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Abstract
Recent years have seen the field of Computer Vision advance by leaps and bounds,
a phenomenon related to the advent of compute GPUs. With these, techniques
such as deep learning have become common place, with other related approaches
such as adversarial networks coming to be staples of machine learning and more
specifically Computer Vision. While this has resulted in a fast pace of improvement
to state-of-the-art results across the board, it has been at the expense of much larger
memory usage and computational cost, vastly increasing the hardware requirements
for training and in many cases executing such methods. Techniques for mitigating
this problem are mostly focused on the post-training stage, where an already trained
model is iteratively trimmed and optimized in order to reduce its total number of
parameters.

In this thesis we explore the usage of high order methods to reduce this com-
putational cost and memory usage, both for classical approaches and in the case
of neural networks. Instead of trying to reduce the size and cost of an already
trained method, we aim to reduce them by design, which results not only in a
faster and more compact trained model, but also a smaller memory footprint and
computational cost during training. Any additional distillation methods could still
be applied afterwards. Although the proposed methods are generic, and thus appli-
cable to a wide array of problems, this thesis is centered around Computer Vision,
and more specifically Human pose and behavior analysis.

Three different but related approaches are presented for such a task. Firstly, we
introduce a simple but effective cascaded regression approach, demonstrating the
effectiveness of higher order regression in reducing the memory and computational
needs of this already classical approach, while also increasing the robustness of
the method. Secondly, we propose a new type of recurrent auto-encoder for video
prediction that directly shares its memory states between the encoder and decoder.
This simple change can be exploited in a variety of ways, resulting in a much lower
resource usage, thanks to its ability to more efficiently leverage the higher order
dynamics of a sequence. Finally, we propose a domain adaptation method that
achieves results comparable to those of the commonly used adversarial approaches
by implicitly aligning high order estimates of both domains probability density
functions. This is done in such a way that no additional parameters or training
steps are necessary, easily outperforming said adversarial approaches in terms of
resource usage.
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Resum
En els darrers anys hem vist el camp de la Visió per Computador avançar ràpidament,
un fenomen relacionat amb l’advent de les GPU de còmput. Amb aquestes, tècniques
tal com l’aprenentatge profund han esdevingut populars, amb altres tècniques rela-
cionades, com ara xarxes adversàries, convertint-se en eines freqüentment utilitzades
en l’aprenentatge per ordinador i, més precisament, Visió per Computador. Mentre
que això ha resultat en un ràpid avenç de l’estat de l’art en tots els àmbits, aquest
ha vingut de la mà d’un major requeriment en memòria i cost computacional, incre-
mentant els requisits de maquinari per entrenar i en molts casos executar aquests
mètodes. Les tècniques existents per mitigar aquest problema s’enfoquen principal-
ment en l’etapa de postentrenament, on un model ja entrenat es poda i optimitza
iterativament per tal de reduir el nombre total de paràmetres.

En aquesta tesi explorem l’ús de mètodes d’alt ordre per tal de reduir l’ús de
memòria i cost computacional, tant en tècniques clàssiques com en xarxes neuronals.
En comptes d’intentar de reduir la mida i cost d’un model ja entrenat, el nostre
objectiu és de reduir-los per disseny, el qual resulta no només en un model entrenat
més ràpid i compacte, però també en uns requeriments computacionals i de memòria
menors durant l’entrenament. Altres mètodes per destil·lar la xarxa segueixen
podent-se aplicar posteriorment. Encara que els mètodes proposats són genèrics i,
per tant, aplicables a una ampla gamma de problemes, aquesta tesi se centra en
Visió per Computador i, més concretament, en l’anàlisi de postura i comportament
humans.

Per aquesta tasca es proposen tres mètodes diferents però relacionats. Primera-
ment, introdüım un mètode de regressió en cascada simple però efectiu, demostrant
la utilitat dels regressors d’alt ordre en reduir la memòria i cost computacional
d’aquesta tècnica clàssica, incrementant la robustesa del mètode de manera si-
multània. En segon lloc, proposem un nou tipus de codificador automàtic per
a la predicció de v́ıdeo que directament comparteix els estats de memòria entre
el codificador i descodificador. Aquest simple canvi es pot explotar en una gran
varietat de maneres, resultant en un ús de recursos molt més baix gràcies a una
codificació més eficient de les dinàmiques d’alt ordre de les seqüències. Finalment,
proposem un mètode d’adaptació de domini que obté resultats similars als obtinguts
per les tècniques adversàries més freqüentment utilitzades, mitjançant l’alineació
d’estimacions d’alt ordre de les funcions de densitat de probabilitat. Això ho fem
de tal manera que no es necessiten paràmetres o passos d’entrenament addicionals,
reduint l’ús de recursos significativament comparat amb les tècniques adversàries.
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Resumen
En los últimos años, hemos visto el campo de la Visión por Computador avanzar
rápidamente, un fenómeno relacionado con el advenimiento de las GPU de cómputo.
Con ellas, técnicas como el aprendizaje profundo se han vuelto populares, mientras
que otras técnicas relacionadas, como las redes adversarias, se han convertido en
herramientas frecuentemente utilizadas en el aprendizaje por ordenador y, más es-
pećıficamente, Visión por Computador. Mientras que eso ha resultado en un rápido
avance del estado del arte en todos los ámbitos, eso ha venido de la mano de un
mayor requerimiento en memoria y coste computacional, incrementando los requi-
sitos de maquinaria para entrenar y en muchos casos ejecutar dichos métodos. Las
técnicas existentes para mitigar el problema se enfocan principalmente en la etapa
post-entrenamiento, donde un modelo ya entrenado se poda y optimiza iterativa-
mente con tal de reducir el número total de parámetros.

En esta tesis exploramos el uso de métodos de alto orden con tal de reducir
el uso de memoria y coste computacional, tanto en técnicas clásicas como en re-
des neuronales. En lugar de intentar reducir el tamaño y coste de un modelo ya
entrenado, nuestro objetivo es reducirlos por diseño, lo cual resulta no solo en un
modelo entrenado más rápido y compacto, sino que también en unos requerimientos
computacionales y de memoria menores durante el entrenamiento. Otros métodos
para destilar la red siguen pudiéndose aplicar posteriormente. Aunque los métodos
propuestos son genéricos y, por tanto, aplicables a un gran rango de problemas,
esta tesis se centra en Visión por Computador y, más concretamente, en el análisis
de la pose y comportamiento humanos.

Para esta tarea se plantean tres métodos diferentes pero relacionados. Primero
introducimos un método de regresión en cascada simple pero efectivo, demostrando
la utilidad de los regresores de alto orden en reducir la memoria y coste computa-
cional de esta técnica clásica y, simultáneamente, incrementando la robustez del
método. En segundo lugar, introducimos un nuevo tipo de codificador automático
para la predicción de video que directamente comparte los estados de memoria entre
el codificador y decodificador. Este simple cambio se puede explotar en una gran
variedad de formas, resultando en un uso de recursos muy inferior gracias a una
codificación más eficiente de las dinámicas de alto orden en las secuencias. Final-
mente, proponemos un método de adaptación de dominio que obtiene resultados
similares a los obtenidos por las más comúnmente utilizadas técnicas adversarias,
utilizando la alineación de estimaciones de alto orden de las funciones de densidad
de probabilidad. Eso lo hacemos de tal modo que no se necesitan parámetros o pa-
sos de entrenamiento adicionales, reduciendo el uso de recursos significativamente
comparado con las técnicas adversarias.
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Chapter 1

Introduction

The ability to make sense of visual stimuli was once thought of as something in-
herent to human beings, and to a lesser degree other animals. While computers
were capable of extensive computation, far surpassing the ability of any one indi-
vidual by orders of magnitude, it was thought that such visual tasks such as face
recognition, the identification of facial expressions, recognition of objects and the
interaction between different elements in a scene would forever remain the domain
of humans.

This started to change decades ago, with the introduction of some now classical
machine learning approaches that could, in a limited fashion, extract knowledge
from images. With the later arrival of massively parallel computing and subsequent
development of ever deeper neural networks trained on that hardware, the picture
quickly changed. In less than a decade, Computer Vision went from a research
domain barely applicable to simple problems, to matching and in some cases even
surpassing humans in a wide array of visual recognition tasks. Face alignment
[1, 2, 3], facial expression recognition [4, 5], object recognition [6, 7], human pose
recovery [8], and even more complex tasks such as scene understanding [9, 10] and
future video prediction [11, 12, 13] are just a few examples.

1.1 Motivation

The explosive growth of Computer Vision and the attainment of ever higher accu-
racies in a wide variety of problems is in no small part due to the development of
deep learning approaches with a higher number of hidden layers and parameters.
The first such successful topology was LeNet [14], introduced in 1989 by Y. LeCun.
The combination of a deep topology, the use of convolutional layers and its training
through back-propagation made it the foundation of modern Computer Vision.

One advantage to CNNs, and the reason why deep learning later became so pop-
ular in the field, is the implicit regularization brought by its convolutional topology.
Each pixel in an image is processed by the same convolutional kernel. This results
on the same set of parameters having a number of effective samples equal to the res-
olution of an image, for each image in the batch. This, combined with the smaller
number of parameters on each layer when compared to a fully connected topology,
means that the network can be trained with a smaller number of samples.

It wasn’t until much later, though, that deep convolutional networks garnered
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popularity. While the results by Y. LeCun were impressive, the main problem with
the algorithm was one of computational cost: training such a network at the time
required CPU super-computers and lengthy training periods, making it difficult and
expensive for other teams to replicate his results or apply the same method to other
datasets. It was in 2012, with the publication of the Alexnet topology introduced
by A. Krizhevsky et al. [15], that this kind of approach garnered interest. The new
topology had 8 layers in total, one more than the LeNet, and a much larger number
of trainable parameters per layer.

What made it possible to train inexpensively was its use of Graphics Process-
ing Units (GPU) for both forward and back-propagation, both neural models and
GPU hardware being well suited for massively parallel computing. In other words,
by then the hardware technology had finally caught up with the computational
requirements of such models. It took a single desktop computer with two GPUs
less than six days to fully train the model. Another reason for its success was the
replacement of classical activation functions such as the hyperbolic tangent and
sigmoid functions with Rectifier Linear Units (ReLU), a type of linear activation
truncated at zero for negative values. This was a type of activation function initially
proposed in 2010 for Restricted Boltzmann Machines [16] and first introduced to
back-propagation based training in this work. It has the advantage of being both a
less expensive and non-saturating function. This mitigates the problem with van-
ishing gradients [17], where gradients tend to zero during back-propagation as the
topology gets deeper.

Since then, many of the gains in accuracy have come from increasing the depth
of such networks, enabled by ever more powerful (and costly) GPUs. VGG-16
[18] followed in 2014 with 16 layers, GoogLeNet [19] in 2015 with 22 layers, and
ResNet [20] in 2016 with 152 layers. ResNet models proposed the use of residual
connections, creating shortcuts between layers that produced shorter paths between
input and output, bypassing the re-emerging vanishing gradients problem to a large
degree and thus allowing for much deeper topologies.

Still, such models require ever larger amounts of memory and compute power,
the issue magnified when considering temporal models working on sequences such
as Recurrent networks [21, 22], and techniques trying to model one or multiple do-
mains as a whole, using a multi-step training approach, as is the case of Generative
Adversarial Networks (GAN) [23]. In this work, we leverage high order methods to
try and reduce both memory and computational cost, both explicitly for classical
machine learning, and in an implicit but clear fashion for deep learning, where ei-
ther the topology or an auxiliary loss are used to more efficiently model high order
relationships within the data.

1.2 Contributions

This thesis approaches Human pose and behavior analysis with the goal of intro-
ducing more efficient Computer Vision techniques in terms of both memory and
computational cost. This is achieved through the analysis and modeling of high
order relationships in the data, providing methods that more efficiently leverage
these relationships. We approach three different sub-tasks to do so: Facial land-
mark alignment as a recognition task, future video prediction as a human behavior
analysis task, and domain adaptation as a method for leveraging unlabeled data.
These three approaches each provide a different solution to reducing the model
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complexity, as summarized below.

1.2.1 Second order linear methods

We first study the use of multivariate polynomial regressors as a direct approach to
modeling higher-order relationships between features in a classical machine learning
approach: linear regression. We specifically focus on face alignment, the process of
finding a subset of facial landmarks, usually corresponding to salient features such
as the contour of the mouth and eyes, the nose, and profile of the face. Classically,
this is achieved through cascaded regression, where a series of linear regressors
iteratively refine an initial guess to the landmark locations [1, 24].

The problem with these approaches is their inherent inability to tackle high-
variability scenarios, such as highly rotated faces or significant changes in illumi-
nation. Usually, this is solved by creating an ensemble of regressors at each stage,
each one trained on a subset of angles and illuminations, and resulting in a signifi-
cant increase in the total number of parameters. Polynomial regression was never
before considered due to it usually resulting in a quadratic increase on the number
of parameters, where N initial features would result in N(N + 1) + 1 parameters
per target variable instead of the N + 1 of a simple linear regressor.

We solve this problem by considering the variance distribution on the data,
highly limiting the number of second-order interactions between features. This in
turn heavily reduces the total number of parameters, bringing it down to below the
amount required for an ensemble model. At the same time, the robustness of the
final model exceeds that of the ensemble-based approaches.

1.2.2 Shared-state Neural Networks

Moving on to deep learning, and more specifically to recurrent generative models,
we introduce a new topology for future video prediction that better leverages the
high order relationships within the data.

Future video prediction is the task of generating the following frames in a video
sequence given the ones immediately before them. This task is generally solved
using some kind of recurrent convolutional model, consisting of both an encoder
and a decoder. The general pipeline of such a model is as follows: first, a series
of known frames are passed through the network. These initialize the states of
both encoder and decoder with the known video sequence. Afterwards, frames are
generated using the decoder and fed back to the encoder, creating a feedback loop
that keeps producing frames past the end of the sequence, effectively predicting its
continuation.

This type of topology has some glaring weaknesses, especially when consider-
ing it through the point of view of high order interactions. In a neural network,
each layer is capable of doubling the maximum order of the considered relation-
ships between variables (see chapter 3). The first layer will only consider linear
relationships, regardless of the subsequent activation function. The second layer
will be able to capture quadratic relationships, while the third will potentially be
capturing fourth-order relations. The problem is that, in a linear pipeline where
the input is fed to the first layer of the encoder and the output is produced by the
last one of the decoder, each layer must capture an (over-)complete representation
of the input, forcing the layers capable of encoding the higher order relations to
also maintain a representation of the lower level ones.
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We solve this problem with a new type of recurrent auto-encoder that fully
shares its states between the encoder and corresponding layers of the decoder.
We show how such a model, apart from directly halving the needed memory and
computational cost, it additionally frees the higher order layers so that they can
focus on capturing the high order dynamics instead of the full sequence, further
reducing the number of required parameters. It also allows us to remove layers
from the network after training, without needing to retrain the network. This
means that we can adjust the complexity of the model for free after training based
on the order of feature relationships present in the data.

1.2.3 Cumulative Distribution Estimation

For our third contribution, we develop a Domain Adaptation (DA) method based
on the estimation of the Probability Distribution Function (PDF), indirectly per-
forming a high order modeling of the same.

Domain Adaptation is the task of matching and aligning two similar probability
distributions, so that the discrepancies between two sets of data are not present in
their feature representation. This comes in handy for a variety of tasks, the most
prominent of which is leveraging unlabeled data when training a model. In such a
case, the labeled and unlabeled data, which might come from different datasets, are
considered as two different domains. A neural network is then trained to predict
the labeled data, and at the same time minimize the discrepancies between both
domains in the feature space.

Two families of methods exist for such a task. The first models the distributions
through simple statistical approximations, such as multi-variate Gaussians. While
such approaches work, they completely ignore the internal structure of the dis-
tributions, effectively using a second-order approximation of the distribution, and
might end up incorrectly aligning them. The second family uses a secondary non-
linear model to approximate the distributions, such as an additional neural network
(most commonly a GAN) [25, 26, 27, 28]. These models successfully capture the
complexity of the distribution by encoding the high order relationships of the sam-
ples into additional adversarial discriminators, but do so at the cost of additional
trainable parameters, memory and computational cost, often further introducing
an additional adversarial training step.

We propose an approach more related to the classical statistical distribution
approximation methods, but capable of modeling the high order statistical dis-
tribution of the samples. Furthermore, it does so without the need for learnable
parameters and with only a minimal amount of additional memory.

1.3 Publications

The following publications are part of this thesis, either in a direct or indirect
fashion. Grayed out entries correspond to works under review as of the time of this
writing.

1.3.1 Journal papers

• M. Oliu, C.A. Corneanu, K. Nasrollahi, O. Nikisins, S. Escalera, Y. Sun,
H. Li, Z, Sun, T.B. Moeslund, M. Greitans. (2016) Improved RGB-DT
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• C.A. Corneanu, M. Oliu, J.F. Cohn, S. Escalera. (2016) Survey on RGB,
3D, Thermal, and Multimodal Approaches for Facial Expression
Recognition: History, Trends, and Affect-related Applications. Trans-
actions on Pattern Analysis and Machine Intelligence.

1.3.2 International conferences and workshops

• I. Ramin, K. Nasrollahi, M. Oliu, C.A. Corneanu, S. Escalera, C. Bahnsen,
D.H. Lundtoft. (2015) Spatiotemporal analysis of RGB-DT facial im-
ages for multimodal pain level recognition. Computer Vision and Pat-
tern Recognition Workshops.

• S. Escalera, J. Gonzalez, X. Baro, P. Pardo, J. Fabian, M. Oliu, H.J. Es-
calante, I. Huerta, I. Guyon. (2015) Chalearn looking at people 2015
new competitions: Age estimation and cultural event recognition.
International Joint Conference on Neural Networks.

• S. Escalera, M. Torres, B. Martinez, X. Baro, H.J. Escalante, I. Guyon, G.
Tzimiropoulos, C. Corneanu, M. Oliu, M. Ali. (2016) Chalearn looking at
people and faces of the world: Face analysis workshop and challenge
2016. Computer Vision and Pattern Recognition Workshops.

• S. Escalera, M. Torres, B. Martinez, X. Baro, H.J. Escalante, I. Guyon, G.
Tzimiropoulos, C. Corneanu, M. Oliu, M. Ali. (2016) Chalearn looking at
people and faces of the world: Face analysis workshop and challenge
2016. Computer Vision and Pattern Recognition Workshops.

• B. Chen, S. Escalera, I. Guyon, V. Ponce, N. Shah, M. Oliu. (2016) Over-
coming Calibration Problems in Pattern Labeling with Pairwise
Ratings: Application to Personality Traits. European Conference on
Computer Vision Workshops.

• V. Ponce, B. Chen, M. Oliu, C. Corneanu, A. Clapes, I. Guyon, S. Escalera.
(2016) Chalearn lap 2016: First round challenge on first impressions-
dataset and results. European Conference on Computer Vision Workshops.

• M. Oliu, C.A. Corneanu, L.A. Jeni, J.F. Cohn, T. Kanade, S. Escalera.
(2016) Continuous Supervised Descent Method for Facial Landmark
Localization. Asian Conference on Computer Vision.

• M. Oliu, J. Selva, S. Escalera. (2018) Folded Recurrent Neural Net-
works for Future Video Prediction. European Conference on Computer
Vision.

• D. Sanchez, M. Oliu, M. Madadi, X. Baró, S. Escalera. (2019) Multi-task
human analysis in still images: 2D/3D pose, depth map, and multi-
part segmentation. International Conference on Automatic Face & Gesture
Recognition.

• M. Oliu, S.A. Bargal, X. Baró, S.escalera (2022) Multi-varied Cumulative
Alignment for Domain Adaptation. International Conference on Image
Analysis and Processing.
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1.4 Thesis outline

The thesis is structured around three main parts, each introducing a different ma-
chine learning approach to the efficient modeling of high order functions, both in
terms of memory and computational requirements. All parts share a similar struc-
ture, with a specific problem being introduced, its related literature explained and
a specific solution being put forward for said problem, followed by experiments and
conclusions.

Part I introduces a simple strategy for cascaded linear regression approaches
through the efficient use of multivariate quadratic regression, resulting in much
more expressive, yet compact models.

Following that, Part II delves into deep learning. First, the relationship between
high order regressors and the depth of neural network models is established in
Chapter 3. This information is then leveraged in Section 4 to improve the flow
of information in recurrent auto-encoders, greatly reducing both the memory and
computational requirements.

Part III is focused on a new metric for Domain Adaptation, where highly com-
plex probability distributions can be aligned while bypassing the need to directly
model the distributions, again resulting in a more compact model.
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Part I

Second order linear methods
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Chapter 2

Continuous Supervised
Descent Method

2.1 Introduction

Facial landmark localization consists of detecting a set of particular points on the
face. Usually these points have semantic meaning, their location being in highly
distinctive places around the eyes, mouth or nose. A set of such points is useful for
expressing both the rigid and non-rigid deformations of the face geometry. Because
facial geometry changes with identity, facial expression and head pose, it is an
important step in many automatic facial analysis tasks such as face recognition,
face expression recognition, face synthesis and age or gender estimation [4].

A common approach for locating landmarks on the face is to model the relation
between the face appearance and its geometry. If we consider X∗ to be the ground
truth geometry, and Φ(I,X) a representation function of a geometry X on an image
I, then starting from an initial estimation X0 landmark location can be formulated
as an optimisation problem of the form:

arg min
∆X

f(X0 + ∆X) = ||Φ(I,X0 + ∆X)− Φ(I,X∗)||22 (2.1)

Because Φ is a highly non-linear function, f is non-convex and has many local
minima, the problem becomes severe in the case of large variations of the texture
which is normally the case with rotations of the head and strong non-rigid de-
formations. Additionally, successfully solving the optimisation problem is highly
dependent on the initialisation.

Historically, Active appearance models (AAM) [29] are one of the most used
methods for 2D face registration. They are an extension of active shape models
(ASM) [30] which encode both geometry and intensity information. More recently,
even though single step landmark location methods have been proposed [31, 32],
the most common approach is to model the relationship between texture and ge-
ometry with a cascade of regression functions [2, 33, 34, 1, 24, 35, 36]. Features are
extracted from the current estimated geometry and passed to the learnt mapping
in order to update the geometry. This process is repeated iteratively for each step
of the cascade, applying a specific mapping to each. If we denote by Ri the regres-
sion function at the ith step of the cascade, by Φi = Φ(I,Xi) the corresponding
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representation and by bi a constant bias, then at every step of the cascade, the
geometry X will be updated in the following way:

Xi+1 = Xi + RiΦi + bi (2.2)

While most cascaded regression methods share this approach, considerable vari-
ation can be found in representation, regression functions and initialisation strate-
gies. The simplest way to initialise the geometry is by starting with the mean
[1, 35, 34]. For faces, this works well in close-to-frontal scenarios but proves in-
efficient when large pose variation occurs. A common solution is to try a set of
random initialisations and consider the median of the predictions as the final so-
lution [37, 2]. Unfortunately, this considerably increases the computational cost.
An alternative approach is to apply the initial part of the cascade and continue
only if the variance of the regressed shapes is low, which is a strong predictor of
convergence towards the global minimum [33]. If this is not the case then a dif-
ferent set of initial shapes is generated. Even so, all these methods are dependent
on the initialisation and prove low generalisation to large head pose rotation. A
coarse-to-fine searching approach was recently proposed to deal with the initialisa-
tion dependency problem [3]. A regression function is learnt from a set of shapes
generated according to a probabilistic distribution on the shape space. A dominant
set approach is used to eliminate outliers between the regressed shapes in an un-
supervised manner. From the filtered subset the centre of a smaller region of the
original space is computed and the process repeated until convergence. While it
prevents locality of the solutions it improves robustness to large pose variation.

The work of Dollar et al. which proved influential in the field of facial landmark
localization, uses intensities of sparse sets of pixels at predefined locations to repre-
sent texture in a shape indexed fashion for learning a fixed linear sequence of weak
regressors [37]. In this way, representation’s output depends on both the image data
and the current estimate of the geometry. Some of the methods propose to jointly
learn the representation and the regression function [2, 33, 35, 34]. In this sense,
several shape indexed locations are randomly generated and then selected based
on a certain optimization criteria. Alternatively, local binary features are learnt
for each landmark independently [34]. During test, very fast landmark localization
is obtained. In a recent method [38], Difference of Gaussians (DoG) features are
selectively extracted from locations arranged in a pattern inspired by the human
visual system [39]. Learnt trees at early stages tend to select indexed DoG fea-
tures computed from distant sampling points while trees at later stages tend to use
nearby sampling points. Finally, a very common problem of most of the proposed
methods, the lack of sensitivity to occlusions is tackled in the work of Burgos et al.
[33]. They propose a method that reduces exposure to outliers by detecting occlu-
sions explicitly and using robust shape-indexed features. It incorporates occlusion
directly during learning to improve shape estimation.

A distinct group of methods use predefined handcrafted representations while
learning the regression function from the data. For example, to overcome the large
computational time required by the regression of many generated shapes at each
stage more simple descriptors are used in the initial stages when coarse localisation
is performed. More complicated representations are used on final stages when
fine localisation takes place [3]. A particularly important set of methods that use
fixed representations are the ones derived from the Supervised Descent Method
(SDM) [1]. SDM uses simplified SIFT features and linear regressors. As is the
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case of previous methods, SDM works well for near frontal faces but fails on strong
rotations. To overcome this problem, Global Supervised Descent Method (GSDM)
[24] introduced an approach which uses a sub-space defined by a set of directions
of maximum variance of the training data to partition the original feature space.
Each partition shares a similar descent direction for the training instances falling
within it. A linear regressor is learnt for each partition. However, GSDM suffers
from two main problems. Both the number of training instances and model size
increase exponentially with the number of sub-space dimensions.

In order to perform landmark localisation under strong rotations while keeping
a fast and compact model, this work proposes a continuous formulation of GSDM.
Instead of using the sub-space to partition the feature space as GSDM does, it
is used to describe a space of linear regressors. This is equivalent to proposing
a regressor which estimates the second derivative of the gradient, instead of the
first as a standard linear regressor would (e.g. in SDM). While this formulation
may not be as expressive as GSDM, the amount of memory and training instances
required increases linearly with the number of dimensions of the sub-space. Also,
the proposed formulation defines a specific linear regressor for each instance.

In summary, our list of contributions is as follows:

• we present a method that improves state-of-the-art results on strongly rotated
faces

• the trained models are small, the amount of memory and training instances
required increase only linearly with the number of dimensions of the sub-
spaces

• the method is fast to train due to its closed form solution

• we have synthesised largest 2D face dataset to date, with a challenging face
rotation distribution

The rest of this paper is organised as follows: in Section 2.2 we formulate the
proposed method, in Section 2.3 we present the experimental analysis and finally,
in Section 2.4, we conclude the paper.

Notations. Vectors (a) and matrices (A) are denoted by bold letters. An u ∈ Rd

vector’s Euclidean norm is ‖u‖2 =
√∑d

i=1 u
2
i . B = [A1; . . . ; AK ] ∈ R(d1+...+dK)×N

denotes the concatenation of matrices Ak ∈ Rdk×N .

2.2 Continuous Supervised Descent Method

2.2.1 Second order regressor

The original SDM method [1] is an exemplar-based method which learns a series of
linear regressors approximating the data to the global optima in a cascaded manner.
Lets consider Xi ∈ Rn×m the m targets for each of n samples at a given cascade
step i, ∆Φi ∈ Rn×(k+1) = Φi − Φi the difference of the feature vectors of length
k from the mean, with a column vector of ones added in order to account for the
bias, and Ri ∈ R(k+1)×m the linear regressor for each of the m parameters. Then
the update formula for SDM can be expressed as follows:

Xi+1 = Xi + (Φi −Φi)Ri = Xi + ∆ΦiRi (2.3)
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This can be seen as learning a linear approximation of the first-order partial
derivatives for each parameter. These correspond to ∂∆Xi+1/∂∆Φi

j = ∆Φi
jR

i
j ,

with Ri being the Jacobian matrix, ∆Φi
j the jth column of ∆Φi and Ri

j the jth

row of Ri. To make this approximation, the slope is considered homogeneous for
any point of the feature space. This assumption does not hold for most problems,
where the gradient direction suffers from large variations on different locations
of that space. On Global SDM [24] these variations are handled by partitioning
the space into different regions and learning a linear regressor for each one. This
approach can approximate with high accuracy the gradient variations at different
regions of the space, but has the problem of doubling the amount of learnt regressors
and required training data each time the space is divided.

Here we introduce a continuous formulation, where a set of bases are learnt for
the regressors, effectively learning a linear approximation of the second derivative.
To do so, first a set of main modes of variation are learnt from either ∆X∗ or ∆Φi

using Principal Component Analysis (PCA):

∆Φ̃i =
[
∆ΦiP1:l,1n

]
, (2.4)

Where l represents the number of bases to learn and P1:l is the projection
matrix. 1n ∈ Rn×1 denotes an all-ones vector. Given that the total number of
learnable parameters for one of m targets equals p = (k + 1)(l + 1), learning the
second derivative for all parameters (l = k) would drastically increase the problem
dimensionality. Estimating the second derivative on the l main variation modes is
a more treatable problem. Given one of the targets ∆Xi

j ∈ Rn×1, its associated
second order regressor is expressed as the solution to the following minimisation
problem:

arg min
Ri

j

||(∆Φi ◦ (∆Φ̃iRi
j))1(k+1) −∆Xi

j ||22 (2.5)

Here, Ri
j ∈ R(l+1)×(k+1) is the set of l bases (and baseline or bias regres-

sor) describing the regressor for the jth target at the ith cascade step, and ◦
denotes the Hadamard product. Note that, according to Equation 2.7, this for-
mulation learns a linear approximation to the second order partial derivatives
∂2∆Xi+1

j /(∂∆Φi
p ∂∆Φ̃i

q) = ∆Φi
p∆Φ̃i

q(Ri
j)pq. Thus Ri

j corresponds to a compact
version of the Hessian matrix for target j at cascade step i, having the dimension-
ality of the feature space reduced before applying the second derivative. Equation
2.5 can be seen as a compact formulation defining a quadratic regressor for each
target, which is known to be a linear problem, having a closed form solution. This
minimisation problem can be expressed in a least squares form, providing a closed
form solution, as follows:

arg min
Ri

j

||(∆Φ̃i �∆Φi)vec(Ri
j

ᵀ
)−∆Xi

j ||22 (2.6)

Here � denotes the Khatri–Rao product, considering each instance (row) on

∆Φi and ∆Φ̃i as a partition of the matrix, and vec(Ri
j
ᵀ
) ∈ R(kl+2)×1 is the vec-

torisation of the regressor bases. Thus, while the second derivative estimate is used
for a subset of principal components, the regressor remains linear. This allows us to
rapidly and directly find the optimal regression weights given the training instances.
Note that this formulation could be extended to estimate higher order derivatives
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by applying the Khatri–Rao product multiple times. At test time, the parameters
are updated with the following equation:

Xi+1
j = Xi

j + (∆Φi ◦ (∆Φ̃iRi
j))1(k+1) (2.7)

This formula estimates the regressor weights and bias for the current value of

the principal components Φ̃i, and applies it to the features. This is more memory-
efficient than performing the Khatri-Rao product of ∆Φi and ∆Φ̃i and then per-
forming a linear regression. The bias for the regressor bases is the baseline regressor
for an instance with the mean value for the l principal components (PCs) of the
feature vector. Each of the l regression bases in Ri corresponds to the second
derivative estimate wrt. a given PC. Note that when l = 0 the model is a standard
linear regressor. Thus, SDM can be seen as a special case of our method where the
second derivative is not taken into account for any PC.

The proposed approach estimates a standard linear regressor for each instance
given the coordinates of the features sub-space ∆Φ̃i. Global SDM assigns the same
one to all instances falling into a given region of the partitioned sub-space. Another
advantage of this approach is that the number of parameters learnt p at each cascade
step increases linearly with the number of bases (p = (k + 1)(l + 1)). With Global
SDM it increases quadratically (p = (k+1)min(1, l2)). These two factors make the
proposed approach both more compact in terms of memory and more accurate, as
shown in Section 2.3.3. Because the regression space is continuous, the weights of
the linear regressor are adapted to each instance, providing more flexibility to the
model. During training, this also implies that for the proposed approach all the
training data is available for each base of the sub-space, helping to reduce over-
fitting. GDSM distributes the data between quadrants, logarithmically reducing
the available training data for each quadrant with the number of sub-space bases.

2.2.2 Implementation details

As discussed in Section 2.2.1, the second derivative of the feature space is calculated
over the l principal components. For this work, similarly to [1], a simplified SIFT
descriptor is extracted from each landmark estimate. The descriptor has a fixed
32 × 32 window around the landmark, rotated according to the in-plane rotation
of the current geometry relative to the mean facial shape. PCA is then applied in
order to reduce its dimensionality. Thus, the feature vector for an instance j at the
cascade step i is defined as Φi

j = sift(Ij ,X
i
j)

ᵀPi
1:k, the k principal components of

the extracted SIFT descriptors. This implicitly provides the l parameters for the

regressor bases, being Φ̃i
j = (Φi

j)1:l. The targets ∆Xi are rotated in the same way
as the descriptor windows in order to maintain a coherent update direction.

The feature vector length k and number of regression bases l may depend on the
problem and are free parameters of the model. Still, there are two considerations to
take into account. In a cascaded regression approach, the first steps of the cascade
broadly approximate the face pose and general shape, while later steps tend to
fine-tune the location of each landmark, working more locally. This implies that
at the fist steps a smaller amount of the total descriptors variance may be enough.
Conversely, a higher amount of regression bases would increase the adaptability
to the descriptors main modes of variation, which are expected to be caused by
pose/illumination variations. The feature vector length k is defined as a fixed
percentage of the original SIFT features variance. While it may be possible to adjust
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the number of bases l at each cascade step (for instance with forward selection), in
this work a global value is chosen for all cascade steps.

The initial shape at the first cascade step is the mean shape. It is calculated from
the training instances ground truth shapes using Generalised Procrustes Analysis.

2.3 Experiments

This section is dedicated to the description and discussion of the experiments con-
ducted to validate the proposed method. We begin in Section 2.3.1 by describ-
ing the two datasets we used, 300W a dataset intensely used by the community
and BU4DFE-S, a dataset we have specially synthesised from BU4DFE, a 3D face
dataset. In Section 2.3.2 we present the experimental setup and the methods used
for comparison 1. In Section 2.3.3 we discuss the results.

The objective of these experiments are two-fold. First we want to show that the
proposed method achieves state-of-the-art results on close-to-frontal faces. For this
purpose we use 300W, a well known public dataset which is the de-facto standard
benchmarking dataset for facial landmark localisation. We then want to show that
the method outperforms other methods when applied to heavily rotated faces. For
this purpose we show results on the BU4DFE-S, a dataset specially synthesised for
this purpose. The reader is referred to Table 2.1 for the overall results on the two
considered datasets and to Figure 2.3 for a comparative study of the robustness
to rotation 2.3. Detection examples are presented in Figure 2.4. The code for the
experiments is made publicly available.

2.3.1 Data

In order to test the proposed method we used 300W, a well known facial expression
dataset. We also designed a new dataset, which we called BU4DFE-S, consisting of
2D faces synthesised from BU4DFE, a public 3D dynamic facial expression dataset.

300W. The 300 Faces In-the-Wild (300W) [40] database is a compilation of six
re-annotated datasets (68 landmarks). Following the same approach as in [34] [38],
four of the six datasets are used: AFW [41], LFPW [42], Helen [43] and iBUG [40].
The test data for LFPW and Helen, along with iBug, are used as test. The rest
of data is used for training. This provides a total of 3148 and 689 train and test
instances. The data is captured outside the lab and it has balanced ethnic and
gender distribution. While challenging and diverse, it does not contain far-from-
frontal faces and its number of samples is rather low.

BU4DFE-S: While annotated face datasets have become more challenging and
diverse in recent years, they still provide a low number of training instances with
limited variation in rotation. In order to compare the robustness of the proposed
method with state-of-the-art facial landmark localisation methods, we have cre-
ated BU4DFE-S, a new large 2D dataset synthesised from the publicly available
BU4DFE. BU4DFE is a high resolution dynamic 3D facial dataset [44]. 101 subjects
of ages between 18 to 45 years old are captured while showing facial expressions
in a controlled environment. The 3D facial expressions are captured at 25 frames
per second. Each sequence begins with the neutral expression, proceeds to target
emotion and then back to neutral. For creating the BU4DFE-S we sample 5 frames

1Code and data generation script available at https://github.com/moliusimon/csdm
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from each captured sequence. The sampled 3D frames are equally distributed along
the sequence, portraying varying intensities of the same expression during onset,
apex and offset.

We use the extracted 3D samples, to build 25 2D projections by rotating the
3D model in pitch and yaw. The projected images are generated as follows. The
BU4DFE provides the 3D point cloud of the face and an RGB image. Additionally
for each of the 3D points the mapping is provided to the corresponding position on
the RGB image, making it possible to map the 3D geometry to the colour texture.
We first homogeneously down-sample the 3D points set by 20 and build a triangle
mesh from the remaining points. The down-sampling factor was heuristically found
as a trade-off between the computational cost for generating the projected images
and their quality. We consider an isometric projection to associate texture patches
to the mesh triangles. The mesh is then rotated with the desired angle and the
triangles are again projected to the 2D plane. The new face is built by affine piece-
wise warping of the initial texture patches to the newly projections of the rotated
triangles by taking into account self occlusions. Inpainting is used to fill warping
holes or artifacts. Finally, the images are resized to a standard size of 200 × 200
pixels and a background is painted on the remaining regions.

We have used the test partition of the Places Dataset, a scene recognition
dataset, to build the backgrounds [45]. It contains 41000 images of size 256 × 256
pixels. From every image we crop two 200× 200 regions, one on the top-let corner
and the other on the bottom-down corner. The former is flipped. We use these im-
ages to place a different background behind each of the generated faces. In Figure
2.1(a) we provide a summarised depiction of the process. The rotation angles follow
an inverse normal distribution for angles between ±90◦ in yaw and ±45◦ in pitch
as shown in Figure 2.1(b). In this way we obtain more highly rotated faces in all
directions than close-to-frontal faces. The generated data contains a total of 75000
rotated images of 100 persons. Each person appears in 750 samples with 6 different
facial expressions at 5 different intensities rotated 25 times. As the BU4DFE, the
subjects are from different ethnicities and follow a balanced gender distribution.
The generated dataset has more instances and rotation variation than any other
existing public 2D dataset. We show some examples in Figure 2.2.

Besides containing a larger number of samples (approximately 24 times more
than 300W), BU4DFE-S has two more important characteristics. First, for each
of the samples the pose is known which is not the case with most of the other
2D face datasets. There exist datasets containing captured faces under different
angles in the lab, but the angle distribution is extremely skewed [46]. Another
advantage of the BU4DFE-S is that we have total control over the pose distribution
of the synthesised data. This makes possible benchmarking the robustness to pose
rotation against state-of-the-art methods as shown in Figure 2.3.

2.3.2 Experimental settings

For the proposed method the parameter space is larger than for SDM, specially
at the first cascade steps. In order to avoid over-fitting, the training data is aug-
mented. For both the 300W and BU4DFE-S datasets the images and geometries
are mirrored, doubling the number of training instances. In the case of 300W,
which consists of only 3148 training images, the dataset is further augmented by
providing 25 different initial geometries. These are generated by applying a random
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(a) Data synthesis for BU4DFE-S.
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(b) Pose rotation distribution for BU4DFE-S.

Figure 2.1: BU4DFE-S contains 2D rotated faces synthesised from BU4DFE, a 3D
dynamic facial expression dataset. In (a) we show how from a original sequence
we sample a limited number of equally spaced frames. For each of these frames we
use the provided 3D mesh and the texture to generate 25 rotated projections. The
rotation angle distribution is shown in (b). We favour far-from-frontal faces with
respect to close-to-frontal ones in order to make the data as challenging as possible.

Figure 2.2: BU4DFE-S dataset samples. Annotated face landmarks are shown in
green.

rotation between [−π/4, π/4], a displacement between [−5%, 5%] for both width
and height, and a scaling factor between [0.9, 1.1] to the mean shape.

Regarding the number of bases l and the captured feature space variance, the
values have been manually chosen for each dataset. For 300W, 2 bases and 95%
of variance are used, while for BU4DFE-S, 5 bases and 85% of variance are used.
It is necessary to use fewer bases in 300W in order to avoid over-fitting, since the
number of training instances is smaller.

We compare the proposed method with the most important facial landmark
localization methods in recent years. This is done using the Normalized Mean
Euclidean Error (NMEE) metric, a standard error metric in the literature [1, 33].
It corresponds to the mean euclidean distance between the detected and ground
truth landmarks, normalized by the inter-ocular distance. In the case of BU4DFE-
S, where large head rotations are present, the 3D inter-ocular distance is used
instead. Otherwise for yaw angles close to 90◦ the inter-ocular distance would
tend to zero, giving more weight to errors on heavily rotated faces. For comparing
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ESR [2] RCPR [33] SDM [1] ERT [35] LBF [34] CGPRT [38] CFSS [3] GSDM [24] CSDM CSDMa

300W 7.58 8.38 7.52 6.40 6.32 5.71 5.76 6.96 6.83 6.40
BU4DFE-S 9.45 8.61 9.57 - - 15.81 - 9.01 8.28 7.62

Table 2.1: Our method compared with state-of-the-art methods in terms of mean
landmark displacement as percentage of inter-ocular distance2 without (CSDM)
and with multiple test initializations (CSDMa).

results we considered the most important state-of-the-art methods [2], [33], [1], [24],
[35], [34], [43], [3]. RCPR is able to deal with occlusions by including occlusion
ground-truth of the landmarks in the learning process. As none of the considered
datasets has annotated occlusions we discarded this feature during training. For the
ERT [35] and LBF [34], we compare with already published results for the 300W.
For a fair comparison we compare the results for the SDM and the GSDM after
training with the same number of steps as the proposed method. It is important to
note that GSDM is a method oriented to tracking the facial geometry, but can be
easily applied to the static case by modifying the definition of the subspace used to
partition the feature space. Instead of using two principal components from ∆Xi

and one from ∆Φi, all principal components are taken from ∆Φi. For the proposed
approach, a 2-dimensional subspace is used in the case of 300W, and a 5-dimensional
one for BU4DFE-S. Finally, two recent methods, CFSS [3] and CGPRT [38], have
been considered. In their paper, the authors of CGPRT publish two results, with
different number of training steps. The result we have obtained was with the larger
number of steps and by initializing with the mean shape. CFSS does a constraint
search of the shape in a coarse-to-fine manner in subsequent finer shape sub-spaces.
Even though a parallel training on the CPU was attempted, we found training to
be very slow, which made impossible obtaining results for BU4DFE-S with the
available hardware resources.

2.3.3 Results discussion

For the 300W dataset, the trained model has been fit to the test data both using
mean shape initialization and with 25 random initializations sampled using the same
criteria used during training (see Section 2.3.2). The results of both approaches are
shown in Table 2.1. Without multiple test initializations, the method has a NMEE
lower than those achieved by ESR, RCPR, SDM and GSDM, also surpassing ERT
when using multiple initializations. Yet LBF, CGPRT and CFSS still have lower
errors. Thus, the proposed approach surpasses, or is close, to most state-of-the-art
methods in the near frontal view conditions of the 300-w dataset.

On BU4DFE-S the proposed method outperforms all considered state-of-the-art
approaches. Because it is a dataset with large head pose rotations in both pitch and
yaw, this dataset better represents the strength of the proposed algorithm to better
adjust to the main modes of variation of the data. This is analyzed in Figure 2.3.
There, the NMEE is shown relative to the yaw rotation, for two ranges of pitch.
Without using multiple test initializations, the proposed method has an accuracy
similar to that of the other state-of-the-art approaches for near-frontal faces, but
is much more robust to pose variations. It works specially well for both large pitch
and yaw rotations. This contrasts with CGPRT, which performed specially well for
the 300W dataset, but had problems with BU4DFE-S. The only method still far

2For the BU4DFE-S we compute the inter-ocular distance in 3D.
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Close to frontal Far from frontal
ESR RCPR SDM CGPRT GSDM CSDM CSDMa ESR RCPR SDM CGPRT GSDM CSDM CSDMa

eyes 3.92 3.38 4.02 10.53 3.92 4.04 3.82 6.94 6.11 6.76 14.29 6.25 5.55 5.20
eyebrows 5.84 5.17 5.60 13.15 5.56 5.84 5.54 9.01 8.02 8.50 17.73 8.12 7.20 6.77

nose 6.03 5.59 5.60 10.30 5.51 5.58 5.27 8.26 7.69 8.58 13.21 8.00 7.41 6.99
mouth 5.46 4.28 4.47 10.91 4.27 4.40 4.27 8.20 6.70 8.18 14.52 6.72 6.17 5.84
contour 12.59 12.11 13.26 17.49 13.52 13.27 12.04 17.30 17.19 18.54 22.43 18.53 17.20 15.27

Table 2.2: Normalized Mean Euclidean Error (NMEE) for different landmark sub-
sets corresponding to facial regions on BU4DFE-S. We group faces according to
their pose. Close-to-frontal faces have an yaw angle between ±30◦ and pitch angle
between ±15◦. Correspondingly far-from frontal faces have both yaw and pitch
angles above ±30◦ and ±15◦ respectively.

from, but approaching the accuracy obtained by the proposed approach is RCPR.
It can be seen in Figure 2.3 that while RCPR has the lowest NMEE for frontal
faces, it one of the best approaches when dealing with large pose variations. When
using multiple test initializations, a much lower average error is obtained, achieving
the same accuracy for near-frontal faces as ERT. This accuracy improvement is
maintained regardless of the facial pose, except for large pose rotations in both
pitch and yaw, where the yaw angle is close to 90◦. For these extreme cases, the
error is only slightly lower than CSDM without using multiple shape initializations.

A breakdown of the NMEE by facial regions, as shown in Table 2.2, gives a
better insight on the method performance. For far from frontal head poses, the
proposed approach surpasses the state-of-the-art accuracies on all facial regions,
both with and without multiple test initializations. In the case of near-frontal head
poses, RCPR has a higher precision for the eyes and eyebrows. CSDM is better at
localizing landmarks at the nose, mouth and contour regions when using multiple
shape initializations. An interesting result is the error reduction when localizing
the contour landmarks with multiple shape initializations. While the other facial
regions reduce the RMSE by about 5%, in the case of the contour it is reduced by
over 10%, both in close to and far from frontal head poses. This is likely caused
by the lack of edges and strong gradients on this region. By averaging multiple
predictions, the noise is reduced, obtaining a higher accuracy.

GSDM is another method that exploits the features main modes of variation to
better approximate the descent direction at different regions of the feature space.
Compared to it, the proposed method obtains better results for both 300W and
BU4DFE-S while also producing a more compact model. The memory required
by GSDM increases quadratically with the number of considered bases, while the
proposed approach does so linearly. Furthermore, each position of the subspace has
a unique regressor assigned, while GSDM shares the same regression weights for a
given partition of the subspace. One downside to the proposed approach is that the
computational cost increases linearly with the number of bases, while for GSDM
the cost remains constant.

Similarly to SDM and GSDM, the proposed method provides a closed-form
solution. Compared to other state-of-the-art methods such as CFSS, CGPRT and
LBF, which use stochastic processes when learning each regressor, the proposed
approach ensures a consistent result on different training runs given the same data.

Multiple qualitative examples of faces from the BU4DFE-S dataset, with the
landmark predictions for different methods, are shown in Figure 2.4. From these
examples it can be seen that SDM, CGPRT and RCPR struggle to correctly locate
inner face landmarks for heavily rotated faces. Compared to all other considered
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Figure 2.3: Normalized Mean Euclidean Error (NMEE) as a function of yaw on
two different pitch ranges on BU4DFE-S.

methods, our proposal has a high accuracy on inner face landmarks even with highly
rotated faces, followed by GSDM and ESR. The main weakness is the localization
of face contour landmarks, which is noisy due to the lack of edges and little texture
information on that area, resulting in a lack of smoothness in the contour line.
Even with this noise, as shown in Table 2.2, the proposed approach has a much
better precision for this set of landmarks. An extension to consider in the future
would be regressing a parametrized shape, which should increase the accuracy for
the face contours.

2.4 Conclusion

In this work we extended cascaded regression approaches by introducing the second
order derivative over the main modes of variation of the features, presenting a
closed-form solution to the face alignment problem. We showed that by doing so,
the robustness to large head pose variations is greatly increased, surpassing current
state-of-the-art methods. At the same time, the accuracy for near-frontal faces is
comparable to state-of-the-art results. Furthermore, the learned models are smaller
than those from other similar approaches.

In order to prove the effectiveness of our method on heavily rotated faces we
have built a new synthetic dataset based on a well known public 3D face dataset.
It contains large variations in both head pose and facial expressions, as well as a
large number of training instances, making it one of the largest, most challenging
datasets for facial landmark localization to date.

Several future improvements can be envisioned, like parameterizing the face to
increase shape consistency especially for landmarks situated in regions with little
texture and extending the method to 3D, which would make it useful for a larger
number of applications.
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Figure 2.4: Facial landmark localisation examples for BU4DFE-S.
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Part II

Shared-state Neural
Networks
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Chapter 3

Order relationships between
features in a neural network

Before moving from a simple linear model such as cascaded regression and into
models based on deep neural networks, it is important to understand how neural
networks capture the different order relationships of their input data. To do so, we
explore a simple neural model known as a quadratic neural network, its equivalence
to polynomial networks and how these in turn directly map into regular neural net-
works. More specifically, we show the maximum order of the relationships captured
to be equal to 2l−1, where l is the total number of layers. The maximum order of
the relationships captured at a given layer is thus dependent on its distance from
the input.

3.1 Quadratic neural networks

During the past decade, various quadratic models have been proposed as a replace-
ment for fully connected layers in a neural network [47, 48] in order to increase
the expressiveness of the resulting model. One such example [47] uses a Volterra
series to describe a 2nd order multiple regression model, which can be compactly
represented as:

yi(x) = xTW2x+ xTW1 + b (3.1)

Here, the response yi(x) of neuron i for a given input feature vector x ∈ R<m>

is decomposed into the summation of a quadratic term parametrized by W2, a
linear term parametrized by W1 and a bias b. We choose this model as a starting
point due to the ease with which different order relationships between variables are
captured. One can easily see that stacking multiple such layers would result in a
doubling of the maximum order of the captured relationships for each additional
layer stacked.

We first rewrite the formulation in order to obtain a more compact form. To do
this, we introduce a bias component to the input, such that x̃ = [x; 1], and use a
single matrix w encoding the quadratic, linear and bias components of the equation
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above:

yi(x) = x̃TWx̃

W =


(W2)1,1 (W2)1,2 .. (W1)1

(W2)2,1 (W2)2,2 .. (W1)2

.. .. .. ..
(W1)1 (W1)2 .. b

 (3.2)

Please note that the resulting quadratic form is still capable of encoding linear
relationships. The resulting matrix would consist on zeros everywhere except the
last row and column, forming a rank 2 matrix.

3.2 Equivalence to polynomial networks

This kind of encoding of the quadratic weights is possible in [47] due to it being
applied to convolutional kernels, reducing the amount of input features. In the
general case the problem becomes intractable, due to the quadratic explosion in
the number of parameters. One possible solution is to decompose the weights
matrix. Please note that W can be symmetric without any loss of generality, since
x̃TWx̃ = x̃TWT x̃. Thus we can decompose it into a matrix of basis and their
corresponding eigenvalues (W = USUT ) through eigendecomposition:

yi(x) = x̃TUSUT x̃ = (x̃TU)S(x̃TU)T (3.3)

Here U ∈ R<(m+1)×k> encodes the basis of W as columns, and S ∈ R<k×k>

is a diagonal matrix with the corresponding eigenvalues. One can use a subset of
basis (k ≤ m+ 1) to encode a rank-k approximation of W .

The formulation in Equation 3.3 describes a single neuron taking a single input
vector. Here we extend it to the multivariate case and to multiple input instances.
Lets define U =

[
U (1), ..., U (n)

]
as the concatenation of the basis for each neuron

U (i). Similarly, lets define S as the diagonal matrix consisting of all S(i). We define
a function y(X) : R<q×m> → R<q×n> mapping q input instances to the output of
n quadratic neurons as:

y(X) =
[
(XU) ◦ (XU)

]
M

where M = SM̃
(3.4)

Here ◦ denotes the Hadamard product. M̃ is a predefined selector matrix adding
the basis that define the quadratic matrix of each neuron. In the case of a standard
quadratic layer, that would be a block-diagonal matrix with column vectors of ones
at the diagonal.

It is easy to see from Equation 3.4 that a quadratic layer corresponds to a two-
layer neural network. Given a quadratic activation function g(x) = x2, Equation 3.4
can be rewritten as:

y(X) = g(XU)M (3.5)

This equation corresponds to a two-layer neural network, where the first hidden
layer z(1) = g(XU) is a standard layer with a quadratic activation and the second
layer z(2) = z(1)M is a layer without an activation function, performing linear
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combinations of the input. Such a neural network is known as a polynomial network
[49]. Some quadratic networks apply an additional activation function to the output
of quadratic units. This would correspond to the activation function of the output
layer in the equivalent two-layer model.

The only difference between a quadratic and polynomial network is the layout
of M . In the case of a quadratic network, M is a sparse matrix, indicating a fixed
connectivity of the output layer. For polynomial networks, M is a dense matrix
instead. Conceptually, both quadratic and polynomial networks encode a quadratic
regressor for each output neuron, with polynomial networks being able to re-use
basis across regressors.

3.3 Equivalence to neural networks

We can go one step further and replace the input X in Equation 3.4 by the equation
itself, obtaining a model with two quadratic layers:

y(X) =
[(
X(2)M (1)U

(2)
)
◦
(
X(2)M (1)U

(2)
)]
M (2)

X(2) =
[
(XU

(1)
) ◦ (XU

(1)
), 1<q×1>

] (3.6)

Here M (i) and U
(i)

correspond to the weighted selector matrix and quadratic
regression basis for layer i. We defined the linear component and bias of the second
layer by concatenating a column of ones to (XU (1)) ◦ (XU (1)) and a new row
and column to M, with all zeros except for the last entry. A point of interest in
Equation 3.6 is the product M (1)U (2). It corresponds to forming the quadratic
kernels for the first layer and computing the second layer basis. Since both sets of

parameters combine linearly, we can remove M (1) and let U
(2)

do both jobs. This
results in the following simplification:

y(X) =
[(
X(2)U

(2)
)
◦
(
X(2)U

(2)
)]
M (2)

X(2) =
[
(XU

(1)
) ◦ (XU

(1)
), 1<q×1>

] (3.7)

The only practical difference is the predefined combination of basis through ma-
trices M i in quadratic networks, computing the quadratic response of each neuron.
In polynomial networks basis are freely combined to form new, higher order basis,
obtaining a potentially more compact model, even if the maximum order of the
captured data relationships is the same.

Please note that Equation 3.7 corresponds to two layers with a quadratic ac-
tivation function, followed by a linear layer without an activation. If we repeat
the stacking process, we get to the more general solution where the stacking of
l quadratic layers are equivalent to a regular neural network with l + 1 layers, all
layers using a quadratic activation function except for the last layer, which is linear.
From this observation we conclude that a regular neural network with l layers is
equivalent to a set of high order regressors, the equivalence being as such:

1. A regular neural network with l layers is equivalent to a compact representa-
tion of 2l−1-th order regressors.

2. There are as many regressors of that order as neurons in the output layer.
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3. Differently from standard n-th order regressors, the basis composing them are
shared due to the outputs of hidden layers being shared among the neurons
of the following layer.

4. In the general case, where other non-linear activation functions are used in-
stead of quadratic activations, we have an equivalent model that, although
not identical to an n-th order regressor, can capture the same order of variable
interactions.
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Chapter 4

Folder Recurrent Neural
Networks

4.1 Introduction

Future video prediction is a challenging task that recently received much attention
due to its capabilities for learning in an unsupervised manner, making it possible
to leverage large volumes of unlabeled data for video-related tasks such as action
and gesture recognition [50, 51, 52], task planning [53, 54], weather prediction [55],
optical flow estimation [56] and new view synthesis [52].

One of the main problems in this task is the need of expensive models, both
in terms of memory and computational power, in order to capture the variability
present in video data. Another problem is the propagation of errors in recurrent
models, which is tied to the inherent uncertainty of video prediction: given a series
of previous frames, there are multiple feasible futures. Left unchecked, this results
in blurry predictions averaging the space of possible futures. When predicting
subsequent frames, the blur is propagated back into the network, accumulating
errors over time.

In this work we propose a new type of recurrent auto-encoder with state sharing
between encoder and decoder. We show how the exposed state in Gated Recurrent
Units (GRU) can be used to create a bidirectional mapping between the input and
output of each layer. To do so, the input is treated as a recurrent state, adding
another set of logic gates to update it based on the output. Creating a stack of
these layers allows for a bidirectional flow of information: The forward gates encode
inputs and the backward ones generate predictions, obtaining a structure similar
to an auto-encoder1, but with many inherent advantages. Only the encoder or
decoder is executed for input encoding or prediction, reducing memory and compu-
tational costs. Furthermore, the representation is stratified: low level information
not necessary to capture higher level dynamics is not passed to the next layer. Also,
it naturally provides a noisy identity mapping of the input, facilitating the initial
stages of training: the input to the first dGRU holds the last encoded frame or,
if preceded by convolutional layers, an over-complete representation of the same.
During generation, the first untrained dGRU randomly modifies the last input, in-

1Code available at https://github.com/moliusimon/frnn
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troducing a noise signal. While the approach does not solve the problem of blur,
it prevents its magnification by mitigating the propagation of errors. Moreover, a
trained network can be deconstructed to analyze the role of each layer in the final
predictions, making the model more explainable. Since the states are shared, the
architecture can be thought of as a recurrent auto-encoder folded in half, with en-
coder and decoder layers overlapping. We call our method Folded Recurrent Neural
Network (fRNN).

Our main contributions are:

1. A new shared-state recurrent auto-encoder with lower memory and compu-
tational costs.

2. Mitigation of error propagation through time.

3. It naturally provides an identity function during training.

4. Model explainability and optimization through layer removal.

5. Demonstration of representation stratification.

4.2 Related work

Video prediction is usually approached using deep recurrent models. While initial
proposals focused on predicting small patches [57, 58], it is now common to generate
the whole frame based on the previous ones.

Building Blocks. Due to the characteristics of the problem, an auto-encoder
setting has been widely used [50, 53, 11, 12, 13]: the encoder extracts informa-
tion from the input and the decoder produces new frames. Usually, encoder and
decoder are CNNs that tackle the spatial dimension. LSTMs are commonly used
to handle the temporal dynamics and project the representations into the future.
Some works compute the temporal dynamics at the deep representation bridging
the encoder and decoder [53, 56, 59, 13]. Others jointly handle space and time by
using Convolutional LSTMs [11, 51, 56, 60, 61] (or GRUs, as in our case), which use
convolutional kernels at their gates. For instance, Lotter et al. [51] use a recurrent
residual network with ConvLSTMs where each layer minimizes the discrepancies
from previous block predictions. Common variations also include a conditional term
to guide the temporal transform, such as a time differential [62] or prior knowledge
of scene events, reducing the space of possible futures. Oh et al. [53] predict future
frames on Atari games conditioning on the player action. Some works propose such
action conditioned models foreseeing an application for autonomous agents learning
in an unsupervised fashion [11, 60]. Finn et al. [11] condition their predictions for
a physical system on the actions taken by a robotic arm interacting with the scene.
The method was recently applied to task planning [54] and adapted to stochastic
future video prediction [63].

Bridge connections. Introducing bridge connections (connections between
equivalent layers of the encoder and decoder) is also common [11, 52, 59, 12]. This
allows for a stratified representation of the input sequence, reducing the capacity
needs of subsequent layers. Video Ladder Networks (VLN) [59] use a convolutional
auto-encoder where pairs of convolutions are grouped into residual blocks. Bridge
connections are added between corresponding blocks, both directly and by using a
recurrent bridge layer. This topology was further extended with Recurrent Ladder
Networks (RLN) [64], where the recurrent bridge connections were removed, and the

44



residual blocks replaced by recurrent layers. Using bridge connections instead of the
proposed state sharing has some disadvantages: higher number of parameters and
memory requirements, impossibility to skip the encoding/decoding steps (resulting
in a higher computational cost) and reduced explainability due to not allowing
layers to be removed after training. Finally, bridge connections do not provide
an initial identity function during training. This makes it hard for the model to
converge in some cases: when the background is homogeneous the model may not
learn a proper initial mapping between input and output, but set the weights to
zero and adjust the bias of the last layer, eliminating the gradient.

Prediction atom. Most of the proposed architectures for future frame predic-
tion work at the pixel level. However, some models have been designed to predict
motion and use it to project the last frame into the future. These may generate
optical flow maps [52, 56] or convolutional kernels [65, 66]. Other methods propose
mapping the input sequence onto predefined feature spaces, such as affine trans-
forms [67] or human pose vectors [68]. These systems use sequences of such features
to generate the next frame at the pixel level.

Loss and GANs. Commonly used loss functions such as L2 or MSE tend to
average the space of possible futures. For this reason, some works [69, 12, 68, 61]
propose using Generative Adversarial Networks (GAN) [70] to aid in the generation
of realistic looking frames and coherent sequences. Mathieu et al. [69] use a plain
multi-scale CNN in an adversarial setting and propose the Gradient Difference Loss
to sharpen the predictions.

Disentangled Motion/Content. Some authors encode content and motion
separately. Villegas et al. [12] use an auto-encoder architecture with a two-stream
encoder: for motion, a CNN + LSTM encodes difference images; for appearance,
a CNN encodes the last input frame. The decoder receives a concatenation of
both and uses multi-scale residual connections. In a similar fashion, Denton et al.
[13] use two separate encoders and an adversarial setting to obtain a disentangled
representation of content and motion. Alternatively, some works predict motion
and content in parallel to benefit from the combined strengths of both tasks. While
Sedaghat et al. [71] propose using a single representation with a dual objective
(optical flow and future frame prediction), Liang et al. [61] use a dual GAN setting
and use predicted motion to refine the future frame prediction.

Feedback Predictions. Finally, most recurrent models are based on the use
of feedback predictions: they input previous predictions to generate subsequent
frames. If not handled properly, this may cause errors to accumulate and magnify
over time. Our model mitigates this by enabling encoder and decoder to be executed
any number of times independently. This is similar to the proposal by Srivastava
et al. [50], which uses a recurrent auto-encoder approach where an input sequence
is encoded and its state copied into the decoder. The decoder is then applied to
generate a given number of frames. However, it is limited to a single recurrent layer
at each part.

Here, stochastic video prediction is not considered. Such models learn and
sample from a space of possible futures to generate the following frames. This
reduces prediction blur by preventing the averaging of possible futures. fRNN could
be extended to perform stochastic sampling by adding an inference model similar to
that in [63] during training. Samples drawn from the predicted distribution would
be placed into the deepest state of the dGRU stack. However, this would make it
difficult to analyse the contribution of dGRU layers to the mitigation and recovery
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Figure 4.1: Left: Scheme of a dGRU. Shadowed areas illustrate additional dGRU
layers. Right: fRNN topology. State cells are shared between encoder and decoder,
creating a bidirectional state mapping. Shadowed areas represent unnecessary cir-
cuitry: re-encoding of the predictions is avoided due to the decoder updating all
the states.

from blur propagation.

4.3 Proposed method

We propose an architecture based on recurrent convolutional auto-encoders to deal
with the network capacity and error propagation problems for future video predic-
tion. It is built by stacking multiple double-mapping GRU layers, which allow for
a bidirectional flow of information between input and output: they consider the
input as a recurrent state and update it using an extra set of gates. These are then
stacked, forming an encoder and decoder using, respectively, the forward and back-
ward gates (Figure 4.1). We call this architecture Folded Recurrent Neural Network
(fRNN). Because of the state sharing between encoder and decoder, the topology
allows for: stratification of the representation, lower memory and computational
requirements compared to regular recurrent auto-encoders, mitigated propagation
of errors, and increased explainability through layer removal.

4.3.1 Double-mapping Gated Recurrent Units

GRUs have their state fully exposed as output. This allows us to define a bidirec-
tional mapping between input and output by replicating the logic gates of the GRU
layer. To do so, we consider the input as a state. Lets define the output of a GRU
at layer l and time step t as hlt = f lf (hl−1

t , hlt−1) given an input hl−1
t and its state

at the previous time step hlt−1. A second set of weights can be used to define an

inverse mapping hl−1
t = f lb(h

l
t, h

l−1
t−1) using the output of the forward function at the

current time step to update its input, which is treated as the hidden state of the
inverse function. This is illustrated in Figure 4.1. We will refer to this bidirectional
mapping as a double-mapping GRU (dGRU).
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4.3.2 Folded Recurrent Neural Network

By stacking multiple dGRUs, a recurrent auto-encoder is obtained. Given n dGRUs,
the encoder is defined by the set of forward functions E = {f1

f , ..., f
n
f } and the

decoder by the set of backward functions D = {fnb , ..., f1
b }. This is illustrated in

Figure 4.1, and is equivalent to a recurrent auto-encoder, but with shared states,
having 3 main advantages:

1. It is not necessary to feed the predictions back into the network in order
to generate the following predictions. Because of state sharing, the decoder
already updates all the states except for the bridge state between encoder
and decoder, which is updated by applying the last layer of the encoder be-
fore decoding. The shadowed area in Figure 4.1 shows the section of the
computational graph that is not required when performing multiple sequen-
tial predictions. For the same reason, when considering multiple sequential
elements before prediction, only the encoder is required.

2. Since the network updates its states from the higher level representations to
the lowest ones during prediction, errors introduced at a given layer are not
propagated into deeper layers, leaving higher-level dynamics unaffected.

3. The model implicitly provides a noisy identity function during training: the
input state of the first dGRU layer is either the input image itself, when
preceded by convolutional layers, or an over-complete representation of the
same. A noise signal is then introduced to the representation by the backward
function of the untrained first dGRU layer. This is exemplified in Figure 4.7,
when all dGRU layers are removed. As shown in Section 4.4.3, this helps the
model to converge on MMNIST: when the same background is shared across
instances, it prevents the model from killing the gradients by adjusting the
biases to match the background and setting the weights to zero.

This approach shares some similarities with VLN [59] and RLN [64]. As with
them, part of the information can be passed directly between corresponding layers of
the encoder and decoder, not having to encode a full representation of the input into
the deepest layer. However, our model implicitly passes the information through the
shared recurrent states, making bridge connections unnecessary. When compared
against an equivalent recurrent auto-encoder with bridge connections, this results in
lower computational and memory costs. More specifically, the number of weights in

a pair of forward and backward functions is equal to 3(hl−1
2
+hl

2
+2hl−1 hl) in the

case of dGRU, where hl corresponds to the state size of layer l. When using bridge

connections, that value is increased to 3(hl−1
2

+ hl
2

+ 4hl−1 hl). This corresponds
to an overhead of 44% in the number of parameters when one state has double the
size of the other, and of 50% when they have the same size. Furthermore, both the
encoder and decoder must be applied at each time step. Thus, memory usage is
doubled and computational cost is increased by a factor of between 2.88 and 3.

4.3.3 Training Folded RNNs

In a regular recurrent auto-encoder, a ground truth frame is introduced at each time
step by applying both encoder and decoder. The output is used as a supervision
point, comparing it to the next ground truth frame. This implies all predictions
are at a single time step from the last ground truth input.
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Conv 1 Conv 2 Pool 1 dGRU 1 dGRU 2 Pool 2 dGRU 3 dGRU 4 Pool 3 dGRU 5 dGRU 6 Pool 4 dGRU 7 dGRU 8
Num. Units 32 64 - 128 128 - 256 256 - 512 512 - 256 256
Kernel size 5× 5 5× 5 2× 2 5× 5 5× 5 2× 2 5× 5 5× 5 2× 2 3× 3 3× 3 2× 2 3× 3 3× 3

Stride 1 1 2 1 1 2 1 1 2 1 1 2 1 1
Activation tanh tanh - sigmoid & tanh - sigmoid & tanh - sigmoid & tanh - sigmoid & tanh

Table 4.1: Parameters of the topology used for the experiments. The decoder
applies the same topology in reverse, using nearest neighbors interpolation and
transposed convolutions to revert the pooling and convolutional layers.

Figure 4.2: Quantitative results on the considered datasets in terms of the number
of time steps since the last input frame. From top to bottom: MMNIST, KTH, and
UCF101. From left to right: MSE, PSNR, and DSSIM. For MMNIST, RLadder is
pre-trained to learn an initial identity mapping, allowing it to converge.

We propose a training approach for fRNNs that exploits their ability to skip the
encoder or decoder at a given time step. First g ground truth frames are passed to
the encoder. The decoder is then applied p times, producing p predictions. This
uses up only half the memory: either encoder or decoder is applied at each step,
never both. This has the same advantage as the approach by Srivastava [50], where
recurrently applying the decoder without further ground truth inputs encourages
the network to learn video dynamics. This also prevents the network from learning
an identity model, i.e. copying the last input to the output.

4.4 Experiments

In this section, we first discuss the data, evaluation protocol, and methods. We then
provide quantitative and qualitative evaluations. We finish with a brief analysis on
the stratification of the sequence representation among dGRU layers.
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MMNIST
MSE PSNR DSSIM

Baseline 0.06989 11.745 0.20718
RLadder 0.04254 13.857 0.13788

Lotter [51] 0.04161 13.968 0.13825
Srivastava [50] 0.01737 18.183 0.08164

Mathieu [69] 0.02748 15.969 0.29565
Villegas [12] 0.04254 13.857 0.13896

fRNN 0.00947 21.386 0.04376

KTH
MSE PSNR DSSIM

0.00366 29.071 0.07900
0.00139 31.268 0.05945
0.00309 28.424 0.09170
0.00995 21.220 0.19860
0.00180 29.341 0.10410
0.00165 30.946 0.07657
0.00175 29.299 0.07251

UCF101
MSE PSNR DSSIM

0.01294 22.859 0.15043
0.00918 23.558 0.13395
0.01550 19.869 0.21389
0.14866 10.021 0.42555
0.00926 22.781 0.16262
0.00940 23.457 0.14150
0.00908 23.872 0.13055

Table 4.2: Average results over 10 time steps.

4.4.1 Data and evaluation protocol

Three datasets of different complexity are considered: Moving MNIST (MMNIST)
[50], KTH [72], and UCF101 [73]. MMNIST consists of 64×64 grayscale sequences
of length 20 displaying pairs of digits moving around the image. We generated a
million training samples by randomly sampling pairs of digits and trajectories. The
test set is fixed and contains 10000 sequences. KTH consists of 600 videos of 15-20
seconds with 25 subjects performing 6 actions in 4 different settings. The videos
are grayscale, at a resolution of 120× 160 pixels and 25 fps. The dataset has been
split into subjects 1 to 16 for training, and 17 to 25 for testing, resulting in 383
and 216 sequences, respectively. Frame size is reduced to 64 × 80 by removing 5
pixels from the left and right borders and using bilinear interpolation. UCF101
displays 101 actions, such as playing instruments, weight lifting or sports. It is the
most challenging dataset considered, with a high intra-class variability. It contains
9950 training and 3361 test sequences. These are RGB at a resolution of 320× 240
pixels and 25 fps. The frame size is reduced to 64× 85 and the frame rate halved
to magnify frame differences.

All methods are tested using 10 input frames to generate the following 10
frames. We use 3 common metrics for video prediction analysis: Mean Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Dissimilarity
(DSSIM). MSE and PSNR are objective measurements of reconstruction quality.
DSSIM is a measure of the perceived quality. For DSSIM we use a Gaussian sliding
window of size 11× 11 and σ = 1.5.

4.4.2 Methods

The proposed method was trained using RMSProp with a learning rate of 0.0001
and a batch size of 12, sampling a random sub-sequence at each epoch. Weights
were orthogonally initialized and biases set to 0. For testing, all sub-sequences
of length 20 were considered. Our network topology consists of two convolutional
layers followed by 8 convolutional dGRU layers, applying a 2×2 max pooling every
2 layers. Topology details are shown in Table 4.1. The convolutional and max
pooling layers are reversed by using transposed convolutions and nearest neighbors
interpolation, respectively. We train with an L1 loss.

For evaluation, we include a stub baseline model predicting the last input frame,
and a second baseline (RLadder) to evaluate the advantages of using state sharing.
RLadder has the same topology as the fRNN model, but uses bridge connections
instead of state sharing. Note that to keep the same state size on ConvGRU layers,
using bridge connections doubles the memory size and almost triples the compu-
tational cost (Sec.4.3.2). This is similar to how RLN [64] works, but using regular
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ConvGRU layers in the decoder. We also compare against Srivastava [50] and
Mathieu [69]. The former handles only the temporal dimension with LSTMs, while
the latter uses a 3D-CNN, not providing memory management mechanisms. Next,
we compare against Villegas [12], which, contrary to our proposal, uses feedback
predictions. Finally, we compare against Lotter et al. [51] which is based on resid-
ual error reduction. All of them were adapted to train using 10 frames as input and
predicting the next 10, using the topologies and parameters defined by the authors.

4.4.3 Quantitative analysis

The first row of Figure 4.2 displays the results for the MMNIST dataset for the
considered methods, with their numeric values shown in Table 4.3. Mean scores are
shown in Table 4.2. fRNN performs best on all time steps and metrics, followed by
Srivastava et al. [50]. These two are the only methods to provide valid predictions
on this dataset: Mathieu et al. [69] progressively blurs the digits, while the other
methods predict a black frame. This is caused by a loss of gradient during the first
training stages. On more complex datasets the methods start by learning an identity
function, then refining the results. This is possible since in many sequences most
of the frame remains unchanged. In the case of MMNIST, where the background
is homogeneous, it is easier for the models to set the weights of the output layer to
zero and set the biases to match the background colour. This truncates the gradient
and prevents further learning. Srivastava et al. [50] use an auxiliary decoder to
reconstruct the input frames, forcing the model to learn an identity function. This,
as discussed at the end of Section 4.3.2, is implicitly handled in our method, giving
an initial solution to improve on and preventing the models from learning a black
image. In order to verify this effect, we pre-trained RLadder on the KTH dataset
and then fine-tuned it on the MMNIST dataset. While KTH has different dynamics,
the initial step to solve the problem remains: providing an identity function. As
shown in Figure 4.2 (dashed lines), this results in the model converging, with an
accuracy comparable to Srivastava et al. [50] for the 3 evaluation metrics.

On the KTH dataset, Table 4.2 shows the best approach is our RLadder base-
line followed by fRNN and Villegas et al. [12], both having similar results, but
with Villegas et al. having slightly lower MSE and higher PSNR, and fRNN a
lower DSSIM. While both approaches obtain comparable average results, the error
increases faster over time in the case of Villegas et al. (second row in Figure 4.2).
Mathieu obtains good scores for MSE and PSNR, but has a much worse DSSIM.
Step-by-step quantitative results are shown in Table 4.3.

For the UCF101 dataset, as seen in Table 4.2, our fRNN approach is the best
performing for all 3 metrics. At third row of Figure 4.2 one can see that Villegas
et al. start out with results similar to fRNN on the first frame, but as in the
case of KTH and MMNIST, the predictions degrade faster. Two methods display
low performance in most cases. Lotter et al. work well for the first predicted
frame in the case of KTH and UCF101, but the error rapidly increases on the
following predictions. This is due to a magnification of prediction artifacts, making
the method unable to predict multiple frames without supervision. In the case
of Srivastava et al. the problem is about capacity: it uses fully connected LSTM
layers, making the number of parameters explode quickly with the state cell size.
This severely limits the representation capacity for complex datasets such as KTH
and UCF101. Step-by-step quantitative results are shown in Table 4.3.
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t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 avg.
Mean Squared Error

Baseline 0.04923 0.06121 0.06642 0.07147 0.07338 0.07512 0.07511 0.07567 0.07542 0.07590 0.06989
RLadder 0.04251 0.04252 0.04252 0.04254 0.04255 0.04253 0.04254 0.04255 0.04255 0.04254 0.04254
prednet 0.03320 0.04264 0.04247 0.04254 0.04255 0.04253 0.04254 0.04255 0.04255 0.04255 0.04161

Srivastava 0.00885 0.01097 0.01308 0.01496 0.01680 0.01856 0.02035 0.02185 0.02335 0.02473 0.01737
Mathieu 0.08091 0.12012 0.15610 0.18058 0.19909 0.21074 0.22253 0.23232 0.23798 0.24156 0.18818
Villegas 0.04251 0.04252 0.04252 0.04254 0.04255 0.04253 0.04254 0.04255 0.04255 0.04255 0.04254

fRNN 0.00475 0.00578 0.00686 0.00784 0.00887 0.00994 0.01105 0.01207 0.01319 0.01435 0.00947

PSNR
Baseline 13.233 12.266 11.937 11.601 11.513 11.396 11.407 11.362 11.388 11.350 11.745
RLadder 13.860 13.859 13.860 13.858 13.856 13.858 13.856 13.855 13.855 13.856 13.857
prednet 14.977 13.849 13.864 13.857 13.856 13.858 13.856 13.855 13.855 13.856 13.968

Srivastava 20.809 19.916 19.177 18.601 18.103 17.681 17.276 16.960 16.671 16.421 18.183
Mathieu 14.041 12.742 11.887 11.422 11.113 10.935 10.764 10.629 10.555 10.508 11.460
Villegas 13.860 13.859 13.860 13.858 13.856 13.858 13.856 13.855 13.855 13.856 13.857

fRNN 24.208 23.287 22.566 21.983 21.455 20.949 20.471 20.060 19.634 19.242 21.386

DSSIM
Baseline 0.15520 0.17771 0.19192 0.20677 0.21422 0.22155 0.22383 0.22647 0.22637 0.22770 0.20718
RLadder 0.13797 0.13776 0.13783 0.13785 0.13780 0.13777 0.13789 0.13799 0.13802 0.13791 0.13788
prednet 0.12801 0.14085 0.14044 0.13906 0.13913 0.13886 0.13899 0.13908 0.13910 0.13899 0.13825

Srivastava 0.05095 0.05916 0.06735 0.07426 0.08072 0.08661 0.09239 0.09707 0.10150 0.10544 0.08164
Mathieu 0.14630 0.23426 0.31246 0.41025 0.49469 0.55449 0.60664 0.64062 0.65243 0.66212 0.47143
Villegas 0.13905 0.13885 0.13891 0.13894 0.13889 0.13886 0.13898 0.13908 0.13910 0.13899 0.13896

fRNN 0.02375 0.02854 0.03336 0.03762 0.04180 0.04612 0.05047 0.05444 0.05871 0.06275 0.04376

Table 4.3: Quantitative results on the Moving MNIST dataset, relative to the
number of time steps since the last input frame and on average over all time steps.

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 avg.
Mean Squared Error

Baseline 0.00103 0.00204 0.00280 0.00338 0.00383 0.00420 0.00450 0.00475 0.00497 0.00515 0.00366
RLadder 0.00080 0.00064 0.00087 0.00110 0.00132 0.00151 0.00169 0.00184 0.00199 0.00213 0.00139
prednet 0.00093 0.00227 0.00234 0.00305 0.00310 0.00354 0.00358 0.00390 0.00394 0.00421 0.00309

Srivastava 0.00839 0.00852 0.00893 0.00940 0.00983 0.01024 0.01061 0.01093 0.01121 0.01145 0.00995
Mathieu 0.00518 0.00725 0.00927 0.01083 0.01208 0.01365 0.01480 0.01575 0.01687 0.01781 0.01235
Villegas 0.00030 0.00063 0.00098 0.00132 0.00161 0.00189 0.00214 0.00234 0.00254 0.00274 0.00165

fRNN 0.00074 0.00097 0.00122 0.00147 0.00170 0.00190 0.00210 0.00228 0.00246 0.00262 0.00175

PSNR
Baseline 34.780 31.774 30.223 29.233 28.515 27.973 27.535 27.180 26.878 26.619 29.071
RLadder 31.737 34.142 33.018 32.109 31.393 30.834 30.375 30.000 29.677 29.397 31.268
prednet 33.701 29.922 29.721 28.365 28.188 27.439 27.275 26.782 26.607 26.238 28.42384

Srivastava 21.974 21.922 21.691 21.439 21.234 21.048 20.892 20.762 20.653 20.559 21.220
Mathieu 23.139 22.307 21.603 21.245 21.036 20.634 20.412 20.287 20.051 19.852 21.056
Villegas 37.575 34.621 32.709 31.430 30.401 29.575 28.940 28.509 28.061 27.640 30.946

fRNN 32.044 31.106 30.320 29.683 29.165 28.749 28.400 28.097 27.829 27.596 29.299

DSSIM
Baseline 0.02873 0.04799 0.06156 0.07211 0.08091 0.08836 0.09483 0.10040 0.10536 0.10978 0.07900
RLadder 0.03249 0.03745 0.04533 0.05268 0.05916 0.06473 0.06965 0.07395 0.07780 0.08125 0.05945
prednet 0.03792 0.07026 0.07281 0.08883 0.09194 0.10199 0.10523 0.11213 0.11533 0.12057 0.09170

Srivastava 0.18878 0.18911 0.19203 0.19530 0.19809 0.20076 0.20307 0.20497 0.20655 0.20788 0.19868
Mathieu 0.10955 0.13427 0.15465 0.15397 0.16485 0.17209 0.18781 0.18569 0.19499 0.20200 0.16599
Villegas 0.01778 0.03261 0.04741 0.06162 0.07656 0.09009 0.09973 0.10550 0.11346 0.12094 0.07657

fRNN 0.04057 0.05004 0.05858 0.06605 0.07262 0.07830 0.08335 0.08787 0.09200 0.09571 0.07251

Table 4.4: Quantitative results on the KTH dataset, relative to the number of time
steps since the last input frame and on average over all time steps.

Overall, for the considered methods, fRNN is the best performing on MMINST
and UCF101, the latter being the most complex of the 3 datasets. We achieved
these results with a simple topology: apart from the proposed dGRU layers, we
use conventional max pooling with an L1 loss. There are no normalization or
regularization mechanisms, specialized activation functions, complex topologies or
image transform operators. In the case of MMNIST, fRNN shows the ability to
find a valid initial representation and converges to good predictions where most
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t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 avg.
Mean Squared Error

Baseline 0.00412 0.00751 0.00992 0.01179 0.01332 0.01456 0.01566 0.01665 0.01753 0.01830 0.01294
RLadder 0.00365 0.00516 0.00674 0.00811 0.00925 0.01022 0.01108 0.01185 0.01254 0.01316 0.00918
prednet 0.00488 0.01049 0.01098 0.01449 0.01516 0.01757 0.01827 0.02013 0.02075 0.02226 0.01550

Srivastava 0.00908 0.05399 0.11943 0.16735 0.18014 0.17885 0.18194 0.19184 0.19989 0.20404 0.14866
Mathieu 0.02550 0.03821 0.04854 0.05707 0.06425 0.07043 0.07560 0.08049 0.08490 0.08933 0.06343
Villegas 0.00268 0.00482 0.00655 0.00812 0.00940 0.01040 0.01150 0.01261 0.01373 0.01443 0.00942

fRNN 0.00274 0.00481 0.00652 0.00795 0.00920 0.01029 0.01122 0.01204 0.01273 0.01334 0.00908

PSNR
Baseline 28.993 25.335 23.812 22.874 22.230 21.765 21.362 21.007 20.722 20.486 22.859
RLadder 26.332 25.979 24.851 23.992 23.373 22.893 22.490 22.154 21.876 21.641 23.558
prednet 25.145 21.592 21.178 19.893 19.565 18.877 18.622 18.173 17.986 17.665 19.869

Srivastava 21.077 13.125 9.876 8.515 8.212 8.212 8.094 7.849 7.670 7.577 10.021
Mathieu 18.753 17.702 17.007 16.531 16.175 15.887 15.662 15.446 15.258 15.063 16.348
Villegas 29.389 26.389 24.759 23.765 22.959 22.440 21.854 21.401 20.940 20.671 23.457

fRNN 28.942 26.411 25.011 24.086 23.402 22.878 22.453 22.111 21.830 21.593 23.872

DSSIM
Baseline 0.06650 0.10611 0.12946 0.14549 0.15735 0.16643 0.17415 0.18086 0.18654 0.19142 0.15043
RLadder 0.06874 0.09301 0.11197 0.12665 0.13804 0.14714 0.15475 0.16118 0.16664 0.17136 0.13395
prednet 0.09469 0.16543 0.17541 0.20803 0.21797 0.23701 0.24533 0.25795 0.26423 0.27286 0.21389

Srivastava 0.13221 0.34915 0.41874 0.46370 0.47410 0.47660 0.47985 0.48424 0.48746 0.48940 0.42555
Mathieu 0.15230 0.19642 0.22664 0.24905 0.26633 0.27976 0.29111 0.30113 0.30967 0.32065 0.25930
Villegas 0.05502 0.09051 0.11414 0.13304 0.14620 0.15725 0.16712 0.17599 0.18492 0.19083 0.14150

fRNN 0.05446 0.08526 0.10694 0.12300 0.13569 0.14580 0.15421 0.16115 0.16700 0.17195 0.13055

Table 4.5: Quantitative results on the UCF-101 dataset, relative to the number of
time steps since the last input frame and on average over all time steps.

other methods fail. In the case of KTH, fRNN has an overall accuracy comparable
to that of Villegas et al., being more stable over time. It is only surpassed by the
proposed RLadder baseline, a method equivalent to fRNN but with 2 and 3 times
more memory and computational requirements.

4.4.4 Qualitative analysis

In this section we evaluate our approach qualitatively, observing how the model
behaves in terms of predicting movement dynamics, reconstructing occluded regions
and specially on the propagation of blur. We then compare predictions from our
approach against those of other state-of-the-art methods.

We evaluate our approach on some samples from the three considered datasets.
Figure 4.3 shows the last 5 input frames from some MMNIST sequences along with
the next 10 ground truth frames and their corresponding fRNN predictions. As
shown, the digits maintain their sharpness across the sequence of predictions. Also,
the bounces at the edges of the image are correctly predicted and the digits do
not distort or deform when crossing each other. This shows the network internally
encodes the appearance of each digit, facilitating their reconstruction after sharing
the same region in the image plane.

Qualitative examples of fRNN predictions on the KTH dataset are shown in
Figure 4.4. It shows three actions: hand waving, walking, and boxing. The blur
stops increasing after the first three predictions, generating plausible motions for
the corresponding actions while background artifacts are not introduced. Although
the movement patterns for each type of action have a wide range of variability on
its trajectory, dGRU gives relatively sharp predictions for the limbs. The first and
third examples also show the ability of the model to recover from blur. The blur
slightly increases for the arms while the action is performed, but decreases again
as these reach the final position.
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Figure 4.3: fRNN prediction examples on MMNIST. First row for each sequence
shows last 5 inputs and target frames. Yellow frames are model predictions.

Figure 4.4: fRNN prediction examples on KTH. First row for each sequence shows
last 5 inputs and target frames. Yellow frames are model predictions.

Figure 4.5 shows fRNN predictions on the UCF101 dataset. These correspond
to two different physical exercises and a girl playing the piano. Common to all
predictions, the static parts do not lose sharpness over time, and the background
is properly reconstructed after an occlusion. The network correctly predicts ac-
tions with low variability, as shown in rows 1-2, where a repetitive movement is
performed, and in the last row, where the girl recovers a correct body posture.
Blur is introduced to these dynamic regions due to uncertainty, averaging the pos-
sible futures. The first row also shows an interesting behavior: while the woman is
standing up the upper body becomes blurry, but the frames sharpen again as the
woman finishes her motion. Since the model does not propagate errors to deeper
layers nor makes use of previous predictions for the following ones, the introduc-
tion of blur does not imply it will be propagated. In this example, while the middle
motion could have multiple predictions depending on the movement pace and the
inclination of the body, the final body pose has lower uncertainty.

In Figure 4.6 we compare predictions from the proposed approach against the
RLadder baseline and other state-of-the-art methods. For the MMNIST dataset
we do not consider Villegas et al. and Lotter et al. since these methods fail to
successfully converge and they predict a sequence of black frames. From the rest
of approaches, fRNN obtains the best predictions, with little blur or distortion.
The RLadder baseline is the second best approach. It does not introduce blur, but
heavily deforms the digits after they cross. Srivastava et al. and Mathieu et al.
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Figure 4.5: fRNN prediction examples on UCF101. First row for each sequence
shows last 5 inputs and target frames. Yellow frames are model predictions.

Input 1 Input 5 Input 10 GT 1 GT 5 GT 10

Pred. 1 Pred. 5 Pred. 10 Pred. 1 Pred. 5 Pred. 10 Pred. 1 Pred. 5 Pred. 10
fRNN RLadder Srivastava et al.

Mathieu et al. Villegas et al. Lotter et al.

Figure 4.6: Predictions at 1, 5, and 10 time steps from the last ground truth frame.
RLadder predictions on MMNIST are from the model pre-trained on KTH.

both accumulate blur over time, but while the former does so to a smaller degree,
the latter makes the digits unrecognizable after five frames.

For KTH, Villegas et al. obtains outstanding qualitative results. It predicts
plausible dynamics and maintains the sharpness of both the individual and back-
ground. Both fRNN and RLadder follow closely, predicting plausible dynamics,
but not being as good at maintaining the sharpness of the individual. On UCF101,
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our model obtains the best predictions, with little blur or distortion compared to
the other methods. The second best is Villegas et al., successfully capturing the
movement patterns but introducing more blur and important distortions on the
last frame. When looking at the background, fRNN proposes a plausible initial
estimate and progressively completes it as the woman moves. On the other hand,
Villegas et al. modifies already generated regions as more background is uncovered,
producing an unrealistic sequence. Srivastava et al. and Lotter et al. fail on both
KTH and UCF101. Srivastava et al. heavily distort the frames. As discussed in
Section 4.4.3, this is due to the use of fully connected recurrent layers, which con-
strains the state size and prevents the model from encoding relevant information
on complex scenarios. In the case of Lotter et al., it makes good predictions for the
first frame, but rapidly accumulates artifacts.

Additional qualitative results are found in Figures 4.8, 4.9, 4.10 for MMNIST,
KTH and UCF-101 respectively. These are compared against all considered models,
except for Villegas et al. in the case of MMNIST, where the method does not
converge.

4.4.5 Representation stratification analysis

Here we analyse the stratification of the sequence representation among dGRU
layers. Because dGRU units allow for a bidirectional mapping between states, it
is possible to remove the deepest layers of a trained model in order to check how
the predictions are affected, providing an insight on the dynamics captured by each
layer. To our knowledge, this is the first topology allowing for a direct observation
of the behaviour encoded on each layer.

In Figure 4.7, the same MMNIST sequences are predicted multiple times, re-
moving a layer each time. The analyzed model consists of 2 convolutional layers
and 8 dGRU layers. Firstly, removing the last 2 dGRU layers has no significant
impact on prediction. This shows that, for this dataset, the network has a higher
capacity than required. Further removing layers results in a progressive loss of
behaviors, from more complex to simpler ones. This means information at a given
level of abstraction is not encoded into higher level layers. When removing the
third deepest dGRU layer, the digits stop bouncing at the edges, exiting the image.
This indicates this layer encodes information on bouncing dynamics. When remov-
ing the next one, digits stop behaving consistently at the edges: parts of the digit
bounce while others keep the previous trajectory. While this also has to do with
bouncing dynamics, the layer seems to be in charge of recognizing digits as single
units following the same movement pattern. When removed, different segments of
the digit are allowed to move as separate elements. Finally, with only 3-2 dGRU
layers the digits are distorted in various ways. With only two layers left, the general
linear dynamics are still captured by the model. By leaving a single dGRU layer,
the linear dynamics are lost.

According to these results, the first two dGRU layers capture pixel-level move-
ment dynamics. The next two aggregate the dynamics into single-trajectory com-
ponents, preventing their distortion, and detect the collision of these components
with image bounds. The fifth layer aggregates single-motion components into dig-
its, forcing them to behave equally. This has the effect of preventing bounces, likely
due to only one of the components reaching the edge of the image. The sixth dGRU
layer provides coherent bouncing patterns for the digits.
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8 dGRU layers

6 dGRU layers

5 dGRU layers

4 dGRU layers

3 dGRU layers

2 dGRU layers

1 dGRU layer

0 dGRU layers

Figure 4.7: Moving MNIST predictions with fRNN layer removal. Removing all
dGRU layers (last row) leaves two convolutional layers and their transposed con-
volutions, providing an identity mapping.

4.5 Conclusions

We have presented Folded Recurrent Neural Networks, a new recurrent architec-
ture for video prediction with lower computational and memory costs compared to
equivalent recurrent auto-encoder models. This is achieved by using the proposed
double-mapping GRUs, which horizontally pass information between the encoder
and decoder. This eliminates the need for using the entire auto-encoder at any
given step: only the encoder or decoder is executed for both input encoding and
prediction, respectively. It also facilitates the convergence by naturally providing a
noisy identity function during training. We evaluated our approach on three video
datasets, outperforming state-of-the-art techniques on MMNIST and UCF101, and
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obtaining competitive results on KTH with 2 and 3 times less memory usage and
computational cost than the best scored approach. Qualitatively, the model can
limit and recover from blur by preventing its propagation from low to high level
dynamics. We also demonstrated stratification of the representation, topology opti-
mization, and model explainability through layer removal. Layers have been shown
to successively introduce more complex behaviors: removing a layer eliminates its
behaviors but leaves lower-level ones untouched.

57



fRNN

RLadder

Lotter

Srivastava

Mathieu

fRNN

RLadder

Lotter

Srivastava

Mathieu

fRNN

RLadder

Lotter

Srivastava

Mathieu

fRNN

RLadder

Lotter

Srivastava

Mathieu

Figure 4.8: fRNN predictions on MMNIST. First row per sequence shows last 5
inputs and target frames. Yellow means prediction.
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Figure 4.9: fRNN predictions on KTH. First row for each sequence shows last 5
inputs and target frames. Yellow frames are model predictions.
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Figure 4.10: fRNN predictions on UCF101. First row for each sequence shows last
5 inputs and target frames. Yellow frames are model predictions.
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Chapter 5

Multi-varied Cumulative
Alignment

5.1 Introduction

Domain Adaptation (DA) is a sub-domain of transfer learning focused on applying
an algorithm trained in one or more source domains to a related target domain.
Both domains share the same feature space, but the sample distribution in that
space is different. The distribution discrepancy, which commonly entails some kind
of affine transform of the feature space, is known as the domain shift. The goal
of DA is to find and eliminate the domain shift, such that, once the algorithm is
applied, the method originally trained on the labeled source domain increases its
accuracy on the target domain. One example may be the difference between hand-
written and computer-generated characters. While both of them share the same
basic feature space, it will inevitably shift due to the slightly different appearance
between images in both domains.

DA approaches can be classified into two main families: non-parametric and
parametric. While both model the probability distribution of the samples, they do
so in two different ways. Non-parametric methods compute statistical indicators
such as feature-space covariances in order to approximate the PDF of each domain,
while parametric methods use learnable parameters, usually in the form of neural
networks, to create a more complex model of the distribution. These two families
and their methods are explained in Section 5.2.

In this work, we propose a new non-parametric method which is capable of
reducing the domain shift between complex probability distributions. Differently
from all other non-parametric methods, it takes into account the complex internal
structure of the distribution, while still retaining the main advantages of such ap-
proaches: no learnable parameters and a minimal memory footprint. This is done
by minimizing, through an auxiliary loss, the discrepancy between random Cumu-
lative Distribution Function (CDF) estimations as measured in both the source and
target domains feature spaces. In order to do away with problems caused by the
high dimensionality of the space (curse of dimensionality), a series of 1-dimensional
random projections of the probability space are used instead. An overall alignment
of the non-collapsed PDFs is obtained by using this metric on a high number of
both random points of the space and directions of projection.
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5.2 Related work

There are two main ways of tackling a Domain Adaptation model. The first, is
to use statistical indicators and techniques to model the either probability distri-
butions of the source and target domains, or the statistical discrepancy between
both. This then allows us to either transform the target domain sample features so
that they follow the source domain distribution, or to define an auxiliary loss that
minimizes the domain shift during training. The family of methods following this
approach could be considered the more classical ones, many of them predating the
popularization of deep learning. The following are some of the main approaches
belonging to this family.

Sun et al. propose CORrelation ALignment (CORAL) [74], a simple technique
whose purpose is to bring the target domain feature representations of an already
trained model to those of the source. This is done by using the covariance matrices
of both domains as a statistical measure of their discrepancy, whitening the target
features and then re-coloring them by using the source covariance. This is easily

achieved by using the formula z̃S = zSC
− 1

2

S C
1
2

T , where zs is the feature representa-
tion of a source sample, and CS/T are the source and target covariances. Using such

an approach means that a transform S = C
− 1

2

S C
1
2

T must be learned and applied at
test time for each pair of source and target domains.

An extension of this method called Deep CORAL [75], also proposed by Sun
et al., bypasses this problem by jointly minimizing the target loss alongside the
hidden representation covariances by minimizing the squared Frobenius norm of
the difference in covariance matrices. This results in a single-step training process
that does not need to consider the domain shifts at test time.

MK-MMD minimization [76] introduced by Long et al., similarly to Deep CORAL,
minimizes the discrepancy between target hidden representations through the use
of an auxiliary loss. In this case, a multiple kernel maximum mean discrepancy
(MK-MMD) [77] is used instead of the domain covariances.

The above methods suffer from precision problems during modeling. For in-
stance, it is easy to see that a method such as CORAL will approximate the source
and target distributions to multi-variate Gaussians. This disregards any kind of
internal structure the distributions may display, effectively aligning only the overall
outline instead. In order to accurately represent the domain distributions, it be-
comes necessary to use a higher order model. More modern approaches solve this
by using auxiliary deep neural networks which, either directly or indirectly, model
the sample distributions of both domains.

Deep Adaptation Networks (DAN) [25], put forward by Ganin et al. in 2014,
was the first to propose using adversarial learning in order to minimize the domain
discrepancy. The method consists of a neural feature extractor, whose features are
then fed into two neural classifiers; a class classifier that predicts the sample class,
and a domain classifier which predicts whether the sample comes from the source
or target domain. Instead of a two-step adversarial training, the authors intro-
duce the Gradient Reversal Layer (GRL). This layer acts as an identity operator
during the forward pass and inverts the gradients during back-propagation. Plac-
ing it in-between the feature extractor and domain classifier results on an overall
model where domain discrepancies are adversarially minimized alongside the class
classification accuracies. Essentially, the domain classifier is trained to distinguish
between both domains, while the feature extractor reduces the domain shift in order
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to fool the classifier.

Bousmalis et al. proposed Deep Separation Networks (DSN) [26] in 2016. This
is an extension to DANs where, in addition to a class classifier and an adversarial
domain classifier, a stratification of the feature representation is proposed. More
specifically, the model uses three feature extractors: one extracts features common
to both domains, while the other two are domain-specific. The class and domain
classifiers work solely on the common features, while an auxiliary convolutional
network reconstructs the input images based on the concatenation of the common
and domain-specific features, ensuring that the full representation contains all of
the information in the image.

Saito et al. [27] were the first to propose an adversarial approach that explic-
itly takes into account, to dome degree, the internal structure of the probability
distributions for domain adaptation. To do so, they align not only the PDFs of
both domains, but also the classification decision boundaries. Instead of the typical
architecture consisting of a feature extractor and domain and class classifiers, this
approach replaces the domain classifier by a second class classifier. The training
process is then performed in two steps. On the first, the feature extractor and both
class classifiers are minimized to fit the source domain samples. On the second, the
two class classifiers are trained to maximize their discrepancy on the target domain
class predictions while the feature extractor is trained to minimize that same dis-
crepancy. This training procedure brings the target domain feature space closer to
to that of the source domain, the samples of the latter serving as supports defining
the valid regions of the feature space.

In a similar fashion, Lee et al. [28] propose using the same type of archi-
tecture and multi-step training approach as in [27]. Differently from them, they
use the Sliced Wasserstein Distance (SWD) as the distance metric to determine
the similarity between the target domain samples in both classifiers. This more
statistically sound metric to measure the similarity between class probability dis-
tributions results in a higher accuracy on the target domain, boosting the final
target classification accuracy by about 3% in most datasets.

Other works, such as ADA-DM by Xu et al. [78], propose alternative variants
of adversarial training. Here, a neural network generates a feature distribution
for each sample, consisting of a mean value and standard deviation for each fea-
ture. This allows the authors to both directly evaluate the source samples with
a classification network, as well as combining source and target distributions to
create a new mixed domain generator. An alternative generator-discriminator pair
of modules is then used to generate and evaluate samples of both the source, tar-
get, and mixed domains, providing an additional classification loss, as well as both
adversarial domain classification and custom triplet learning losses.

More recent approaches propose combining both metric learning with adversar-
ial modeling and minimization of the probability distributions. This is the case of
Maximum Density Divergence (MDD) by et al. [79]. In said work, a new statisti-
cal metric is used to minimize both the inter-domain divergence and maximize the
intra-class density of both domains feature spaces based on predicted target domain
labels. Additionally, a domain classifier over the label probability distributions is
used as an adversarial loss to minimize domain discrepancies.

We have seen that non-parametric methods such as CORAL and MK-MMD
more directly align the source and target PDFs through a series of statistical mea-
surements on the batch samples. While doing so does not require additional train-
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ing parameters, it only allows for simple (quadratic) models of the PDFs. On the
other hand, parametric approaches use additional neural modules to produce deep
models of the PDFs either directly, like DAN and DSN, or indirectly, like MCD
and SWD. In contrast, we propose a non-parametric approach with a new type of
statistical measurement that does take into account the internal complexity of the
PDFs, bringing together the best of both worlds.

5.3 Proposed method

Classic DA approaches based on distribution alignment treat the PDFs of the source
and target domains as multivariate Gaussians that are aligned by matching statis-
tical measures, e.g. mean and covariance. While this works to some degree, any
information regarding the internal structure of the distributions is lost. This may
cause a few problems when trying to reduce the domain shift:

1. Due to domain shift, the main covariance directions and order may be different
between domains, resulting in a misalignment. This is especially true for lower
covariance components, which generally encode less relevant information but
can still have an impact on the end result of a classifier.

2. Not taking into account the internal structure may result in a generally correct
alignment of the domains in terms of their major variance directions, but with
the internal structure being distorted either through stretching, compression
or twisting of certain regions.

These problems are shown in Figure 5.1, which showcases a simple moons
dataset two-class classification problem. The domain shift between both domains
(left), causes the Probability Distribution Functions (PDFs) to not match each
other (right). If we were to compute the maximum variance axes on each domain
and use that to remove the covariance shift, we would end up with matching Gaus-
sian distributions, but the internal structure of both domains would be misaligned,
resulting in a high classification error.

In order to solve this, we indirectly align the PDF through its Cumulative
Distribution Function (CDF). A straightforward approach to estimating the CDF
evaluated at a given location is measuring the number of points in the batch that fall
below the coordinates of that point for all dimensions of the representation or, what
is the same, fall on the negative octant relative to the evaluated location. This,
though, suffers from a big problem: As the dimensionality of the representation
increases, the fraction of the latent space falling on the negative octant also quickly
decreases, leaving us with few or no samples to get a precise estimate of the CDF.
We propose to circumvent this problem by working on random 1-d projections of
the feature space, as explained in Section 5.3.2.

The proposed DA approach consists of two steps, as seen in Figure 5.2, where
the full training pipeline is shown. Firstly, we propose a new algorithm that finds
a re-weighting of the source samples such that the source covariance matches that
of the target. This allows us to re-balance both domains, mitigating problems
related to relative imbalances of the data between domains, such as class imbalance.
Secondly, we propose a new approach for CDF alignment that avoids the problem
of high dimensionality feature spaces.
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Figure 5.1: Toy example of the source and target domain distributions of a two-class
classification toy problem (moons dataset). Left: samples in the source (blue) and
target (orange) domains, with a domain shift that includes rotation, translation
and skewing. Right: Probability Distribution Functions of both domains.

5.3.1 Balancing sample distributions

When aligning the Probability Distribution Functions (PDFs) Ps(xi) and Pt(xi),
it is important to have similar sample representations of the functions. In the case
of a classification task, for instance, class imbalances between source and target
domains would lead to different PDFs, hindering the alignment process. Yet, not
knowing the target labels during training prevents us from balancing the datasets.
To address this, we propose estimating a weighting of the source samples that
increases the contribution of samples in under-represented areas of the PDF, re-
balancing the source domain such that it more closely matches the target PDF.
We use the source and target covariances as a proxy to obtain these weights, with
the goal of matching the target covariance by weighting the source samples. Given

X̃S = {x(s)
i − x(s)} and X̃T = {x(t)

i − x(t)}, our goal is:

arg min
w
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(5.1)

Here, Dw is the diagonal matrix whose entries are the source sample weights,
while NS and NT correspond to the number of source and target samples. Thus,
this equation aims to find the weights w minimizing the squared Frobenius norm
between the source and target covariances. This problem can be solved with the
next closed form solution, where ◦ denotes the Hadamard power:

w =

(
1

NS

(
X̃SX̃

T
S

)◦2)−1
1

NT

(
X̃SX̃

T
T

)◦2
1<NT×1> (5.2)

Note that we defined the centered source samples as x̃
(s)
i = x

(s)
i − x(s). This

is not accurate, since the mean changes with the weighting w such that x̃
(s)
i =
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Figure 5.2: General training pipeline. A feature extractor G generates features for
both the source and target domain samples in the training batch. Source samples
are passed through the discriminator D and evaluated against the source targets
using the classification loss Lcls. Domain Adaptation is done through a trwo-step
process, shown inside the dashed box. First a re-weighting for the source samples
is found to correct for potential class imbalances between both domains. The
CDF discrepancies between both domains are then estimated at various points and
minimized through the Domain Adaptation loss Lda.

xsi − 1
NS
wTXS . Plugging this into Equation 5.1 would lead to a quadratic form for

w, forcing us to resort to quadratic optimization techniques. Instead of that, we
initially assign an equal weight wi = 1

NS
to each sample, then iteratively compute

the centered sample features and re-estimate the weights using Equation 5.2, in a
fashion similar to Procrustes analysis. This is shown in Alg. 1.

Please note that we perform an L1 normalization of the sample weights at the
end of Alg. 1. This is in order to have an equivalent number of samples in both
domains after the weighting of source samples.

5.3.2 Aligning the Cumulative Distribution Functions

In order to align the source and target CDFs Cs(x) and Ct(x), we will want to,
given a batch of samples, estimate the value of these functions at random points
of the distribution and minimize the difference across domains. Unfortunately, this
cannot be directly done for high-dimensional feature spaces such as those obtained
as the output of a hidden layer. This is due to the number of samples falling into the
negative octant of that space being statistically insignificant, which is commonly
known as the curse of dimensionality. The number of samples needed to obtain a
statistically significant estimation of the CDF is in the order of O(2d), where d is
the space dimensionality.

In order to side-step this issue, we propose evaluating the CDF at random cut-
off points within random 1-d projections of both functions. Each such random
projection now has a statistically significant number of samples to each side of any
chosen cut-off point on the line and, through many such random projections, we
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Algorithm 1 Weighting of source samples

1: X̃T ← XT − 1
NT

1<1×NT>XT

2: w ← 1<NS×1>

3: for iter in [0 ... k] do

4: X̃S ← XS − 1
NT

wTXS

5: A← 1
NS

(X̃SX̃
T
S )◦2

6: B ← 1
NT

(X̃SX̃
T
T )◦2

7: w ← A−1B1NT×1

8: end for
9: w ← NS

|w|1w

Figure 5.3: Left: The CDF estimate at a given point corresponds to the fraction
of samples that fall on the negative octant relative to the point. Right: Proposed
projection method, where a random hyper-plane containing the point cuts the space
in two, effectively estimating the CDF on a random 1-dimensional projection of the
space.

are able to fully map all orientations in the feature space. A simple comparison
between regular CDF estimation and the proposed approach is shown in Figure 5.3.

Lets define two functions Cs(x, v) and Ct(x, v) which take as input a given cut-
off point x ∈ Rd for which the CDF is evaluated, and a vector v ∈ Rd over which
function C{s,t}(x) is projected. Then C{s,t}(x, v) corresponds to the probability of a
sample falling to the negative side of the hyper-plane with normal v and containing
the point x. The estimate C̃s(x, v) of such a function corresponds to the following
equation:

C̃s(x, v) =
1

Ns
δ
(
Xsv − xT v

)
1<Ns×1> (5.3)

Here, δ(x) is the step function taking the value 1 for negative values of x and 0
otherwise. Optimizing this function through back-propagation is not possible due
to δ(x) not being differentiable. Instead, we propose using a sigmoid function to
approximate it. We will also want to use the sample weighting defined in Section
5.3.1 when computing Ĉs(x, v). This is done to find a CDF estimate over the re-
balanced source dataset, which more closely matches the CDF of the target. This
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Figure 5.4: Calibration of parameter np on the SVHN to MNIST domain adaptation
problem. Each value corresponds to the average accuracy over 32 runs, relative to
the number of random 1-dimensional projections of the feature space per sample.

gives the following pair of equations:

Ĉs(x, v) =
1

NS
σ
(
XSv − xT v

)
w

Ĉt(x, v) =
1

NT
σ
(
XT v − xT v

)
1<NT×1>

(5.4)

Note that these functions approximate the probability of a sample falling on the
positive side of the hyper-plane instead of the negative one. Since the projection
vector v is picked at random and is as likely to point in one direction than the other,
this does not affect the method. In order to match the projected CDF estimates of
both domains, we use entropy maximization over the normalized estimates. Given
a set of random hyper-planes P = {(x1, v1), .., (xk, vk)}, the domain adaptation
loss Lda is:

Lda =
1

k

∑
(x,v)∈P

Cs(x, v)log(Cs(x, v)) + Ct(x, v)log(Ct(x, v))

Cs(x, v) =
Ĉs(x, v)

Ĉs(x, v) + Ĉt(x, v)
, Ct(x, v) =

Ĉt(x, v)

Ĉs(x, v) + Ĉt(x, v)

(5.5)

Note that multiple random projection vectors v can be used for each sample
when evaluating Cs(x, v), obtaining multiple evaluations of the DA loss functions
per sample. This allows us to map the probability space without the need to increase
the batch size. We use this during training, with hyper-parameter np defining the
number of random 1-dimensional space projections per sample.

Calibration is conducted for np in Figure 5.4 using the SVHN to MNIST task
(see Section 5.4 for more information). As shown, the accuracy gradually increases
with the number of random feature space projections per sample, until it plateaus
at around np = 12. We obtain similar results for the other datasets. As such the
parameter is set to 12 for all experiments.
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MNIST

USPS

SVHN

Figure 5.5: Samples from the three digits datasets. They consist of ten classes
for the digits from 0 to 9. MNIST is the simplest of them, the images having
been processed to display full contrast (each pixel is either completely black or
white). USPS is similar to MNIST, but with images not having been cleaned up.
This results in heavy variations in contrast, as well as some level of blurriness
and changes in intensity across the digit’s stroke. SVHN consists of home numbers
captured from the street, with varying typographic styles and containing distractors
in the form of neighboring numbers.

5.3.3 Training loss

The training loss is obtained by linearly combining the classification loss Lcls and
Domain Adaptation loss Lda. The first is a regular cross-entropy loss, commonly
used in classification problems, while the latter is obtained as shown in Equation 5.5.
The second loss is weighted by a tunable parameter λ, as shown below.

L = Lcls + λLda (5.6)

The weighting parameter λ is obtained through annealing, with a value from 0
growing through the training process to asymptotically converge to Λ. This is done
to give time to converge to a useful feature representation using the source domain
samples, before gradually enforcing that representation to match that of the target
domain. The value of λ is obtained as below, where t is the current mini-batch
training iteration.

λ =

(
2

1 + e−
t

1000

− 1

)
Λ (5.7)

Please note that this function follows a sigmoid curve centered at zero. Its value
steadily increases, eventually converging at 1, at which point λ = Λ. In all of our
experiments, we used Λ = 100.

5.4 Experiments

We focus on four common Domain Adaptation classification tasks. We used the
same proposed topologies for the classification models, changing only the DA loss,
and the same training/testing data partitions. We note that our method does not
work properly when the DA loss is applied to the output of a convolutional layer.
As such, while the network topology has remained intact in every case, the DA
loss has been moved to an appropriate layer when necessary, resulting in slightly
different feature extraction/classification partitions. The datasets, data partitions,
as well as the topology used for each task, are explained below.
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GTSRB

SYNSIG

Figure 5.6: Samples from both traffic sign classification datasets. GTSRB (top):
it consists of real world images under different illumination conditions and minor
obstructions in some cases. SYNSIG (bottom): Synthetic dataset, with the signs
drawn on top of random backgrounds. Blur, lightning, color saturation and geo-
metric distortions are randomly introduced to the samples.

SVHN → MNIST. Here the classification model is trained on using SVHN
as a source dataset, which consists of images taken from house numbers. We use
73257 images for training and 26032 for testing. The target dataset is MNIST,
which consists of hand-written numbers between 0 and 9. We use 55000 images
for training and 10000 for testing. The images are resized to 32 × 32 pixels for
both datasets. The feature extractor consists of three convolutional layers with
convolutions of size 5 × 5, respectively with 64, 64 and 128 convolutional kernels,
and a fully-connected layer with 3072 hidden units. All layers are followed by batch
normalization, and in the case of the convolutional layers, a 2 × 2 max. pooling.
The feature extractor consists of a dropout layer with p = 0.5 followed by two
fully-connected layers with 2048 and 10 neurons respectively.

MNIST ↔ USPS. These are two similar datasets displaying hand-written
digits from 0 to 9, for a total of ten classes. In the case of MNIST, we use 55000
images for training and 10000 for testing. For USPS, we have 7438 and 1860
train and test samples, respectively. In both cases the images are resized to 28 ×
28 pixels. The feature extractor consists of two 5 × 5 conv. layers with 32 and
48 kernels respectively, followed by a fully-connected layer with 100 hidden units.
The convolutional layers are followed by 2 × 2 max. pooling layers, and all layers
implement batch normalization. The classifier consists of two fully-connected layers
with 100 and 10 hidden units respectively, each trailed by a drop-out layer with
p = 0.5.

SYNSIG → GTSRB. These two datasets display 43 common traffic signs.
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SVHN
to

MNIST

SYNSIG
to

GTSRB

MNIST
to

USPS

USPS
to

MNIST
Source only 67.1% 85.1% 79.4% 63.4%

Non-parametric Distribution Matching methods
MMD [76] 71.1% 91.1% 81.1% -
MCA (Ours) 94.8% 95.1% 94.6% 94.7%

Parametric Distribution Matching methods
DAN [25] 71.1% 88.7% 85.1% 73.0%
DSN [26] 82.7% 93.1% - -
MCD [27] 96.2% 94.4% 96.5% 94.1%
SWD [28] 98.9% 98.6% 98.1% 97.1%
DM-ADA [78] 95.5% - 96.7% 94.2%

Table 5.1: Classification accuracy of various DA models on the four most common
Domain Adaptation tasks. Results on the other methods are obtained from their
respective papers. While the proposed approach is surpassed by SWD, it by far
outperforms any non-parametric approaches, obtaining results comparable to or
even better than most parametric methods.

SYNSIG, the source dataset, consists of synthetic images. We use 100000 images
for training and 2000 for testing. GTSRB, the target dataset, consists of real-world
images taken in Germany. We use 31367 images for training and 32171 for testing.
In both cases the images are resized to 40×40 pixels. The feature extractor consists
of three convolutional layers with kernels of size 5×5×96, 3×3×144 and 5×5×256,
and a fully-connected layer with 512hiddenunits. All layers are followed by a batch
normalization and, in the case of the convolutional layers, a 2 × 2 max. pooling.
The classifier consists of a single fully-connected layer with 43 neurons, trailed by
a p = 0.5 dropout layer.

Figure 5.5 displays visual samples of the three digit classification datasets,
namely MNIST, USPS and SVHN, displaying the domain differences between the
three datasets. For the traffic sign datasets, samples are shown in Figure 5.6.

Table 5.1 shows a comparison of the state-of-the-art methods against our pro-
posed approach. Methods are divided into classic non-parmetric distribution match-
ing, and parametric approaches based on the usage of additional neural modules
plus adversarial training. As it can be seen, our approach far surpasses the ac-
curacy of non-parametric methods on all datasets, despite belonging to that same
category. It also outperforms many of the parametric methods, such as DAN [25]
and DSN [26], and surpasses MCD [27] for both SYNSIG to GTSRB and USPS to
MNIST. It also surpasses DM-ADA for the latter. The only approach that consis-
tently surpasses our method is SWD [28], which has a classification accuracy 3%
higher in the average case.

This is despite our approach being non-parametric, meaning that it does not
require additional neural modules nor a multi-stage training approach. Overall, our
method achieves accuracies comparable to the state-of-the-art without additional
training parameters and with a smaller computational footprint.
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5.5 Conclusions

We proposes a new DA approach that does not require additional training param-
eters. It bypasses the need for both additional neural modules and multi-stage
training by providing an efficient metric for the CDF alignment of both the source
and target feature spaces. This results in lower memory requirements, a simpler
training pipeline and the ability to consider the internal structure of the probability
distributions, all without needing to model the distributions themselves. While our
approach does not achieve state-of-the-art results, it does provide accuracies that
are very close to them, just 3% lower than the best approach. At the same time, it
does so without requiring additional training steps or trainable parameters, mak-
ing use of a new loss that directly minimizes the domain shift. This is in line with
the workings of classical non-parametric distribution matching methods, compared
to which our approach greatly surpasses their accuracy. Furthermore, our model
could be directly applied to any Domain Adaptation problem, regardless of it being
a regression or classification task. This is demonstrated by the fact that Domain
Adaptation is performed on the latent feature space instead of the label space, and
it does not depend on the classification labels whatsoever, contrary to the all state-
of-the-art approaches such as [27, 28]. We consider testing such methods on other
regression-based tasks as interesting future work.
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Chapter 6

Final discussion and
conclusion

Since the popularization of GPUs in machine learning, and with it neural net-
works, many Computer Vision tasks has benefited from the introduction of ever
more complex models, requiring both more memory and computational power. In
this work, we have seen that this is not always necessarily the best solution, and
that by taking into account the nature of both the task and the algorithm, other
more efficient solutions can be found. We have seen three different task-specific
approaches to modeling high order behavior. In every instance, we have taken a
step back and looked at the problem from a different perspective, proposing highly
efficient solutions that either surpass the state-of-the-art or are comparable to it,
while requiring less memory and computational resources.

In the case of face alignment, where the literature focused on cascaded linear
regressors to iteratively approximate an initial facial geometry to the real location
of the landmarks in the image, the main obstacle was the treatment of images
with heavy rotations and illumination changes. The state-of-the-art proposed two
solutions to such a problem. Either use multiple random initializations at test time
and then look for a converging geometries [37, 33, 2, 3], or partition the feature
space along the directions of maximum variance and define an independent regressor
for each sub-region [24]. We instead focused on increasing the complexity of the
regressor itself, defining a second order regressor where second order relationships
are taken into account only relative to the maximum variance variables. This
makes a much more efficient use of the subspace compared to GSDM [24]. By
not partitioning the space, we have a single regressor that can be trained on the
full dataset, while the total number of training variables is greatly reduced and
the model’s flexibility increases. This additionally eliminates the need for multiple
test-time executions with different initializations.

We then moved out of more classical machine learning approaches and into
deep learning, first analyzing the ability of a neural network to capture high order
relationships in the input data relative to the depth of the network. The first deep
learning task we worked on was future video prediction, commonly achieved through
the use of some flavor of recurrent neural networks. Making use of the insights on
the order of complexity of the encoded information relative to the network’s depth,
we put forward a new auto-encoder topology where the states are fully shared

75



between encoder and decoder, with the corresponding modifications to the training
pipeline. This has several advantages over the state of the art. First, lower order
information does not need to go through higher order layers, reducing the overall
number of parameters in the neural network by eliminating unnecessary encoding of
information. Second, because of the fully shared states, these can be updated either
through the encoder or decoder, without needing to use both consecutively. This
means that, both during training and execution, only half of the topology needs
to be executed, further halving both the memory and computational requirements.
Another advantage of this is the elimination, to a high degree, of image degradation:
recurrent approaches typically need to feed the decoder’s prediction back as input
in order to update the recurrent states before making the following prediction. This
re-introduces any prediction mistakes and magnifies them in subsequent predictions.
By eliminating the need to re-encode the inputs, this problem disappears.

The third task we have seen is that of Domain Adaptation (DA), where the
shift in the probability distribution of the between two domains’ feature spaces is
minimized in order to allow a model trained in one of the domains to work on the
other. There, we have seen how in recent years DA approaches have shifted to
adversarial-based models, where additional neural modules capture the complexity
of the probability distributions for later minimization. Contrary to the state of the
art, he have taken a step back and found a different approach, more aligned with
classical domain adaptation in that it works based off metric alignment. To do
so, we have defined a new metric based on estimations of the Cumulative Density
Function (CDF) of both distributions, allowing us to capture the internal structure
of high order probability distributions without having to resort to modeling the
distributions themselves. This brings together the best of both worlds. As with
classical metric based approaches, we do not need additional trainable parameters
nor depend on multi-stage training approaches. As with more modern adversarial
approaches, we take into account the internal structure of the probability distribu-
tion functions, greatly boosting the accuracy on the target domain.
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