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Introduction

▶ The sewerage infrastructure is essential in modern societies.

▶ Primarily focus on the important sewer defect classification task.

▶ Little research on pipe material, shape, or water level classification.

▶ All tasks are needed for determining sewer pipe deterioration.

▶ The CT-GNN Decoder is a multi-task classification network for simul-
taneously inferring all four tasks.

▶ A Graph Neural Network (GNN) refines the per-class embeddings
through the cross-task relationships encoded in an adjacency matrix.

▶ We investigate using Graph Convolutional Networks (GCN) and Graph
Attention Networks (GAT).

Adjacency Matrix
▶ Graphs are represented using an adjacency matrix.

▶ Adjacency matrices can be dynamically inferred or given a priori.

▶ We determine the adjacency matrix based on conditional probabilities of
classes in each pair of tasks.

▶ The adjacency matrix is thresholded at τ and re-weighted with p.

▶ The final weighted and directed adjacency matrix is denoted A.

Fig. 1: Conditional probability matrix, binary adjacency matrices for τ = 0.05 and τ = 0.65,
and the re-weighted adjacency matrix for τ = 0.05 and p = 0.2, for the Sewer-ML dataset.
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Fig. 2: Model overview of the Cross-Task Graph Neural Network (CT-GNN) Decoder. The CT-GNN refines the class features based on dynamically or a priori defined class relationships.

Results

Table 1: Performance on Sewer-ML with a ResNet-50 encoder.

Model Overall Defect Water Shape Material

Model #P (M) ∆MTL F2CIW F1Normal MF1 MF1 MF1
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Benchmark [1] 62.8 - 55.36 91.32 - - -
R50-FT [2] 23.5 - - - 62.53 - -

STL 94.0 +0.00 58.42 92.42 69.11 46.55 65.99
R50-MTL 23.5 +10.36 59.73 91.87 70.51 71.64 80.28
MTAN [3] 48.2 +10.40 61.21 92.10 70.06 68.34 83.48

CT-GCN 25.2 +12.39 61.35 91.84 70.57 76.17 82.63
CT-GAT 24.0 +12.81 61.70 91.94 70.57 74.53 86.63
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Benchmark [1] 62.8 - 55.11 90.94 - - -
R50-FT [2] 23.5 - - - 62.88 - -

STL 94.0 +0.00 57.48 92.16 69.87 56.15 69.02
R50-MTL 23.5 +7.39 58.29 91.57 71.17 79.48 76.35
MTAN [3] 48.2 +6.83 59.91 91.72 70.61 78.50 72.73

CT-GCN 25.2 +7.64 60.07 91.60 70.69 80.32 75.13
CT-GAT 24.0 +7.84 60.57 91.61 71.30 81.10 73.95

Defect Task: In-Depth
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Table 2: Per-class performance on the defect task. Classes are sorted in ascending order
according to their Class-Importance Weight (CIW).

Contributions

▶ The CT-GNN Decoder, a novel graph-based decoder-
focused multi-task classification network.

▶ The first multi-task classification network for classifying
sewer pipe defects and properties.

▶ A data-driven construction of the cross-task graph adja-
cency matrix.

▶ State-of-the-Art performance on all four classification
tasks in the Sewer-ML dataset.

Qualitative Examples

Task Ground Truth R50-MTL CT-GNN

Defect FS, RO FS FS, RO
Water [0%,5%) [0%,5%) [0%,5%)
Shape Circular Circular Circular

Material VC VC VC

Task Ground Truth R50-MTL CT-GNN

Defect OB, FS FS OB, FS
Water [0%,5%) [0%,5%) [0%,5%)
Shape Circular Circular Circular

Material Conc. VC Conc.

Project Page

www.vap.aau.dk/ctgnn
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