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Abstract

In this work, we perform a study of different network architectures for 3D gar-
ment reconstruction. In the study, five networks are compared both quantitatively
and qualitatively. The dataset used to train each network is CLOTH3D, which con-
sists of six different garment types: tshirt, top, jumpsuit, dress, skirt, and trousers.
The baseline architecture is introduced in the CLOTH3D paper [2]. Each of the
other four networks are defined by introducing modifications to this baseline: 1)
applying central difference convolution (CDC) to GNNs, 2) new pooling based on
spectral clustering, 3) applying octave convolution to GNNs, and 4) combining
the CDC and pooling networks (CDC-pool). We show that the CDC and pooling
networks independently outperform the baseline, octave, and CDC-pool networks
quantitatively. As well as, the pooling network is best suited for modelling the
complex dynamics present in the dress and skirt garment types, while there is little
difference between the networks for the top, tshirt, trousers, and jumpsuit garment

types.
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1 Introduction

The simulation of realistic 3D garments has numerous applications involving virtual hu-
mans. For instance, this task can be used for creating CGI characters in video games
or movies, and can also be applied in the fashion industry by obtaining a virtual fitting
of the garment to a human body. In fact, any environment which contains virtual 3D
humans can benefit from the use of realistic 3D garments.

In order to provide realism in simulated clothing, the clothes must be properly fitted
to a human body, and the dynamics of the clothes must accurately match the expected
behaviour based on the pose of the human body. For example, if the human body is bent
over forwards, then it is expected that the clothes be tight across the persons back, and
loose in the front. If the simulated clothes do not provide these dynamics, then they are
not performing realistically.

Learning a 3D garment reconstruction model is a challenging task, mainly due to the
lack of available 3D garment data. There are three main approaches for generating 3D
garments: 3D scanning, 2D image to 3D model predictions, or by generating synthetic
data. First, 3D scanning is a time-consuming task that is prone to missing information.
Furthermore, 3D scanned models are in a static state, meaning that each scan will only
be able to capture a garment in a single position, which is not useful for simulations
involving many human poses. Second, predicting 3D garment data from 2D RGB images
is an inaccurate method that cannot capture all of the necessary information required to
create the proper dynamics of the garment fabric. Third, generating synthetic data is
error-free, and can be easily obtained for multiple body poses and garment types.

Recently, CLOTH3D [2] was introduced as the first large-scale synthetic dataset of
3D clothed human sequences. It consists of over 2 million 3D samples with a large vari-
ety of garment types, topologies, shapes, sizes and fabric. The garments were generated
on top of thousands of 3D human pose sequences with different body shapes to provide
realistic cloth dynamics. Due to the large variability in samples, and realism in the cloth
dynamics, CLOTH3D is an excellent source to learn a 3D garment reconstruction model
from.

Along with a new dataset of 3D dressed human samples, the CLOTH3D paper also
provided a 3D garment reconstruction network based on graph neural networks (GNNs).
This network uses a conditional variational auto-encoder (CVAE) to predict the garment
shape, such that the clothes provide realistic draping and dynamics over the provided
human body. The garments are encoded as offsets from the SMPL [10] body, in a similar
fashion as [11]. However, standard SMPL only contains topologies corresponding to a
standard body, which is insufficient for encoding offsets for learning skirt-like garments.
Thus, the CLOTH3D paper also defines a novel topology that joins the inner legs of the
SMPL body, such that the offsets can be properly encoded for learning the skirt and
dress garments.

The goal of this work is to achieve a better understanding of GNNs for clothes sim-
ulation. This is done by studying different network architectures used for 3D garment
reconstruction. Each network is comprised of a modification to the architecture from



CLOTH3D. This architecture is chosen over others for its generalization capabilities of
both standard and skirt-like garments. The studies will include the introduction of two
convolution operators to GNNs: central difference convolution [15], and octave convolu-
tion [3]. Previously, these operators have been applied to convolutional neural networks
(CNNs), but have never been applied to a GNN. On top of these convolution operators,
we also introduce a new pooling technique designed to increase the networks capability
of modelling realistic cloth dynamics. The main idea of this pooling is to use spectral
clustering to form groupings of body vertices, and reduce the number of vertices in the
final pooling layer to six, such that the resulting vertices correspond to the arms, legs,
front and back torso.

The rest of the work is divided into the following sections: section 2 looks at alternative
works that have been done on garment generation. Section 3 provides an overview of the
network from the CLOTH3D paper. Section 4 describes the alternative architectures
implemented in this work, including the original usage of the convolution operators that
have been adapted to GNNs. Section 5 describes the experiments performed, including
the dataset used for training, training options for each network, the different networks
being compared, an ablation study on the capacity of the network, and the final results of
the networks. The resulting architectures are compared both quantitatively using mean
square error of the garment vertices, and qualitatively using rendered samples. Finally,
in section 6, we provide a discussion about the results, and make conclusions based on
the experiments performed.

2 Related Work

In this section we describe both past and current works in 3D garment generation. This
section begins by describing techniques for garment generation from RGB images and 3D
scans, followed by deep learning techniques for fitting garments to human models.

In [16], garment modelling from a single image of a dressed human is performed.
First, using human joint locations in the image, the 3D pose and shape of the human is
estimated. Second, the outlines of each garment in the image are found. Third, using the
estimated human body and projected outlines of the garments, the initial 3D garments
are recovered. Fourth, the shading of the input image is used to obtain fine garment
details, such as wrinkles. Finally, the fine details are applied to the initial garments,
obtaining final 3D garments that well-represent those of the input image. The two main
limitations of this approach are: 1) the assumption that the garments are symmetrical in
the front and back, in order to model the back side of the garment, and 2) the method
does not perform well when there are occlusions in front of the garments.

In [6], a novel framework is introduced for reconstructing high-quality 3D garments
with synthesized texture. A dressed human body is scanned using KinectFusion [12],
where the garments are then extracted and processed using Instant Field-aligned Mesh-
ing [7]. The texture is synthesized separately using DeepTextures [5], and then applied
to the 3D garment model.



Deep learning techniques applied to garment reconstruction are demonstrated in [17,
13, 8]. In [8], two main modules are used to generate realistic clothing from 3D scans
of dressed humans in motion: 1) a linear subspace model for cloth deformations and
factoring out the human body and pose, and 2) a conditional adversarial network is used
to generate normal maps of scanned clothes, to add fine details to an otherwise low-
resolution garment.

TailorNet [13] was introduced as a model for predicting clothing in 3D as a function
of human pose, shape, and garment style. The basis of this model was to capture fine
detailed wrinkle information in garments while using a model that can be generalized for
any garment type. This was done by separating the problem into high and low frequency
components, in order to capture both fine details of the garments, as well as generalizing
for any garment type. Each component was predicted independently using a mixture
of style-shape specific models and an MLP, for the high and low frequency components,
respectively. Finally, the components are added together to obtain the final garment. To
this end, we apply the octave convolution [3] to GNNs, which allows the high and low
frequency components of the garments to be predicted separately.

In our study, we use the CLOTH3D network as a baseline architecture. This architec-
ture consists of a conditional variational auto-encoder, used to reconstruct a 3D garment
to fit a human body. Similar to the work done in [11], the garments are encoded as offsets
from the SMPL human body, such that the network can be generalized to predict any
garment topology. Additionally, this network utilizes a novel topology for the human
body which allows the encoding of skirt and dress garment offsets. More details of this
architecture are described in section 3. Counter to the works of [16, 6, 8, 17|, we do
not use raw images or scanned data to feed the network. Rather, 3D garment data is
provided and reconstructed to fit a a given human body.

The work done in [13] showed that the fine-grain garment information can be recon-
structed by separating the garment into high and low frequency components. To this
end, we apply the octave convolution [3] to GNNs, to observe whether convolving the
high and low frequency components of the garments separately provides any additional
information. Furthermore, we apply the central difference convolution [15] to GNNs to
observe whether the gradient information can be used to learn the fine details of 3D
garments.

3 Overview of CLOTH3D Architecture

The CLOTH3D paper introduced two main features: the CLOTH3D dataset of synthet-
ically generated 3D garments, and a deep learning network for 3D garment generation.
Due to the large variability in garment types and topologies, creating an architecture that
can be generalized for any garment type is difficult. However, a homogeneous dimension-
ality of the input data can be obtained by encoding the garment vertices as a set of offsets
from the body vertices. Thus, the problem is simplified to a prediction of the garment
offsets from a given fixed set of body vertices. The data preprocessing techniques are
described in section 3.1. Finally, a Graph Conditional Variational Auto-Encoder (GC-
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Figure 1: Network architecture from CLOTH3D. a) input garment, b) offsets, ¢) network
architecture, and d) reconstructed garment. Garment images taken from [2].

VAE) is used to predict the garment offsets from a given fixed input topology using
convolutional operations, and is discussed in section 3.2.

3.1 Data Preprocessing

A major issue with creating a garment generation network is the vast variation in garment
types and topology. In order to get around this issue, the garments can be represented as
offsets between the vertices of a fixed SMPL [10] human body topology and the vertices
of the garment. Furthermore, a garment mask is used to highlight the body vertices
connected to different garment types, which allows different garments to be encoded
from all of the body vertices. To obtain the garment offsets from the body, a matching
between the garment and body vertices is required for each sequence. Non-rigid ICP [1]
is used to register the garment vertices on top of the body vertices. In order to get an
accurate matching between the garment and body vertices, both the body and garment
are placed in alignment while in the rest pose. Additionally, the vertices of the default
SMPL body are not spatially dense enough to get a good matching, thus SMPL was
extended to superSMPL by subdividing the body mesh into more vertices. Furthermore,
the vertices of the head, hands, and feet are never matched with any garment. Thus,
these vertices can be removed from the body, resulting in a lower input dimensionality of
14475 vertices. Finally, the topology of skirts and dresses differs greatly from that of the
SMPL body, thus, a novel topology was introduced by connecting the inner leg vertices
between the left and right legs, such that the resulting body can be better matched to
the skirt/dress topology.

3.2 Network

The goal of the introduced network is to learn a meaningful latent space for garments of
any type, shape, or dynamic (wrinkles), which can then be used for generating realistic
draped garments. A Conditional Variational Auto-Encoder (CVAE) network is used to
predict the latent space of the garments. In the work, separate networks were used for
learning the static garments (SVAE) and the dynamic garments (DVAE) which includes
the wrinkle information. The VAE network layers are composed of graph convolutions
and pooling layers. Conditioning variables, cvar, are used in the network to factor out



Figure 2: a), b), and c¢) show steps in the mesh hierarchy for the pooling layers from
CLOTHS3D. d) shows the original segmented regions. Each point in ¢) corresponds to a
single region in d). Garment images taken from [2].

irrelevant parameters from the latent space. The conditioning variables used in SVAE
are the body shape and garment tightness. DVAE on the other hand is conditioned
on body shape, garment tightness, body pose, and the latent code from SVAE. The
conditioning network is trained separately from the main architecture, and is appended
as an additional branch at the end of the encoder. Batch normalization (BN) and ReLU
are used for the GCN and FC layers, as the architecture shows in figure 1.

3.2.1 Graph Convolution

The input data for the network is composed of the set of body vertices, as well as the
body topology (default or skirt) representing the edge connections between the vertices.
Given this input, graph convolutional filters can be used to learn features. The filtering
is then computed using spectral graph convolution [4]:

Yy = ZwZTl(ﬁ)x (1)

where x is the graph node features, w; are the learnable weights, L=2L [Amaz — I, L
is the normalized Laplacian matrix, and T;(L) is the i-th Chebyshev polynomial order.
The size of the receptive field of each node is K, as defined by Chebysev polynomial
order. When K = 0, each node only receives information from itself, and no others. By
setting K = 1, each convolution layer allows each node to receive information from each
of its immediate neighbours only. For all of our experiments, we use K = 1. Thus, to
increase the receptive field of the vertices in the graph, either additional GCN layers are

appended to the network, or pooling layers are used, as described next.

3.2.2 Pooling

The pooling operator was implemented by creating a hierarchy of meshes with decreas-
ing number of vertices. There were 6 different levels used with the following number of
vertices: 14475 — 3618 — 904 — 226 — 56 — 21. An initial segmentation consisting
of 21 regions was created from the highest level body mesh (14475 vertices), which was
used to restrict the grouping of vertices from different segments. Figure 2 demonstrates
the pooling.



3.3 Loss

The conditioning network is trained prior to the VAE, using L1 loss. Its weights are then
frozen during the training of the VAE. The loss for VAE is a combination of a garment
term, a cvar term, and KL-divergence of the latent code. The garment term consists of a
summation of the computed L1 losses for the offsets, mesh-face normals, and mask. The
cvar term is the L1 loss from the conditioning network.

4 Network Changes

The goal of this work is to study different architectures for 3D garment reconstruction.
In this section, we introduce three modifications to the architecture presented in section
3. First, a new pooling based on spectral clustering of the vertices in the SMPL body
is described in section 4.1. The main objectives of the pooling are 1) obtain six vertices
in the final pooling layer representing the arms, legs, front and back torso. 2) force the
lower arms and legs to have a higher density of vertices than the rest of the body. This
allows for more information to be learned from the arms and legs, where the majority of
variability in the garment shape occurs. 3) observe how an alternative grouping of vertices
affects the performance of the network. The second modification to the network is the
adaptation of the Central Difference Convolution (CDC) operator from CNNs to GNNs.
The purpose of CDC is to improve upon the vanilla convolution by incorporating both
intensity-level, and gradient-level information. Due to the success that CDC has shown
when applied to CNNs; it stands to reason that a similar improvement may occur when
CDC is applied to GNNs, as described in section 4.2. The third and final modification to
the baseline network architecture is the adaptation of the octave convolution from CNNs
to GNNs. The octave convolution is used to separate the input features into high and
low frequency components, and perform the convolution operation on each component
individually. The main purpose of the octave convolution is to improve upon the efficiency
of the vanilla convolution. We apply the octave convolution to GNNs in section 4.3.

4.1 Spectral Pooling

In this work, I create new pooling layers based on spectral clustering [14] of the vertices
in the SMPL body. There are four steps involved in this process: 1) split the vertices
in two groups corresponding to the front and back of the human body, 2) apply spectral
clustering recursively to each group. At each iteration, spectral clustering is applied to
each group independently, resulting in ¢ x g groups, where ¢ is the number of clusters
that each group is split into, and ¢ is the number of groups at the current iteration. The
process is repeated until only a single vertex remains in each group. 3) Create the final
pooling layer by merging groups from the front and back regions, and 4) create the new
topology associated with each pooling layer. There are three objectives for this new pool-
ing method. First, is to reduce the graph to six vertices in the final layer, corresponding to
the two arms, two legs, front and back components of the main body. Second, is to force
the lower arms and legs to have a more dense population of vertices than the remainder of
the body. There is higher variability in the clothing for these regions, thus more vertices
are required in order for the model to learn this information appropriately. Finally, the
third objective is to observe how an alternative grouping method of the vertices affects



Figure 3: Separation line between the front and back partitions for the initialization of
the spectral clustering groupings. There are 8123 vertices in the front partition, and 6352
vertices in the back partition.

the model.

In the first step, I separate the vertices into two groups, corresponding to the front
and back of the body. This is done by defining a plane as shown in figure 3. The plane
was defined at the approximate midpoint of the arms and legs of the body, so that the
main body components (arms, legs, and torso) are preserved in both groups.

Second, I apply spectral clustering to each group independently to achieve 5 clusters
each, representing the 5 main body components, and resulting in 10 groups of vertices
overall. Next, spectral clustering with 4 clusters is applied recursively to each remaining
group until only a single vertex is present in each group. There are 6 resulting pooling
layers (therefore 7 levels of vertices by including the initial input) with the following
number of vertices in each: 14475 — 8648 — 2558 — 640 — 160 — 40 — 10.

As stated previously, an objective of the pooling is to obtain six vertices in the final
layer, such that each vertex is assigned to a unique limb: two arms, two legs, front and
back torso. However, after applying spectral clustering, the final layer consists of 10 ver-
tices. Thus, we define the vertices for the final layer manually by merging the two vertices
associated to each limb (arms and legs each contain two) together, therefore reducing 10
vertices to 6.

The fourth and final step is to create the adjacency matrices associated to the vertices
at each pooling layer. Provided as input are the new pooling layers, as well as the initial
adjacency matrix, Ag of 14475 vertices. Each new adjacency matrix A; can be formed by
creating an edge between every pair of vertices v,, and v, in A; iff there exists an edge
between u; and wy, where u;,ur € A;_; and u; C v, and u, C v,,. This approach is
repeated for both the default and skirt topologies. Figure 4 demonstrates the resulting
effects of the pooling.

Due to the increased number of pooling layers, the network architecture has to be
modified, while maintaining the current capacity of the network. Two additional pooling-
plus-GCN blocks were added to the encoder side of the architecture. In order to maintain
the total capacity of the network, the number of GCN layers in each block, as well as the
number of features in each layer were modified such that the total number of features
in the network is approximately the same as the default network. The layers are then



Figure 4: Mesh hierarchy for the new pooling. Top: mesh hierarchy for the standard
topology, Bottom: mesh hierarchy for the skirt topology. From left to right, the number
of vertices in the mesh are: 14475, 640, 160, 40, 6.
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Figure 5: Modified architecture for the additional pooling layers.
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mirrored to the decoder side of the architecture. The new architecture is shown in figure
5.

4.2 Central Difference Convolution

The central difference convolution (CDC) operator was introduced in [15] for face anti-
spoofing. It was used as a replacement for the traditional convolution operator used on
2D feature maps with additional channel dimension. The goal of CDC is to enhance the
generalization capabilities of the vanilla convolution by computing the center-oriented
gradient of sampled values. While the aggregation step in the vanilla convolution com-
putes the weighted sum of all the values in each sampled region, the central difference
aggregation step computes the weighted sum of the difference between each value in the
region and the central value in the region. Finally, in order to achieve a convolution opera-
tor that is capable of learning both intensity-level (vanilla convolution) and gradient-level
(central difference convolution) information, the results from the vanilla convolution and
the central difference convolution are aggregated using a weighted sum. The result of
the sum is referred to as the Central Difference Convolution (CDC). The reduced CDC
aggregation function can be reduced to the difference from the vanilla convolution to the
weighted central difference term:

y(po) = D w(pn) - (z(po+pn)) — 0 x(po) - D w(pn) (2)

pn€ER pnER

where R is the sampled region around the central pixel po, x(po + p,) is the value of the

10
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Figure 6: Information exchange between the high and low frequency components of the
octave convolution. Green arrows represent the component updating itself, as in vanilla
convolution. Red arrows represent information exchange between the two components.
Image from [3]. The total number of features before and after the convolution are ¢,
and oy, respectively. h is the height of the input image, w is the width. f(X; W) is the
vanilla convolution operator on X with weights W.

sampled pixels, w(p,) is the weight associated to the position p, from the center py, z(po)
is the value of the central pixel being sampled, and 6 is the weighting factor between the
vanilla and central difference operators.

As the CDC was successfully able to achieve an enhanced generalization of the vanilla
convolution applied in the 2D domain, it stands to reason that an extension of the CDC
to graph convolutions may be able to enhance the generalization of graph (or in this case,
garment) information in a similar manner. The graph convolution operator described in
section 3.2.1 can be easily adapted to incorporate the CDC, as shown below:

K
y:ZwiTi(L)x—H-x-wl (3)
i=0

4.3 Octave Convolution

The goal of the octave convolution (OctConv) introduced in [3] is to increase the efficiency
of vanilla convolution by separating the feature map into low and high spatial frequency
components, and performing the convolution on these components individually. The high
and low frequency components differ by an octave [9], with the low frequency component
having a lower dimensionality than the high frequency component. Furthermore, the
features are split between the high and low frequency components using a ratio a;, where
there are more features present in the low frequency component. Additionally, the con-
volution is also designed such that the information update for each component not only
occurs from the features of the current component, but also receives information from
the opposite component (ie. the low frequency component receives information updates
from the high frequency component, and vice versa). Figure 6 depicts the information
exchange between the two components.

11
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Figure 7: Information exchange of the octave convolution for GNNs (OctGCN). Green
lines represent information passing within the same component, and red lines represent
information passing between components. For each information exchange, the vanilla
graph convolution is applied: GC'N(x : w) where x is the input feature matrix, and w is
the learnable weight matrix.

The information updates can be implemented efficiently using the vanilla convolution
operator with varying inputs (as shown in equation 4). Furthermore, due to the dif-
ference in dimensionality between the high and low frequency components, up-sampling
and down-sampling must be used to add low frequency data to high frequency, and high
frequency data to low frequency, respectively.

yh= D w0l - (@l +)) G YD W) - (P (ef +0l))  (4)

piERA PR ERP

where A and B represent the high and low frequency components respectively, if the
component to be updated is the high frequency component. Vice-versa otherwise. G“(..)
is the transition function: if A is high, then G* is upsampling, otherwise G*(..) is down-
sampling.

In order to use OctConv in the garment generation network, there are two steps that
need to occur: 1) the OctConv needs to be adapted to handle graph input instead of 2D
images, and 2) the encoder/decoder of the network from section 3 needs to be modified
to handle the separate high and low frequency components, rather than a single compo-
nent. The first step is easily implemented using equations 4, but replacing the vanilla
convolution operator with the graph convolution from section 3.2.1. Figure 6 shows the
exchange of information for the octave graph convolution (OctGCN).

The second step requires a near doubling of effort for the encoder and decoder; mainly,
there are now two components that need to be tracked throughout the network, which
require two separate instances of pooling at each pooling layer. Finally, in order to
maintain a consistent input and output of the overall network, as well as the network
bottleneck with that of the network from section 3, the first layer of both the encoder and
decoder each receive only the high frequency component as input, and the final layers

12
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of the encoder and decoder each output only the high frequency component. The low
frequency component is tracked intermediately within these networks, but is not passed
through the bottleneck. Figure 7 shows the architecture for the octave network.

4.4 Loss

During training of the networks, the loss is computed by two values: offsets, and normals.
The offsets determine the predicted location of the garment vertices, and are provided
as output from the network. The offset loss is then computed as the L1 loss between
the ground truth and predicted offset values. The normals are computed by finding the
normal vector perpendicular to each plane of the garment. The L1 loss between the
predicted normals and ground truth normals is computed to determine the normal loss.
The loss for the network is then computed as the summation of the offset loss and the
normal loss.

5 Experiments

In this work we study different network architectures by performing modifications to the
network described in section 3, which I shall refer to as the default network henceforth.
In this section, I describe the experiments that I performed by applying the proposed
changes in section 4 to the default network, and observing the results. I also explain the
data and the network parameters used for training in sections 5.1 and 5.3, respectively.
Finally, I present the results of an ablation study on the capacity of the network, as well
as a comparison between the different networks tested.

13
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Figure 9: The six different garment types are: a) Tshirt, b) Trousers, c¢) Jumpsuit, d)
Dress, e) Top, and f) Skirt.

5.1 Data

A subset of the CLOTH3D dataset was used for training and testing in this work. There
were 647 outfits used for training, and 60 outfits used for validation. Each outfit consists
of either one, or two garments (top and bottom, or one-piece), and each garment consists
of approximately 300 different body poses, resulting in 194,835 training samples, and
24,395 validation samples. There are six different possible garment types for each outfit,
shown in figure 9. Each of the garments also contains a fabric type from among: silk,
denim, cotton, or leather. The fabric type is an important characteristic for physics-based
simulations, as different fabrics fold/drape in different manners due to the toughness of
the fabric (ie. leather would have fewer wrinkles than silk because leather is less pliable

than silk).

5.2 Networks

There are five networks in this work that are trained and tested against one another. The
first, is the default network in order to establish a baseline. Second, the CDC network
which consists of replacing the vanilla convolution with the central difference convolution
described in section 4.2. Thirdly, the pooling network, which uses the introduced spectral
pooling from section 4.1. The fourth network is the octave network, which like the CDC
network, simply replaces the vanilla convolution from the default network. Finally, the
last network is an amalgamation of the CDC and the pooling networks, in order to observe
the result of the combination of these techniques.

5.3 Training

Each network was trained for 52 epochs, with a learning rate of 0.0001, using adam
optimizer, in batches of size 16. All experiments were completed on a single NVIDIA
GeForce GTX 1080Ti graphics processor. The training was performed incrementally,
starting with 200 training steps, and increasing by 200 every epoch. At each epoch, if
the current offset loss for the validation samples is lower than the previous best, then the
current model is saved, and the best updated. The training curves showing the offset loss
for the validation set for each network are shown in figure 10. As it can be seen, both
the default and pooling networks are not stable during training. However, each network
was able to converge to nearly the same state. Furthermore, we can appreciate that the
central difference convolution provided the most stable networks during training: CDC
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Figure 10: Loss training curves from the validation set during training, for each of the
five main networks.

network and CDC-pooling.

5.4 Ablation Study

A small ablation study is performed on the capacity of the CDC network. As the CDC
and default architectures are very similar (as described in section 4.2), we expect any
changes in capacity to be reflected between these two networks. Thus, we chose the CDC
network for this ablation study because the training curves in figure 10 show that the
CDC network is more stable. In order to modify the capacity of the network, the number
of features is adjusted. The default number of features in the final GCN layers before the
bottleneck is 512, and decreases exponentially by a factor of two as the layers move away
from the bottleneck. In this study, the number of features is increased to 1024, as well as
decreased to 256, in order to observe the effect that either increasing or decreasing the
capacity has on the network.

The training curves for the networks used in the ablation study are shown in figure
11. The 256 feature network had an initial lower loss than the 512 feature or 1024 feature
networks, however, the loss decreased at a slower rate, with a minimum value of 292.
Additionally, the increased capacity network with 1024 features also began with a lower
loss value than the network with 512 features, and decreased at a slower rate, with a
minimum loss of 286. Finally, the network with 512 features had the highest initial loss,
decreased the fastest, and was able to achieve a minimum loss value of 284. Since the 512
feature network had the best performance, neither increasing nor decreasing the capacity
of the network had a positive impact on the result.
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Figure 11: Loss training curves for the CDC network with alternative capacities. From
left to right, the number of features in the final layer of each network are: 512, 256, and
1024.

5.5 Results

In this section, I discuss the results of the networks both quantitatively and qualitatively.

The quantitative results are computed using average per vertex Euclidean error of
the garment vertices. These results are categorized into different blocks: per garment
type, per fabric type, and overall quality. Table 1 shows the average error for each of
these blocks, for each network. For each row in the table, corresponding to the different
garment types or fabric types, the network that performed the best was either the CDC
network, the pooling network, or the CDC-pooling network. This shows that both the
CDC and the new pooling were both able to increase the performance of the network
from the default. Furthermore, the total average of each network shows that the CDC
and pooling networks both achieved the same, and best result over all of the networks.
As stated, the CDC-pooling combined network performed best for certain fabric or gar-
ment types, but on average over all of the garments, it had a lower performance than the
default network.

The octave network had the lowest performance out of all of the networks for almost
all categories: garment or fabric types. Thus, the octave convolution hinders the perfor-
mance of the garment reconstruction network.

As described in section 5.1, each garment, G € RF*V*3 consists of different frames,
F, corresponding to different body poses, and each frame contains a set of vertices, V
corresponding to the garment in a particular pose. Figure 12 plots the ratio of the num-
ber of frames among all garments that have an average error less than a given distance
threshold D. The variance of this value between the different networks is shown to be
low, which means that all of the networks have approximately the same distribution of
error among the samples. When the scale of the plot is increased, it is clear that the CDC
network provides the lowest error at certain intervals, and the octave network has the
most error. Upon further exploration of the graph by viewing alternative intervals, we
found that the CDC, default, pooling, and CDC-pooling networks appear to frequently
intertwine together, meaning that there is very little difference in the error ratios amongst
these networks. The octave network does not at any point contain the lowest error.

The qualitative results are done by observing and comparing the rendered predicted
output garments in different poses amongst the five networks. Figure 13 shows the cate-
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Default | CDC | Pooling | Octave | CDC-Pool
Tshirt 0.0282 | 0.0281 | 0.0271 | 0.0293 0.0282
Trousers | 0.0245 | 0.0254 | 0.0254 | 0.0266 | 0.0241
Jumpsuit | 0.0202 | 0.0204 | 0.0201 | 0.0210 0.0202
Dress 0.0375 | 0.0371 | 0.0374 | 0.0404 0.0381
Top 0.0212 | 0.0211 | 0.0209 | 0.0219 0.0230
Skirt 0.0639 | 0.0610 | 0.0624 | 0.0650 0.0641
silk 0.0397 | 0.0395 | 0.0394 | 0.0415 0.0408
denim 0.0306 | 0.0303 | 0.0304 | 0.0316 | 0.0303
cotton | 0.0246 | 0.0248 | 0.0245 | 0.0262 0.0256
leather 0.0280 | 0.0270 | 0.0277 | 0.0297 0.0266
TOTAL | 0.0304 | 0.0302 | 0.0302 | 0.0320 0.0308

Table 1: Average mean square error of the garment vertices for each of the networks.
The average per garment type is computed first, followed by the average per fabric type,
and lastly the total average for the network. The best result for each row is displayed in
bold.
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Figure 12: Ratio of the number of frames among all garments that have an error less
than distance threshold D € [0.0001, 0.1]. The right side shows a section of the graph at
a larger scale.
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gorized renders of select samples for each network, as well as the ground truth garments.
In many cases of the predicted outputs, there are penetrations of the body through the
garments, which occurs frequently due to the loss function not taking these intersections
into account. All of the networks were fairly accurate at predicting the trousers, top,
and tshirt garments. Even though some of the networks contained body-garment pene-
trations, the overall predicted garments were very similar to one another. On the other
hand, the skirt and dress garments contain a large variety of predictions from among the
networks.

Demonstrated in the fourth and seventh samples, it is clear that the pooling network
has a higher capability of predicting the cloth dynamics for the skirt and dress garments
than the other networks. While there was very little difference between the predicted
garments for the tops, tshirts, trousers, and jumpsuits, the CDC-pooling network was
able to obtain the fewest amount of visible penetrations, thereby making it the most
suitable for predicting these garment types. Also, even though the pooling network claims
the title for best prediction of the skirts and dresses, the CDC-pooling network is a close
second, likely due to the pooling component in the network. Therefore, the CDC-pooling
network has the overall highest qualitative performance among the networks.

6 Conclusions

In this work, we performed a study on different network architectures for 3D garment
reconstruction. Five different architectures were trained using the CLOTH3D dataset,
and compared against one-another. The default architecture that was used as a baseline
for the study was a conditional variational auto-encoder, introduced in the CLOTH3D
paper. The four remaining architectures in the study were all created by modifying cer-
tain aspects of the default. The modifications introduced were: 1) applying the central
difference convolution (CDC) to GNNs 2) creating a new pooling method based on spec-
tral clustering of the vertices in the SMPL human body mesh 3) applying the octave
convolution to GNNs and 4) combining both the new pooling and the CDC. The results
of the architectures were compared both quantitatively using the average error of the
garment vertices, and qualitatively using rendered samples from each network.

The quantitative results have shown that the CDC and the new pooling networks
were both able to outperform the default network, on average, and obtained an equiv-
alent average error. The CDC-pooling network was able to achieve the lowest error for
the trousers garment type, as well as two of the four fabric types among the garments.
The octave network on the other hand performed the worst out of all five tested networks.

The qualitative results showed that all of the networks were able to predict the
trousers, tshirt, and top garment types quite accurately, with very little difference be-
tween them. However, due to the nature of the skirt and dress topology, there exists
more dynamics in the fabric - compared to the other topologies - making the skirt and
dress more difficult to predict. The pooling network was clearly able to outperform the
other networks for the dress and skirt garment types, as it was able to capture more of
the proper cloth dynamics for these types.
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Figure 13: Rendered results from each network. First row represents the ground truth
(GT) for the garments. The results of each network are demonstrated with the same set
of samples, where each column represents a unique sample.



In conclusion, the study performed in this work showed that both the central difference
convolution, and the new pooling based on spectral clustering provide slight improvement
to the default network. Two considerations for future work are: 1) further exploration
and improvement of the pooling, as this alteration had the largest impact on the correct
modeling of the skirt and dress topologies and 2) modification of the loss function to
penalize body penetrations in the garment.
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