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Efficiency in Neural Networks

Neural Networks and GPUs have brought great progress to
Computer Vision, with many previously unsolvable tasks being
solved in a short few years.
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Efficiency in Neural Networks

Computational and memory costs

Top-1 accuracy [%]

55

MR ORI A L
SeNet 154
°© E-ResNeXI-101 (32x4d)
SE-ResNe( 101(32¢4d) el Bin- el o x
@l g0 | promion e & gioi
SEResHeX-50(32540) o ‘hww 1PatiNel- 131 Rt 10GhddlgY .nmlmn .s: et 0 2140
SERester- 1520 SRENELI0)
i szsuz\jﬁf] SN :::1\::22 leXt-101(64x4d) Feis 152‘ ﬁ:l‘;)(( 101 z.aa 0
astel 0. ncspton-v: ircspton 3
0 s, S —t SogSEE
' .
Duapatets Orstrso ‘u e st 101 - Collehostiot Rosts0 *(. DualPathilet:68.
R DenseNet-169 VGG-16_BN. 754 169 Densenet-121
Densel -
@usstet Ruiobie IS ©Vos-10.88 9 NASHot. A Mobio
B-ineSion @Rosilet24 V66-13 BN > ©vo5-16.BN [ I @En-incsption
i Vo6-11.8N 8 ovas-1e
@ MobieNet-v2 ! 5 VGG-13 BN @ MobieNet-v2
b1 g &
gretes Vos16 8 o) gueie
MobileNet-vi & B ﬁ( " @ VabieMet-vi
. asNot-
VB6-13 o o1t
i)
PshuffleNet VGG-11 @ ShuffieNet
canfletr
1M 5M 10M 50M 75M  100M 150M %
Squeezaetr1.1 S
@ squsezenet-v1.0
Squeszelelv1.0
(@ e @Rextet
55
0 5 10 15 20 33 - oo ® o s
Operations [G-FLOPSs] Top-1 accuracy density [%/M-params]

Bianco, S., Cadene, R., Celona, L., & Napoletano, P. (2018). Benchmark analysis of
representative deep neural network architectures. |EEE Access (64270-64277).



0001 ¥

2/100d Suv
———
50T ‘AUOD [ X |
TIS ‘AU € X €
IS “Au0d [ X [

—]

8V0T “AUOD [ X |
TIG AU € X €
TIS ‘AUOD X [

1/ 8v0z Au0d [ X 1
1 ZIS ‘AU € X €
1 zrs woa 1x 1

VTOI ‘Au0d [ X |
96T “AUOI € X €
96T “AUOD [ X |

VTOT “AUOd [ X |
96T ‘AUOD € X €
9GT ‘AUOD [ X [

VTOT “AUOd [ X |
96T ‘AUOD € X €

T/9ST ‘A0S [ X T

TIS ‘AUOd [ X [
8TI AUOD € X €
8TI ‘AUOD [ X [

|

TI AUOD [ X |
8T AUOD € X €

An example of efficient modeling is the popular ResNet topology.
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e Supports very deep topologies
e Provides low-order shortcuts
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An example of efficient modeling is the popular ResNet topology.

Efficiency in Neural Networks

A good example: ResNet

e Supports very deep topologies
e Provides low-order shortcuts



High order methods

Definition of order

We define the order of a model as the highest degree polynomial
among the polynomial expansion of its dependent variables relative
to the independent input variables.

argmin || XW — Y||3
w

A first order linear regressor directly combines the independent
input variables X in order to predict the dependent variables Y.



High order methods

Definition of order

We define the order of a model as the highest degree polynomial
among the polynomial expansion of its dependent variables relative
to the independent input variables.

argmin [|(X @ X)W — Y|[3
w

A second order linear regressor, also known as polynomial
regressor, also considers pairs of independent variables as inputs.



High order methods

Order in neural networks

In strict terms, neural networks do not possess an order
relationship. This is due to the non-linear activation functions
commonly used.

y =o(Wx + b)

That said, we may consider the case where we use o(x) = x? as

our non-linear activation function and extrapolate from there.



Order in neural networks
Quadratic neural networks

Quadratic models have been proposed as replacements to fully
connected layers in order to increase the expressiveness of neural
networks. A common approach is using a Volterra series to
describe a 2nd order multiple regression model.

Vi =x"Wox +x" Wi+ b

Zoumpourlis, G., Doumanoglou, A., Vretos, N. & Daras, P. (2017). Non-linear
convolution filters for cnn-based learning. In ICCV (4771-4779).



Order in neural networks
Quadratic neural networks

We first find a more compact notation for the quadratic layer.

Here, X = [x; 1]. Please note that $TWsx = %TWTX. Thus there
must always exist a symmetric W for any given Wy, W5 and b.



Order in neural networks
Equivalence to polynomial networks

Using eigendecomposition on W we obtain the following formula:

yi(x) =xTUSUTx = (xTU)S(xTU)T

Given M a selector that gathers the basis defining the quadratic
matrix of each neuron, we can now find an expression for all
neurons y; in the layer:

UM
s(1)
WhereU:[U(U, U(")},MZ 0 .. 0 | M

o
o



Order in neural networks
Equivalence to polynomial networks

By defining g(X) = X°? as an activation function, we obtain the
following equation, which corresponds to a polynomial network.

e Two-layer model with quadratic activation

e Polynomial networks are more compact

Livni, R., Shalev-Shwartz, S. & Shamir, O. (2014). On the computational efficiency of
training neural networks. In NIPS (855-863).
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Order in neural networks
Equivalence to neural networks

Nesting two quadratic layers based on the compact form we found,
we obtain the following form:

02

. 02 .
y(X) — <|:<XU(1)> ’ 1<q><1>:| M(l)u(2)> M(2)

Both M) and U(z) are trainable parameters. Thus we can
simplify the following equation:

. o2 . 02
y(X) — <|:(XU(1)> , 1<q><1>:| U(2)> M(Z)



Order in neural networks
Equivalence to neural networks

The resulting equation corresponds to a three-layer model with
quadratic activation functions and a linear output layer.

- o2 . 02
y(X) _ <|:<XU(1)> ’ 1<q><1>:| U(2)> M(2)

e A neural network with / layers and quadratic activation
functions is equivalent to a 2/~1-th order regressor.

e Other activations result in a model different from an n-th
order regressor that captures a similar level of complexity.

e Neural networks are more compact than regressors of the
same order due to the sharing of basis.
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Order in neural networks
Equivalence to neural networks

The resulting equation corresponds to a three-layer model with
quadratic activation functions and a linear output layer.

o 02 B 02
y(X) — <|:<XU(1)> ? 1<q><1>:| U(2)> M(Q)

e A neural network with / layers and quadratic activation
functions is equivalent to a 2/~1-th order regressor.

e Other activations result in a model different from an n-th
order regressor that captures a similar level of complexity.

e Neural networks are more compact than regressors of the
same order due to the sharing of basis.



Efficient modeling of high order functions
Being clever when defining the model

We will see three different approaches to efficiently modeling
high order functions, each associated to a specific Computer Vision
task.

e Limiting variable interactions
e Providing low-order shortcuts

e Stochastic approximation of complex functions



Second Order Linear Methods

Continuous Supervised Descent Method
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Facial Landmark Localization
Problem definition

Facial landmark localization (aka. face alignment) is a processing
step common to many face analysis techniques. It locates a series
of points of interest in a face image.

e Problem partially solved for near-frontal faces
o Some difficulties for extreme shadows and rotations

e The more robust approaches are expensive to train



Facial Landmark Localization
Cascaded regression

Usually solved by sequentially applying a series of regression
functions f' mapping the features ®', extracted using the current
shape estimate X' to the difference between the estimate and
ground truth shapes AX' = X/ — X*.

XH =X+ AX
= X'+ f1(9)

Xiong, X., & De la Torre, F. (2013). Supervised descent method and its applications
to face alignment. In CVPR (pp. 532-539).
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Facial Landmark Localization
Global Supervised Descent Method

Suppose an ideal function AX' = f(®) mapping the features ® to
targets AX'. We can express it with as AX' = &' W' where
W' = g(®). Can we approximate the weights space?

GSDM solution: Partition the space into quadrants across a
projected feature subspace ®' = ®'P. Learn a linear regressor for
each quadrant.

Xiong, X. & De la Torre, F. (2015). Global supervised descent method. In CVPR
(2664-2673).



Facial Landmark Localization
Global Supervised Descent Method

Advantages
Adds robustness to the features main modes of variation

Approximate g(®') non-linearly

Disadvantages
e Low granularity approximating g(®')
o Number of weights grows exponentially wrt. ||&/|]

e Logarithmic reduction on number of samples contributing to
each weight



Continuous Supervised Descent Method
Space of linear regressors

CSDM Solution: Define a linear regressor approximating g(®")
given the feature subspace ¢'.

This corresponds to a second order polynomial regression where the
projection matrix P restricts the combination of variables in ¢'.

arg min (¢ o (d>iin))]1(k+1) - AXJH%
Ri
J



Continuous Supervised Descent Method
Space of linear regressors

CSDM Solution: Define a linear regressor approximating g(®")
given the feature subspace ¢'.

Which can be expressed as a linear regression problem by expanding
the features using the Khatri-Rao product.

arg min |\(5 © ¢i)V€C(RjT) - AXJH%
Ri
J



Continuous Supervised Descent Method
Advantages and disadvantages

Compared to the method most similar to ours, Global SDM, our
approach has the following pros and cons.

Advantages
Adds robustness to the features main modes of variation
Continuous approximation of g(®')
Linear growth in number of parameters wrt. ||®/]|

All instances contribute to each parameter

Disadvantages

e Approximate g(®') linearly



Datasets
300-W

e 3148 train and 689 test samples
e 68 facial landmarks

e No extreme face poses

Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., & Pantic, M. (2013). 300 faces
in-the-wild challenge: The first facial landmark localization challenge. ICCV Workshop
(397-403).



Datasets
Proposed: BU4DFE-Synthetic

e 75k images, synthetically rotated from BU4DFE
e Rotations between £90° in yaw and +45° in pitch
e Backgrounds sampled from the Places-205 test set

Yin, L., Chen, X, Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3D
dynamic facial expression database. FG (1-6).



Quantitative results
Comparison to the state of the art

NMEE — 12, |Ixi — X}l

X =zl

\ [ ESR [ RCPR | SDM [ ERT | LBF [ CGPRT | CFSS [ GSDM [[CSDM['CSDMa |
300W 758 ] 838 | 7.52 | 640 | 6.32 | 5.71 | 576 | 6.96

BU4DFES | 945 | 861 | 957 | - | - | 1581 | - | 9.01

Table: Comparison with state-of-the-art methods NMEE without

(CSDM) and with multiple test initialisations (CSDMa).




Quantitative results
Robustness to pose on BUADFE-S

Low pitch[0°-22.5°] High pitch[22.5°-45°]




Qualitative results
Test samples using different approaches

=

GPRT GSDM CSDM




Conclusions

Contributions
e Natural generalisation of SDM

e Continuous, more adaptive approach to regressor selection

Strengths
e Highly robust to the head pose
e Smaller memory footprint

e Reduced need for training instances



Shared-state Neural Networks

Folded Recurrent Neural Networks
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Future Video Prediction

Generate the following frames given a video sequence

Given K initial frames, predict the following N frames. Ideally, we
want to predict them without feedback from the ground truth. As
we go further away from the last input frame, the problem is
becomes harder.

25
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e Relatively easy for unimodal futures
e More complicated for multiple possible futures
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Future Video Prediction

Commonly solved trough recurrent convolutional AEs

Recurrent convolutional autoencoders can encode both spatial
information and the temporal dynamics of the sequence.

output

Prediction

+-RelU

subtract

Lotter, W., Kreiman, G., & Cox, D. (2016). Deep predictive coding networks for video
prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.



Future Video Prediction

Commonly solved trough recurrent convolutional AEs

Recurrent convolutional autoencoders can encode both spatial
information and the temporal dynamics of the sequence.

5%5  5x5conv  S5x5conv  Sx5conv  S5xSconv S5x5conv  SxSconv  5x5conv ad compositing

RGB input convi  LSTM1  ISTM2  LSTM3  LSTM4  LSTMS 1STM6  LSTM7 conv2 masks

1/71

32¢c 32¢ 32¢c 6ac 64c 128c 64c 32¢ el bannel
softmax
o]
stride stride sfrice geconv deconv deconv e
2 2 2 2 2 2

64x643 G2 282 3262 1646 1606 | § 88 16x16 32132 oot ouet
§'s feel 13 compositing
B tile H convolve
5 ¢ ) 30
82, fully connected, 111 Jy -
8& reshape & 10 56 oes
normalize
8x8 CDNA kernels 10 64543 RGB [,

transformed  gredigtion-
images

Finn, C., Goodfellow, I., & Levine, S. (2016). Unsupervised learning for physical
interaction through video prediction. In NIPS (pp. 64-72).



Future Video Prediction

Commonly solved trough recurrent convolutional AEs

Recurrent convolutional autoencoders can encode both spatial
information and the temporal dynamics of the sequence.

Motion Encoder Motion Encoder

) B
................... 4 Muliscale il

) Combination
layers

Decoder

Content Encoder . Content Encoder .

Multi-scale
Content Residual

(a) Base MCnet (b) MCnet with Multi-scale Motion-Content Residuals

Villegas, R., Yang, J., Hong, S., Lin, X., & Lee, H. (2017). Decomposing motion and
content for natural video sequence prediction. arXiv preprint arXiv:1706.08033.



Future Video Prediction

Problems and limitations

e Multiple possible futures
e Blur/error propagation through time
e Network capacity contraints

For sequences with multiple possible futures, a standard
gecurrent auto-encoder will average these possible futures into a
single blurry prediction.



Future Video Prediction

Problems and limitations

e Multiple possible futures
e Blur/error propagation through time
e Network capacity contraints

Blur and errors introduced in one prediction are propagated
through time: These errors are fed back into the network to
predict the following frame.



Future Video Prediction

Problems and limitations

e Multiple possible futures
e Blur/error propagation through time
e Network capacity contraints

The dynamics of the whole frame must be captured and projected
to the future. This is done recurrently for each time step. The
memory requirements increase rapidly.



Folded Recurrent Neural Networks
Proposal: Outline

We want to limit the propagation of blur and errors by doing away
with the prediction feedback. To do so, we propose folding the
network in half, sharing the states between the encoder and
decoder.

e The states can be updated bidirectionally (pipeline reversal)
e Only the encoder/decoder is used at each time step

e Encoder: Updates the dynamics with new input frames

e Decoder: Projects the dynamics into the future



Folded Recurrent Neural Networks
Proposal: Bijective GRU (bGRU)

! ht

=~ Encoder Circuitry == Decoder Circuitry
DGRU State ® GRU logic gates

Regular GRUs fully expose their state as output



Folded Recurrent Neural Networks
Proposal: Bijective GRU (bGRU)

! ht

=~ Encoder Circuitry == Decoder Circuitry
DGRU State ® GRU logic gates

Consider both input and output as recurrent states



Folded Recurrent Neural Networks
Proposal: Bijective GRU (bGRU)

! ht

=~ Encoder Circuitry == Decoder Circuitry
DGRU State ® GRU logic gates

Add an extra set of gates to update the input




Folded Recurrent Neural Networks
Proposal: Folded Recurrent Neural Networks (fRNN)

-
O QL R Q- R

i Encoder Conv-GRU Decoder Conv-GRU |:| GRU State

@ Convolutional layer ® ConvGRU logic gates

Lower cost: Use only the encoder/decoder at each step



Folded Recurrent Neural Networks
Proposal: Folded Recurrent Neural Networks (fRNN)

£ @O [-&-

Q-
A lO-LQ-LQ-UQ 1R

{......} Encoder Conv-GRU """} Decoder Conv-GRU [ GRU state
@ Convolutional layer ® ConvGRU logic gates

i

Prevents error propagation: No prediction re-encoding



Folded Recurrent Neural Networks
Proposal: Folded Recurrent Neural Networks (fRNN)

£ @O [-&-

i

&

A lO-LQ-LQ-UQ 1R

________________ i Encoder Conv-GRU i """ Decoder Conv-GRU [__] GRU State
@ Convolutional layer ® ConvGRU logic gates

Less parameters: Implicit stratification



Experiments
Parameters and datasets

Num. Units
Kernel size
Stride
Activation

Convl Conv2 Pooll bGRU1 bGRU2 Pool2 bGRU3 bGRU4 Pool3 bGRU5 bGRUG6 Pool4 bGRU7 bGRU 8
32 64 - 128 128 - 256 256 - 512 512 256 256
5x5 5x5 | 2x2 5x5 5x5 2x2 5x5 5x5 2x2 3x3 3x3 2x2 3x3 3x3
1 1 2 1 1 2 1 1 2 1 1 2 1 1
tanh tanh - sigmoid & tanh - sigmoid & tanh -

sigmoid & tanh

sigmoid & tanh

KTH

MMNIST

UCF-101



Experiments
Quantitative results (Moving MNIST)

Average PSNR

— Baseline

time step

—— RLadder

—— Lotter

Baseline
RLadder

srivastava

time step

—— Mathieu

—— Villegas

MSE

PSNR

DSSIM

0.06989
0.04254

11.745
13.857

0.20718
0.13788

0.04161

13.968

0.13825

— fRNN

time step

---- RLadder (pre-trained)

Lotter [2]
Srivastava [1]
Mathieu [23]| 0.02748
Villegas [11][ 0.04254
fRNN|0.00947

0.01737 | 18.183 | 0.08164
15.969 | 0.29565
13.857 | 0.13896

21.386|0.04376

On MMNIST it surpasses the state of the art and RLadder baseline
by a good margin



Experiments

Quantitative results (Moving MNIST)

Average PSNR

time step

—— RLadder

— Baseline

srivastava

Baseline|
RLadder
Lotter [2]

Srivastava [1]
Mathieu [23]
Villegas [11]

time step

—— Mathieu

—— Villegas

MSE

PSNR

DSSIM

0.06989
0.04254

11.745
13.857

0.20718
0.13788

0.04161

13.968

0.13825

0.01737

18.183]

0.08164

0.02748

15.969

0.20565

0.04254

fRNN|

13.857

0.0094721.386,

0.13896
0.04376

Implicitly provides an identity mapping,
problems

time step

— NN -

preventing convergence

RLadder (pre-trained)



Experiments
Quantitative results (KTH)

0008 Ed

0005

0003

Average MSE
Average PSNR

Average DSSIM

0001

0000 »

time step. time step time step

—— Baseline —— RLadder —— Lotter srivastava —— Mathieu ~—— Villegas ~—— fRNN  ---- RLadder (pre-trained)

MSE | PSNR | DSSIM
Baseline| 0.00366 | 29.071 | 0.07900
RLadder|0.00139|31.268(0.05945 |

Lotter [2]] 0.00309 [ 28.424 [ 0.09170
Srivastava [1]] 0.00995 | 21.220 | 0.19860
Mathieu [23]] 0.00180 | 29.341 | 0.10410
Villegas [11]] 0.00165 | 30.946 | 0.07657

fRNN| 0.00175 | 29.299 | 0.07251

On KTH it is comparable to the state of the art, only surpassed by
the RLadder baseline



Experiments

Quantitative results (UCF101)

0020

020
o018 o1
o016 e
o 0018 « z
£ oo g g o
< o008 z %010
0006 008
o004 005
3 3 & 5 6 7 6 8 1 1 2 3 & 5 & 7 5 5 1 T3 & s 5 7 8 5 1
time step time step time step
— Baseline —— Rladder —— Lotter Srivastava ~—— Mathieu ~—— Villegas ~—— fRNN  ---- RLadder (pre-trained)

Baseline| 0.01204 | 22.859 | 0.15043

RLadder| 0.00918 | 23.558 | 0.13395

Lotter [2]] 0.01550 | 19.869 | 0.21389

Srivastava [1]| 0.14866 | 10.021 | 0.42555

Mathieu [23][ 0.00926 | 22.781 | 0.16262

Villegas [11]| 0.00940 | 23457 | 0.14150

fRNN|0.00908 23.872|0.13055

On UCF101 (the most complex dataset) it obtains the best results



Experiments

Qualitative results (Moving MNIST)

Prednet Srivastava Mathicu Villegas

RLadder

fRNN
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Experiments
Qualitative results (KTH)

Snvmava

Mathieu Villegas

g

=] F
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Experiments
Qualitative results (UCF101)
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Experiments
Representation stratification

8 bGRU layers
6 bGRU layers
5 bGRU layers
4 bGRU layers
3 bGRU layers
2 bGRU layers
1 bGRU layer

0 bGRU layers




Conclusions

Contributions
e Greatly reduced error propagation through time
e Adaptive network depth

e FEasy stratification analysis

Strengths
e Good implicit initialization
e Smaller memory footprint

e Smaller computational cost



Cumulative Distribution Estimation

Multi-varied Cumulative Alignment
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Domain Adaptation
The domain shift problem

37

Domain Adaptation consists on adapting an algorithm trained in

one or more source domains to a related target domain sharing
the same feature space but different sample distributions. The

distribution discrepancy is known as domain shift.




Domain Adaptation

Non-parametric distribution matching

In non-parametric models, a metric is used to minimize the
discrepancy between both domains.
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Long, M., Cao, Y., Wang, J., & Jordan, M. (2015). Learning transferable features
with deep adaptation networks. In ICML (97-105).



Domain Adaptation

Non-parametric distribution matching

In non-parametric models, a metric is used to minimize the
discrepancy between both domains.
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Sun, B., & Saenko, K. (2016). Deep coral: Correlation alignment for deep domain
adaptation. In ECCV (443-450).



Domain Adaptation

Parametric distribution matching

In parametric models, a non-linear model is used to model both
probability distributions, then minimize the discrepancies.
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Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by
backpropagation. In PMLR (1180-1189).



Domain Adaptation

Parametric distribution matching

In parametric models, a non-linear model is used to model both
probability distributions, then minimize the discrepancies.

Source  Target Discrepancy Region Decision Boundary Training Flow

oAl C_DIC D — R F
D) @@ 1oz |:>

Two Different Classifiers Proposed Method Training Procedure Overview

Minimize Discrepancy Obtained Distributions

Saito, K., Watanabe, K., Ushiku, Y., & Harada, T. (2018). Maximum classifier
discrepancy for unsupervised domain adaptation. In CVPR (3723-3732).



Domain Adaptation

Problems and limitations

e Poor approximation of the PDFs
e Dependency on additional learnable parameters
e Highly complex training pipelines

While non-parametric models are simple and resource efficient,
the PDFs are poorly approximated, generally only capturing a
quadratic approximation of the distribution.



Domain Adaptation

Problems and limitations

e Poor approximation of the PDFs
e Dependency on additional learnable parameters
e Highly complex training pipelines

While parametric models accurately capture the internal
structure of the PDFs, they have a high memory overhead in the
form of additional learnable parameters.



Domain Adaptation

Problems and limitations

e Poor approximation of the PDFs
e Dependency on additional learnable parameters
e Highly complex training pipelines

While parametric models accurately capture the internal
structure of the PDFs, they have a high computational overhead
in the form of both additional learnable parameters and more
complex training pipelines.



Multi-varied Cumulative Alignment
Proposal: Outline

We propose an approach capable of aligning complex PDFs
without directly modeling the distributions themselves,
resulting in a non-parametric model with the advantages of

parametric approaches. We do so by stochastically sampling and
aligning the projected CDFs of both domains.

e The internal structure of the PDFs is taken into account
e No additional trainable parameters are required

e Built-in solution to cross-domain distribution imbalances
e Not limited to classification tasks



Multi-varied Cumulative Alignment
Proposal: General pipeline

Xs— G Zs 'E Ys—> Lais

Our similarity metric

=| Re-weighting of source
> samples
>

Xt— G z w — L,
> Measurement of
— »| CDF discrepancies

e Simple feature extractor + discriminator pipeline
e Metric: Re-weighting of source samples
e Metric: Measurement of CDF discrepancies




Multi-varied Cumulative Alignment
Proposal: Re-weighting of source samples

Both domains may (and usually will) suffer from sample
imbalances. In order to correctly align both distributions, we’ll
first want to mitigate this issue. We'll do so by re-weighting the
source samples in order to more closely match the target
distribution.

_ 1 ~ ~ 1 o~ ~
arg min HN—XSTDWXS - ,\TXTTXTH%
w S T

Goal: Find the source sample weights w minimizing the
discrepancy between both domains’ covariance matrices.



Multi-varied Cumulative Alignment
Proposal: Re-weighting of source samples

Both domains may (and usually will) suffer from sample
imbalances. In order to correctly align both distributions, we'll
first want to mitigate this issue. We'll do so by re-weighting the
source samples in order to more closely match the target
distribution.

1 — 02 -1 1 — 02
% XT) 7<X XT> ]1<NT><1>
v (/\/5< S7S ) Ny \"S7T

Solution: Compact and efficient, with the matrix to invert being
only of size Ng x Ns.



Multi-varied Cumulative Alignment
Proposal: Re-weighting of source samples

Require: Xs, X1, Ns, Nt

1 X7+ XT 1 ]]_<1XNT>XT
2: W 4 ]l<N5><1>

3: for iter in [0 ... k] do

Iteratively apply the weighting 4: Xs (_ Xs _ 1 WTX5

algorithm in order to better

estimate both the source sample > A (XSXT)Oz
mean and sample re-weighting. ©: B (XSX )°2
7: W A 1B <Nrx1>
8: end for
9: W <— Ns w

lwl



Multi-varied Cumulative Alignment
Proposal: Measurement of CDF discrepancies

Our domain adaptation metric is based on estimating the CDF
at random points in both domains, then measuring the discrepancy
across domains. This quickly runs into under-sampling problems.

Left: The CDF estimate measures the ratio of samples in the
negative octant of the feature space.



Multi-varied Cumulative Alignment
Proposal: Measurement of CDF discrepancies

Our domain adaptation metric is based on estimating the CDF
at random points in both domains, then measuring the discrepancy
across domains. This quickly runs into under-sampling problems.

Right: The proposed projected CDF estimate measures the ratio
of samples in the negative side of an hyper-plane.



Multi-varied Cumulative Alignment
Proposal: Measurement of CDF discrepancies

We define Cy(x, v), Ci(x, v) as the functions estimating the value
of the CDFs at point x and projected along vector v. Here,
d(x) € {0,1} is the sign function.

~ 1
Cs(x,v) = N—Sé (ng — XTV) 1 <Nsx1>

1
Cr(x,v) = N—Té (XTV - XTV) 1<Nrxi>

Note that J(x) is non-differentiable, and thus not fit to use as a
loss function.



Multi-varied Cumulative Alignment
Proposal: Measurement of CDF discrepancies

We define Cy(x, v), Ci(x, v) as the functions estimating the value

[ S 9
of the CDFs at point x and projected along vector v. Here
(x) € {0,1} is the sign function.

C _ ! (st—x v) L <Nsx1>

CS(Xa V) -
S
~ 1
Cr(x,v) = — (XTV —x v) 1 <Nrx1>
Ny ©

We first replace §(x) by a sigmoid function, obtaining a
differentiable approximation.



Multi-varied Cumulative Alignment
Proposal: Measurement of CDF discrepancies

We define Cy(x, v), Ci(x, v) as the functions estimating the value
of the CDFs at point x and projected along vector v. Here,
d(x) € {0,1} is the sign function.

- 1
Cs(x,v) = N—SU (st - XTV) w

~ 1
Cr(x,v) = /\TTU (XTV - XTV> 1 <Nrx1>

We then replace 1<Ns*1> by the weights vector w in order to
consider the source sample re-weighting.



Multi-varied Cumulative Alignment
Proposal: Measurement of CDF discrepancies

The projected CDF estimates are aligned through entropy
maximization over the normalized estimates.

Lys = “13’ Z Cs(x,v)log(Cs(x,v)) + Cr(x, v)log(Cr(x,v))
(x,v)erP
ET(X’ V)

) — (,N"s(x, v)
CS( ) ) 65(X7 V)+ ET(X7 V)

- ES(Xv V) + ET(X7 V)’

Cr(x,v) =

e X5 U X7 are our sampling points
e Each sampling point is associated to multiple random v.



Multi-varied Cumulative Alignment
Proposal: Overall loss

The overall training loss is the weighted sum of the softmax
classification loss L.s and the domain adaptation loss Ls.

L= Lcls + )\Lda

The value for A follows a sigmoid curve centered at zero, which
results on a monotonically increasing value according to the
following function:

2
1+ e~ 1000

In all our experiments, A = 100.



Experiments
Datasets: Digits

Three source-target domain pairs are considered for the digit
classification task: SVHN to MNIST, MNIST to USPS, and USPS
to MNIST.
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MNIST consits of binarized images of hand-written digits. They
display an homogeneous black background and no distractors.



Experiments
Datasets: Digits

Three source-target domain pairs are considered for the digit
classification task: SVHN to MNIST, MNIST to USPS, and USPS
to MNIST.
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USPS introduces further variability in the form of saturation
changes and blur.



Experiments
Datasets: Digits

Three source-target domain pairs are considered for the digit
classification task: SVHN to MNIST, MNIST to USPS, and USPS
to MNIST.

- DEERIEEEREE
- INEEEEAEOE
T TLAE B

SVHN consists of real-world images taken from street digits. It
introduces color variability and distractors.



Experiments
Datasets: Traffic signs

One target-domain pair is considered for the traffic sign recognition
task: SYNSIG to GTSRB.

i\ 2\

)
GTSRB
B

The SYNthetic traffic SIGN recognition (SYNSIG) dataset consists
of synthetically generated images of traffic signs spanning 40
different classes.




Experiments
Datasets: Traffic signs

One target-domain pair is considered for the traffic sign recognition
task: SYNSIG to GTSRB.
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The German Traffic Sign Recognition Benchmark (GTSRB)
dataset consists of real-world images of traffic signs spanning 40
different classes.




Experiments
Calibrating the number of random projections
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1 2 3 4 6 8 10 12 16 20
Random projections

e Number of CDF projections per sample on SVHN to MNIST
e We performed 32 runs per value

e In all the experiments we used 12 random projections
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Experiments
Calibrating the number of random projections
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Random projections

e Number of CDF projections per sample on SVHN to MNIST

e We performed 32 runs per value

e In all the experiments we used 12 random projections



Experiments
Comparison to the state-of-the-art

SVHN | MNIST | USPS | SYNSIG
to to to to
MNIST | USPS | MNIST | GTSRB
Source only | 67.1% 79.4% 63.4% 85.1%
Non-parametric Distribution Matching methods

MMD | 71.1% 81.1% - 91.1%
DeepCORAL | 63.1% 80.7% - -
MCA (Ours) | 94.8% | 94.6% 94.7% 95.1%

Parametric Distribution Matching methods

DAN | 71.1% 85.1% 73.0% 88.7%
DSN | 82.7% 91.3% - 93.1%
MCD | 96.2% 96.5% 94.1% 94.4%
SWD | 98.9% | 98.1% 97.1% 98.6%
DM-ADA | 95.5% 96.7% 94.2% -

The proposed method outperforms any other non-parametric
approach, obtaining accuracies close to the state-of-the-art.



Experiments
Comparison to the state-of-the-art

SVHN | MNIST | USPS | SYNSIG
to to to to
MNIST | USPS | MNIST | GTSRB
Source only | 67.1% 79.4% 63.4% 85.1%
Non-parametric Distribution Matching methods

MMD | 71.1% 81.1% - 91.1%
DeepCORAL | 63.1% 80.7% - -
MCA (Ours) | 94.8% | 94.6% 94.7% 95.1%

Parametric Distribution Matching methods

DAN | 71.1% 85.1% 73.0% 88.7%
DSN | 82.7% 91.3% - 93.1%
MCD | 96.2% 96.5% 94.1% 94.4%
SWD | 98.9% | 98.1% 97.1% 98.6%
DM-ADA | 95.5% 96.7% 94.2% -

Only the parametric method by Lee et al. (SWD), published in
2019, consistently outperforms our proposal.



Conclusions

Contributions
e A new approach to solving cross-domain imbalances

e Method to align complex distributions without modeling them

Strengths
e No need for additional trainable parameters
e Forgoes adversarial training

e Amenable to regression tasks (in theory)



To conclude

Some final considerations
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Summary
Contributions of the three approaches

Just increasing the order of a model
can achieve great results, so long as we
are able to limit the higher order
polynomials to the most relevant
terms.

e Problem already solved




Summary
Contributions of the three approaches

Taking into account the flow of
information in order to avoid clogging
the high-order representations with
low-order information leads to benefits
in both memory and computational
resources.

e Difficulty with multiple futures
e More efficient models needed




Summary
Contributions of the three approaches

For certain tasks, we can bypass
modeling the high-order function
altogether. A series of stochastic
evaluations of the same can take its
place instead.

e Low accuracy for complex datasets
e Open problem for video sequences




Spatiotemporal analysis of RGB-DT facial images for
multimodal pain level recognition
2015 CVPR Workshops

Chalearn looking at people 2015 new competitions
Age estimation and cultural event recognition
Chalearn lap 2016: First round challenge on first
impressions-dataset and results
2016 ECCV Workshops

2015 IJCNN
Survey on RGB, 3D, Thermal, and Multimodal

Continuous Supervised Descent Method for Facial
Landmark Localization
2016 ACCV
Overcoming Calibration Problems in Pattern Labeling
Approaches for Facial Expression Recognition:
History, Trends, and Affect-related Applications
2016 TPAMI

with Pairwise Ratings: Application to Personality
2016 ECCV Workshops

Improved RGB-DT based face recognition
2016 IET Biometrics

Traits

Chalearn looking at people and faces of the world:
Face analysis workshop and challenge 2016
Method and station for the automatic quality control
of multimodel biometric data

2016 CVPR Workshops
Folded Recurrent Neural Networks for Future Video
Prediction
2017 ES 17382223 2018 ECCV
Multi-task human analysis in still images: 2D/3D
pose, depth map, and multi-part segmentation
2019 FG

Adaptation

Multi-varied Cumulative Alignment for Domain
2022 ICIAP
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