

AALBORG UNIVERSITY

DENMARK

Introduction

- The sewerage infrastructure is essential in modern societies.
- Primarily focus on the important sewer defect classification task.
- Little research on pipe material, shape, or water level classification.
- All tasks are needed for determining sewer pipe deterioration.
- The CT-GNN Decoder is a multi-task classification network for simultaneously inferring all four tasks.
- A Graph Neural Network (GNN) refines the per-class embeddings through the cross-task relationships encoded in an adjacency matrix.
- We investigate using Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT).

Adjacency Matrix

- Graphs are represented using an adjacency matrix.
- Adjacency matrices can be dynamically inferred or given a priori.
- We determine the adjacency matrix based on conditional probabilities of classes in each pair of tasks.
- The adjacency matrix is thresholded at τ and re-weighted with p.
- \blacktriangleright The final weighted and directed adjacency matrix is denoted \mathcal{A} .

Fig. 1: Conditional probability matrix, binary adjacency matrices for $\tau = 0.05$ and $\tau = 0.65$, and the re-weighted adjacency matrix for $\tau = 0.05$ and p = 0.2, for the Sewer-ML dataset.

Multi-Task Classification of Sewer Pipe Defects and Properties using a Cross-Task Graph Neural Network Decoder

Meysam Madadi²

Joakim Bruslund Haurum¹

¹ Visual Analysis and Perception Lab, Aalborg University, Denmark ² Computer Vision Center, Autonomous University of Barcelona, Spain ³ Dept. of Mathematics and Informatics, Universitat de Barcelona, Spain

Cross-Task Graph Neural Network (CT-GNN) Decoder

Fig. 2: Model overview of the Cross-Task Graph Neural Network (CT-GNN) Decoder. The CT-GNN refines the class features based on dynamically or a priori defined class relationships.

Results

Table 1: Performance on Sewer-ML with a ResNet-50 encoder.

	Model		Overall	Defect		Water	Shape	Material
-	Model	#P (M)	Δ_{MTL}	F2 _{CIW}	F1 _{Normal}	MF1	MF1	MF1
Validation Split	Benchmark [1]	62.8	-	55.36	91.32	-	-	_
	R50-FT [2]	23.5	_	-	_	62.53	_	_
	STL	94.0	+0.00	58.42	92.42	69.11	46.55	65.99
	R50-MTL	23.5	+10.36	59.73	91.87	70.51	71.64	80.28
	MTAN [3]	48.2	+10.40	61.21	92.10	70.06	68.34	83.48
	CT-GCN	25.2	+12.39	61.35	91.84	70.57	76.17	82.63
	CT-GAT	24.0	+12.81	61.70	91.94	70.57	74.53	86.63
Test Split	Benchmark [1]	62.8	-	55.11	90.94	-	-	-
	R50-FT [2]	23.5	-	-	-	62.88	-	-
	STL	94.0	+0.00	57.48	92.16	69.87	56.15	69.02
	R50-MTL	23.5	+7.39	58.29	91.57	71.17	79.48	76.35
	MTAN [3]	48.2	+6.83	59.91	91.72	70.61	78.50	72.73
	CT-GCN	25.2	+7.64	60.07	91.60	70.69	80.32	75.13
	CT-GAT	24.0	+7.84	60.57	91.61	71.30	81.10	73.95

Sergio Escalera^{1,2,3} Thomas B. Moeslund¹

Contributions

- The CT-GNN Decoder, a novel graph-based decoder-focused multi-task classification network.
- The first multi-task classification network for classifying sewer pipe defects and properties.
- A data-driven construction of the cross-task graph adjacency matrix.
- State-of-the-Art performance on all four classification tasks in the Sewer-ML dataset.

Project Page

www.vap.aau.dk/ctgnn

References

- [1] J. B. Haurum & T. B. Moeslund, Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark, CVPR 2021
- [2] J. B. Haurum, M. Pedersen, C. H. Bahnsen & T. B. Moeslund, Water Level Estimation in Sewer Pipes using Deep Convolutional Neural Networks." Water 2021
- [3] S. Liu, E. Johns & A. J. Davison, End-to-End Multi-Task Learning with Attention," CVPR 2019