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LGGAN is conditioned on body UV map and garment UV semantic segments, Results

Global decoder G_g is responsible to predict low frequency details (overall shape),

Local decoder G_l is responsible to learn specific dynamics w.r.t. each garment class,

The amount of aggregation of global and local information is controlled by weight

decoder G_w through softmax,

e C(lass-specific discriminative feature learning branch classifies masked features to the
target garment class,

e Discriminator D receives the conditioning image (body UV map) and predicted

garment UV map to distinguish real data from fake.

e Garments are registered on top of SMPL [2] mesh to have
homogeneous topology at both training and inference time.

e The UV coordinates are discrete points, thus UV maps have empty
gaps between vertices. we use image inpainting techniques to
estimate the values of the empty spaces.

e We use displacement UV maps that store garment vertices as an offset
over the estimated SMPL body vertices.

e We create UV maps for the garment mesh, garment semantic
segments and body mesh.
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e Shared latent code is
upconvolved to form
per-pixel features,

e Features are masked into

. specific branches by garment
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