
Efficient Modeling of High Order Functions
in Computer Vision

Marc Oliu Simón

supervised by

Dr. Sergio Escalera Guerrero
Dr. Xavier Baró Solé

Efficiency in Neural Networks 2

Neural Networks and GPUs have brought great progress to
Computer Vision, with many previously unsolvable tasks being

solved in a short few years.

Face Detection

Efficiency in Neural Networks 2

Neural Networks and GPUs have brought great progress to
Computer Vision, with many previously unsolvable tasks being

solved in a short few years.

Facial Landmark Localization

Efficiency in Neural Networks 2

Neural Networks and GPUs have brought great progress to
Computer Vision, with many previously unsolvable tasks being

solved in a short few years.

Face Recognition

Efficiency in Neural Networks 2

Neural Networks and GPUs have brought great progress to
Computer Vision, with many previously unsolvable tasks being

solved in a short few years.

Object Detection

Efficiency in Neural Networks 2

Neural Networks and GPUs have brought great progress to
Computer Vision, with many previously unsolvable tasks being

solved in a short few years.

Object Segmentation

Efficiency in Neural Networks 3

Computational and memory costs

Bianco, S., Cadene, R., Celona, L., & Napoletano, P. (2018). Benchmark analysis of
representative deep neural network architectures. IEEE Access (64270-64277).

Efficiency in Neural Networks 4

A good example: ResNet

An example of efficient modeling is the popular ResNet topology.

• Supports very deep topologies
• Provides low-order shortcuts

Efficiency in Neural Networks 4

A good example: ResNet

An example of efficient modeling is the popular ResNet topology.

• Supports very deep topologies
• Provides low-order shortcuts

High order methods 5

Definition of order

We define the order of a model as the highest degree polynomial
among the polynomial expansion of its dependent variables relative

to the independent input variables.

argmin
W

||XW − Y ||22

A first order linear regressor directly combines the independent
input variables X in order to predict the dependent variables Y .

High order methods 5

Definition of order

We define the order of a model as the highest degree polynomial
among the polynomial expansion of its dependent variables relative

to the independent input variables.

argmin
W

||(X ⊙ X)W − Y ||22

A second order linear regressor, also known as polynomial
regressor, also considers pairs of independent variables as inputs.

High order methods 6

Order in neural networks

In strict terms, neural networks do not possess an order
relationship. This is due to the non-linear activation functions

commonly used.

y = σ(Wx + b)

That said, we may consider the case where we use σ(x) = x2 as
our non-linear activation function and extrapolate from there.

Order in neural networks 7

Quadratic neural networks

Quadratic models have been proposed as replacements to fully
connected layers in order to increase the expressiveness of neural

networks. A common approach is using a Volterra series to
describe a 2nd order multiple regression model.

yi = xTW2x + xTW1 + b

Zoumpourlis, G., Doumanoglou, A., Vretos, N. & Daras, P. (2017). Non-linear
convolution filters for cnn-based learning. In ICCV (4771-4779).

Order in neural networks 8

Quadratic neural networks

We first find a more compact notation for the quadratic layer.

yi (x) = x̃TWx̃

W =

(W2)1,1 (W2)1,2 .. (W1)1
(W2)2,1 (W2)2,2 .. (W1)2

..
0 0 .. b

Here, x̃ = [x ; 1]. Please note that x̃TWx̃ = x̃TW T x̃ . Thus there
must always exist a symmetric W for any given W1, W2 and b.

Order in neural networks 9

Equivalence to polynomial networks

Using eigendecomposition on W we obtain the following formula:

yi (x) = x̃TUSUT x̃ = (x̃TU)S(x̃TU)T

Given M̃ a selector that gathers the basis defining the quadratic
matrix of each neuron, we can now find an expression for all

neurons yi in the layer:

y(X) =
[
(XU) ◦ (XU)

]
M

where U =
[
U(1), ..., U(n)

]
,M =

 S (1) 0 0
0 .. 0

0 0 S (n)

 M̃

Order in neural networks 10

Equivalence to polynomial networks

By defining g(X) = X ◦2 as an activation function, we obtain the
following equation, which corresponds to a polynomial network.

y(X) = g(XU)M

• Two-layer model with quadratic activation

• Polynomial networks are more compact

Livni, R., Shalev-Shwartz, S. & Shamir, O. (2014). On the computational efficiency of
training neural networks. In NIPS (855-863).

Order in neural networks 10

Equivalence to polynomial networks

By defining g(X) = X ◦2 as an activation function, we obtain the
following equation, which corresponds to a polynomial network.

y(X) = g(XU)M

• Two-layer model with quadratic activation

• Polynomial networks are more compact

Livni, R., Shalev-Shwartz, S. & Shamir, O. (2014). On the computational efficiency of
training neural networks. In NIPS (855-863).

Order in neural networks 10

Equivalence to polynomial networks

By defining g(X) = X ◦2 as an activation function, we obtain the
following equation, which corresponds to a polynomial network.

y(X) = g(XU)M

• Two-layer model with quadratic activation

• Polynomial networks are more compact

Livni, R., Shalev-Shwartz, S. & Shamir, O. (2014). On the computational efficiency of
training neural networks. In NIPS (855-863).

Order in neural networks 11

Equivalence to neural networks

Nesting two quadratic layers based on the compact form we found,
we obtain the following form:

y(X) =

([(
XU

(1)
)◦2

, 1<q×1>

]
M(1)U

(2)
)◦2

M(2)

Both M(1) and U
(2)

are trainable parameters. Thus we can
simplify the following equation:

y(X) =

([(
XU

(1)
)◦2

, 1<q×1>

]
Ũ(2)

)◦2
M(2)

Order in neural networks 12

Equivalence to neural networks

The resulting equation corresponds to a three-layer model with
quadratic activation functions and a linear output layer.

y(X) =

([(
XU

(1)
)◦2

, 1<q×1>

]
Ũ(2)

)◦2
M(2)

• A neural network with l layers and quadratic activation
functions is equivalent to a 2l−1-th order regressor.

• Other activations result in a model different from an n-th
order regressor that captures a similar level of complexity.

• Neural networks are more compact than regressors of the
same order due to the sharing of basis.

Order in neural networks 12

Equivalence to neural networks

The resulting equation corresponds to a three-layer model with
quadratic activation functions and a linear output layer.

y(X) =

([(
XU

(1)
)◦2

, 1<q×1>

]
Ũ(2)

)◦2
M(2)

• A neural network with l layers and quadratic activation
functions is equivalent to a 2l−1-th order regressor.

• Other activations result in a model different from an n-th
order regressor that captures a similar level of complexity.

• Neural networks are more compact than regressors of the
same order due to the sharing of basis.

Order in neural networks 12

Equivalence to neural networks

The resulting equation corresponds to a three-layer model with
quadratic activation functions and a linear output layer.

y(X) =

([(
XU

(1)
)◦2

, 1<q×1>

]
Ũ(2)

)◦2
M(2)

• A neural network with l layers and quadratic activation
functions is equivalent to a 2l−1-th order regressor.

• Other activations result in a model different from an n-th
order regressor that captures a similar level of complexity.

• Neural networks are more compact than regressors of the
same order due to the sharing of basis.

Order in neural networks 12

Equivalence to neural networks

The resulting equation corresponds to a three-layer model with
quadratic activation functions and a linear output layer.

y(X) =

([(
XU

(1)
)◦2

, 1<q×1>

]
Ũ(2)

)◦2
M(2)

• A neural network with l layers and quadratic activation
functions is equivalent to a 2l−1-th order regressor.

• Other activations result in a model different from an n-th
order regressor that captures a similar level of complexity.

• Neural networks are more compact than regressors of the
same order due to the sharing of basis.

Efficient modeling of high order functions 13

Being clever when defining the model

We will see three different approaches to efficiently modeling
high order functions, each associated to a specific Computer Vision

task.

• Limiting variable interactions

• Providing low-order shortcuts

• Stochastic approximation of complex functions

Second Order Linear Methods

Continuous Supervised Descent Method

Facial Landmark Localization 14

Problem definition

Facial landmark localization (aka. face alignment) is a processing
step common to many face analysis techniques. It locates a series

of points of interest in a face image.

• Problem partially solved for near-frontal faces

• Some difficulties for extreme shadows and rotations

• The more robust approaches are expensive to train

Facial Landmark Localization 15

Cascaded regression

Usually solved by sequentially applying a series of regression
functions f i mapping the features Φi , extracted using the current
shape estimate X i , to the difference between the estimate and

ground truth shapes ∆X i = X i − X ∗.

X i+1 = X i +∆X i

= X i + f i (Φi)

Xiong, X., & De la Torre, F. (2013). Supervised descent method and its applications
to face alignment. In CVPR (pp. 532-539).

Facial Landmark Localization 15

Cascaded regression

Usually solved by sequentially applying a series of regression
functions f i mapping the features Φi , extracted using the current
shape estimate X i , to the difference between the estimate and

ground truth shapes ∆X i = X i − X ∗.

X i+1 = X i +∆X i

= X i + f i (Φi)

Xiong, X., & De la Torre, F. (2013). Supervised descent method and its applications
to face alignment. In CVPR (pp. 532-539).

Facial Landmark Localization 16

Global Supervised Descent Method

Suppose an ideal function ∆X i = f (Φ) mapping the features Φ to
targets ∆X i . We can express it with as ∆X i = ΦiW i , where
W i = g(Φi). Can we approximate the weights space?

GSDM solution: Partition the space into quadrants across a
projected feature subspace Φ̃i = ΦiP. Learn a linear regressor for
each quadrant.

Xiong, X. & De la Torre, F. (2015). Global supervised descent method. In CVPR
(2664-2673).

Facial Landmark Localization 17

Global Supervised Descent Method

Advantages

• Adds robustness to the features main modes of variation

• Approximate g(Φi) non-linearly

Disadvantages

• Low granularity approximating g(Φi)

• Number of weights grows exponentially wrt. ||Φ̃i ||
• Logarithmic reduction on number of samples contributing to
each weight

Continuous Supervised Descent Method 18

Space of linear regressors

CSDM Solution: Define a linear regressor approximating g(Φi)
given the feature subspace Φ̃i .

This corresponds to a second order polynomial regression where the
projection matrix P restricts the combination of variables in Φi .

argmin
R i
j

||(Φi ◦ (Φ̃iR i
j))1(k+1) −∆X i

j ||22

Continuous Supervised Descent Method 18

Space of linear regressors

CSDM Solution: Define a linear regressor approximating g(Φi)
given the feature subspace Φ̃i .

Which can be expressed as a linear regression problem by expanding
the features using the Khatri-Rao product.

argmin
R i
j

||(Φ̃i ⊙ Φi)vec(R i
j
⊺
)−∆X i

j ||22

Continuous Supervised Descent Method 19

Advantages and disadvantages

Compared to the method most similar to ours, Global SDM, our
approach has the following pros and cons.

Advantages

• Adds robustness to the features main modes of variation

• Continuous approximation of g(Φi)

• Linear growth in number of parameters wrt. ||Φ̃i ||
• All instances contribute to each parameter

Disadvantages

• Approximate g(Φi) linearly

Datasets 20

300-W

• 3148 train and 689 test samples

• 68 facial landmarks

• No extreme face poses

Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., & Pantic, M. (2013). 300 faces
in-the-wild challenge: The first facial landmark localization challenge. ICCV Workshop

(397-403).

Datasets 21

Proposed: BU4DFE-Synthetic

• 75k images, synthetically rotated from BU4DFE

• Rotations between ±90◦ in yaw and ±45◦ in pitch

• Backgrounds sampled from the Places-205 test set

Yin, L., Chen, X., Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3D
dynamic facial expression database. FG (1-6).

Quantitative results 22

Comparison to the state of the art

NMEE =
1

n

∑
i ||xi − x∗i ||2
||x∗l − x∗r ||2

ESR RCPR SDM ERT LBF CGPRT CFSS GSDM CSDM CSDMa

300W 7.58 8.38 7.52 6.40 6.32 5.71 5.76 6.96 6.83 6.40

BU4DFE-S 9.45 8.61 9.57 - - 15.81 - 9.01 8.28 7.62

Table: Comparison with state-of-the-art methods NMEE without
(CSDM) and with multiple test initialisations (CSDMa).

Quantitative results 23

Robustness to pose on BU4DFE-S

Yaw[o]

0 15 30 45 60 75 90

N
M

E
E

0.
06

0.
08

0.
1

0.
12

0.
14

0.
16

0.
18

0.
2

0.
22

Low pitch[0
o
-22.5

o
]

RCPR
ESR
SDM
GSDM
CGPRT
CSDM
CSDMa

Yaw[o]

0 15 30 45 60 75 90

N
M

E
E

0.
06

0.
08

0.
1

0.
12

0.
14

0.
16

0.
18

0.
2

0.
22

High pitch[22.5
o
-45

o
]

RCPR
ESR
SDM
GSDM
CGPRT
CSDM
CSDMa

Qualitative results 24

Test samples using different approaches

ESR RCPR SDM CGPRT GSDM CSDM

Conclusions 25

Contributions

• Natural generalisation of SDM

• Continuous, more adaptive approach to regressor selection

Strengths

• Highly robust to the head pose

• Smaller memory footprint

• Reduced need for training instances

Shared-state Neural Networks

Folded Recurrent Neural Networks

Future Video Prediction 26

Generate the following frames given a video sequence

Given K initial frames, predict the following N frames. Ideally, we
want to predict them without feedback from the ground truth. As

we go further away from the last input frame, the problem is
becomes harder.

• Relatively easy for unimodal futures
• More complicated for multiple possible futures

Future Video Prediction 26

Generate the following frames given a video sequence

Given K initial frames, predict the following N frames. Ideally, we
want to predict them without feedback from the ground truth. As

we go further away from the last input frame, the problem is
becomes harder.

• Relatively easy for unimodal futures
• More complicated for multiple possible futures

Future Video Prediction 27

Commonly solved trough recurrent convolutional AEs

Recurrent convolutional autoencoders can encode both spatial
information and the temporal dynamics of the sequence.

Lotter, W., Kreiman, G., & Cox, D. (2016). Deep predictive coding networks for video
prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.

Future Video Prediction 27

Commonly solved trough recurrent convolutional AEs

Recurrent convolutional autoencoders can encode both spatial
information and the temporal dynamics of the sequence.

Finn, C., Goodfellow, I., & Levine, S. (2016). Unsupervised learning for physical
interaction through video prediction. In NIPS (pp. 64-72).

Future Video Prediction 27

Commonly solved trough recurrent convolutional AEs

Recurrent convolutional autoencoders can encode both spatial
information and the temporal dynamics of the sequence.

Villegas, R., Yang, J., Hong, S., Lin, X., & Lee, H. (2017). Decomposing motion and
content for natural video sequence prediction. arXiv preprint arXiv:1706.08033.

Future Video Prediction 28

Problems and limitations

• Multiple possible futures
• Blur/error propagation through time
• Network capacity contraints

For sequences with multiple possible futures, a standard
gecurrent auto-encoder will average these possible futures into a

single blurry prediction.

Future Video Prediction 28

Problems and limitations

• Multiple possible futures
• Blur/error propagation through time
• Network capacity contraints

Blur and errors introduced in one prediction are propagated
through time: These errors are fed back into the network to

predict the following frame.

Future Video Prediction 28

Problems and limitations

• Multiple possible futures
• Blur/error propagation through time
• Network capacity contraints

The dynamics of the whole frame must be captured and projected
to the future. This is done recurrently for each time step. The

memory requirements increase rapidly.

Folded Recurrent Neural Networks 29

Proposal: Outline

We want to limit the propagation of blur and errors by doing away
with the prediction feedback. To do so, we propose folding the
network in half, sharing the states between the encoder and

decoder.

• The states can be updated bidirectionally (pipeline reversal)
• Only the encoder/decoder is used at each time step
• Encoder: Updates the dynamics with new input frames
• Decoder: Projects the dynamics into the future

Folded Recurrent Neural Networks 30

Proposal: Bijective GRU (bGRU)

Regular GRUs fully expose their state as output

Folded Recurrent Neural Networks 30

Proposal: Bijective GRU (bGRU)

Consider both input and output as recurrent states

Folded Recurrent Neural Networks 30

Proposal: Bijective GRU (bGRU)

Add an extra set of gates to update the input

Folded Recurrent Neural Networks 31

Proposal: Folded Recurrent Neural Networks (fRNN)

Lower cost: Use only the encoder/decoder at each step

Folded Recurrent Neural Networks 31

Proposal: Folded Recurrent Neural Networks (fRNN)

Prevents error propagation: No prediction re-encoding

Folded Recurrent Neural Networks 31

Proposal: Folded Recurrent Neural Networks (fRNN)

Less parameters: Implicit stratification

Experiments 32

Parameters and datasets

Conv 1 Conv 2 Pool 1 bGRU 1 bGRU 2 Pool 2 bGRU 3 bGRU 4 Pool 3 bGRU 5 bGRU 6 Pool 4 bGRU 7 bGRU 8
Num. Units 32 64 - 128 128 - 256 256 - 512 512 - 256 256
Kernel size 5× 5 5× 5 2× 2 5× 5 5× 5 2× 2 5× 5 5× 5 2× 2 3× 3 3× 3 2× 2 3× 3 3× 3

Stride 1 1 2 1 1 2 1 1 2 1 1 2 1 1
Activation tanh tanh - sigmoid & tanh - sigmoid & tanh - sigmoid & tanh - sigmoid & tanh

KTH MMNIST UCF-101

Experiments 33

Quantitative results (Moving MNIST)

On MMNIST it surpasses the state of the art and RLadder baseline
by a good margin

Experiments 33

Quantitative results (Moving MNIST)

Implicitly provides an identity mapping, preventing convergence
problems

Experiments 33

Quantitative results (KTH)

On KTH it is comparable to the state of the art, only surpassed by
the RLadder baseline

Experiments 33

Quantitative results (UCF101)

On UCF101 (the most complex dataset) it obtains the best results

Experiments 34

Qualitative results (Moving MNIST)

Experiments 34

Qualitative results (KTH)

Experiments 34

Qualitative results (UCF101)

Experiments 35

Representation stratification

Conclusions 36

Contributions

• Greatly reduced error propagation through time

• Adaptive network depth

• Easy stratification analysis

Strengths

• Good implicit initialization

• Smaller memory footprint

• Smaller computational cost

Cumulative Distribution Estimation

Multi-varied Cumulative Alignment

Domain Adaptation 37

The domain shift problem

Domain Adaptation consists on adapting an algorithm trained in
one or more source domains to a related target domain sharing
the same feature space but different sample distributions. The

distribution discrepancy is known as domain shift.

Domain Adaptation 38

Non-parametric distribution matching

In non-parametric models, a metric is used to minimize the
discrepancy between both domains.

Long, M., Cao, Y., Wang, J., & Jordan, M. (2015). Learning transferable features
with deep adaptation networks. In ICML (97-105).

Domain Adaptation 38

Non-parametric distribution matching

In non-parametric models, a metric is used to minimize the
discrepancy between both domains.

Sun, B., & Saenko, K. (2016). Deep coral: Correlation alignment for deep domain
adaptation. In ECCV (443-450).

Domain Adaptation 39

Parametric distribution matching

In parametric models, a non-linear model is used to model both
probability distributions, then minimize the discrepancies.

Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by
backpropagation. In PMLR (1180-1189).

Domain Adaptation 39

Parametric distribution matching

In parametric models, a non-linear model is used to model both
probability distributions, then minimize the discrepancies.

Saito, K., Watanabe, K., Ushiku, Y., & Harada, T. (2018). Maximum classifier
discrepancy for unsupervised domain adaptation. In CVPR (3723-3732).

Domain Adaptation 40

Problems and limitations

• Poor approximation of the PDFs
• Dependency on additional learnable parameters
• Highly complex training pipelines

While non-parametric models are simple and resource efficient,
the PDFs are poorly approximated, generally only capturing a

quadratic approximation of the distribution.

Domain Adaptation 40

Problems and limitations

• Poor approximation of the PDFs
• Dependency on additional learnable parameters
• Highly complex training pipelines

While parametric models accurately capture the internal
structure of the PDFs, they have a high memory overhead in the

form of additional learnable parameters.

Domain Adaptation 40

Problems and limitations

• Poor approximation of the PDFs
• Dependency on additional learnable parameters
• Highly complex training pipelines

While parametric models accurately capture the internal
structure of the PDFs, they have a high computational overhead

in the form of both additional learnable parameters and more
complex training pipelines.

Multi-varied Cumulative Alignment 41

Proposal: Outline

We propose an approach capable of aligning complex PDFs
without directly modeling the distributions themselves,
resulting in a non-parametric model with the advantages of

parametric approaches. We do so by stochastically sampling and
aligning the projected CDFs of both domains.

• The internal structure of the PDFs is taken into account
• No additional trainable parameters are required
• Built-in solution to cross-domain distribution imbalances
• Not limited to classification tasks

Multi-varied Cumulative Alignment 42

Proposal: General pipeline

• Simple feature extractor + discriminator pipeline
• Metric: Re-weighting of source samples
• Metric: Measurement of CDF discrepancies

Multi-varied Cumulative Alignment 43

Proposal: Re-weighting of source samples

Both domains may (and usually will) suffer from sample
imbalances. In order to correctly align both distributions, we’ll

first want to mitigate this issue. We’ll do so by re-weighting the
source samples in order to more closely match the target

distribution.

argmin
w
|| 1
NS

X̃T
S Dw X̃S −

1

NT
X̃T
T X̃T ||2F

Goal: Find the source sample weights w minimizing the
discrepancy between both domains’ covariance matrices.

Multi-varied Cumulative Alignment 43

Proposal: Re-weighting of source samples

Both domains may (and usually will) suffer from sample
imbalances. In order to correctly align both distributions, we’ll

first want to mitigate this issue. We’ll do so by re-weighting the
source samples in order to more closely match the target

distribution.

w =

(
1

NS

(
X̃S X̃

T
S

)◦2
)−1 1

NT

(
X̃S X̃

T
T

)◦2
1<NT×1>

Solution: Compact and efficient, with the matrix to invert being
only of size NS × NS .

Multi-varied Cumulative Alignment 44

Proposal: Re-weighting of source samples

Iteratively apply the weighting
algorithm in order to better

estimate both the source sample
mean and sample re-weighting.

Require: XS , XT , NS , NT

1: X̃T ← XT − 1
NT
1<1×NT>XT

2: w ← 1<NS×1>

3: for iter in [0 ... k] do
4: X̃S ← XS − 1

NT
wTXS

5: A← 1
NS

(X̃S X̃
T
S)◦2

6: B ← 1
NT

(X̃S X̃
T
T)◦2

7: w ← A−1B1<NT×1>

8: end for
9: w ← NS

|w |1w

Multi-varied Cumulative Alignment 45

Proposal: Measurement of CDF discrepancies

Our domain adaptation metric is based on estimating the CDF
at random points in both domains, then measuring the discrepancy
across domains. This quickly runs into under-sampling problems.

Left: The CDF estimate measures the ratio of samples in the
negative octant of the feature space.

Multi-varied Cumulative Alignment 45

Proposal: Measurement of CDF discrepancies

Our domain adaptation metric is based on estimating the CDF
at random points in both domains, then measuring the discrepancy
across domains. This quickly runs into under-sampling problems.

Right: The proposed projected CDF estimate measures the ratio
of samples in the negative side of an hyper-plane.

Multi-varied Cumulative Alignment 46

Proposal: Measurement of CDF discrepancies

We define C̃s(x , v), C̃t(x , v) as the functions estimating the value
of the CDFs at point x and projected along vector v . Here,

δ(x) ∈ {0, 1} is the sign function.

C̃S(x , v) =
1

NS
δ
(
XSv − xT v

)
1<NS×1>

C̃T (x , v) =
1

NT
δ
(
XT v − xT v

)
1<NT×1>

Note that δ(x) is non-differentiable, and thus not fit to use as a
loss function.

Multi-varied Cumulative Alignment 46

Proposal: Measurement of CDF discrepancies

We define C̃s(x , v), C̃t(x , v) as the functions estimating the value
of the CDFs at point x and projected along vector v . Here,

δ(x) ∈ {0, 1} is the sign function.

C̃S(x , v) =
1

NS
σ
(
XSv − xT v

)
1<NS×1>

C̃T (x , v) =
1

NT
σ
(
XT v − xT v

)
1<NT×1>

We first replace δ(x) by a sigmoid function, obtaining a
differentiable approximation.

Multi-varied Cumulative Alignment 46

Proposal: Measurement of CDF discrepancies

We define C̃s(x , v), C̃t(x , v) as the functions estimating the value
of the CDFs at point x and projected along vector v . Here,

δ(x) ∈ {0, 1} is the sign function.

C̃S(x , v) =
1

NS
σ
(
XSv − xT v

)
w

C̃T (x , v) =
1

NT
σ
(
XT v − xT v

)
1<NT×1>

We then replace 1<Ns×1> by the weights vector w in order to
consider the source sample re-weighting.

Multi-varied Cumulative Alignment 47

Proposal: Measurement of CDF discrepancies

The projected CDF estimates are aligned through entropy
maximization over the normalized estimates.

Lda =
1

|P|
∑

(x ,v)∈P

CS(x , v)log(CS(x , v)) + CT (x , v)log(CT (x , v))

CS(x , v) =
C̃S(x , v)

C̃S(x , v) + C̃T (x , v)
, CT (x , v) =

C̃T (x , v)

C̃S(x , v) + C̃T (x , v)

• XS ∪ XT are our sampling points
• Each sampling point is associated to multiple random v .

Multi-varied Cumulative Alignment 48

Proposal: Overall loss

The overall training loss is the weighted sum of the softmax
classification loss Lcls and the domain adaptation loss Lcls .

L = Lcls + λLda

The value for λ follows a sigmoid curve centered at zero, which
results on a monotonically increasing value according to the

following function:

λ =

(
2

1 + e−
t

1000

− 1

)
Λ

In all our experiments, Λ = 100.

Experiments 49

Datasets: Digits

Three source-target domain pairs are considered for the digit
classification task: SVHN to MNIST, MNIST to USPS, and USPS

to MNIST.

MNIST

USPS

SVHN

MNIST consits of binarized images of hand-written digits. They
display an homogeneous black background and no distractors.

Experiments 49

Datasets: Digits

Three source-target domain pairs are considered for the digit
classification task: SVHN to MNIST, MNIST to USPS, and USPS

to MNIST.

MNIST

USPS

SVHN

USPS introduces further variability in the form of saturation
changes and blur.

Experiments 49

Datasets: Digits

Three source-target domain pairs are considered for the digit
classification task: SVHN to MNIST, MNIST to USPS, and USPS

to MNIST.

MNIST

USPS

SVHN

SVHN consists of real-world images taken from street digits. It
introduces color variability and distractors.

Experiments 50

Datasets: Traffic signs

One target-domain pair is considered for the traffic sign recognition
task: SYNSIG to GTSRB.

SYNSIG

GTSRB

The SYNthetic traffic SIGN recognition (SYNSIG) dataset consists
of synthetically generated images of traffic signs spanning 40

different classes.

Experiments 50

Datasets: Traffic signs

One target-domain pair is considered for the traffic sign recognition
task: SYNSIG to GTSRB.

SYNSIG

GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB)
dataset consists of real-world images of traffic signs spanning 40

different classes.

Experiments 51

Calibrating the number of random projections

• Number of CDF projections per sample on SVHN to MNIST
• We performed 32 runs per value
• In all the experiments we used 12 random projections

Experiments 51

Calibrating the number of random projections

• Number of CDF projections per sample on SVHN to MNIST
• We performed 32 runs per value
• In all the experiments we used 12 random projections

Experiments 51

Calibrating the number of random projections

• Number of CDF projections per sample on SVHN to MNIST
• We performed 32 runs per value
• In all the experiments we used 12 random projections

Experiments 52

Comparison to the state-of-the-art

SVHN
to

MNIST

MNIST
to

USPS

USPS
to

MNIST

SYNSIG
to

GTSRB
Source only 67.1% 79.4% 63.4% 85.1%

Non-parametric Distribution Matching methods

MMD 71.1% 81.1% - 91.1%
DeepCORAL 63.1% 80.7% - -
MCA (Ours) 94.8% 94.6% 94.7% 95.1%

Parametric Distribution Matching methods

DAN 71.1% 85.1% 73.0% 88.7%
DSN 82.7% 91.3% - 93.1%
MCD 96.2% 96.5% 94.1% 94.4%
SWD 98.9% 98.1% 97.1% 98.6%

DM-ADA 95.5% 96.7% 94.2% -

The proposed method outperforms any other non-parametric
approach, obtaining accuracies close to the state-of-the-art.

Experiments 52

Comparison to the state-of-the-art

SVHN
to

MNIST

MNIST
to

USPS

USPS
to

MNIST

SYNSIG
to

GTSRB
Source only 67.1% 79.4% 63.4% 85.1%

Non-parametric Distribution Matching methods

MMD 71.1% 81.1% - 91.1%
DeepCORAL 63.1% 80.7% - -
MCA (Ours) 94.8% 94.6% 94.7% 95.1%

Parametric Distribution Matching methods

DAN 71.1% 85.1% 73.0% 88.7%
DSN 82.7% 91.3% - 93.1%
MCD 96.2% 96.5% 94.1% 94.4%
SWD 98.9% 98.1% 97.1% 98.6%

DM-ADA 95.5% 96.7% 94.2% -

Only the parametric method by Lee et al. (SWD), published in
2019, consistently outperforms our proposal.

Conclusions 53

Contributions

• A new approach to solving cross-domain imbalances

• Method to align complex distributions without modeling them

Strengths

• No need for additional trainable parameters

• Forgoes adversarial training

• Amenable to regression tasks (in theory)

To conclude

Some final considerations

Summary 54

Contributions of the three approaches

Just increasing the order of a model
can achieve great results, so long as we
are able to limit the higher order
polynomials to the most relevant
terms.

• Problem already solved

Summary 54

Contributions of the three approaches

Taking into account the flow of
information in order to avoid clogging
the high-order representations with
low-order information leads to benefits
in both memory and computational
resources.

• Difficulty with multiple futures
• More efficient models needed

Summary 54

Contributions of the three approaches

For certain tasks, we can bypass
modeling the high-order function
altogether. A series of stochastic
evaluations of the same can take its
place instead.

• Low accuracy for complex datasets
• Open problem for video sequences

Spatiotemporal analysis of RGB-DT facial images for
multimodal pain level recognition

2015 CVPR Workshops

Chalearn looking at people 2015 new competitions:
Age estimation and cultural event recognition

2015 IJCNN

Chalearn lap 2016: First round challenge on first
impressions-dataset and results

2016 ECCV Workshops

Continuous Supervised Descent Method for Facial
Landmark Localization

2016 ACCV

Survey on RGB, 3D, Thermal, and Multimodal
Approaches for Facial Expression Recognition:
History, Trends, and Affect-related Applications

2016 TPAMI

Overcoming Calibration Problems in Pattern Labeling
with Pairwise Ratings: Application to Personality

Traits
2016 ECCV Workshops

Thank you

Improved RGB-DT based face recognition
2016 IET Biometrics

Chalearn looking at people and faces of the world:
Face analysis workshop and challenge 2016

2016 CVPR Workshops

Method and station for the automatic quality control
of multimodel biometric data

2017 ES 17382223

Folded Recurrent Neural Networks for Future Video
Prediction
2018 ECCV

Multi-task human analysis in still images: 2D/3D
pose, depth map, and multi-part segmentation

2019 FG

Multi-varied Cumulative Alignment for Domain
Adaptation
2022 ICIAP

	Introduction
	Facial Landmark Localization
	Future Video Prediction
	Domain Adaptation
	Conclusions

	anm7:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

