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Introduction

» The sewerage infrastructure is essential in modern societies.
EMB, 1.1
» Primarily focus on the important sewer defect classification task.
JDEC,1 JBTL,1
» Little research on pipe material, shape, or water level classification.
» All tasks are needed for determining sewer pipe deterioration. X1 /Al 21 -

» The CT-GNN Decoder is a multi-task classification network for simul-

» The CT-GNN Decoder, a novel graph-based decoder-
focused multi-task classification network.

» The first multi-task classification network for classifying
sewer pipe defects and properties.

» A data-driven construction of the cross-task graph adja-

taneously inferring all four tasks. : : cency matrix.
- - * ¢ » State-of-the-Art performance on all four classification

» A Graph Neural Network (GNN) refines the per-class embeddings ,

through the cross-task relationships encoded in an adjacency matrix. tasks in the Sewer-ML dataset.
» We investigate using Graph Convolutional Networks (GCN) and Graph —

Attention Networks (GAT). Qualitative Examples

Adjacency Matrix L JEMB,T,Cr YT

» Graphs are represented using an adjacency matrix. AT ZT ZT

» Adjacency matrices can be dynamically inferred or given a priori.

» We determine the adjacency matrix based on conditional probabilities of (lassifier

classes in each pair of tasks.

Input Encoder Task Head Bottleneck  Node Embeddings (ross-Task GNN

(C'T-GNN Decoder

» [h |Jacency matrix is threshol nd re-weighted with p.
e adjacency mat s thresholded at ~ and re-weighted with p Fig. 2: Model overview of the Cross-Task Graph Neural Network (CT-GNN) Decoder. The CT-GNN refines the class features based on dynamically or a priori defined class relationships.

» The final weighted and directed adjacency matrix is denoted A.

Results Defect Task: In-Depth
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Fig. 1: Conditional probability matrix, binary adjacency matrices for 7 = 0.05 and 7 = 0.65, CT-GAT 540 +7.84 6057 9161 7130 81.10 7395 Table 2: Per-class performance on the defect task. Classes are sorted in ascending order | |[3] S. Liu, E. Johns & A. J. Davison, End-to-End Multi-Task Learning with

and the re-weighted adjacency matrix for 7 = 0.05 and p = 0.2, for the Sewer-ML dataset.

according to their Class-Importance Weight (CIW).

Attention," CVPR 2019




