DNNs learn, we can only improve them by trail-and-error. This is slow and
does not solve the trustability problem. And, 2. If we do not know why DNNs learn a
specific deep representation or model, we will not know where and why the network fails,
e.g., detect an adversarial attack.

With the help of theoretical framework presented in Chapter 4, we derive a set of
algorithms that help us address the problems stated above. Simple local properties of
the network (e.g., the degree of a node) as well as global properties (e.g., the path length
between nodes) have been found to be insufficient to explain how and why DNNs learn
[23].

This chapter shows how topological properties (e.g., n-cliques and nD holes) of the
functionality of the network describe how a DNN learns, Figure 6.2. We use these properties
to demonstrate we can predict when a DNN successfully learns, and when and why it is
likely to misclassify an unseen test sample (Algorithms 2 and 3). We also show how to use

the derived approach to successfully detect adversarial attacks.
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5.2 Related Work

In recent years, high capacity Deep Neural Networks (DNNs) have outperformed many
other machine learning algorithms in a number of applications like object recognition
[111, 201] and speech recognition [85, 152], especially when large labeled datasets [171, 120]
and/or means of obtaining information from large datasets were available [68].

Why or how DNNs achieve this feat and where and why DNNs fail remains a mystery.
This makes DNNs untrustworthy “black-box” models to many [213], with some researchers
claiming DNNs are too unpredictable to make them a general solution to most Al problems
[169, 59, 149].

To solve this problem, researchers are trying to understand what DNNs do. Two
approaches are interpretability and explainability, with an emphasis on defining what
the nodes (cells) of the network represent and how they respond to different inputs
[97, 113, 210, 166, 240, 141, 156].

For example, DNNs used in object recognition generally learn to extract low-level,
Gabor-like features in the first layers, combine these low-level features to represent parts
of an object in mid-level layers, and finally combine those to generate highly complex
representation of objects that are invariant to image changes, e.g., pose, illumination and
affine transformations [176, 157, 256].

Another group of methods focuses on the analysis of these features. One way is
by exploring the semantic meaning of filters [200] or computing feature distributions
of different attributes [12]. Saliency maps, heatmaps, sensitivity maps, and attention
maps display class relevant information that is used by the model to make its predictions
(63, 121, 63, 257].

The goal of this chapter is to go beyond these approaches of interpretability and
explainability and ask, instead, what does it mean to learn in DNNs? Specifically, how does
the graph defining the network evolve during the learning process? And, how can we use
this knowledge to know where the network has successfully learned and where it will fail?

Making “black-box” models like DNNs interpretable is of great importance for several
reasons, as for example to: 7) increase trust; i) facilitate transferability to other problems,
e.g., use a network pre-trained on a specific problem in a different problem [239]; ii7)
predict where a network is likely to work and where it will most probably fail; iv) help
researchers and practitioners design better networks, because we now know what works
and what does not; v) derive unsupervised learning algorithms [225, 256], because we will
know what the network needs to do to generalize to unseen samples; and vi) better prepare

our algorithms for fair and ethical decision makings (i.e., unbiased performance) [24, 69].
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Figure 5.2: Testing accuracy for LeNet training on MNIST (a) vs the number of cliques
(b). Mean and standard deviation given by 5-fold cross-validation.

5.3 Experimental Analysis

The structure of a DNN is generally defined by a weighted graph. Similarly, the “behavior”
of a DNN (the activation of its nodes) are given by a functional graph, the correlations
between the activation of each pair of nodes.

We study the topological changes of this functional graphs during training and testing.
The reader is referred to Chapter 4 for the detailed methodology. We show that networks
that generalize to unseen testing samples converge to a common topology, and that this
topology s differential from that of networks that fail to generalize. We then demonstrate
how we can exploit this new knowledge to determine whether an unseen testing sample
will be correctly analyzed by the network and when it will not. Specifically, we focus on
adversarial attacks.

We start with the analysis of the number of n-cliques. To illustrate this, we will use
the LeNet derived in [115]. LeNet is a historical network and will be used here as a
proof-of-concept. This network was originally derived to recognize written digits, i.e, 0-10.
We use the MNIST dataset, consisting of 60,000 training images and 10,000 test images,
as X [115].

The cross-validation (CV) classification accuracy of this network is shown in Fig. 5.2(a),
where the z-axis defines the epoch and the y-axis the 5-fold CV accuracy, and the thickens
of the blue curve defines the variance over this CV procedure.

Given the graph of LeNet G'r.ne and the training set X, we use Algorithm 2 to get G,
s.t. pr = .25. The number of n-cliques (n € [0,20]) in Gy, is shown in Fig. 5.2(b), where
each plot represents the results at the indicated epoch, the z-axis specifies the value of n,
and the y-axis the number of n-cliques.

Note that the number of n-cliques in an untrained DNN must be zero or very close to
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zero. That is because the number of nodes working together (correlated, as given by ¢;;)
before any training is performed must be zero or tiny. This is shown in the first plot of
Fig. 5.2(b). But as the network learns, the nodes in the graph start to work together to
solve the problem of mapping x; onto y.

Note that by the time the learning process has made its major gains (by about epoch
10), the number of n-cliques is maximum. As the learning process continuous tightening
the knobs of the network (adjusting its parameters), the number of cliques starts to
decrease. This is the result of overfitting to X.

Are cavities an even better indicator of how well the network learns a dataset X7 We

explore this next.

5.3.1 Cavities in DNNs

The rank of the n-homology group H,, in a topological space is called the n*" Betti number.
In other words, Betti numbers compute the maximum amount of cuts that must be made
to separate a surface into two k-cycles, k =1,2,....

Hence, the first Betti number, fy, computes the number of connected elements in S(G);
the second Betti number, (31, calculates 1D cavities (or holes); 5 gives the number of 2D
cavities; and, more generally, 3, computes the number of nD cavities, Figure 4.2.

Key to understanding Figure 4.2 is to note that all kD faces of the simplicies of a
n-clique are filled, e.g., see the last object in the second row and the last two in the last
row in Figure 4.2; note how these kD faces eliminate cavities of lower dimensionality and
add cavities of higher dimensionality.

To further clarify this important point, consider the second example in the second row
in Figure 4.2. The functional representation of this DNN indicates that node vy and v,
work together to solve the classification or regression problem the network is tasked to
address (their activation patterns) are highly correlated (Algorithm 2). Similarly, v; and
vip1 (1 =1,...,6) and vg and vy also work together to solve the problem the network is
faced with. This creates a 1D cavity, 8; = 1, because 9 maps this chain to (). But if vy
and v4 and vy and vs are also highly correlated, this forms cliques with filled simplicies,
yielding two additional 1D cavities, #; = 3; as shown in the last objects in the second row
in Fig. 4.2.

The Betti numbers of a clique complex S of a graph G are formally given by,

Bn(S) = null(0,) — rank(Op11). (5.1)

Note that in order to compute f3,, we need the null space and the rank of the matrix
formed by cliques of dimension n and dimension n — 1. This means that we only need

to compute the cliques in the first n dimensions to calculate i, ..., 3,. Since, in most
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Figure 5.3: Betti number dynamics during LeNet [115] training on MNIST. Mean and
standard deviation given by 5-fold cross-validation. Refer to Fig. 5.2(a) for testing

accuracy.

DNNs, 3, = 0 for n larger than 4 or 5, this means that the computations can be performed

efficiently.

5.3.2 Learning and generalization

The evolution of the Betti numbers of the LeNet network as a function of T and epochs is
shown in Fig. 5.3. Recall, T" defines the density our approach explores, i.e., T is inversely
proportional to p (see Algorithm 2). The y-axis in the plots indicates the number of
cavities properly normalized by the number of nodes (i.e., number of cavities/node).

As we can see in this key figure, the number of 1D cavities moves from higher to
lower densities as the DNN learns. That is, as the DNN learns, the correlation pattern
of activation of the nodes in the network that are further apart as well as those that
generate larger simplicial complexes start to appear.! This demonstrates that the network
is constructing global structures to learn the function that maps the input samples to their
corresponding outputs, y; = g(x;), i.e., the network is learning to generalize by using large
portions of the graph.

But when the network can no longer generalize, it starts to memorize the samples that
do not abide by the learned functional mapping ¢(-). This results in a decrease of global

structure and an increase in local chain complexes. This is clearly visible in Figure 5.3:

I This effect is due to the fact that nodes that work together start to form cliques whose simplices fill
in the holes of the functional graph. That is, rather than adding additional nodes when increasing the
density from py to pry1, we add edges between the nodes already available at density pi. We refer to this
as a global property, because rather than having a chain of semi-related nodes (e.g., v1 = va — -+ = v;.),
we have n-cliques (i.e., all nodes connected to all other nodes). Note that the cliques appearing at higher
densities delete the cavities we observe at lower densities, Figure 4.2.
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Algorithm 3 Generalization.

1: Let G = (V, E) define a DNN with 6 its parameters.
2: Let X be the training set, and set 7" > 0.

3: Set t=0, and n to either 1, 2, or 3.

4: repeat

5:  Use X and the selected loss to optimize 6.

6: t=t+1.

7. Use Algorithm 2 to obtain Gy, k=1,...,r.

8:  Compute the clique complexes Sy of Gy.

9:  k;=arg maxy, Bn(Sk)-

H
@

until &, > k1.

note the maximum number of cavities starts to move toward higher densities. As seen in
Figure 5.3, this happens after about epoch = 40, when the network has done all it can
learn to generalize, Figure 5.2(a). An example of this topological effect was illustrated in
the second and third rows of Fig. 4.2.

This means learning in DNNs is equivalent to finding the smallest density p; of nD
cavities in the functional binary graphs that define the network. This peak density allows
us to identify when a network has reach its limits of global learnability and generalization
to unseen samples.

This approach is summarized in Algorithm 3.

If we wish to find global properties with Algorithm 3, we set n = 1 to detect 1D cavities.
But if we wish to identify even larger topological connections, we set n = 2 or 3. Hence,
larger n values mean we are interested in increasingly general properties of the underlying
unknown function g(-) our DNN needs to learn.

The smaller n is, the more we allow the DNN to adapt to our specific dataset. Thus,
a smaller n will yield more accurate results on a testing set that is representative of the

training, but less accurate results on test sets that diverge from the training set.

5.3.3 Learning vs. failing to learn

We can also use the above defined topological properties of our DNN to determine where
the network fails to learn to generalize to unseen samples.

Let us illustrate this in an example using LeNet. In this example, we trained the
network with either 50%, 25%, 10% or 1% random selection of the training samples (plus
the data augmentation typically used in LeNet). The training and testing accuracies
are shown in Figure 5.4(a). Solid lines indicate training accuracy; dashed lines testing
accuracy. As it can be appreciated in the figure, for LeNet the testing accuracy follows

the same pattern as the training, regardless of the percentage of training data used.
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Figure 5.4: Training/testing accuracy with decreasing proportion of training data and
permuted /non-permuted labels.

But, when we redo the above experiment with permuted labels,? the results are very
different, Figure 5.4(b).

Note how the network is able to learn from small nonsensical (permuted) datasets
during training. But the testing accuracy curves show this is just an illusion, i.e., the
network is able to memorize these nonsensical sample pairs {x;,¥;}, where y; are the
permuted labels, but this serves no purpose when it comes to testing the performance of
the system on independent samples. This means we cannot relay on the training accuracy
as a measure of generalization; a well-known fact.

Fortunately, from our previous section, we know that nD cavities move toward lower
densities of our functional binary graphs when the network learns to generalize. We will
now use this insight to derive a simple algorithm that knows whether the network is
learning or not.

Figure 5.5 shows the Bettis at different densities, percentages of training data (50
to 1%), and epochs (epoch = 2, 10 and 50). The blue curves correspond to the Bettis
computed with Algorithm 3 and non-permuted data. Orange curves show the Bettis
obtained when using the permuted labels y,;. Figure 5.5(a) are the results at epoch = 2,
Figure 5.5(b) at epoch = 4, Figure 5.5(c) at epoch = 10 and Figure 5.5(d) at epoch = 50.

As expected, the maximum number in S; moves to lower densities when the labels are
non-permuted, but does not when the labels are permuted. Even more telling is the lack of
2D and 3D cavities when using permuted labels.

Our algorithm to detect lack of training is thus simple: a. Lack of 2D and 3D cavities,

and b. 1D cavities move toward lower densities.

2This means that the labels y; have been permuted by multiplying the vector (yi, ... 7ym)T with a
randomly generated m x m permutation matrix P. A permutation matrix is obtained by permuting the
rows of an identity matrix.
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Figure 5.5: Betti numbers obtained when using 50%, 25%, 10% or 1% of the training data
(top to bottom row, respectively). Blue curves indicate non-permuted labels; orange curves
indicate permuted labels. 1D cavities (;) are shown in the first column; 2D cavities ((2)
in the second column; and 3D cavities (f3) in the third column. Results plotted at the

following epochs (a) 2, (b) 4, (¢) 10 and (d) 50.
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Figure 5.6: Betti numbers obtained when using unaltered and adversarial testing samples.
LeNet trained on MNIST.

What does it mean to learn in DNN7? Learning to generalize in DNN is defined
by the creation of 2 and 3D cavities in the functional binary graphs representing the
correlations of activation of distant nodes of the DNN, and the movement of 1D cavities
from higher to lower graph density p. Overfitting is indicated by a regression of these

cavities toward higher densities in these functional binary graphs.

5.3.4 Detecting adversarial attacks

We can also use the approach derived in the previous sections to know where our network
is likely to fail during testing. We illustrate this by demonstrating how to detect an
adversarial attack, which is a guaranteed, easy way to make a DNN fail [200].

To do this, we use the algorithm of [150] to generate images for an adversarial attack
on a trained LeNet. As above, LeNet was trained on MNIST.

For testing, we used the independent MNIST testing set and the set of images prepared
for the adversarial attack.

As above, we expect 1D cavities to increase and move to lower densities as well as an
increase in the number of 2 and 3D cavities at lower densities on unaltered testing data.
But for the data in the adversarial set, we expect only 1, 2 and 3D cavities at the highest
densities, indicating local processing but a lack of global engagement of the network.

The results are in Fig. 5.6, with the blue curves indicating the cavities on the functional
binary graphs GG when using the unaltered testing sample, and the orange curve those
observed when processing the samples in the adversarial attack set. Thus, our predictions
are confirmed, and we know that the images in the adversarial attack set cannot be
correctly classified by LeNet.

This approach, for the first time allows us to identify test images that the network is

bound to misclassify.
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Figure 5.7: Results of the VGG16 on CIFAR. (a) Number of normalized 1D cavities
(y-axis) as a function of graph density (z-axis) and number of epochs (given at the top of
each plot). (b) Same as (a) but for 2D cavities.

0

5.3.5 Additional results

In the previous sections we illustrated the use of our approach on the LeNet, a historical
DNN. In this section, we replicate results on a recent DNN: VGG16 [194].

In this case, we used the CIFAR10 [110] dataset instead. CIFAR10 consists of 60,000
training images and 10,000 separate test images labelled with 10 different classes. These
are natural images representing common objects (, dog, cat, airplane). For training, data
was augmented using random horizontal flips and random crops of equal image size with
padding = 4. All data was resized to 32 x 32 pixels and mean and variance were normalized.

Fig. 5.7 shows the results of our approach. The first row in this figure shows the number
of 1D cavities as a function of the density of the functional binary graph representing
VGG16. Different plots specify these number at distinct epochs. The second row does the
same but for 2D cavities.

Note how the maximum number of 1D and 2D cavities (indicated by a dashed red
vertical line) moves toward less dense functional representations of the VGG16, as described
the previous sections and Algorithm 2. The lowest density is achieved at epoch 80. After
that, there is a small regression toward higher densities, suggestive of overfitting. These
results are confirmed by the plot of the testing accuracy shown in Fig. 5.8. In this figure
we see that while the training accuracy keeps growing after epoch 80, the testing accuracy
does not. Instead, the testing accuracy slightly decreases after epoch 80, as suggested by
our approach.

In Fig. 5.9, we show the plots of 1D and 2D cavities for the original (unaltered) training
samples (blue curve) and for the adversarial samples (red curve). The plots are given as a
function of the density. As we can see in the figure, the results mimic those reported in

the previous sections, allowing us to detect the adversarial attack.
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T=0.8 T=0.7 T=0.63 T=0.5

Figure 5.10: Example of 1D, 2D and 3D cavity formation in LeNet trained on MINST.

5.3.5.1 Cavity formation: an example

In this chapter, we derived a theory that relates cavity formation with generalization.
These cavities are given by the binary graphs defining the correlation of activation of the
nodes of the DNN.

To clarify the formation of these cavities, let us illustrate this on a selected set of nodes
of the LeNet DNN, Fig. 5.10.

In this figure, we can see the formation of 1D cavities first, then the formation of 2D
cavities, and, finally, the formation of a 3D cavity (second to last binary graph). Note
how these cavities are formed as the density of the binary graph is increased. Then, in the
right-most graph, we see how further increasing the density eliminates all the cavities.

This particular example is for the activation graph formed at epoch 20. Layers are
over-imposed to show location in the network. The location within the layer is chosen for
the best visual effect. By increasing density (i.e, decreasing 7'), more and more edges are
added to the graph. Specifically, at T' = .8, a couple of 2D cavities form. These contribute
to an increase in 3;. At exactly T'= .63 a 3D cavity is realized between these, resulting in

an increase to 5. This cavity is filled at higher densities (7' = .5).

5.3.5.2 Training with Bettis

As this chapter details, we can use our approach as a measure of generalization. Hence,
Algorithm 2 can be used in lieu of the training or verification error to determine when the
network has learned to generalize and before the network overfits to the training data.

This result is illustrated in Fig. 5.11. This figure shows the testing classification
accuracy (in blue) and the difference of the peak densities at epoch ¢ and t — 1 (in
black). Also note that classification accuracies are given on the left y-axis and values of
Ak = /%t - l%t_l are on the right y-axis.

When AE is beyond a small threshold —e, Algorithm 2 decides to stop training. As
shown in the figure that coincides with the point where generalization is achieved (thick
red line in the figure). After that, the network starts to memorize the samples that do not
generalize.

Specifically, given Ak, we can clearly observe three dynamic regimes for k. Initially, in

the first epochs k increases rapidly, it then reaches a maximum value between epochs 8 and
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Figure 5.11: An illustration of Algorithm 2 for n = 1.

32 and then it starts decreasing in the later stage of training. Even where no verification
set is available, one can use this knowledge to deduce when the training should stop. One
can also imagine how this approach may one day be applied to unsupervised learning, but

additional research will be necessary to make this a reality.

5.3.6 Algorithmic complexity

Finally, we give a formal analysis of the computational complexity of the derived algorithm.
N+1
n+1
complex S. In order to compute (3, (.S), one has to compute rank(0,41) where 0,41 € RP*9,

Let the binomial coefficient p = ( ) be the number of n-simplices of a simplicial
p is the number of n-simplices, and ¢ the number of (n + 1)-simplices. This has polynomial
complexity O(q%), a > 1.

Fortunately, the graphs of a network with N nodes are far from complete (i.e, N-
simplices). We take advantage of the graph sparsity to reduce computational complexity.
This means that for typical DNNs, the number of n-simplices is way lower than the
binomial coefficient defined above, unless one is interested in f,(S) for n > 3, or p =1
(i.e, T =0).

In Table 5.1, we show the actual time (in minutes) it takes to compute cavities for a
network with 1,820 nodes for 7" > .5. This corresponds to a single step of Algorithm 2,
excluding training, on a single Intel Xeon, 2.2 GHz CPU.
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dimension | n=1|n <3
LeNet .66 2.71
VGG16 5.15 | 20.24

Table 5.1: Time (in minutes) it takes to compute Betti numbers for LeNet and VGG16.

5.3.7 Experimental details

The networks used in the experiments reported above were trained using stochastic gradient
descent with momentum of .9 and weight decay 5 x 10~*. Learning rate was initialized at
10~* and reduced by half when accuracy stagnated. For training, data was augmented
using random horizontal flips, random rotations of 45 and random crops of equal image size
with padding = 4. The images of the adversarial attack were generated using the approach
of [150]. This approach computes minimal perturbations, that are mostly indistinguishable
to a human observer but have devastating effects on DNNs. In our case, the initial
testing accuracy of above 90% (Fig. 5.2(a)) dropped to random decision (10%) after the

adversarial perturbations were used.

5.4 Conclusion

DNNs are used in a large number of real life products, including face recognition, facial
expression analysis, object recognition, speech recognition, and language translation, to
name but a few. Many companies depend on DNNs to design their products.

The main problem with DNNs is that they behave in a “black-box” manner, i.e, we do
not know how they learn, what they learn, or where these learned deep representations
will fail. This has led to a loss of trust by many [27, 213, 169, 59, 149]. Clear examples of
these are self-driving cars and medical diagnoses, with variants of the following argument:
If we do not know what the network learned and why and where it will fail, how can I
trust it to drive my car or give me a medical diagnosis.

In this chapter, we have introduced a set of tools and algorithms to address these
problems. We accomplished this by defining what learning in deep networks means.
Specifically, we demonstrated that learning to generalize to unseen (test) samples is
equivalent to creating cliques among large number of nodes, whereas memorizing specific
training samples (i.e, a type of learning that does not translate to good generalizations) is
equivalent to topological changes between low-correlated sets of nodes (i.e, nodes that are
not highly cooperative among themselves). We then showed how we can use these same
principles to determine when the network works correctly during testing. Specifically, we
showed we can reliably identify adversarial attacks.

Beyond what we have demonstrated in this chapter, it is worth mentioning that our

approach is general and by no means limited to feedforward neural networks or the use
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of backpropagation. Our approach works equally well on networks that have all types of
directed and undirected edges, e.g., [72], alternative to backpropagation [175], or different
types of activation functions.

Next chapter brings us back to the initial problem of facial action unit recognition.
We will show that by using the newly proposed analytically framework, we can now train
DSIN with increased control and performance and most importantly without the need of
any validation data. This is an important advancement especially for a problem where

labels are very expensive.
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Chapter 6

Improving the Deep Structure
Inference Network Through
Topological Early Stopping

A common technique to avoid overfitting when training deep neural networks (DNN) is
to monitor the performance in a dedicated validation data partition and to stop training
as soon as it saturates. This not only completely ignores what happens inside the model
by focusing only on what it does but it also requires additional labelled data. In this
chapter we use the analytical framework from Chapter 4 and the derived early stopping
algorithm (Alg. 3), which we will call topological early stopping (TES), to the problem
of facial Action Unit (AU) recognition *. This is particularly useful as labelling AUs is
costly which makes robust training of highly parametrized models like DNNs problematic.
We exemplify the benefits of using TES on the Deep Structure Inference Network (DSIN),
the network proposed in Chapter 3. We show that TES is superior in performance to
the early stopping with patience, the standard early stopping algorithm in the literature.
This proves beneficial for AU recognition performance and provides new insights into how

learning and memorizing of AUs occurs in DNNs.

6.1 Introduction

As many other computer vision problems, in recent years, automatic AU recognition
has been mainly performed using deep neural networks (DNN). Training DNNs through
supervised learning requires a vast number of labelled examples. Unfortunately, AU
annotation is an expensive and laborious task: labeling one minute of video can require one
hour for a specially trained coder and a laymen may need a long training in order to have

the appropriate level of expertise. Even with this set aside, quite often the labels are noisy

!The reader is referred to Fig. 6.1 for an illustration of the AUs targeted here.
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AU24 AU25 AU26

Figure 6.1: Hlustration of the Action Units targeted in this chapter. AUO1: inner brow
raiser, AUO2: outer brow raiser, AU04: brow lowerer, AU06: cheek raiser, AUO7: lid
tightener, AU09: nose wrinkler, AU10: upper lip raiser, AU12: lip corner puller, AU14:
dimpler, AU15: lip corner depressor, AU17: chin raiser, AU23: lip tightener, AU25: lips
part, AU26: jaw drop.

or simply biased which affects the quality of what the models will learn. Furthermore,
as they became increasingly successful, DNNs also grew in complexity and became more

7

opaque, being commonly regarded as “black-box” models. This lead to a paradoxical
situation in which, we have models that perform very well, but we do not know how and
why.

A desirable property of a transparent DNN is to be interpretable. Interpretability is
the science of comprehending what a model did (or might have done) [73]. The main focus
of this chapter is to improve interpretability of DSIN as it learns to recognize facial AUs.
This is beneficial to performance as well, as new insights and increased control allow us
to perform early stopping in a novel way. Our main contributions in this chapter are: 1)
Increasing interpretability of DSIN, by looking into the behaviour of the network to decide
when it transitions from learning to memorizing AUs. 2) Harness this new insight to train
the DSIN for facial action recognition without the need of any validation data and with
improved performance. An overview of the approach is depicted in Fig. 6.2.

The rest of this chapter is structured as follows: we present the experimental setting

and discuss results in Sec. 6.2 and we conclude in Sec. 6.3.

2Similar to Chapter 3, throughout this chapter we will denote any specific patch prediction network by
PP(< patch >), e.g., PP(beye) stands for the network trained on the between eye patch.
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Figure 6.2: (a) DSIN consists of an ensemble of patch prediction (PP) networks 2, that
in the first phase learn local facial representations and in a second phase model joint
probabilities of labels through fusion and structure inference [34]. (b) We improve control
and transparency of the optimization process by performing topological early stopping
(TES) with Alg. 3.

6.2 Experimental Settings and Results

We first briefly comment experimental setup followed by a discussion of the main results.

6.2.1 Experimental Settings

We use randomly initialized VGG16 [194] as patch prediction network for DSIN. Even
though this is different to the original DSIN from Chapter 3 where a custom network was
employed, we show experimentally that the difference in performance is negligible. For
the experimental analysis we used BP4D and DISFA, the same two datasets from Chapter
3. A detailed description can be found there. To make things comparable we stick to the
training setting already presented in Chapter 3. All experiments are the result of a 3-fold
cross-validation. The DSIN is trained incrementally. Each of the PP networks are trained
first independently, then together with the immediately superior modules and so on until
all the network is trained jointly (see Alg. 1 in Chapter 3). We use two different strategies
to decide when to stop the training of each PP network. First we use early stopping with
patience (ESP) [16], the standard technique for practitioners of deep learning. We set
the patience factor p € {10,40} and we denote the results by DSINZ*”. The first value
is commonly used in practice, the second was already used in Chapter 3 and it serves
for comparison. Second we use Alg. 3 to stop each training. The result is denoted with
DSINTES,

At each epoch during the training, we compute [;(€), and the coordinates of its

maximum 7" and e(57*). The decision to stop early is based on the dynamic of the
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Figure 6.3: Topology dynamic and TES stopping decision for subnetworks of DSIN (upper
row) and training/validation evaluation dynamic (bottom row) on the BP4D. On the
evaluation dynamic, along with the TES decision (black line) we also mark ESP4, (red
line) and ESPy, (red dashed line) decision.

later, namely the network starts overfitting (transitions from learning to memorizing) when
e(B7"**) starts regressing back to higher values. An actual illustration of it in practice is

shown in Fig. 6.3.

6.2.2 Results and Discussion

Patch Prediction. In Table 6.1 we show the performance per AU of each of the patch
prediction (PP) subnetworks of DSIN. As expected PP networks tend to perform better on
AUs they see and considerably worse on the ones they do not. It is just a confirmation of
the locality characteristic of AUs. In general, each model, infers labels not directly visible
by taking into account label structure. While, as expected the best average performance
is obtained by learning from the whole face, some PP networks are better for specific AUs.
This is the case for five of the seven AUs targeted in BP4D. PP(beye) is best on AUO1L
(inner brow raiser), PP(reye) is considerably better on AU02, PP(rcheek) on AU14, AU15
and AU25.

Early stopping In Figure 6.3 we illustrate the stopping decisions made by TES, ESP;,
and ESP4. On the BP4D, several interesting observations can be made. On average,
ESPq4 stops 3.33 epochs later than TES, while ESP,y 14.7 epochs later. A valid early
stopping can be performed without the use of validation data which is reflected by the
absolute mean difference in accuracy on the validation dataset between TES and ESPq
which is 0.75% nominal and the absolute mean difference between TES and ESP,q which
is 0.91% nominal. On the other hand, if we consider the performance on the training set,
on average the training accuracy when ESP1q stops is 6.03% higher then when TES stops,
while for ESP,q it is 9.85%. The main exception is for ESPy, in the case of PP(nose) and
PP(mouth). Because there is no significant difference in validation performance between
ESP and TES decision to stop, but considerable training performance differences, we argue
that the extra training iterations are used for memorising training samples. In Figure 6.4

we give a few examples of such cases. Observe that most of the memorized samples are
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method | AUOL | AU02 | AUO4 | AU06 | AUO7 | AUL0 | AU12 | AUI4 | AUIL5 | AULT | AU23 | AU24 | avg
PD(faces) | [48.1] | [28.2] | 46.4 | 75.6 | 71.2 | 82.4 | 84.6 | 53.8 | 30.7 | 62.8 | 39.9 | [36.0] | 55.0
PP(reye) | 374 | 35.2 | 39.0 | 65.3 | [70.0] | 71.6 | 73.9 | 60.2 | 22.0 | 484 | 17.8 | 20.7 | 46.8
PP(beye) | 49.4 | 255 | [46.1] | 63.0 | 685 | 659 | 69.3 | 52.6 | 182 | 36.0 | 169 | 8.7 | 434
PP(mouth) | 30.0 | 16.1 | 284 | 65.2 | 69.1 | [80.7] | 81.2 | [62.0] | [32.3] | [60.8] | [37.8] | 341 | 49.8
PP(nose) | 43.7 | 19.7 | 416 | 69.4 | 69.9 | 781 | 795 | 57.2 | 194 | 443 | 266 | 252 | 47.9
PP(rcheck) | 365 | 25.3 | 38.7 | [71.9] | 67.7 | 79.9 | [83.0] | 63.6 | 33.8 | 50.9 | 36.7 | 41.2 | [52.4]

Table 6.1: Recognition results on BP4D per patch. For each AU, best result is marked in bold
and second best result marked between square brackets.

especially for difficult AUs, where in any case the model had problems learning either
because of noisy labels, noisy input or unbalanced classes. For example AU04 in Fig.
6.4(a,c,d), AU17 in Fig. 6.4(b), AU10 in Fig. 6.4(e) or AU1 in Fig. 6.4(a) are good
examples of noisy labels. There is no visual cue that could indicate these AUs. Refer to
Fig. 6.1 for comparison. The only way that the DSIN could predict these labels is by
memorizing the particular mapping between the input and the label. Another interesting
example can be found in Fig. 6.4(f) where the input itself is very noisy due to poor
illumination.

Comparison With State-of-the-Art. In Table 6.2 and Table 6.3 we show final
results of DSIN trained using TES and ESP compared to some state-of-the-art methods.
Notice that even without the use of validation data DSINrgg obtains competitive or
better results. Because of the addition of fusion and structure inference on top of the
PP networks there is considerable benefit to some AUs like AU0O4 and AU14 for BP4D.
These are AUs that benefit from the structure inference as they are highly correlated
(positively or negatively with other) with other AUs (for the pairwise correlations refer to
Figure 3.11) and from fusing the PPs as is the case of AU4 where the dedicated network
PP(mouth) has considerable better performance than the holistic PP(face). If we were to
compare the two ways of training a new set of observations could be made. For example for
BP4D (Table 6.2), it is interesting to notice that in the case of AU02 the improvement is
significant. We hypothesise that this might be the result of the earlier stopping especially
in the case of PP(face), PP(reye) and PP(rcheek) that saves unnecessary memorization
in the networks and permits better learning in the later stages of fusion and structure
learning. Compare this with the result for AU04, where DSINZS? is outperforming both
DSINESP and DSINTES, This might be related to the fact that ESP stops earlier than
the other two for PP(nose) patch related to this AU. In the case of DISFA on the other
hand (Table 6.3), there is significant improvement especially for AU02 which again might
corresponds to the fact that networks trained on upper face patches are stopped from

memorizing earlier by the TES. Finally, in the case of DSINTF

it is important to keep in
mind that the validation data is not needed. Instead, this could be used for increasing the

training partition with further additional benefits for performance and generalization.
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Figure 6.4: After a sufficient number of iterations, if the training continues, the gener-
alization gap increases without any significant improvement on the validation set. We
show here some examples of noisy labels that the dedicated networks of DSIN memorize
between the epoch TES would stop and the epoch ESP would stop.

method | AUOT | AU02 | AU04 | AUOG | AUO7 | AU10 | AUI2 | AUL4 | AU15 | AUI7 | AU23 [ AU24 | AVG
JPML [249] | 326 | 25.6 | 37.4 | 423 | 50.5 | 722 | 741 | 65.7 | 38.1 | 40.0 | 30.4 | 42.3 | 45.9
DRML [250] | 36.4 | 41.8 | 43.0 | 55.0 | 67.0 | 66.3 | 65.8 | 54.1 | 332 | 43.0 | 31.7 | 30.0 | 483
CPM [241] | 434 | 40.7 | 433 | 59.2 | 61.3 | 621 | 685 | 525 | 36.7 | 543 | 395 | 37.8 | 50.0
ROI [119] | 36.2 | 31.6 | 434 | 77.1 | 73.7 | 85.0 | 87.0 | 62.6 | 45.7 | 53.0 | 38.3 | 374 | 56.4
DSINESP [ [49.9] | 41.2 | 54.1 | 731 | 73.4 | 80.0 | [84.9] | [63.5] | 352 | 63.1 | [42.1] | 41.6 | 58.5
DSINESP | 49.7 | [42.5] | 56.6 | 72.0 | [747] | [81.1] | 822 | 62.2 | 365 | [63.9] | 40.1 | 43.3 | [58.7]
DSIN?ES | 50.4 | 44.3 | [56.2] | [73.3] | 75.6 | 79.3 | 832 | 61.2 | [42.7] | 65.2 | 44.2 | [43.1] | 59.9

Table 6.2: AU recognition results on BP4D. Best results are shown in bold. Second best results
are shown in brackets.

method AUO1 | AUO2 | AU04 | AU06 | AU09 | AU12 | AU25 | AU26 avg

APL[255] 11.4 | 12.0 | 301 | 124 | 101 | 659 | 214 | 26.0 | 238
DRML [250] | 17.3 | 17.7 | 374 | 29.0 | 10.7 | 37.7 | 385 | 201 | 26.7
ROI [119] 415 | 264 | [664] | 50.7 | 85 | 89.3 | 88.9 | 15.6 | 485

DSINESP 45,3 | 38.0 65.2 29.4 | [42.8] | [73.8] | 90.2 | 41.5 | [53.3
DSINESP 432 | [39.1] | 67.3 | 31.2 42.6 73.5 | [89.1] | 40.3 | [53.3
DSINTES [44.4] | 43.6 | 64.8 | [33.1] | 43.1 | 72.2 88.0 | [41.3] | 53.8

Table 6.3: AU recognition results on DISFA. Best results are shown in bold. Second best results
are shown in brackets.

6.3 Conclusion

In this final chapter, we studied the functional topology of the DSIN while it learns to
recognize facial AU recognition. We show that even without a separated validation data
partition, the DSIN can be stopped correctly during training with significant benefits for
the performance of the network. Also, it is a first glimpse into what a DNN does when
learning AUs, an important step towards increased transparency and interpretability in

facial AU recognition with deep neural networks.
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Chapter 7
Conclusion

Facial expressions are fundamental for human communication in social contexts. One of
the most important ways of coding facial expressions is by using facial action units, a
set of local micro-expressions defined by muscular facial activity. In this thesis we tackle
the problem of automatic facial action unit recognition from images. We first proposed
the Deep Structure Inference Network, a custom deep neural network specially designed
to learn local facial representations and to model output structure. We then define a
novel generic theoretical framework based on algebraic topology for analyzing deep neural
networks. We show that networks that learn are topologically different from networks that
memorize and we propose an early stopping algorithm that does not need validation data.
Finally, we applied these new insights to the Deep Structure Inference Network for more

performant and more transparent facial action unit recognition.

7.1 Contributions

The complete set of contributions in this thesis are the following:

1. Automatic Facial Expression Recognition. General Framework, Evolu-

tionary Perspective and Trends.

(a) An evolutionary perspective of affect inference from the face (Chapter 2.2).

(b) Definition of comprehensive taxonomy of automatic computer vision approaches

to automatic facial expression recognition (Chapter 2.3).

(c) Extended survey of historical and current trends in AFER (Chapter. 2.4).
2. Performance in Facial Expression Recognition.

(a) Proposal of a model that learns representation, patch and output structure of
the face end-to-end (Chapter 3.3).
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(b) Introduction of a structure inference topology that replicates inference algorithm

in probabilistic graphical models by using a recurrent neural network (Chapter
3.3).

(c) Extended ablation study and experimental analysis of the newly proposed
architecture (Chapter 3.4).

3. Interpretability in Facial Expression Recognition.

(a) Formulation of novel general framework for analysis of deep neural networks

based on algebraic topology (Chapter 4).

(b) Analysis of fundamental topological differences between DNNs that learn and
DNNs that memorize (Chapter 5).

(¢) Analyze and improving performance of the previously proposed architecture for

facial expression architecture using the new theoretical framework (Chapter 6.)

7.2 Future Work

The Deep Structure Inference Network could be improved in several ways. First, at least
initial parts of the network are redundant, there is a lot of room to optimize the size of
the model while keeping its performance. Second, there is also considerable redundancy
in the fusion modules, a slimmer, more simple architecture could be easily envisioned.
Third, several additions would probably make it more robust. For example facial geometry
or person specific features could be used. With the analytical framework proposed we
have barely scratched the surface of what could be done. First, there is a lot of room
for improvement in terms of computation cost. Any advance would greatly increase
its usability in real world scenarios. Then, one could ask very interesting additional
questions. For example, if we can predict transition towards overfitting using topology,
could we get even further by regressing the generalization gap? If we know that deep
networks that learn have specific topological properties, could a topological criterion guide
optimization of neural networks without the need of labelled observations? Finally, in
terms of explainability of facial action unit recognition, it is still not clear when a network
is biased, and why it is taking a certain decision or not. Hopefully, future research will

shed light on at least some of these questions.
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