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Abstract

Artificial intelligence (AI) and more specifically machine learning (ML) have shown their
potential by approaching or even exceeding human levels of accuracy for a variety of
real-world problems. However, the highest accuracy for large modern datasets is often
achieved by complex models that even experts struggle to interpret, creating a tradeoff
between accuracy and interpretability. These models are known for being "black box"
and opaque, which is especially problematic in industries like healthcare. Therefore,
understanding the reasons behind predictions is crucial in establishing trust, which is
fundamental if one plans to take action based on a prediction, or when deciding whether
or not to implement a new model. Here is where explainable artificial intelligence
(XAI) comes in by helping humans to comprehend and trust the results and output
created by a machine learning model. This project is organised in 3 chapters with the
aim of introducing the reader to the field of explainable artificial intelligence. Machine
learning and some related concepts are introduced in the first chapter. The second
chapter focuses on the theory of the random forest model in detail. Finally, in the third
chapter, the theory behind two contemporary and influential XAI methods, LIME and
SHAP, is formalised. Additionally, a public diabetes tabular dataset is used to illustrate
an application of these two methods in the medical sector. The project concludes with a
discussion of its possible future works.

Resum

La intel·ligència artificial (IA), i més concretament, el Machine Learning (ML) han de-
mostrat el seu potencial apropant-se, o fins i tot, superant els nivells de precisió humans
per resoldre diversos problemes reals. Tanmateix, la precisió més alta per a grans con-
junts moderns de dades sovint s’aconsegueix mitjançant models complexos que fins i
tot costen d’interpretar als més experts, ja que creen un conflicte entre precisió i inter-
pretabilitat. Aquests models són coneguts per ser "caixes negres" i opacs, cosa que és
especialment problemàtica en indústries com la mèdica. Per tant, entendre els motius de
les prediccions és crucial per generar confiança, cosa que és fonamental si es planeja ac-
tuar a partir d’una predicció i si es vol implementar o no un nou model. Aquí és on entra
la Explainable Artificial Intellgence (XAI), que ajuda els humans a comprendre i a confiar
en els resultats creats per un model de Machine Learning. Aquest projecte s’organitza
en 3 capítols amb l’objectiu d’introduir el lector en el camp de la Explainable Artificial
Intellgence. El Machine Learning i alguns conceptes que s’hi relacionen s’introdueixen
al primer capítol. El segon capítol se centra en la teoria del model Random Forest que
s’analitza en detall. Finalment, en el tercer capítol, es formalitza la teoria dels dos mè-
todes de XAI contemporanis i més influents, el LIME i el SHAP. A més, s’utilitza un
conjunt de dades tabulars sobre la diabetis i públic per il·lustrar una possible aplicació
d’aquests dos mètodes al sector mèdic. El projecte conclou amb una discussió sobre les
seves possibles futures línies d’investigació.

2020 Mathematics Subject Classification. 68T01, 68T99
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Introduction

Machine learning (ML) is at the core of many recent scientific and technological ad-
vances. After computers started defeating experts at games such as Go (Silver, 2016) [1],
many people have begun to wonder if computers might also make better drivers or even
doctors.

In many machine learning applications, users are asked to trust a model to assist them
in making decisions. However, a doctor would never operate on a patient because "the
model said so". The most powerful machine learning models, based on deep neural net-
works, referred to as "black boxes", are hardly interpretable. Therefore, understanding
the reasoning behind the model’s predictions may assist users to decide whether or not
to trust them.

When we deploy a machine learning model into production, we are essentially trusting
it to make good predictions. Most of the time, to make that assessment, the model is
evaluated by metrics in data we did not use to train the model. However, such met-
rics can be misleading, and the model may occasionally make embarrassing mistakes.
Due to the fact that people often have strong intuition and business intelligence that is
difficult to capture in evaluation metrics, understanding the model’s predictions may
be an additional useful tool for determining whether or not a model is reliable. This
is precisely what motivated this project, understanding the reasoning behind the pre-
dictions of a model, and specifically, understanding why a prediction has been made,
which does not necessarily mean being able to interpret the whole model. In order to
achieve this, we formalise and unify the theory behind two XAI methods, LIME and
SHAP, as well as the relationship between them. These methods have not been selected
at random, but have been chosen because they both have had a big impact in the XAI
field.

LIME (Local Interpretable Model-agnostic Explanations) is a revolutionary approach for
interpreting and faithfully explaining individual predictions of any machine learning
(Sarzynska, 2021) [2]. It reveals the reasoning behind a model’s decision-making with
the explanation. Then people will be able to see beyond the machine learning model
and trust the predictions it makes. We will also explain SP-LIME, an algorithm that
derives from LIME and which also helps to gain insight into how the model performs
or to identify any pitfalls that may exist.

SHAP (SHapley Additive exPlanations) is also a novel way of explaining individual
predictions (Lundberg, 2018) [3]. SHAP is based on the game theory optimal Shapley
values. One of the attractions of this method is that it improves LIME in a particular
way, a fact that will be studied in the project.

The second idea that has motivated the project is to see how these two methods are
applied in the health industry, concretely in a scenario where we want to validate or
reject a prediction. In these situations LIME and SHAP provide external tools to better
understand the model predictions. To translate this idea into an experiment, a tabular
database with patient health-related information has been used. The goal is to under-
stand why a patient has been predicted as diabetic or non-diabetic. As we can see, we
are in a problem of classification, which will be the ML task in which we will develop
the project theory.

1
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Therefore, the aim of this project is to introduce the reader to the field of explainable
artificial intelligence with LIME and SHAP, both through theory and practical applica-
tion. In order to progressively present the necessary concepts to comprehend these two
methods completely, the project has been divided into the following 3 chapters:

1. Machine learning preliminaries: The machine learning concept and basic related
terminology is introduced to the reader. Also, the problems that can be tackled
using machine learning as well as the types of ML models are presented. Finally,
the well-known bias-variance tradeoff is explained.

2. Theory behind random forest:. As already mentioned, the aim of the project is to
understand the reasons for baseline predictions. However, we require a model to
evaluate the explanations that will help us to achieve this. Random forest (RF) is
the model selected and on which we will see an application of LIME and SHAP
and it has been chosen for four reasons. The first is that random forest is an en-
semble model, fact that makes it hardly interpretable, therefore, it will play the
role of an arbitrary black box. The second is that it is a widely researched and
highly performing method. This model captures complex distributions of the data
by combining different hypothesis (submodels), concretely, combining various de-
cision trees. This allows RF to create a robust model against overfitting. The third
reason is because it inherently provides a way to compute feature importance,
which will be of interest to us as we will be able to compare it to the explanations
obtained through LIME and SHAP. Finally, the fourth reason is that it is a fast
model to run because it requires low computational resources.

3. Explainable AI: This section begins with a presentation of the linear and weighted
linear regression models. Next, the theory behind lasso and ridge regression reg-
ularization techniques is introduced, which will help us to reduce overfitting in
a machine learning model. These concepts along with the previous two chap-
ters are introduced to understand the concept of explainable artificial intelligence.
First, XAI’s taxonomy is presented and later the theory of LIME and the SHAP is
formalized, where a theorem that relates them is presented. Finally we see how
LIME and SHAP are applied through a public tabular diabetes database. This
application exemplifies how the explanations of LIME and SHAP are observed
and interpreted for a binary classification problem. In this case, the problem is to
understand how the algorithm has classified a patient as diabetic or non-diabetic.

Eventually, the project concludes with a comparison of LIME and SHAP according two
criteria. The first one refers to which situation is preferable to use one or the other and
the second one to the points in which the both techniques differ. The project concludes
with a comparison of LIME and SHAP and a discussion of future lines of research work.
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1. Preliminaries

This chapter presents a preliminary introduction to machine learning, including an
overview of some key learning tasks and applications, basic terminology, as well as
an explanation of some fundamental concepts that we will come across as the project
advances. The chapter is mainly based on (Mohri, 2018, Ch. 1) [4].

1.1 What is machine learning?

Machine Learning (ML) as a concept has been around for quite some time. Arthur
Samuel, an American IBMer and pioneer in the field of computer gaming and artificial
intelligence, was the first who coined the term machine learning in (Samuel, 1959) [5],
when he designed a computer program for playing checkers.

Machine learning can be broadly defined as computational methods using experience to
improve performance or to make accurate predictions. Here, experience refers to the
past information available to the learner, which typically takes the form of electronic
data collected and made available for analysis, and with this data the ML process looks
for patterns in data so it can later make inferences based on the experience provided.
This data could be in the form of digitised human-labelled training sets, or other types
of information obtained via interaction with the environment. In all cases, its quality
and size are crucial to the success of the predictions made by the learner.

An example of a learning problem is how to use a finite sample of randomly selected
documents, each labelled with a topic, to accurately predict the topic of unseen docu-
ments. Clearly, the larger is the sample, the easier is the task. But the difficulty of the
task also depends on the quality of the labels assigned to the documents in the sample,
since the labels may not be all correct, and on the number of possible topics.

Machine learning consists of designing efficient and accurate prediction algorithms. As
in other areas of computer science, some critical measures of the quality of these algo-
rithms are their time and space complexity1. But, in machine learning, we will addi-
tionally need another notion of complexity, the sample complexity. Since the success of a
learning algorithm depends on the data used, machine learning is inherently related to
data analysis and statistics. Data-intensive machine-learning methods are increasingly
being used in science, technology, and commerce, resulting in more evidence-based
decision-making in a variety of fields such as health care, manufacturing, education,
financial modelling, policing, and marketing.

As a summary, machine learning is a set of methods that computers use to make and im-
prove predictions from experience based on data, without being explicitly programmed,
combining fundamental concepts in computer science with ideas from statistics, proba-
bility and optimisation.

1 Space complexity: Total amount of memory space required by an algorithm to solve an instance of
the computational problem as a function of characteristics of the input.

3



1.2. Problems that can be tackled using machine learning Preliminaries

1.2 Problems that can be tackled using machine learning

Machine learning has several applications, among which the following stand out:

• Natural language processing (NLP): This includes problems such as assigning a topic
to a text or a document (text classification), determining automatically if the content
of a web page is inappropriate or too explicit or spam detection. It also includes
translation software, chatbots, grammar correction software, automatic summarising,
voice assistants, and social media monitoring tools.

• Speech processing applications: This includes speech recognition, speech synthesis,
speaker identification, language modelling and acoustic modelling.

• Computer vision applications: This includes object recognition, face detection. These
applications are also important in the healthcare sector with techniques such as med-
ical imaging or tumour classification.

• Computational biology applications: This includes protein function prediction as
well as the analysis of gene and protein networks.

Many other problems such as fraud detection, learning to play games such as chess,
unassisted control of vehicles, recommendation systems design or information extrac-
tion systems, are also tackled using machine learning techniques.

1.3 Some standard learning tasks

The following are some common ML tasks2 that have been researched extensively:

• Classification: Problem of assigning a category to each item. For example, document
classification consists of assigning a category such as politics, business, sports, or
weather to each document, while image classification consists of assigning to each
image a category such as car, train, or plane.

• Regression: Problem of predicting a real value for each item. Predicting stock prices
or the price of a property based on property features are both examples of regression.

• Ranking: Problem of learning to order items according to some criterion. The canon-
ical ranking example is returning web pages in a web search.

• Clustering: This is the problem of partitioning a set of items into homogeneous sub-
sets. Clustering is often used to analyse very large datasets as it is an unsupervised
learning method and it does not require groundtruth, therefore we avoid the task of
labelling. For example, in the context of social network analysis, clustering algorithms
attempt to identify natural communities within large groups of people.

• Dimensionality reduction: This problem consists of transforming an initial repre-
sentation of items into a lower-dimensional representation while preserving as much
information as possible. Principal component analysis is a well-known example.

2 Task: Type of prediction or inference being made, based on the problem or question that is being
asked, and the available data.

4
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1.4 Terminology

From now on, a multitude of machine learning related concepts will show up. For this
reason, providing a basic definition of some of the most relevant key concepts will assist
in the comprehension of the following chapters.

• Features: Input variables used for prediction or classification.

• Target variable: It is the variable whose values, referred to as labels, are to be modelled
and predicted by other variables. The target is usually called Y.

• Prediction: Target value "guessed" by the machine learning model based on the given
features.

• Instance: It is a row in a dataframe. Other names for instance are: data point, example,
observation. An instance consists of the feature values xi and the target outcome yi.

• Dataset: Collection of items that can be treated by a computer as a single unit for
analytic and prediction purposes. In the case of tabular data, a dataset it called a
dataframe, and corresponds to a spreadsheet that organises data into a 2-dimensional
table of rows and columns. The rows are the instances and the columns are the
features. The matrix with all the features is called X and each column is denoted by
Xi. Across the project, dataframe will be referred as dataset and vice versa.

• Training sample: Instances used to train a learning algorithm.

• Validation sample: Instances used to tune the parameters of a learning algorithm
when working with labelled data. The validation sample is used to select appropriate
values for the learning algorithm’s free parameters, called hyperparameters.

• Test sample: Instances used to evaluate the performance of a learning algorithm. The
test sample is separate from the training and validation data and is not made available
in the learning stage.

• Loss function: Using the previous notation, we denote Y the set of all labels, and Y′

the set of possible predictions. A loss function L is a mapping L : Y×Y′ → R+, that
measures the difference, or loss, between a predicted and a true label. In most cases,
Y = Y′ and the loss function is bounded, but these conditions do not always hold.
Common examples of loss functions include the zero-one (or misclassification) loss
defined over {−1,+1} × {−1,+1} by L(y, y′) = 1{y ̸=y′} and the squared loss defined
over I × I by L(y, y′) = (y′ − y)2, where I ∈ R is typically a bounded interval.

• Hypothesis set: A set of functions mapping features to the set of labels Y. Imag-
ine we are in a spam email classification problem, these may be a set of functions
mapping email features to Y = {spam, non-spam}. More generally, hypotheses may
be functions mapping features to a different set Y′, for example, they could be lin-
ear functions mapping email feature vectors to real numbers interpreted as scores
(Y′ = R), with higher score values more indicative of spam than lower ones.

5
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1.5 Types of machine learning methods

We will go over some popular machine learning scenarios in this section. The types of
training data available to the learner, the order and method in which training data is
received, and the test data used to evaluate the learning algorithm, all differ in these
cases.

• Supervised learning: We can think of supervised learning in terms of function ap-
proximation, in which we train an algorithm and then choose the function that best
describes the input data. Most of the time, we are unable to determine the true func-
tion that consistently makes good predictions among others, one reason is that the al-
gorithm is based on human assumptions about how the computer should learn, which
introduces bias. In Section 1.6 this term will be defined. Here, human specialists play
the role of teacher, feeding the computer with training data (input/predictors) and
showing it the correct answers (output/predictions), with the expectation that the
machine will be able to learn patterns from the data. Supervised learning algorithms
attempt to model relationships and dependencies between the target prediction out-
put and the input features in order to predict the output values for new unseen data
instances using the relationships learned from training data. The main types of su-
pervised learning problems include regression and classification.

• Unsupervised learning: Unlabelled data is used to train the computer. There is no
teacher here; in fact, after learning patterns in data, the computer may be able to teach
us new things. This type of machine learning methods are commonly employed in
pattern recognition and descriptive modelling, in fact, these algorithms are especially
effective when the human expert is unsure what to search for in the data. There are
no output categories or labels on which the algorithm can attempt to model rela-
tionships. These algorithms try to mine for rules, recognise patterns, summarise and
aggregate data points in order to derive useful insights and better represent the data
to consumers using techniques applied to the input data. The main types of unsuper-
vised learning algorithms include clustering algorithms and association rule learning
algorithms.

• Semi-supervised learning: In the preceding two types, either all of the observations
in the dataframe have no labels or all of the observations have labels. Semi-supervised
learning is somewhere in the middle. In a variety of contexts, the cost of labelling is
relatively significant because it requires the use of qualified human experts. For ex-
ample, to transcribe an audio segment or determine the 3D structure of a protein.
In these cases, fully labelled training sets are infeasible, whereas acquisition of un-
labelled data is relatively inexpensive. As a result, semi-supervised algorithms are
the best options for model development in these situations. These methods take
advantage of the fact that unlabelled data contains crucial information about group
parameters, even if the group memberships are unknown.

6
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• Reinforcement learning: The training and testing phases are intermixed in reinforce-
ment learning. To collect information, the agent3 actively interacts with the environ-
ment and in some cases affects the environment, and receives an immediate reward
or punishment4 for each action. The object of the agent is to maximise his reward
over a course of actions and interactions with the environment. Some applications of
the reinforcement learning algorithms are computer played board games (Chess, Go),
robotic hands, and self-driving cars.

We could have used different criteria to classify types of machine learning algorithms.
We stuck to the categorisation of (Fumo, 2017) [6], who uses the learning task, which is
great to visualise the big picture of ML. Based on our data and the problem that we face,
we can easily decide which of these methods to use to tackle our problem.

1.6 Bias-variance tradeoff

When performing statistical modelling, the goal is not to find a model that fits all of the
training data points and has the minimum training data error. The objective is to give
the model the ability to generalise well on new and unseen data.

When we discuss prediction models, prediction errors can be decomposed into two main
subcomponents: error due to bias and error due to variance.

Bias: Error caused by erroneous assumptions in the learning algorithm, that skews the
result of an algorithm in favour or against an idea. It is the difference between the aver-
age prediction of our model and the correct value which we are trying to predict. High
bias can cause an algorithm to miss the relevant relations between features and target,
oversimplifying the model due to paying little attention to the training data (underfit-
ting).

Variance: Error caused by sensitivity to small fluctuations in the training set. A high
variance model pays close attention to training data and does not generalise to data it
has not seen before (overfitting).

Understanding these two types of error can help us diagnose model results and avoid
the mistake of ovefitting or underfitting. The optimal situation is when our model has
little bias and little variance, however, the problem comes when this does not happen
and we want to improve one of these errors. The sweet spot where our machine model
performs between the errors introduced by the bias and the variance is the bias-variance
tradeoff.

3 Agent: Artificial Intelligence (AI) algorithm that interacts with the environment.
4 In Reinforcement Learning (RL), agents are trained on a reward and punishment mechanism. The

agent is rewarded for correct moves and punished for the wrong ones. In doing so, the agent tries to
minimise wrong moves and maximise the right ones.

7
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A mathematical approach to the prediction error decomposition concept is given in
(Fortmann, 2012) [7]:

If we denote the variable we are trying to predict as Y and our input space as X, we
may assume that there is a relationship between them such as Y = f (X) + ϵ where the
error term ϵ is normally distributed with a mean of zero like so ϵ ∼ N (0, σ2

ϵ ).

If we estimate a machine learning model f̂ (X) of f (X), the expected squared prediction
error at a point x is:

Error(x) = E[(Y− f̂ (x))2].

This error may then be decomposed into bias and variance components:

Error(x) = (E[ f̂ (x)]− f (x))2 + E[( f̂ (x)−E[ f̂ (x)])2 + σ2
ϵ

= Bias2( f̂ (x)) + Var( f̂ (x)) + σ2
ϵ

= Bias2 + Variance + Irreducible Error.

That third term, irreducible error, is the noise term in the true relationship that cannot
fundamentally be reduced by any model. Given the true model and infinite data to
calibrate it, we would be able to reduce both the bias and variance terms to 0. However,
in a world with imperfect models and finite data, there is a tradeoff between minimising
the bias and minimising the variance.

FIGURE 1: Bias and variance contributing to error.

As a model’s number of parameters grows, the complexity of the model increases, fit-
ting more noise in training data and leading to overfitting. This means that we are
increasing the variance and decreasing the bias of the model. As we see in Figure 1, if
the complexity falls short of the optimal point, we are in the underfitting zone, but if
we keep raising the model’s complexity, the prediction error will eventually the optimal
spot and continue to increase, falling into the overfitting zone.

8



2. Theory behind random forest

The goal of this chapter is to introduce all the concepts which are required to construct
a fairly complete explanation of the random forest model theory. Following the line
of work, we will concentrate on the classification problem, starting with a theoretical
introduction of a generic ML model. After that, the classification tree theory will be
discussed, followed by the bootstrapping technique, and ending with the theory of en-
semble methods, from which our target model, the random forest, will be derived.

2.1 Machine learning classification model

This section is based on (Mohri, 2018, Ch. 1.4) [4] and (Bourel, 2012) [8].

As seen in Section 1.4 we denote by X the set of all possible instances, also referred to
as the input space, and by Y the set of all possible labels or target values. We assume
that instances are independent and identically distributed (i.i.d.) according to some fixed but
unknown distribution F(X). To address the learning problem, we construct a function
f : X → Y which belongs to a set of possible set of functionsH, called hypothesis set. We
want f that given an input instance, is able to predict with accuracy the target variable
y = f (x). Given a labelled sample S = {(x1, y1), ..., (xn, yn)} = {x, y} ∈ (X×Y)n drawn
i.i.d. according to F(X), the task is to select a hypothesis f̂ ∈ H which minimises the
risk RL over a loss function L across our training sample S . After this optimisation
problem we obtain the function f̂ among all the possible hypothesis in H. This function
f̂ , that maps inputs to predictions, will be our machine learning model.

In a classification problem, if Y = 1, 2, . . . , K, the most used loss function is

L( f , x, y) = 1{y ̸= f (x)}.

The generalisation error or risk of f is defined by

RL( f ) = P
{x,y}∼F(X)

(y ̸= f (x)) = E
{x,y}∼F(X)

(L( f , x, y)) = E
{x,y}∼F(x)

(1{y ̸= f (x)}).

Thus, our optimal function f̂ , is the function f ∈ H at which the minimum of RL( f ) is
attained. Mathematically:

f̂ = arg min
f∈H

RL( f ) = arg min
f∈H

E
{x,y}∼F(X)

(1{y ̸= f (x)}).

The generalisation error of a hypothesis is not directly accessible to the learner since the
distribution function F(X) is unknown. However, the learner can measure the empirical
error of a hypothesis on the labelled sample S .

9



2.2. Decision tree Theory behind random forest

The empirical error or empirical risk of f is defined by

R̂L,S ( f ) =
1
n

n

∑
i=1

1yi ̸= f (xi).

Thus, the empirical error of f ∈ H is its average error over the sample S , while the
generalisation error is its expected error based on the distribution F(X).

We now define the learning stages of our machine learning problem. Starting with a
given collection of labelled examples, we first randomly partition the data into training,
validation and test samples. Among other considerations, the amount of data reserved
for validation depends on the number of hyperparameters of the algorithm.

Next, we associate relevant features to the examples, which is a critical step, since use-
ful features can effectively guide the learning algorithm, whereas uninformative ones
can be misleading. Although it is critical, to a large extent, the choice of the features
reflects the user’s prior knowledge about the learning task which in practice can have a
dramatic effect on the performance results. Now, we use the features selected to train
our learning algorithm by tuning the values of its hyperparameters. For each value of
these parameters, the algorithm selects a different hypothesis out of the hypothesis set.
We choose the one resulting in the best performance on the validation sample.

Finally, using that hypothesis, we predict the labels of the examples in the test sample.
The performance of the algorithm is evaluated by a metric that compares the predicted
and true labels. In classification, a commonly used metric is accuracy, which is defined
as the fraction of predictions our model got right. For regression, other metrics such as
MSE or MAE are used. Test metrics do not have to match the loss used to measure train
error and validation during the learning stage. Thus, the performance of an algorithm
is, of course, evaluated based on its test error and not on its error in the training sample.

2.2 Decision tree

The information of this section has been extracted from (Hastie, 2009, Ch. 9.2) [9] com-
plemented with (Lee, 2020) [10] and (López, 2019) [11].

Many machine learning models fail in situations where the relationship between fea-
tures and outcome is nonlinear or where features interact with each other. It is time for
the Decision Tree (DT) to shine. Tree based models progressively split the data multiple
times based on certain feature cutoff values until they reach sets that are small enough
to be described by some label, with each instance belonging to one of them. In each
split, the decision tree tries to split the data into two or more groups (nodes), so that
the groups are as heterogeneous as possible from each other, and the data points that
fall into the same group are homogeneous. For a multitude of reasons, decision trees
are immensely popular, the most notable of which being their interpretability. They can
be trained quickly and easily, which expands their potential well beyond scientific con-
text. Regarding the DT structure, terminal or leaf nodes are the ultimate subsets, whereas
internal nodes or split nodes are the intermediate subsets (See Appendix A).

10



2.2. Decision tree Theory behind random forest

Trees can be used for classification and regression and there are various algorithms that
can grow a tree. They differ in the possible structure of the tree (e.g. number of splits
per node), the criteria how to find the splits, when to stop splitting and how to estimate
the simple models within the leaf nodes. The classification and regression trees (CART)
algorithm is probably the most popular algorithm for tree induction. We will focus on
CART, but the interpretation is similar for most other tree types.

2.2.1 CART algorithm

CART is a decision tree algorithm that produces binary classification or regression trees,
depending on whether the target variable is categorical or numeric, respectively. It can
use the same variables more than once in different parts of the same DT, which may
uncover complex interdependencies between sets of variables. Our data consists of p
inputs and a response variable taking values 1, 2, . . . , K for each of n observations: that
is, (xi, yi) for i = 1, 2, . . . , n, with xi = (xi1, xi2, . . . , xip).

Our decision tree needs to automatically decide on the splitting variables and split
points, in other words, we need to determine the different subsets across the tree. We
will do this introducing a measure of node impurity.

First, we define the proportion of class k observations in node m as follows:

p̂mk =
1

Nm
∑

xi∈Rm

1{yi=k}.

where Rm represents the subset of instances in node m, and Nm the number of observa-
tions in this node.

One of the most popular metrics for measuring node impurity is called Gini impurity
index, but there are also well-known sounding methods like entropy and information gain.
However, numerically, the methods are all quite similar (See Appendix B). The Gini index
for a node m is defined as follows:

I(m) =
K

∑
k=1

p̂mk(1− p̂mk) = 1−
K

∑
k=1

p̂2
mk , 0 ≤ I(m) ≤ 0.5.

Gini index gives an idea of how "impure" the node is. When all the instances in the
node have the same label, there is a perfect classification and our node is maximally
pure (I(m) = 0). Contrarily, when all the instances are equally distributed among
different labels, we face the worst case and the node is totally impure (I(m) = 0.5).

Suppose we have reached the leaf node m, which contains N instances. For each feature,
we calculate the Gini index for the two split nodes m1 and m2 that contain N1 and N2

observations respectively. The Gini impurity index for one feature A in the node m will
be the weighted average of the leaf node impurities:

IA(m) =
N1

N
I(m1) +

N2

N
I(m2).

11



2.2. Decision tree Theory behind random forest

We first start at the very top of our tree, at the root node. And then the algorithm selects
the feature for splitting that would result in the best partition in terms of the Gini index
and adds this split to the tree. Note that if the node itself has the lowest Gini index
score, then there is no point in continuing separating the instances according to any
other variable, and this node becomes a leaf node. The algorithm continues this search-
and-split recursively in both new nodes until a stop criterion is reached.

Stopping criterion

Possible stopping criteria are the minimum number of instances that have to be in a
node before the split, or the minimum number of instances that have to be in a terminal
node. If the count is less than some minimum then the split is not accepted and the
node is taken as a final leaf node.

The stopping criterion is important as a very large tree might overfit the data, while a
small tree might underfit, not capturing the underlying distribution of the training data.

Pruning

The complexity of a decision tree is defined as the number of splits in the tree. Simpler
trees are preferred, as they are easy to interpret and less likely to overfit the data. To
avoid overfitting, once our decision tree has been trained, one can use pruning to lift its
performance.

The fastest and simplest pruning method is to work through each leaf node in the tree
and evaluate the effect of removing it using the validation set. Leaf nodes are removed
only if it results in a drop in the overall cost function on this set. We stop removing
nodes when no further improvements can be made.

A more sophisticated approach to pruning a tree is using cost-complexity pruning, which
we now describe. We define a subtree T ⊂ T0 to be any tree that can be obtained by
pruning our tree T0, that is, collapsing any number of its internal (non-terminal) nodes.
Let |T| denote the number of terminal nodes in T. We define the cost complexity criterion:

Cα(T) =
|T|

∑
m=1

Nm I(m) + α|T|.

The tuning parameter α ≥ 0 governs the tradeoff between tree size and its goodness of
fit to the data, and it is estimated via cross-validation. The idea is to find, for a given α,
the subtree Tα ⊆ T0 to minimise Cα(T). Large values of α result in smaller trees Tα, and
conversely for smaller values of α. As the notation suggests, with α = 0 the solution is
the full tree T0. For each α one can show that there is a unique smallest subtree Tα that
minimises Cα(T)1.

1 See (Breiman, 1984) [12] or (Ripley, 1996) [13].
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2.2. Decision tree Theory behind random forest

Non binary features

So far we have seen how to build a tree with "yes/no" questions at each step, but what
if we have numerical data or categorical variables with more than two labels?

• Numerical features

For numerical data we first sort the feature values, from lowest to highest. Then
we calculate the average value for all pairs of subsequent instances and finally we
select the lowest Gini impurity resulting from splitting the feature in these average
points.

• Multi-label categorical features

For categorical features having q possible unordered labels, there are 2q−1− 1 pos-
sible partitions2 of the q values into two groups. We select the split with the lowest
Gini impurity, however, for large q the computation of Gini Index for each pos-
sible split becomes prohibitive. However, CART handles it without exponential
complexity, but the algorithm it uses to do so is highly non-trivial.1

Why binary splits?

Rather than splitting each node into just two groups at each stage as we have done, we
might consider multiway splits into more than two groups. While this can sometimes
be useful, it is not a good general strategy. The problem is that multiway splits fragment
the data too quickly, leaving insufficient data at the next level down. Hence we would
want to use such splits only when needed. Since multiway splits can be achieved by a
series of binary splits, the latter are preferred.

Limitations

Trees fail to deal with linear relationships. Any linear relationship between an input
feature and the outcome has to be approximated by splits, creating a step function.

Decision trees tend to overfit on their training data, which means that they suffer from
high variance. Few changes in the training dataset can create a completely different tree.

They suffer from inherent instability, since due to their hierarchical nature, the effect
of wrongly selecting a feature in the top splits propagates down this error to all of the
splits below. It does not create confidence in the model if the structure changes so easily.

DTs can also create biased trees if some classes dominate over others. This is a problem
in unbalanced datasets (where different classes in the dataset have different number of
observations). That is why it is important to balance the dataset before building the DT.

Decision tree splitting algorithms cannot see much further than the present point of
development, they are greedy, which means that they look for a locally optimal and not

2 For each categorical value, the number of possible subsets of a set of size q is 2q, because of the
symmetry between left and right we have the half of subsets, 2q

2 = 2q−1. Because the empty set to either
side of the split is not allowed we get 2q−1 − 1.

13



2.3. Bootstrapping Theory behind random forest

a globally optimal at each step. Trees grow by adding one node at a time, and do not
implement any backtracking technique.

2.3 Bootstrapping

This section has been based on (Hastie, 2009, Ch. 7.11) [9] and (Rocca, 2019) [14] comple-
mented with (Frost, 2018) [15] and (Llano, 2020) [16].

From our training sample S , we randomly draw datasets with replacement from the
training data, each new dataset S∗ the same size as the original training set. This method
is known as bootstrapping.

As the true population distribution is unknown, the error in a sample statistic against
its population value is unknown. The basic idea of bootstrapping is that inferencing the
properties of a population from sample data can be done by resampling the sample data
and performing inference about this resampled data. Here we are treating our sample
as the population, as a result, the essential premise of bootstrapping is that the original
sample properly reflects the whole population.

Traditional hypothesis testing procedures require equations that estimate sampling dis-
tributions using the properties of the sample data, the experimental design, and a test
statistic. To obtain valid results, one will need to use the proper test statistic and sat-
isfy the assumptions. The bootstrap method uses a very different approach to estimate
sampling distributions. Since the bootstrapping procedure is distribution-independent
it provides an indirect method to assess the properties of the distribution underlying
the sample and the parameters of interest that are derived from this distribution.

Let us study the number of instances of the original training dataset that a bootstrap
dataset B will have. To do it we define the following probability space (Ω,F ,P):

• Ω : The sample space is our training sample S .

• F : As Ω is a finite set of n independent observations we have that the σ− algebra
F is formed of all the possible subsets of Ω, that is F = P(Ω).

• P : Our events of interest E occur when we select any instance zi = (xi, yi) to create
our bootstrap dataset B. Therefore, the probability measure P : F −→ [0, 1] can be
defined as P(E) = P(zi ∈ B).

Once our probability space has been defined, we may imagine that the construction of
our bootstrap sample B is equivalent to an experiment of n trials. In every trial we
select one instance uniformly at random with replacement, therefore the probability
that we select an instance zi is P(E) = |E |

|Ω| =
1
n , and the probability we do not select this

instance is P(E c) = 1− 1
n . Then the probability that an instance zi is not selected in the

n selections for our bootstrap sample is:

( n⋃
i=1

P(E)
)c

=
n⋂

i=1

P(E c) =

(
1− 1

n

)n

.
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2.4. Ensemble methods Theory behind random forest

Therefore, the probability that zi is included at least once in the bootstrap dataset B is
1− (1− 1

n )
n. Taking the limit as n approaches infinity and e = lim

n→∞
(1 + 1

n )
n we get:

lim
n→∞

1−
(

1− 1
n

)n

= 1− lim
n→∞

(
1− 1

n

)n

= 1− lim
n→∞

[(
1 +

1
−n

)−n
] 1
−n ·n

= 1− 1
e

.

For a big n, the probability of an element zi ∈ S being selected for the bootstrap dataset
is 1− 1

e ≈ 0.63. Therefore, each bootstrap dataset contains n′ ≈ 0.63 n instances of the
original training dataset. The remaining instances form the Out-Of-Bag Dataset and will
be used later to measure the model accuracy (Out-Of-Bag Error).

2.4 Ensemble methods

This section is based on (Bourel, 2012) [8], (Hastie, 2009, Ch. 15) [9] and (Rocca, 2019) [14].

There is a variety of techniques for addressing the previously discussed decision tree
limitations. The ensemble methods consist of building a number of predictors, which we
call intermediate hypotheses, from a single set of data and combining them in some way
to obtain a more stable predictor with improved performance while reducing variance.

Suppose we are facing a multi-class classification problem where our response variable
takes K possible values (labels). If we have our training dataset S , in order to obtain
more robust prediction models, we can build M classifiers g1, g2, . . . , gM to predict the
dependent variable Y and combine them. An aggregate classifier can be defined naturally,
as the majority vote of the M intermediate classifiers, that is:

f (x) = arg max
k∈{1,...,K}

( M

∑
m=1

1{gm(x)=k}

)
.

We can also consider the probabilities of each class returned by all the models, average
these probabilities and keep the class with the highest average probability (soft-voting).

Another way to combine these intermediate classifiers can be by a weighted vote. If
α1, . . . , αM are real numbers, we can define the aggregate classifier as the one that pre-
dicts the class resulting from the largest weighted sum of the classifiers g1, g2, . . . , gM:

f (x) = arg max
k∈{1,...,K}

( M

∑
m=1

αm1{gm(x)=k}

)
.

That is, we construct an aggregate model that predicts the class that maximises the
weighted sum of the classifiers g1, g2, . . . , gM.

Ensemble methods can be divided into two large families: homogeneous model ensemble
methods and heterogeneous model ensemble methods. The methods that combine hypotheses
from the same type of learning algorithm belong to the first family. An example could
be combining a number of classification trees or neural networks. Bagging, random forest,
and boosting are the most popular in this category.
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2.4. Ensemble methods Theory behind random forest

The family of heterogeneous ensemble techniques is composed of ensemble methods
that incorporate hypotheses from several learning algorithms, such as merging three
classification trees, a support vector machine, and a neural network. A good example is
the stacking method.

2.4.1 Bagging

Bagging, or Bootstrap Aggregating, gets its name because it combines bootstrapping
and aggregation to form one ensemble model. It was first introduced in (Breiman,
1996) [17] and it is a method of aggregating homogeneous models based on the majority
vote or the average in the regression case.

Due to the theoretical variance of the training dataset (we remind that our dataset is
an observed sample coming from a true unknown underlying distribution), the fitted
model is also subject to variability: if another dataset had been observed, we would have
obtained a different model. That is the variance of the model.

The idea of bagging is then simple: we want to fit several independent models and
"average" their predictions in order to obtain a model with a lower variance. However,
we cannot, in practice, fit fully independent models as it would require too much data.
So, we rely on the good "approximate properties" of bootstrap samples to fit models that
are almost independent.

Roughly speaking, as the bootstrap samples are approximately independent and identi-
cally distributed (i.i.d.), so are the learned base models. Intuitively we can understand it
in this way. Suppose we have n random variables X1, X2, . . . , Xn which are independent
and identically distributed drawn from a distribution of expected value given by µ and
finite variance given by σ2, then the Central Limit Theorem states that:

X̄n
L−→ N (µ,

σ2

n
). (2.1)

In other words, what this means is that for n large enough, X̄n converges in law to a
normal distribution N (µ, σ2

n ).

Here we can see that there is reduction in variance when there is an aggregation hap-
pening. Then, "averaging" weak learners outputs do not change the expected answer
but reduce its variance, leading to an improvement of the accuracy.

Suppose we fit a model to our training data S = {(x1, y1), ..., (xn, yn)}, obtaining the
prediction f̂ (x) at input x. Bagging technique is built in three stages:

• (1) From our training data, we build M bootstrap datasets S∗m , m = 1, . . . , M.

• (2) For each bootstrap sample S∗m , m = 1, . . . , M, we fit our model giving predic-
tion f̂ ∗m(x).

• (3) The bagging estimate is defined by

f̂bag(x) = arg max
k∈{1,...,K}

( M

∑
m=1

1{ f̂ ∗m(x)=k}

)
.
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Bagging allows us to construct aggregate classifiers using any model we want; however,
the scenario that interests us is when each model is a decision tree, which we will refer
to as bagged trees.

For classification we can understand bagging as a consensus of independent weak learners
(Diettrich, 2000) [18]. Let g(x) = 1 the correct prediction in a two-class classification
example. Suppose each of the weak learners gi , i = 1, 2, . . . , M has a success rate
p > 0.5 and let S(x) = ∑M

m=1 1{gm=1} be the consensus vote for class 1. Since the weak
learners are assumed to be independent, S(x) ∼ Bin(M, p). Therefore, we know that

lim
M→∞

P(S(x) ≤ M/2) = lim
M→∞

⌊M
2 ⌋

∑
i=1

(
M
i

)
pi(1− p)M−i = 0,

hence P(S(x) > M/2) = 1−P(S(x) ≤ M/2)→ 1 when M→ ∞ (See Appendix C).

Here we have shown that if the probability of each aggregate classifier is bigger than
0.5, then the probability that the correct class is the most voted tends to 1 as the number
of classifiers tends to infinity. This concept has been popularised outside of statistics as
the "Wisdom of Crowds" - "the collective knowledge of a diverse and independent body of
people typically exceeds the knowledge of any single individual, and can be harnessed
by voting", (Surowiecki, 2004) [19]. Of course, the main caveat here is the independence
between the aggregate models because bagged trees are not independent. For example,
imagine that there is one very strong predictor within the data. In each tree, this strong
predictor will likely be the first split. Therefore, the prediction of most trees will be
similar. In other words, the predictions will be correlated and hence not independent.

Finally, we can mention that one of the big advantages of bagging is that it can be
parallelised. As the different models are fitted independently from each other, intensive
parallelisation techniques can be used if required.

FIGURE 2: Bagging entails fitting numerous base models to various bootstrap samples and constructing
an aggregate model that "averages" the outputs of these weak learners, adapted from (Rocca, 2019) [14].
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2.4.2 Random forest

Random forest (RF) algorithm was proposed in (Breiman, 2001) [20], and it combines the
techniques of CART and bagging with a substantial modification.

Trees are ideal candidates for bagging, since they can capture complex interaction struc-
tures in the data, and if grown sufficiently deep, have relatively low bias. Since trees
are notoriously noisy, they benefit greatly from the majority vote. Moreover, since each
tree generated in bagging is identically distributed (i.d.), the expectation of an average
of such M trees is the same as the expectation of any one of them. This means the
bias of bagged trees is the same as that of the individual trees, and the only hope of
improvement is through variance reduction. As seen in the Central Limit Theorem, an
average of M i.i.d. random variables, each with variance σ2 , has variance σ2/M. In the
case of bagged trees, as they are simply i.d., trees may not be independent when there
is a variable with strong predictive power. Suppose each tree has variance σ2 and the
correlation between two trees is ρ > 0. Then, in the regression scenario, the variance of
the average of M trees is:

Var
(

1
M

M

∑
m=1

f̂ ∗m(x)
)
=

1
M2

M

∑
m=1

M

∑
l=1

Cov( f̂ ∗m(x), f̂ ∗l (x))

=
1

M2

M

∑
m=1

M

∑
l ̸=m

(
Cov( f̂ ∗m(x), f̂ ∗l (x)) + Var( f̂ ∗m(x))

)

=
1

M2

M

∑
m=1

((M− 1)ρσ2 + σ2) =
M((M− 1)ρσ2 + σ2)

M2

=
M2ρσ2 + Mσ2(1− ρ)

M2 = ρσ2 +
σ2(1− ρ)

M
.

As M → ∞, the second term disappears, and the variance of the model depends
uniquely on ρσ2. The idea in random forest is to improve the variance reduction of
bagging by reducing the correlation between the trees, without increasing the variance
too much, which will lead to a reduction in the overall model variance.

Here is where the modification of bagging comes into play, as we create a huge collection
of de-correlated trees. When using bootstrap samples, at the splitting node step, we
have the full disposal of features to choose from, which will cause that the data will
mostly split off at the same features throughout each model. In order to correct this
and reduce the correlation between trees, in random forest, instead of only sampling
over the observations in the dataset to generate a bootstrap sample, we also sample over
features and keep only a random subset of them to build the tree.

Emphasise that the trees obtained are maximal, that is, they are not pruned, having low
bias but high variance and so are appropriate candidates for the bagging method that is
mainly focused at reducing variance.
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Sampling over features has indeed the effect that all trees do not look at the exact same
information to make their decisions, leading to more diversification and reducing the
correlation between the different returned outputs. Another advantage of sampling over
the features is that it makes the decision-making process more robust to missing data:
observations (from the training dataset or not) with missing data can still be regressed
or classified based on the trees that take into account only features where data are not
missing. Thus, the random forest algorithm combines the concepts of bagging and
random feature subspace selection to create more robust models.

The low correlation between trees is the key, as a large number of relatively uncorre-
lated trees operating as a committee will outperform any of the individual constituent
models. The reason for this wonderful effect is that the trees protect each other from
their individual errors. While some trees may be wrong, many other trees will be right,
so as a group the trees are able to move in the correct direction.

FIGURE 3: Random forest model uses trees as weak learners in a bagging process. Each tree is built using
bootstrapping considering only a subset of variables chosen at random, adapted from (Rocca, 2019) [14].

Random forest has been shown to be one of the algorithms with better performances in
learning problems, in particular in those that have a significant number of explanatory
variables. However if only a few are of relevance, boosting is usually more effective than
random forest.

The out-of-bag error estimate

As we saw in bootstrapping, replacement causes that we do not select all the instances
in our bootstrap datasets. The instances left out in the creation of our bootstrap datasets
can be aggregated, forming the out-of-bag dataset.

The Out Of Bag (OOB) error is a way of validating the random forest model, i.e, measur-
ing its prediction error. OOB error is the mean prediction error on each training sample
xi of the out-of-bag dataset, using only the trees that did not contain xi in their bootstrap
sample.
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Since each out-of-bag set is not used to train the model, it is a good test for the perfor-
mance of the model and the OOB is calculated as follows:

1. Find all trees that are not trained by the OOB instance.

2. We run this out-of-bag instance through all the trees that were built without it.
We assign to this instance the label with the most votes through all these trees.

3. Repeating steps 1 and 2 for all out-of-bag instances, we can measure how
accurate our random forest is by the proportion of out-of-bag samples that were
correctly classified by the random forest, which is the out-of-bag error.

In RF, there is no need for cross-validation or a separate test set to get an unbiased esti-
mate of the test set error. Over many iterations, OOB error and cross-validation should
produce a very similar error estimate, so starting with a high number of iterations is a
good idea. That is, once the OOB error stabilises, it will converge to the cross-validation
(specifically leave-one-out cross-validation) error. The advantage of the OOB method is
that it requires less computation and allows us to test the model as it is being trained.

Number of features randomly selected

As we have seen, at each node split, we select q ≤ p of the input variables at random
as candidates for splitting. RF inventors suggest as a default value for classification,
q = ⌊√p⌋. However, now that we know how to estimate the accuracy of the random
forest, we can talk about how to select the best value for this parameter, treating it as a
hyperparameter. We test a bunch of different values and choose the most accurate RF.

Feature importance

Finally, we explain two criteria for determining the importance of each of the explana-
tory features in the random forest model:

• Gini importance

Every time a split of a node m is made on a feature A, the Gini index for this
feature is less than the Gini index for the current node. This difference is called
Gini gain and is defined as follows:

∆I(A) = I(m)− IA(m).

By adding up the Gini gains for each individual feature over all trees in the RF, we
obtain a fast feature importance that is often very consistent with the permutation
importance measure.

• Permutation importance

The increase in the model’s prediction error after permuting the feature’s values,
is measured by permutation feature importance. The concept is quite simple: we
calculate the increase in the model’s prediction error after permuting a feature to
determine its relevance. Because the model relies on the feature for prediction, a
feature is "important" if shuffling its values increases the model error. A feature is
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"unimportant" if shuffling its values has no effect on the model error, because the
feature was ignored for prediction in this situation. According to (Molnar, 2022,
Ch. 8.5) [21] test data should be used to compute the feature importance.

When the bth tree is grown, the OOB samples are passed down the tree, and the
prediction accuracy is recorded. Then, the values for the jth variable are randomly
permuted in the OOB samples, and the accuracy is again computed. The accuracy
decrease caused by this permuting is averaged across all trees, and it is used as a
measure of variable j’s importance, given as a percentage of the maximum.

When variables are highly correlated, it has been shown in (Parr, 2018) [22] that permu-
tation importance provides more robust estimates than Gini importance. Thus, instead
of interpreting internal model parameters as proxies for feature significance, this work
recommends using permutation importance for all machine learning models.

It is important to note that this method not only works for random forests as it does not
depend on the model in question as only the change in prediction is valued. Therefore
this method is said to be model-agnostic, i.e., it can be applied to any machine learning
model.
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3. Explainable artificial intelligence

In this chapter we formalise and unify the theory behind two modern and relevant XAI
methods, LIME and SHAP. We also compare the global relevance of the random forest
features presented in the previous chapter to local explanations given by these models1.
All of this is performed by using a diabetes database, from which numerous conclusions
are drawn.

To be able to fully understand LIME and SHAP, we first introduce some necessary back-
ground by presenting and analysing linear regression and weighted linear regression
algorithms. We also present L1 and L2 regularisation methods that will prevent high
complexity ML models from overfitting.

3.1 Linear regression

Simple linear regression is a statistical approach for describing relationships between
two continuous (quantitative) variables. This section covers the basics of simple linear
regression and it has been based on (Hastie, 2009, Ch. 3) [9] and (Molnar, 2022, Ch. 5) [21]

complemented with (Simon and Young, 2022) [23].

Simple linear regression gets its adjective "simple" because it concerns the study of only
one predictor variable. In contrast, multiple linear regression, which we will not cover
in this project, gets its adjective "multiple" because it concerns the study of two or more
predictor variables.

Linear models can be used to model the dependence of a regression target on some
features X. Following the notation introduced in Section 1.4, we have a vector of features
X = (X1, X2, ..., Xp), and want to predict a real-valued output Y. The linear regression
model has the form

Y = f (X) + ϵ = β0 +
p

∑
j=1

β jXj + ϵ. (3.1)

The predicted outcome of an instance is a weighted sum of its p features. The betas (β j)
represent the learned feature weights or coefficients. The first weight in the sum (β0) is
called the intercept and it is not multiplied with a feature. The intercept is the expected
mean value of Y when the vector of features is 0. The interpretation of the intercept
is usually not relevant because instances with all features values at zero often make no
sense. The interpretation is only meaningful when the features have been standardised
(mean of zero, standard deviation of one). Then the intercept reflects the predicted
outcome of an instance where all features are at their mean value. The epsilon (ϵ) is the
error we still make, i.e. the difference between the prediction and the actual outcome.
Later we will see some model assumptions regarding this error.

1 Global refers to a full explanation of the model while local refers to the explanation of the prediction
for an individual instance.
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3.1. Linear regression Explainable AI

To train the model, we receive a training dataset S = {(x1, y1), ..., (xn, yn)} from which
to estimate the weights β. Each xi = (xi1, . . . , xin) is a vector of feature measurements for
the ith instance. The most popular estimation method is least squares, in which we pick
the coefficients β = (β0, . . . , βp) ∈ Rn to minimise the residual sum of squares (RSS):

β̂OLS = arg min RSS(β) = arg min
β0,...,βp

n

∑
i=1

(yi − (β0 +
p

∑
j=1

β jxij))
2 = arg min

β0,...,βp

n

∑
i=1

ϵ2
i . (3.2)

Proposition 3.1. Denote by X the n× (p + 1) matrix with each row an input vector, (with a 1
in the first position because the intercept β0 has no weight), and similarly let y be the n-vector of
outputs in the training set. If X is a full rank matrix, the optimal weights for the linear regression
problem are:

β̂ = (XTX)−1XTy.

Proof. We can write the residual sum of squares as

RSS(β) = (y− Xβ)T(y− Xβ).

This is a quadratic function in the p + 1 parameters. Differentiating with respect to β

we obtain

∂RSS
∂β

= 2XT(y− Xβ),

∂2RSS
∂β∂βT = 2XTX.

By hypothesis we know that X has full column rank, and hence ∀ v ∈ R and v ̸= 0,
vTXXTv = (XTv)T(XTv) > 0, i.e, XTX is positive definite. This result along with the
fact RSS(β) is a convex function tells us RSS(β) admits a global minimum.

We set the first derivative to zero

XT(y− Xβ) = 0,

and isolating β from the equation we obtain

β̂ = (XTX)−1XTy.

It might happen that the columns of X are not linearly independent, so that X is not of
full rank. This would occur, for example, if two of the inputs were perfectly correlated,
(e.g., x2 = 3x1). Then XTX is singular and the least squares coefficients β̂ are not
uniquely defined. However, we will see that this is one of the assumptions made in the
linear regression model.
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3.1. Linear regression Explainable AI

The predicted values for an input vector x0 are given by f̂ (x0) = (1 : x0)T β̂. The fitted
values at the training inputs are ŷ = Xβ̂ = X(XTX−1)XTy, where ŷi = f̂ (xi).

To draw inferences about the parameters and the model, we need data to meet cer-
tain assumptions. Taking these assumptions in consideration, we will be able to assess
whether a simple linear regression model seems reasonable when applied to the dataset
in question. Some of these data assumptions permit us to create confidence intervals for
the estimated weights. According to (Molnar, 2022, Ch. 5.1) [21], these assumptions are:

• (1) Linearity: We assume that Equation 3.1 is the correct model for the mean; that
is, the conditional expectation of Y is linear in X1, ..., Xp. Hence

Y = E(Y|X1, ..., Xp) + ϵ = β0 +
p

∑
j=1

Xjβ j + ϵ. (3.3)

The linear regression model forces the prediction to be a linear combination of
features, which is both its greatest strength and its greatest limitation. Linearity
leads to interpretable models since linear effects are easy to quantify and describe.
They are additive, so it is easy to separate the effects. This is one of the key
reasons why the linear model, as well as other similar models, is so widely used
in academic fields such as medicine or psychology.

• (2) Normality: We also assume that the deviations of Y around its expectation,
called ϵ in Equation 3.3, are Gaussian, which means that we make errors in both
negative and positive directions and make many small errors and few large errors.
In other words, ϵ is a random variable following a normal distribution with expec-
tation zero and variance σ2, written ϵ ∼ N(0, σ2). If this assumption is violated,
the estimated confidence intervals of the feature weights are invalid.

• (3) Independence: It is assumed that the observation errors are independent of
each other, that is, each instance is independent of any other instance. If we per-
form repeated measurements, such as multiple blood tests per patient, the data
points are not independent and if we use the linear regression model, we might
draw wrong conclusions from the model.

• (4) Homoscedasticity (constant variance): The variance of the error terms σ2 is
assumed to be constant over the entire feature space. Suppose we want to predict
the value of a house given the living area in square metres. We estimate a linear
model which assumes that, regardless of the size of the house, the error around
the predicted response has the same variance. This assumption is often violated in
reality as it is plausible that the variance of error terms around the predicted price
is higher for larger houses, since prices are higher and there is more room for price
fluctuations. Suppose the average error (difference between predicted and actual
price) in our linear regression model is 50,000D. If we assume homoscedasticity,
we are assuming that the average error of 50,000D is the same for houses that cost
1,000,000D and for houses that cost only 40,000D. This is unreasonable because it
would mean that we can expect negative house prices.
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3.2. Weighted linear regression Explainable AI

The assumptions 2, 3 and 4 can be shown mathematically as

C = E[ϵϵT] = σ2 I,

where C is the covariance matrix of observation error, I is the identity matrix,
and E represents the expected value. In other words, the covariance matrix of the
prediction error ϵ takes the following form

C =


Varϵ1 Covϵ1,ϵ2 . . . Covϵ1,ϵn

Covϵ2,ϵ1 Varϵ2 . . . Covϵ2,ϵn
...

...
. . .

...
Covϵn,ϵ1 Covϵn,ϵ2 . . . Varϵn

 =


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2

 .

Diagonal elements of the covariance matrix represent the variance of each observa-
tion error and they are all equal because the errors are identically distributed. The
off-diagonal elements represent the covariance between two observations errors
and they are all zero because the errors are independent.

• (5) Fixed features: The input features are considered to be "fixed", this means that
they are treated as "given constants" rather than statistical variables. This means
they do not have any measurement errors. This is an overoptimistic assumption.
Without this assumption we would have to fit very complex measurement error
models that account for the measurement errors of our input features.

• (6) Absence of multicollinearity: From a statistical point of view, linear regression
is reasonable if the training observations (xi, yi) represent independent random
draws from their population. We do not want strongly correlated features, because
this messes up the estimation of the weights. In a situation where two features
are strongly correlated, it becomes problematic to estimate the weights because
the feature effects are additive and it becomes indeterminable to which of the
correlated features to attribute the effects. However, if the xi’s are not drawn
randomly, linear regression is still valid if the yi’s are conditionally independent
given the inputs xi.

In many cases with real data, it is difficult to satisfy all these assumptions. This does not
necessarily mean we cannot use linear regression. However, if any of these assumptions
is not met, the optimal performance cannot be expected and the inference of the model
coefficients could be inaccurate.

3.2 Weighted linear regression

The information of this section has been extracted from (Simon and Young, 2022) [24]

complemented with (Vaghefi, 2021) [25].

In this section, we look into one of the main pitfalls of linear regression: heteroscedas-
ticity, which is the violation of the assumption 4 (homoscedasticity) introduced in the
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3.2. Weighted linear regression Explainable AI

previous section. Lack of homoscedasticity has several consequences on linear regres-
sion results. First, the performance of the models is no longer optimal. Second, model
coefficients and standard errors will be inaccurate and hence their inferences and any
hypothesis testing based on them will be invalid. Weighted linear regression method,
also called weighted least squares, can be used when the ordinary least squares assump-
tion of constant variance in the errors is violated. The model under consideration is:

Y = f (X) + ϵ∗ = β0 +
p

∑
j=1

Xjβ j + ϵ∗,

where ϵ∗ is assumed to be multivariate normally distributed with mean vector 0 and
not constant variance-covariance matrix

C =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

n

 .

The diagonal elements of C are not identical and each observation has its own variance.

If we define the reciprocal of each variance σ2
i , as the weight, wi = 1/σ2

i , then let matrix
W be a diagonal matrix containing these weights:

W =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wn

 .

Weighted least squares is a generalisation of linear regression where the covariance
matrix of errors is incorporated. Then, the weighted least squares estimate is:

β̂WLS = arg min WRSS(β) = arg min
β0,...,βp

n

∑
i=1

wi (yi − (β0 +
p

∑
j=1

β jxij))
2 = arg min

β0,...,βp

n

∑
i=1

ϵ∗i
2.

Using the same notation we used in Proposition 3.1 it follows the analogous proposition
for weighted linear regression:

Proposition 3.2. If X is a full rank matrix, hence an invertible matrix, the optimal weights for
the weighted linear regression problem are:

β̂ = (XTWX)−1XTWy.

Proof. See (Wisan, 2020) [26]. Analogous to the proof of Proposition 3.1, taking into con-
sideration that we can write the residual sum of squares as

RSS(β) = (y− Xβ)TW(y− Xβ).
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3.3. Regularisation Explainable AI

The inclusion of the W matrix in the model shows that weighted linear regression uses
different weights for each observation based on their variance. A small error variance
observation has a large weight since it includes more information than a large error
variance observation, which has a small weight.

The main disadvantage of the weighted linear regression is that the covariance matrix
of observation errors is required to find the solution. In many applications, such infor-
mation is not available prior. In this case, the covariance matrix can be estimated, but it
is something we will not discuss in this project.

3.3 Regularisation

This section is based on (Hastie, 2009, Ch. 3.4) [9], (Gupta, 2017) [27] and (Checka, 2018) [28]

complemented with (Molnar, 2022, Ch. 5.1.7) [21] and (Phong, 2022) [29].

Avoiding overfitting is one of the most critical aspects of training our machine learning
model. We have already seen in the linear regression model that we adjust the coeffi-
cients based on our training data. If our model is attempting to capture the noise in the
training dataset far too hard, high coefficients will be estimated, significantly increas-
ing the model’s variance and not generalising well to future data. Noise refers to data
points that are meaningless, in other words, that are not indicative of our data under-
lying properties. Learning such data points makes our model more flexible, but it also
increases the risk of overfitting.

Regularisation tackles the overfitting problem by shrinking or regularising these learned
weights to zero. In order to meet our objective, if we try to reduce the coefficients of
previously learned features, the model loses accuracy. This loss in accuracy needs to be
explained by something else to maintain the accuracy levels. This responsibility will be
taken up by the bias portion of the model which, as seen in Section 1.6, is the part of the
model that is not dependent on the training data. Regularisation attempts to generalise
better in new data by reducing the model’s flexibility, resulting in a drop in variance
and an increase in bias.

3.3.1 Ridge regression (L2 regularisation)

When there are many correlated variables in a linear regression model, their coefficients
can become poorly determined and exhibit high variance. The main premise of ridge
regression is to solve this problem, so that each variable is represented appropriately
relative to the contribution to the outcome. Ridge regression shrinks the regression coef-
ficients by adding a penalty term to the linear regression optimisation Equation 3.2. It
means that the ridge regression problem can be seen as the minimisation of two terms.
Therefore, its coefficients are estimated by minimising the following penalised residual
sum of squares:

β̂ridge = arg min
(β0,...,βp)

{ n

∑
i=1

(yi − (β0 +
p

∑
j=1

β jxij))
2

︸ ︷︷ ︸
Sum of square error term (RSS)

+ λ
p

∑
j=1

β2
j︸ ︷︷ ︸

Penalty term

}
. (3.4)
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3.3. Regularisation Explainable AI

The term ∑
p
j=1 β2

j = ∥β∥2, the L2-norm of the coefficients vector, leads to a penalisation
of large weights. This type of regularisation cares a lot more about pushing down big
weights than tiny ones. The "force" pushing small weights to 0 is very small.

The term λ ≥ 0 is a tuning parameter2 that decides how much we want to penalise
the flexibility of our model. The increase in flexibility of a model is represented by
an increase in its coefficients, and if we want to minimise the above function, then
these coefficients need to be small. This is how the ridge regression technique prevents
coefficients from rising too high. When λ = 0, the penalty term has no effect, and the
estimates produced by ridge regression will be equal to the ones found in least squares.
However, as λ→ ∞, the impact of the shrinkage penalty grows, and the ridge regression
coefficient estimates will approach zero. As it can be seen, selecting a good value of λ

is critical. Cross-validation comes in handy for this purpose.

The value of λ should be carefully selected. Until a point, its increase is beneficial as it
is only reducing the variance (hence avoiding overfitting), without losing any important
properties in the data. But after a certain value, the model starts losing important
properties, giving rise to bias in the model and thus underfitting.

The coefficients that are produced by the standard least squares method are scale equiv-
ariant, i.e., if we multiply each input by c then the corresponding coefficients are scaled
by a factor of 1/c. Therefore, regardless of how the predictor is scaled, the multiplica-
tion of coefficient and predictor (β jXj) remains the same. However, this is not the case
with ridge regression, and therefore, we need to standardise the predictors or bring the
predictors to the same scale before solving Equation 3.4. The formula used to do this is
given below:

x̃ij =
xij√

1
n ∑n

i=1(xij − x̄j)
.

In addition, notice that the intercept β0 has been left out of the penalty term. Its penali-
sation would make the procedure become dependent on the original choice of the target
value vector Y. Adding a constant c to each target will not result in the same shift in the
prediction for y. Thus, it is better to leave the intercept out of the penalisation.

The remaining coefficients get estimated by a ridge regression without intercept, using
the centered x̃ij . Henceforth we assume that this centering has been done, so that the
input matrix X has p (rather than p + 1) columns.

Writing the Equation 3.4 in matrix form,

RSSλ(β) = (y− Xβ)T(y− Xβ) + λβT β,

it can be proved that the ridge regression solutions are

βridge = (XTX + λI)−1XTy,

2 If λ was not a hyperparameter, gradient descent would nicely set it to 0 and travel to the global
minimum. Hence, the control on λ cannot be given to gradient descent and needs to be kept out.
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3.4. Graphical representation of ridge and lasso regression Explainable AI

where I is the p× p identity matrix. Notice that with the choice of quadratic penalty
βT β, the ridge regression solution is again a linear function of y. The solution adds
a positive constant to the diagonal of XTX before inversion. This makes the problem
nonsingular even if XTX is not of full rank, and was the main motivation for ridge
regression when it was first introduced in (Hoerl and Kennard, 1970) [30].

3.3.2 Lasso regression (L1 regularisation)

In reality we might not have just a handful of features, but hundreds or thousands.
And our linear regression model interpretability goes downhill. We might even find
ourselves in a situation where there are more features than instances, and we cannot fit
a standard linear model at all. This disadvantage is overcome by lasso regression, which
introduces sparsity to the model, i.e., few features. Instead of squaring the coefficients
like in ridge regression’s L2 penalty term, lasso utilises the L1 penalty3, taking the
coefficients absolute value and estimating them by minimising the following penalised
residual sum of squares:

β̂lasso = arg min
(β0,...,βp)∈Rn

{ n

∑
i=1

(yi − (β0 +
p

∑
j=1

β jxij))
2

︸ ︷︷ ︸
Sum of square error term (RSS)

+ λ
p

∑
j=1
|β j|︸ ︷︷ ︸

Penalty term

}
. (3.5)

The term ∑
p
j=1|β j| = ∥β∥1, the L1-norm of the feature vector, does not penalise big

weights as much as ridge regression, but it makes large and small weights a bit smaller.
In comparison to ridge, it tends far more to drive small weights to 0.

The solution for lasso regression, β̂lasso, is not linear in the yi. The nature of absolute
value makes β̂lasso have no closed form expression as β̂ridge. Computing the lasso solu-
tion is a quadratic programming problem, although efficient algorithms are available for
computing the entire path of solutions as λ is varied, with the same computational cost
as for ridge regression. Lasso, as a feature selection technique, will also converge faster
to the final solution than other feature selection techniques such as best subset, forward
stepwise or backward stepwise, which may be less efficient in terms of computation time.

3.4 Graphical representation of ridge and lasso regression

Let us take a look at the above methods with a different perspective. The ridge re-
gression can be thought of as solving an equation, where summation of squares of
coefficients is less than or equal to C. Therefore, we can reformulate ridge regression as

β̂ridge = arg min
β0,...,βp

{ n

∑
i=1

(yi − (β0 +
p

∑
j=1

β jxij))
2
}

subject to
p

∑
j=1

β2
j ≤ C. (3.6)

3 We use L1 and L2 norms as we need to generalise in the entire coordinate space, i.e., positive and
negative values on axes.
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And the lasso can be thought of as an equation where summation of modulus of coeffi-
cients is less than or equal to C. Therefore, we can reformulate lasso as

β̂lasso = arg min
β0,...,βp

{ n

∑
i=1

(yi − (β0 +
p

∑
j=1

β jxij))
2
}

subject to
p

∑
j=1
|β j| ≤ C. (3.7)

In order to keep things simple and provide a visual representation, suppose we just
have two weights, β1 and β2. Then, these last two equations can be seen graphically as:

FIGURE 4: Estimation picture for the lasso and ridge regression. Shown are contours of the error and
constraint functions. The solid blue areas are the constraint regions |β1| + |β2| ≤ C and β2

1 + β2
2 ≤ C,

respectively, while the red ellipses are the contours of the least squares error function.

Figure 4 shows the constraint regions given (blue areas), for lasso and ridge regression,
along with contours for RSS (red ellipses). The ellipses are the contour of the gradi-
ent descent4 algorithm for the RSS function, which is projected in 2 dimensions (See
Appendix D).

There is a one-to-one correspondence between C and the complexity parameter λ, as C
increases, λ decreases, and vice versa. For C big enough, the blue regions will contain
the centre of the ellipse, making coefficient estimates of both regression techniques,
equal to the least squares estimates (β̂), indicating that the regularisation term λ is equal
to 0. Contrarily, as λ increases, the flexibility of the model decreases, leading to increased
bias but decreased variance. This means that the cost function for ridge regression will
be more and more dependent on the magnitude of the regularisation term, forcing the
coefficients to be relatively small, closer to 0. The fact that these coefficients are relatively
small suggests that C is also small. So, as λ increases, C decreases.

4 Gradient descent is an iterative first-order optimisation algorithm used to find a local minimum of a
given function. In our case the RSS cost/loss function, which is a convex function, so in this case we will
converge to a global minimum.
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In Figure 4, C is not big enough for the blue region to contain β̂. In this case, the
lasso and ridge regression coefficient estimates are given by the first point at which an
ellipse contacts the constraint region. Since ridge regression has a circular constraint
with no sharp points, this intersection will not generally occur on an axis, and so the
ridge regression coefficient estimates will be exclusively non-zero. However, the lasso
constraint has corners at each of the axes, and so the ellipse will often intersect the
constraint region at an axis, setting one of the coefficients equal to zero. In higher
dimensions, where we have more than two parameters, many of the coefficient estimates
may equal zero simultaneously (See Appendix E).

3.5 What is explainable artificial intelligence?

A black box is a system which can be viewed in terms of its inputs and outputs, without
revealing its internal mechanisms. Its implementation is "opaque" (black). In machine
learning, black box describes models that cannot be understood by looking at their pa-
rameters. However, when making life-changing decisions like a medical diagnosis, it’s
crucial to understand why we are making that decision. The importance of describing
AI outputs becomes clear at this point. Problematically, despite their apparent power
in terms of the results and predictions, many machine learning algorithms suffer from
opacity, making it impossible to get insight into their internal mechanisms. This is a
critical issue, as trusting key decisions from a system that is unable to explain itself has
clear risks. Explainable artificial intelligence (XAI) suggests a transition towards a more
transparent AI to overcome this problem. Its goal is to develop a set of techniques that
either produce more understandable models keeping high levels of performance or pro-
vide external tools to better understand the models that are inherently not interpretable.

3.6 XAI taxonomy

This section is based on (Angelov, 2021) [31] complemented with (Molnar, 2022, Ch.3) [21].

A number of terminologies exist in the literature to express the opposite of a black box
model. The following terms are distinguished:

• Transparency: A model is considered to be transparent if, by itself, it has the
potential to be understandable. In other words, transparency is the opposite of
black box.

• Interpretability: Capacity to provide interpretations in terms that are understand-
able to a human.

A model is more interpretable than another if its decisions are simpler for humans
to understand than the other model’s decisions.

There is no mathematical definition of interpretability in the field of explainable
artificial intelligence, as the degree of interpretation is not an exact concept. An ap-
proach to a definition from a mathematical point of view is given in (Tjoa, 2020) [32],
where it defines interpretability via a mathematical structure.
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3.6. XAI taxonomy Explainable AI

Also mention that the notion of interpretability depends on the target audience.
ML experts may be able to interpret a complex model, but a doctor may be more
comfortable with a small number of weighted features as an explanation.

• Explainability: It is related with the notion of explanation as an interface between
humans and an AI system. We will use thet erm Explanation for explanations of
individual predictions.

If hundreds or thousands of features significantly contribute to a prediction, it is not
reasonable to expect any user to comprehend why the prediction was made, even if
individual weights can be inspected. This requirement further implies that explanations
should be easy to understand, which is not necessarily true of the features used by the
model, and thus the "input variables" in the explanations may need to be different than
the features. As we see, interpretability is insufficient as it does not address all the
issues that might arise when dealing with black box models. Explainability, rather than
basic interpretability, is essential to earn user trust and get significant insights into the
causes, reasons, and decisions of black box techniques. Although by default, explainable
models are interpretable, the opposite is not always true.

Methods for machine learning interpretability can be classified according to various
criteria as in the following image:

FIGURE 5: General ontology of explainable artificial intelligence. Picture inspired by (Angelov, 2021) [31].
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3.7 LIME

The information in this section has been extracted from the paper where the LIME was
presented, (Riberio, 2016) [33], complemented with (Molnar, 2022, Ch. 9.1) [21], (Riberio,
2016) [34], (DeepFindr, 2021) [35] and (Sharma, 2018) [36].

LIME stands for Local Interpretable Model-agnostic Explanations and it is an algorithm
that can explain individual predictions of any classifier or regressor in a faithful way.

Each part of the LIME’s name reflects something that we desire in explanations. Local
refers to local fidelity, i.e., we want the explanation to really reflect the behaviour of
the classifier in the neighbourhood of the instance being predicted. This explanation is
useless unless it is interpretable, that is, unless a human can make sense of it. LIME can
be applied to any machine learning model, so it is model-agnostic.

3.7.1 Data representation

As shown in Figure 5, different forms of data may be used to train our machine learning
model, therefore, it is important to distinguish between features and interpretable data
representations. As mentioned before in Section 3.6, interpretable explanations need to
use a representation that is understandable to humans, regardless of the actual features
used by the model. For example, a possible interpretable representation for text clas-
sification is a binary vector indicating the presence or absence of a word, even though
the classifier may use incomprehensible features such as word embeddings. Likewise for
image classification, an interpretable representation may be a binary vector indicating
the presence or absence of a super-pixel5, while the classifier may represent the image as
a tensor6. These interpretable representations allow LIME to operate for different data
types.

Formally, if we denote x ∈ Rd as the original representation of an instance being ex-
plained, LIME uses simplified inputs x′ that map to the original inputs through a map-
ping function x = hx(x′). The simplified input x′ ∈ {0, 1}d′ is interpreted as a binary
vector for its interpretable representation. This means that we transform our original
feature vector into a discrete binary vector where features are included or excluded.
The way h is defined allows us to recover x′ from our original input x through the in-
verse of h, that is, x′ = h−1

x (x). Note that x = hx(x′) even though x′ may contain less
information than x because hx is specific to the current input x.

Given this disjunctive between features and interpretable data representations, we now
can assume we are dealing with interpretable features like the age of a person. Moreover,
as the title of this project denotes, in Section 3.11 we will use XAI to get insights in a
diabetes prediction problem. Because the diabetes database is in tabular format, we will
also assume we are working with this type of data. As a result of these assumptions, an
instance x is itself an interpretable representation, that is, x = x′. Thus, for the sake of
notation simplicity, LIME will be presented without distinguishing between x and x′.

5 Super-pixel: Contiguous patch of similar pixels.
6 Tensor: Mathematical objects that generalise scalars, vectors and matrices to higher dimensions.
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3.7.2 LIME overview

Before diving into the mathematics, we will make a brief overview of LIME using an
abstract graphical approach:

FIGURE 6: LIME general pipeline for explaining individual predictions of a classifier trying to determine
if a patient has diabetes or not.

Looking at Figure 6, we see that LIME can be divided into four steps:

(1) The decision boundary of our original black box model is represented by the
blue/white background, and as we can see, it is highly non-linear. The pink point
is the instance we want to be explained, and it has been predicted as "Diabetes".
How can we explain that our model predicts diabetes without peaking into the
complex model we receive our predictions from? We cannot reduce the whole
limit boundary in a unique explanation, that is a global explanation. LIME’s main
idea is to zoom in a neighbourhood of the prediction which leads us to step 2.

(2) Now we can do a simpler explanation of this local region, this way we do not
worry about the rest of the model and we obtain an explanation equally valid. It
is worth mentioning that features that may be important in a local context may
not be globally important and vice versa. In other words, a local explanation does
not imply a global explanation. What LIME does is to present a local explanation
through a transparent surrogate model, in this case a linear model in the region
surrounding our prediction. But how do we train this linear model? This leads us
to step 3.
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(3) We simply perturb instances (yellow points) around our pink point and weight
them according to their proximity to it. We get the original model’s prediction on
these perturbed instances, and then learn a linear model (black line) that approxi-
mates the model well in the vicinity of our instance. Note that classifying the black
point incorrectly in the surrogate model is not relevant since it is far away from
our pink point.

(4) Finally, in this step we receive our explanation by interpreting the local model.
The bar charts represent the importance given to the most relevant features, i.e.,
the features that have most contributed to the prediction of our pink point. In the
case of using a linear regression as a surrogate model, these values would be the
fitted weights of the model.

3.7.3 LIME mathematical optimisation problem

Fidelity-Interpretability Tradeoff

Let us first introduce the necessary elements to understand the LIME optimisation prob-
lem:

• f : Complex model being explained. In classification f (x) is the probability (or a
binary indicator) that x belongs to a certain class. For multiple classes, we explain
each class separately, thus f (x) is the prediction of the relevant class.

• g: Surrogate model we use to approximate f in the vicinity of x.

• G: Family of possible interpretable models. For example, linear models such as
lasso, decision trees, or decision rules.

• πx: Local neighbourhood of x.

• L( f , g, πx): Indicates a measure of how unfaithful g approximates f in a neigh-
bourhood defined by πx.

• Ω(g): Complexity measure of the model g that is used to regulate the complexity
of the surrogate model. In the case of decision trees it can refer to the depth of
the tree or in a linear regression, the number of null weights. Here we assume
complexity is opposed to explainability.

Once introduced this notation, the explanation produced by LIME at a local point x is
obtained by the following generic formula:

ξ(x) = arg min
g∈G

L( f , g, πx) + Ω(g). (3.8)

The objective is to assure interpretability and local fidelity while minimising L( f , g, πx)

maintaining Ω(g) small enough to be interpretable for a human.

In summary, our loss function ξ(x) tells us to find a simple model g ∈ G where the
model fidelity is maximised in the neighbourhood πx of our instance, keeping the inter-
pretability as simple as possible.
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Sampling for Local Exploration

We want to minimise the local loss L( f , g, πx) without making any assumptions about
f , since we want the explainer to be model-agnostic. Thus, in order to learn the local
behaviour of f as the inputs vary, we approximate L( f , g, πx) by generating perturbed
instances, weighted by πx. How do we generate these perturbations? In tabular data,
LIME creates new instances individually perturbing each feature of x from a normal
distribution inferred from the training set. Given this dataset Z of perturbed samples
with the associated labels, we optimise Equation 3.8 to get an explanation ξ(x).

Sparse linear explanations

LIME chooses the family of surrogate interpretable models G as the class of linear mod-
els (g(z) = wg · z). This type of model is used to minimise a weighted linear regression:

L( f , g, πx) = ∑
z∈Z

πx(z)( f (z)− g(z))2.

We minimise the squared distances between the predictions of our complex model f and
our simpler model g. This is done for all perturbed instances assigning each of them a
weight πx(z).

Let πx(z) = exp (−D(x, z)2/σ2) be an exponential kernel defined on some distance func-
tion D, usually the euclidean distance, and kernel width σ2. The exponential kernel
attributes a value in the range [0, 1], the higher the closer to the reference point, while
the kernel width σ2 decides how large the circle of the meaningful weights around it is.

It is worth noting that this method is fairly robust to sampling noise since the samples
are weighted by πx. Also, since LIME produces an explanation for an individual pre-
diction, its complexity does not depend on the size of the dataset, but instead, on time
to compute f (x) and on the number of perturbed samples N.

We ensure that the explanation is interpretable for tabular data by predefining a set
of features K that we wish to have in our interpretable model. Although a greater K
potentially results in more fidelity in the model, the lower K, the simpler the model is to
understand. For training models with exactly K features, lasso, which we heave already
introduced in Subsection 3.3.2, is a convenient option. Why? A lasso model with a
high regularisation parameter λ produces a featureless model. By retraining the lasso
model with slowly decreasing λ, we can exactly get K weights that differ from zero, thus
obtaining K features. As LIME uses lasso as sparse linear model, this particular choice
of Ω directly solves Equation 3.8.

LIME’s biggest advantage is its agnosticity. Even if the underlying machine learning
model is replaced, the same local interpretable model can be used for explanation. An-
other advantage of LIME is that the generated explanations are brief and understand-
able to humans. As a result, the LIME application may be more appropriate in situations
when the recipient of the explanation is a layperson or someone with limited time. In
situations when we may be legally obligated to explain a prediction thoroughly, this is
insufficient.

36



3.8. Submodular Pick-LIME (SP-LIME) Explainable AI

3.7.4 LIME limitations

• Neighbourhood: When using LIME with tabular data, the right definition of the
neighbourhood is a huge, unsolved challenge. According to (Molnar, 2022) [21],
this is LIME’s most serious flaw, and the reason why it should be used only with
extreme caution (See Appendix F).

• Non-linearity: Because we selected G as the family of sparse linear models, there
may not be a faithful explanation if the underlying model is very non-linear even
in the prediction’s locality.

• Improbable instances: Perturbed instances are produced from a Gaussian dis-
tribution without regard for feature correlation. This can result in improbable
instances that can be used to learn local explanation models.

• Instability: In (Alvarez, 2018) [37], the authors showed that in a simulated situation,
the explanations for two relatively close points changed substantially. Further-
more, if one repeat the sample procedure, the results might be different. Because
instability makes it harder to believe explanations, one should be very critical.

3.8 Submodular Pick-LIME (SP-LIME)

The information in this section has been extracted from (Riberio, 2016) [33], (Sharma,
2018) [36] and (Knor, 2021) [38].

Although the explanation of a single instance’s prediction gives us some credibility of
the model, it is insufficient to evaluate the model’s overall interpretability. SP-LIME
proposes to give a global explanation of the model by explaining a set of representative
individual instances.

SP-LIME algorithm is still model-agnostic as it runs LIME for all available/selected
instances. According to LIME’s author, "even though explanations of many instances
might be insightful, these instances need to be selected judiciously, since consumers
may not have the time to review a large number of explanations" (Ribeiro, 2016) [33].

FIGURE 7: Decision-making diagram process using SP-LIME as complement to a machine learning model.
First, the model is trained and the predictions are obtained. We next utilise SP-LIME to generate a set of
model-representative explanations. As a result, the model explanation will be used in conjunction with the
model’s prediction to help the user make the final decision.
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Algorithm prerequisites

• B: As recently mentioned, the LIME’s author argues that the user may not have
time to examine many different explanations. Then the number of explanations
(instances) that one is willing to look at to understand the model is represented as
a budget with the letter B.

• W: Given the explanations of the original database X, we construct an n× p matrix,
which we will denote W, where n is the number of instances and p the number of
features. The explanation matrix W represents the local importance of the features
for each instance, i.e, the lasso regression weights obtained from the surrogate
linear model fitted around each instance.

• I: We will call Ij the global importance of the feature (column) j in the matrix W.
We want variables that explain many different instances to have a higher value.

Ij is defined as Ij =
√

∑n
i=1 |wgij | where wgij is the assigned weight to the feature j

for the explanation of instance i in our linear surrogate model g.

FIGURE 8: Rows represent instances (pa-
tients) and columns represent features (pa-
tient characteristics). Feature f2 (dotted
blue) has the highest importance since it is
the one that explains more instances. The
pick procedure would select rows 2 and
5 (in red), covering all features except f1.
Figure adapted from (Ribeiro, 2016) [33].

In Figure 8 we can see an example where
n = p = 5 and W is binary (K = 2 for
lasso). Because feature f2 is used to explain
more instances, the importance function I
should score it higher than feature f1, i.e.
I2 > I1. While we want to choose instances
that cover the most essential components, the
set of explanations must not be redundant in
the components they present the users, thus
avoid picking instances with similar explana-
tions. Figure 8 also shows that after picking
the second row, the third row does not pro-
vide new information because the user has
already seen features f2 and f3, however, the
fourth row introduces the user to wholly new
features. All of the cells are totally covered
when the second and last rows are picked.

• c(V, W, I): This non-redundant coverage notion is formalised as follows:

c(V, W, I) =
p

∑
j=1

1[∃ i∈V: |Wgij |> 0] Ij.

This is the coverage function c, and given W and I, it calculates the total importance
of the features that appear in at least one instance in a set V. As we can see in the
indicator function, Ij will be summed to the coverage if there exists one instance
in the set V that its assigned weight to the variable j for the instance i is greater
than 0.
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Algorithm

The following algorithm selects the B instances with a highest coverage:

Algorithm 1 Submodular pick (SP) algorithm

Require: Instances X, Budget B
– (1) ———————————————————————————————————–
for all xi ∈ X do

Wi ← explain(xi) ▷ Using LIME
end for
– (2) ———————————————————————————————————–
for j ∈ {1, . . . , p} do

Ij =
√

∑n
i=1 |wgij | ▷ Compute feature importances

end for
– (3) ———————————————————————————————————–
while |V| < B do ▷ Greedy optimisation of Pick(W, I) = arg max

V, |V|≤B
c(V, W, I)

V ← V ∪ arg maxi C(V ∪ i, W, I)
end while
return V

As we can see the algorithm is divided in 3 steps:

(1) Applies LIME to all the instances of the original dataset X.

(2) For each column (feature) it calculates its importance.

(3) This is called the pick-step, and it is the task of selecting B instances for the user
to inspect. Initialises a set V to empty and while the cardinal of V is less than
the budget B, it iteratively adds the instance that maximises the coverage function.
Finally returns the set V, which is the set of B instances that better explain the
complex model.

3.9 SHAP

The information in this section has been extracted from the paper where SHAP was
presented (Lundberg and Lee, 2017) [39], (Molnar, 2022) [21] and (Sahakya, 2021) [40], com-
plemented with (Machine learning TV, 2021) [41], (DeepFindr, 2021) [42] and (Kie, 2021) [43].

3.9.1 Shapley Values

Let us imagine we have a group of different people cooperating in a game, where the
cooperative game could be a machine learning competition. After the game is over,
the winning group receives a prize, for example 10,000D. The question would be the
following: How would the money be distributed among all the members of the group
so that the distribution is fair? Well, there are members who have contributed more and
distributing it equally would not be fair. The answer to this question is given by the
Shapley values, introduced in (Shapley, 1951) [44].
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Before describing how Shapley values are calculated, we will present them in a more
formal setting with some important notation. A coalitional game typically consists of a
set N of |N| = n players and a characteristic function v : 2n −→ R with v(∅) = 0 that
specifies the value of each possible coalition (subset of players). For a coalition S, this
value v(S) describes the contribution of S to the output. The grand coalition is the one
consisting of all the participants. The marginal contribution of a player pi to a coalition
Sj is the difference in value that pi produces upon joining Sj. The Shapley value is
based on the marginal contribution concept, but it takes into account all alternative
sequences in which the participants may have joined the grand coalition. Intuitively, the
Shapley value attempts to fairly measure the contribution of each player to the coalition
consisting of all players.

For example, given four players {p1; p2; p3; p4}, one of the possible joining orders is
(p2, p4, p1, p3), which indicates that p2 was the first to join the grand coalition, followed
by p4, p1, and lastly p3. For example, when estimating the Shapley value of p4, we
analyse all possible joining orders and compute the marginal contribution of p4 to the
coalition of players who joined before p4 for each such order. Then, the Shapley value
of p4 is simply its average marginal contribution, taken over all possible joining orders.

A 3-player example is illustrated in the following figure:

FIGURE 9: An illustration of the Shapley value. Given three players, namely Red, Blue and Green, one
possible joining order is that Red joined first, followed by Blue, then Green (see the top-left corner). Another
possible joining order is that Green joined first, followed by Red, then Blue (top-right corner). For every
joining order, the Shapley value computes the marginal contribution of each player, which is the difference
in value caused when that player joins the coalition. For example, given the joining order in the top-left
corner, the marginal contribution of Red, Blue and Green is 10, 40, and 50, respectively. Then, the Shapley
value of each player is defined as its average marginal contribution, taken over all joining orders (see the
bottom row of the figure). Image adopted from (Sahakyan, 2021) [40].
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Shapley value formula

According to the (Shapley, 1951) [44] the amount that player i is given in a coalitional
game (v, N) is

ϕi(v) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! (v(S ∪ {i})− v(S)). (3.9)

The terms of the formula can be interpreted in the following way:

• v(S ∪ {i})− v(S) : Captures the marginal contributions of member i.

• |S|! : Ways in which the set S could have been formed before adding i.

• (|N| − |S| − 1)! : Different ways the remaining players could be added.

• |N|! : Number of combinations that can be formed with the coalition.

The last three terms assign to the marginal contribution an specific weight accounting
for all the different sequences in which the total coalition can be formed. The idea is
that small and large subsets are more important, thus they get a higher weight. For
subsets with many players, we can learn about this player’s total effect (main effect plus
feature interactions). For small subsets we have isolated players and we can directly
observe its is contribution to the payout. Contrarily, if a coalition consists of half the
players, we learn little about an individual feature’s contribution, as there are many
possible coalitions with half of the players. (For an example of Shapley value computation
see Appendix G).

3.9.2 SHAP framework

Translating the concept of Shapley values into the field of model explainability is rel-
atively straightforward and this is exactly what Scott Lundberg and Su-In Lee did in
2017 with the paper "A unified approach to interpreting model predictions", where they
introduced SHAP (Lundberg and Lee, 2017) [39].

SHAP stands for SHapley Additive exPlanations and it reframes the problem of Shapley
values from a problem where we look at how the members of a coalition contribute to
generating a result V to another where we look at how individual features contribute
to the output of a model. In other words, the coalition game would be the machine
learning model, and the payout would be a prediction.

They do it in a very specific way, which we can get an idea of by looking at the model
name. We already know what Shapley values are, we also know what an explanation is,
but what about "additive"? This part refers to additive feature attribution methods.

Additive feature attribution methods

A model’s best explanation is the model itself; it properly reflects itself and it is straight-
forward to comprehend. We cannot use the original model as the best explanation for
sophisticated models like ensemble techniques or deep networks since they are difficult
to understand. We must instead take advantage of a simplified explanation model, which
is defined as any interpretable approximation to the original model.
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Unlike before with LIME and because we believe it is essential to comprehend the en-
tire SHAP structure, now we will distinguish between an input x and its interpretable
representation x′ (for tabular data, this notation is not that important). As we already
commented in Subsection 3.7.1, it means that we transform a vector of variables into a
binary discrete vector where the variables are included or excluded. Then we can de-
fine the additive feature attribution method as the explanatory model g satisfying the
following two properties:

(1) This is the property local methods try to ensure and states that:

i f x ≈ x′ then f (x) ≈ g(x′).

(2) The complex model g must take the following form:

g(x′) = ϕ0 +
p

∑
i=1

ϕix′i ,

where ϕi tells us how much a feature changes the model’s output, which we call
attribution, and p is the number of features of the model.

If we have these two properties for the model, we have a model that has additive attri-
bution of the features. The advantage of this type of explanation is that it is very easy
to interpret because we can see the exact contribution of each feature to the prediction
of an instance just by looking at the ϕi values.

Properties that uniquely determine additive feature attribution methods

(1) Local accuracy

f (x) = g(x′) = ϕ0 +
p

∑
i=1

ϕix′i .

The prediction of the explanatory model g(x′) is the same as the original model f (x) when
x = hx(x′).

(2) Missingness
x′i = 0 =⇒ ϕi = 0.

When a feature is left out of the model, its attribution must be 0. That is, only the presence
of features, not their exclusion, may change the output of the explanation model.

(3) Consistency

Let fx(z′) = f (hx(z′)) and z′\i denote setting z′i = 0. For any two models f and f ′:

∀ z′ ∈ {0, 1}p, f ′x(z
′)− f ′x(z

′\i) ≥ fx(z′)− fx(z′\i) =⇒ ϕi( f ′, x) ≥ ϕi( f , x).

If the original model varies in such a way that the contribution of a feature varies, the
attribution in the explanatory model cannot vary in the opposite direction. For example,
if we have a new model where a specific feature has a higher contribution in the original
model, the attribution in our new explanation model cannot be reduced.
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SHAP authors state that these qualities are well-known in Shapley value estimate meth-
ods, but they were previously unknown in additive feature attribution approaches.
These 3 properties are defined as efficiency, symmetry, dummy and additivity in (Molnar,
2022) [21], however, it can be proved that these two definitions are equivalent.7

One surprising characteristic is that there is only one attribute class in which an at-
tribute method satisfies these three desirable properties. This can be formalised with
the following theorem:

Theorem 3.3. Only one possible explanation model g follows additive feature attribution meth-
ods definition and satisfies Properties 1,2, and 3:

ϕi( f , x) = ∑
z′⊆x′

|z′|!(p− |z′| − 1)!
p!

( fx(z′)− fx(z′\i)), (3.10)

where |z′| is the number of non-zero entries in z′, and z′ ⊆ x′ represents all z′ vectors where the
non-zero entries are a subset of the non-zero entries in x′.

Proof. See (Shalpey, 1953, pp. 301-317) [46].

Theorem 3.3 shows that there is only one possible additive feature attribution method
satisfying the three properties, the one taking as attributes the Shapley values. This
result implies that feature attribution methods not based on Shapley values violate at
least one of these 3 properties. LIME is one of these feature attribution methods which,
as it is not based on Shapley values , does not satisfy the three properties. It satisfies
Property 1 and Property 2 but not Property 3.

In Equation 3.10, the Shapley value formula in a machine learning context is introduced.
How do we interpret it? The value ϕi( f , x) gives us the Shapley value (contribution) for
feature i in a model f . Note that ϕi( f , x) gives us the Shapley value for the specific value
that feature i takes in the input data point x, not to the feature in a global sense.

This data point x could be a row in a tabular dataset. The first thing we see in the
formula is the summation for all subsets Z′ of our interpretable input x′, that is, all
the feature combinations, so we take into account the interactions between them. The
weighting is exactly as we saw in Equation 3.9. In the last part of the formula we obtain
the output of the model with and without the feature i. The difference between these
two values tells us how much has i contributed in the prediction of the subset z′. This
part is the one corresponding to the marginal contribution of a player in Equation 3.9,
but now for a feature i. Then we do this for all subsets z′ and we obtain the contribution
of each feature to the prediction of the instance x.

Machine learning models have inputs of a fixed size and we cannot change their shape.
Then the following question may arise: How do we exclude a variable in a machine
learning model? The way this is solved is simple, the missing variables are imputed by
random values of this variable from our train dataset.

7 See (Molnar, 2019) [45].
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The Shapley value takes a long time to compute. Only the approximate solution is
feasible in the majority of real-world problems. Computing the exact Shapley value is
computationally costly, there are 2n possible subsets of the feature values, where M is
the number of features. Only 64 subsets must be calculated for a set with four variables;
however, with 32 variables, more than 17 billion subsets must be calculated, which is
algorithmically too expensive. So to get around this problem, Lundberg and Lee devised
the Kernel SHAP, a way of approximating Shapley values through far fewer subsets.

3.9.3 Kernel SHAP (Linear LIME + Shapley values)

Kernel SHAP is a model-agnostic framework for outcome explanation, which combines
LIME with the Shapley value. It estimates for an instance x the contributions of each
feature value to the prediction. Kernel SHAP consists of four steps:

(1) Sample coalitions z′k ∈ {0, 1}M, where k ∈ {1, . . . , K} is the number of samplings.
(1 = feature present in coalition, 0 = feature absent).

(2) Get prediction for each z′k by first converting z′k to the original feature space and
then applying model f . As said before, the machine learning model does not let
us omit a feature. So what we do is define a background dataset B, using instances
on which the model has been trained. What it does is to fill our omitted feature(s)
with values from B, keeping the original values of the non-omitted features.

(3) When we have already calculated the K subsets, we can formulate it as a linear
regression weighted with a coefficient assigned to each variable, the Shapley Kernel
weight introduced in Theorem 3.3.

(4) Return Shapley values ϕi, the coefficients from the weighted linear regression fitted
with the sampled subsets z′k.

Linear LIME approximates f locally using a linear explanation model. At first look,
LIME’s regression formulation in Equation 3.8 appears to be rather different from Shap-
ley value formulation introduced in Equation 3.10. We know the Shapley values are
the only viable solution to Equation 3.8 that satisfies properties 1-3, since LIME is an
additive feature attribution method. A question that may arise is whether the solution
to Equation 3.8 recovers Shapley values. The solution is determined by the loss function
L, the weighting kernel πx′ , and the regularisation term Ω. The LIME choices for these
parameters are made heuristically and using these choices, as a result, Equation 3.8 does
not recover the Shapley values. As previously mentioned, one consequence is that LIME
violates Property 3, which can lead to unintuitive behaviour in certain circumstances.

Below we show how to avoid heuristically choosing the kernel in Equation 3.8. With a
very specific weight, we can ensure that the solution of the Kernel SHAP linear weighted
regression is such that the coefficients it returns are the Shapley values.
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Theorem 3.4 (Shapley Kernel). Under the definition of additive feature attribution methods,
the specific forms of πx′ , L, Ω that make solutions of Equation 3.8 consistent with Properties
1,2, and 3 are:

Ω(g) = 0,

πx′(z′) =
M− 1

( M
|z′|)|z′|(M− |z′|)

,

L( f , g, πx′) = ∑
z′∈Z

[ f (h−1
x (z′))− g(z′)]2 πx′(z′),

where |z′| is the number of non-zero elements in z′, and Z is the training data.

Proof. See supplementary material of (Lundberg and Lee, 2017) [39] and (Pei, 2018) [47].

In Kernel SHAP step 2 we sample K instances creating a background dataset B, but if
these instances are not representative we put too much weight on unlikely data points.
We can be a little more selective in our coalition sampling as the smallest and largest
coalitions have the most of the weight. Instead of sampling blindly, we use some of
the sample budget K to include these high-weight coalitions, resulting in better Shapley
value estimations. We begin with all feasible coalitions with 1 and M− 1 features, re-
sulting in a total of 2 times M coalitions. We may incorporate coalitions with 2 features,
M− 2 features, and so on when we have enough budget left. We sample with readjusted
weights from the remaining coalition sizes.

Formalising concepts from step 3, we construct a linear regression model

g(z′) = ϕ0 +
M

∑
i=1

ϕiz′i

which is optimised by the loss function L presented in Equation 3.10. As proved in
Theorem 3.3 the Shapley values are the estimated coefficients. As we are in a linear
regression situation, we could think in doing the model sparse, including regularisation
terms. However, the estimated coefficients would not be the Shapley values.

Although it is not discussed in this project, there are other ways SHAP is presented in
the paper, but these are not model agnostic. They are rather model specific and aim to
optimise the sampling process.

3.9.4 SHAP limitations

• Computational cost: Kernel SHAP is slow. As a result, while it can explain a single
instance in a fair amount of time, it is unable to do so for a huge number of them.
As a result, Kernel SHAP is unsuitable for explaining models globally, as such
explanations are typically derived from explaining a large number of representa-
tive instances. One example of this computationally expensive global methods is
SHAP feature importance (Molnar, 2022, Ch. 9.6.5) [21].
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• Feature dependencies: Kernel SHAP does not take into account feature dependen-
cies. By replacing feature values with values from random instances, it is easier
to randomly sample from the marginal distribution8 rather than taking into account
the dependencies between the missing and non-missing features. This is fine as
long as the features are independent. However, if features are correlated this might
lead to sampling feature values that do not make sense for our instance. One so-
lution might be conditional sampling; features are sampled based on the features
that are already in the coalition. While conditional sampling solves the problem
of unrealistic data points, it also introduces a new problem: the generated values
are no longer Shapley values9.

• Access to data: Contrary to LIME, calculating the Shapley value for a new data in-
stance requires access to the data. Accessing the prediction function is not enough,
because we are required to replace sections of the instance of interest with values
from other randomly chosen instances of the data.

3.10 LIME VS SHAP

The information of this section has been extracted from (Molnar, 2022) [21] complemented
with (Sundararajan, 2020) [48] and (Poduska, 2018) [49].

Remember that LIME builds a new dataset of perturbed data points. As these points
are obtained from perturbing the instance of interest, in their majority, they fall near the
instance. Then LIME trains a local surrogate model on it, with each sampled instance
weighted by its proximity to the instance of interest. Kernel SHAP is similar to LIME in
that it trains a local surrogate model, but the distinction is that it weights the sampled
instances according to the weight the coalition would receive in a Shapley value esti-
mation. For training the surrogate model, SHAP either can use the whole training set
or a background dataset, which is formed by a subset of representative instances of the
training set.

Shapley values take into account all possible predictions for an instance based on all
possible input combinations. Due to this exhaustive approach, SHAP is the only tech-
nique that can guarantee local accuracy, missingness, and consistency, whereas LIME,
as a particular case of SHAP, lacks the same properties.

So, why would anyone use LIME in the first place? It is simple, LIME is faster, and
Shapley values require a considerable time to compute.

3.11 LIME and SHAP medical sector application

In this section, we present simulated user experiments to evaluate the utility of local
explanations from LIME and SHAP in trust-related tasks. We show how using these

8 Marginal distribution: Given two random variables together X and Y, the marginal distribution of X
is simply the probability distribution of X ignoring the information regarding the variable Y.

9 See (Sundararajan, 2020) [48].
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two XAI methods, one can understand the influence of the variables on the ML model’s
decisions for particular instances, without having to peek into the model’s internal pa-
rameters.

In order to emulate a real-life context in the field of healthcare, suppose we are in the
position of a doctor who is seeking support to make a decision based on the prediction
of a black box model. More specifically, in the position of a doctor who has to decide
whether to diagnose a patient as diabetic or not. Our black box model will be a random
forest, introduced in Chapter 2 and on which we have described two global explanations
for the model through the importance of features, Gini importance and permutation im-
portance. We will see that with LIME and SHAP this global importance of features does
not always correspond to the features that have most influenced specific predictions.

The database used to train this model is a tabular database with diabetes health indi-
cators, therefore, where the problem established is to diagnose each patient as either
diabetic (or prediabetic) or not.

Python has been the programming language used for the modelling of this section and
the elaboration of all the figures. The commented code and data for replicating the
experiments are available at <https://github.com/aleixnieto/TFG>.

3.11.1 Diabetes database

The database on which we will work this section is a modified database coming from the
Behavioural Risk Factor Surveillance System (BRFSS), which is a health-related telephone
survey collected annually by the Centers for Disease Control and Prevention (CDC) in the
United States. Every year, BRFSS collects responses from over 400,000 Americans on
health-related risk behaviours, chronic health conditions, and the use of preventative
services. The used database10 is a modified version of the 2015 BRFSS original database
made available on Kaggle11. The original database contained responses from 441,455
individuals and has 330 features, and it has been cleaned and balanced to obtain a
dataset of 70,692 individuals with 21 interpretable features. The balancing has been
done by the database creator by selecting random instances until reaching an equal
50/50 split of respondents with no diabetes and with either prediabetes or diabetes.

The target variable in the database is defined as:

Y = ”Diabetes” =

{
0 i f Respondent with no diabetes or prediabetes
1 i f Respondent with either diabetes or prediabetes

A description of the 21 predictor features can be found in Appendix H. Also, an ex-
ploratory data analysis of the database can be found at <https://github.com/aleixni
eto/TFG/blob/main/PROFILING/Database_general_report.html>.

10 https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset?select=
diabetes_binary_5050split_health_indicators_BRFSS2015.csv.

11 Kaggle: Online community platform for data scientists and machine learning enthusiasts. Kaggle al-
lows users to collaborate with other users, find and publish datasets, and compete with other data scientists
to solve data science challenges.
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3.11.2 Random forest implementation

The goal of this subsection is to estimate and evaluate a machine learning predictive
model based on our diabetes database. We are not intended to produce the most ac-
curate predictive model, but a model on which to apply the previously discussed XAI
techniques. To do this, we will use a random forest, which we introduced in Chapter 2
and of which we already have a solid understanding of the theory behind it.12

Before training the model, we first need to split the dataset into train and test datasets.
Seventy-five per cent (75%) of the total data comprises the train dataset, the remaining
twenty-five per cent (25%) forms the test dataset, which will be stored to later evaluate
the model performance and generalisation ability on new unseen instances.

The random forest model generates independent trees using a subset of all available fea-
tures and bootstrap observations from the train dataset, producing a unique structure for
each tree. Therefore, the nature of random forest requires hyperparameters to generate
each individual decision tree rather than having a fixed structure. The hyperparameters
yielding the best performance of the model are selected through an hyperparameter
tuning procedure.

The function RandomizedSearchCV from the Python library sklearn has been used to per-
form hyperparameter tuning. RandomizedSearchCV selects a fixed number of parameter
settings at random from all possible parameter combinations of Table 3.1. By sampling
20 parameter settings at random from the parameter grid, the selection of the best pa-
rameters has been achieved via a 5-fold cross-validation.

The parameters proposed for the hyperparameter tuning are the following:

Hyperparameter Description Proposed values

n_estimators Number of trees in the random forest. {50,100,150,200,250}

max_features

Denote M the total number of model
available features. The hyperparameter
max_features ≤ M is the number of fea-
tures considered at each split.

{
√

M, M}

min_samples_split
Minimum number of samples required
to split an internal node.

{2, 4, 6, 8, 10}

min_samples_leaf

Minimum number of samples required
to be at a leaf node. A split point at any
depth will only be considered if it leaves
at least "min_samples_leaf" training sam-
ples in each of the left and right branches.

{1, 2, 3, 4}

Table 3.1: Hyperparameters used to train the random forest classifier with the corresponding hyperparam-
eters description and its proposed values.

12 Several comments looking for detail in the explanation are omitted in the following discussion. How-
ever, they can be found in the code.
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After running the RandomizedSearchCV with a random forest classifier and the grid from
Table 3.1 grid as inputs, the following hyperparameters have been obtained:

n_estimators max_features min_samples_split min_samples_leaf

250
√

M 2 4

Table 3.2: Selected hyperparameters in the random forest classifier. The selection has been performed via
a 5-fold cross-validation using accuracy as evaluation metric.

Once obtained the hyperparameters, we can evaluate the random forest performance by
looking at different validation metrics in our training and test datasets:

FIGURE 10: Comparison of 4 performance metrics between train and test datasets. The better performance
in the training set is due to these data being observed during training, in contrast to test instances that
remain unseen. Such little difference ensures low overfitting and, hence, the good generalisation of the
model. See (Chauhan, 2020) [50] for a detailed insight into these metrics.

After evaluating and training our random forest model, we can obtain a global explana-
tion through the importance of the variables. This is achieved by the Gini importance
and permutation feature importances. In Figure 11 we compare them with our diabetes
database features.
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FIGURE 11: Global importances based on Gini and feature permutation importances. The features are
ordered from highest to lowest according to their contribution. As the feature permutation importance
gives us the change in the model’s performance, its values have been standardised to be represented on a
scale relative to 1.

We can observe that in both cases the 5 most important variables coincide. However,
in the case of feature permutation importance, the variation in model performance is
significantly greater in these variables than in the rest.

3.11.3 Visualising a single instance explanation

This section shows an example where LIME and SHAP help us to build confidence in
our random forest, which plays the role of an arbitrary black box model. To achieve this,
we examine the explanation of an incorrectly predicted instance from the test dataset.
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We locally look at which variables have led to the prediction and examine them as a
reason to validate the fact that they make sense from a medical point of view. Therefore,
translating this concept into a real medical environment, if a doctor saw in the expla-
nation of a prediction that the variables that led to the prediction do not make sense in
medical terms, he would not accept the prediction as valid.

Also, emphasising that the chosen database is just used as an example since its features
are well-known and do not require in-depth medical expertise to interpret and analyse.

LIME

To obtain the LIME’s explanation for an individual selected instance, the LIME author’s
Python implementation13 has been used.

In the following figure we can see the LIME explanation for an instance which has
been incorrectly predicted by the random forest. Concretely, the individual has been
predicted as diabetic when in fact the person was not diabetic.
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FIGURE 12: LIME explanation for a single instance. In the table we can see the values that take the features
of the instance being explained, which are ordered according to their weight in absolute value. The blue
colour represents that the corresponding feature has contributed to the prediction being "No Diabetes", and
the orange colour to the prediction being "Diabetes". To train the surrogate model from which we received
the weights, 20,000 perturbed instances around the predicted instance were generated.

In Figure 12 we can see that the majority voted class was "Diabetes" by 54% of the
trees. But is this really faithful? Note that the second variable that most contributed
to the prediction of diabetes is "HvyAlcoholConsump", but this does not make sense as
"HvyAlcoholConsump" takes the value 0, which corresponds to a person who does not
consume alcohol regularly. In this case, again positioning ourselves in the position of a
doctor, the explanation would lead us to reject the model’s prediction due to a lack of
coherence in the reasons that have led to said prediction.

13 https://github.com/marcotcr/lime.
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Additionally, after analysing many individual explanations one by one, we can conclude
that the model has interpreted "HvyAlcoholConsump" in the opposite direction. It con-
tributes to diabetes when it takes the value 0, which is a person who does not consume
alcohol, and it contributes to non-diabetes when it takes the value 1, which is a person
who consumes alcohol. This reasoning of the model does not make sense and therefore
we have discovered a feature that globally affects the model’s output. Note that we have
achieved a global issue from the model by analysing individual instances.

After running the explanation many times we can conclude that the perturbed instances
generated around the explained instance are stable with the LIME’s output as the ex-
planation has always been the same. Also, note that it has been used the default kernel
width implemented by the LIME’s author and already commented in Appendix F.

As a general conclusion, after inspecting many instances, it can be said that except for
the feature "HvyAlcoholConsump", all the others have been interpreted by the model as it
would be expected following a medical sense14. Moreover, the features that are usually
the most important in the predictions are also the 5 most important in Figure 11.

SP-LIME

In this part we run the SP-LIME algorithm to our database just as an example. The
figures have been generated by the LIME’S author Python implementation. In our case,
SP-LIME selects the 4 instances with the highest information coverage. For the expla-
nations we have selected 5 as the number of features we want to explain the prediction,
that is, the 5 most important features that lead to the prediction.
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(a) First selected instance
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(b) Second selected instance
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(c) Third selected instance
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(d) Fourth selected instance

FIGURE 13: SP-LIME algorithm calculated from 500 candidate explanations sampled from the data uni-
formly at random. Without this sampling, explanations would be generated for the entire dataset, which is
time-expensive. By analysing these explanations we can get a general grasp of how the algorithm works.
Red contributes to non-diabetes and green contributes to diabetes.

14 Based on the diabetes risk factors from https://www.cdc.gov/diabetes/basics/risk-factors.html
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In Figure 13, looking at the features’ values and their contributions we can see that all
the explanations are reasonable except for the one from Figure 13a. The first selected
instance has been predicted as non-diabetic and the variables that have contributed the
most are "HighBP" and "HighChol" taking the value 0. This does not make sense in
medical terms as having high blood pressure and having a heart attack are clear risk
factors for developing diabetes or prediabetes. Then again we have an explanation that
would lead us to reject the prediction.

SHAP

To obtain the SHAP plots, the SHAP author’s Python implementation15 has been used.

In Figure 14 we can see the SHAP explanation for the same prediction explanation in
LIME’s example. The output value 0.54 has been marked in bold and it is the prediction
probability for the instance being predicted as diabetic. That is, 54% of the decision trees
in the forest voted for the diabetes class, so the instance was predicted as diabetic.

FIGURE 14: Explanation for a single instance obtained with the function KernelExplainer from the Python’s
SHAP library. Red features contribute to diabetes prediction and are represented by pushing the prediction
higher, and those pushing the prediction lower are in blue, and contribute to a non-diabetic prediction.

The base value, according to the original SHAP paper, is the mean of the model output
over the background dataset. In our case to impute the missing values for the features
excluded in the Kernel SHAP algorithm, we have used the median of the train dataset.

Therefore, our background dataset is formed by one instance where each feature takes
its median in the train dataset. Taking the prediction for this instance we get 0.8044,
which is the probability that the instance is predicted to be diabetic, which is exactly the
base value.

In Figure 14 we see how non-high blood pressure, good general health contribute in this
order of importance to a non-diabetic prediction. Contrarily, the difficulty of walking,
high body mass index and an advanced age have a positive impact on the diabetes
prediction. In this case the explanation makes sense and consequently it is a good
complement to the model prediction.

SHAP framework also offers a barplot to observe, in a more intuitive way, the feature
contributions (See Appendix I).

Although it is not covered in this project, SHAP develops a global explanation theory
from the local theory we have already seen. This SHAP’s global framework, is by far,
preferable to SP-LIME. See (Molnar, 2022, Ch. 9.6) [21] and (Kuo, 2019) [51] for a detailed
insight into SHAP global explanation theory approach.

15 https://github.com/slundberg/shap.
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Conclusion

We have formalised the theory behind LIME and SHAP. Moreover, we have seen how,
for the same instance, the explanations given by these two techniques are not equal.
This discrepancy in the explanation is due to a difference in the very nature of the
models. LIME tells us, in a local sense, which are the most important features around
the instance of interest and its biggest drawback is that the explanation varies depending
on the kernel width. Otherwise, SHAP is consistent with describing how Shapley values
decompose the final prediction into the contributions of each feature. But as LIME with
the kernel width, we have some control over a parameter, in this case the decision about
how the omitted features are imputed.

By analysing these two methods in detail we have seen which are their strengths and
weaknesses. The table below summarises how LIME and SHAP differ on certain char-
acteristics that define the application context of the two methods:

LIME SHAP

Theory driven Fails at being consistent. ✗

Supported by the Shapley val-
ues theory properties and con-
sistency property. ✓

Time expensive Time affordable. ✓

Computation of marginal con-
tributions for all possible coali-
tions makes it time expensive. ✗

Require training data
Does not require the training
set for fitting the surrogate
model. ✓

Requires the training set for
generating the background set
that will be used to train the
surrogate model. ✗

What-if explanations
Can provide what-if explana-
tions.16 ✓

Cannot provide what-if expla-
nations. ✗

Improbable instances
Improbable instances may be
generated when obtaining
perturbed instances. ✗

When imputing omitted fea-
tures, improbable instances
may be generated. ✗

Instability
Kernel width can make it un-
stable. ✗

Its strong theoretical properties
makes it stable. ✓

Table 3.3: Comparative table of LIME and SHAP based on different criteria.

After having seen an application of these techniques in the field of healthcare, we may
wonder which of these two methods would be appropriate to use depending on the
context. Based on the strong theoretical properties of SHAP, it would be preferable to
use SHAP when we can, and rely on LIME when SHAP’s compute costs are too high.

16 LIME can provide what-if explanations by plugging in different values of features into the local model
and measuring how the prediction changes
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Future work

There are a number of avenues of future work that could be further explored. The first
thing which could be investigated in the future is to see how LIME explanations vary
depending on the kernel width. The idea would be to see for which kernel width value
the explanations are stable. This would be achieved by observing how the weights
of the explanation behave, and if this depends on the selected instance. The second
way in which we would like to complement the project is to expand LIME and SHAP
application to images in the field of health. We have seen how the explanations of LIME
and SHAP are interpreted. However, these have not been compared from a numerical
point of view. Therefore, another possible extension would be to see through some kind
of metric how the LIME and SHAP explanations relate.
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Appendices

Appendix A

In order to have simple and visual representation, we will use two variables, X and Y.
In the following bi-dimensional example, the decision tree partitions the training data
into a set of rectangles.

FIGURE 15: Decision tree of two levels. Picture inspired by (López, 2019) [11].

Each node represents a feature, each branch represents a rule (or decision), and each
leaf represents an outcome. The depth of a tree is defined by the number of levels, not
including the root node. Given the training data, the decision tree tries to group observa-
tions that are similar among them, and look for the best rules that split the observations
that are dissimilar between them until they reach a certain degree of similarity.

Appendix B

The three metrics of node impurity are comparable in Figure 16; however, cross-entropy
and Gini index are differentiable and hence more accessible to numerical optimisation.

FIGURE 16: Node impurity measures for binary classification, as a function of the proportion p in the sec-
ond class. Cross-entropy has been scaled to pass through (0.5, 0.5). Image adopted from (Hastie, 2009) [9].
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Appendix C

In this figure, we can see how increasing the number of weak learners, each with a
chance of correctly producing the right decision larger than 0.5, decreases the probability
of wrongly predicting the class of an instance. This occurs when the total number of
models that predict class 1 is less or equal than half of the total number of models.

FIGURE 17: Here, our weak learners are represented as trials in a binomial experiment. For this example
we have used p=0.56 as the probability of success of each trial. The probability that, given an instance and
160 weak learners, we incorrectly classify this instance half or more of the time is indicated in red.

Appendix D

FIGURE 18: Gradient descent projection as contour, adapted from (Chekka, 2019) [28].

In Figure 18, gradient descent is seen in three dimensions. The error for corresponding
β1 and β2 is shown by RSS(β). The zones with the highest error are shown in red, while
the zones with the smallest error are represented in blue. The coefficients β1 and β2

would be determined using gradient descent where the error is the global minimum,
resulting in β̂. The relevant error from the RSS(β) cost function of gradient descent is
projected on the 2-dim with the same colours.
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Appendix E

In a 2-D space, the set of betas that we can "afford" with L1 regularisation lies within a
rhombus, which we have called a "diamond". If the red point illustrated in Figure 4 is at
the corner of the diamond, one of the betas is set to 0. Contrarily, if the ellipse reaches
the diamond on the edge, none of the betas becomes 0, being this a rare situation.

Now we consider the situation when we have three betas (3-D space). The constraint
geometry is as follows:

FIGURE 19: Lasso with 3 betas, adapted from (Pham, 2019) [52].

Figure 19 shows us that the constraint region becomes an octahedron; a shape with
8 faces, 12 edges and 6 vertices. As the dimension increases, the number of vertices
and edges increases as well, making the ellipse more likely to be in contact with the
"diamond" on one of those places. That being said, lasso tends to work better in higher
dimensions.

Appendix F

The information of this appendix has been extracted from (Visani, 2020) [53].

FIGURE 20: (1) The best neighbourhood size depends on the target point (red points) and the curvature of
the ML function around it. (2) In a very intuitive way, orange dots are the original dataset points used to
train our original complex model. Green circles show how the kernel weights are assigned, based on the
kernel width parameter. The inner circle gives meaningful weights only to very close instances because σ2

is small. The outer circle employs a larger σ2.
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The diameter of the neighbourhood is determined by the kernel width: a small kernel
width indicates that an instance must be quite close to impact the local model, whereas
a greater kernel width indicates that further away instances influence the model as well.

LIME author’s Python implementation uses a kernel width of 0.75 times the square
root of the number of columns in the training data. However, we argue this is very
dependent on the data. In Figure 20 (left) we can see how different points have different
proper size for the linear local region. Moreover, in Figure 20 (right) we can see how bad
choices of the kernel width distort the LIME surrogate model approximation, making it
very different from the local shape of our original model. The green line only takes into
points in a small region, whereas the red line is the surrogate linear model trained in a
major diameter where the nonlinear form of the complex model affects its direction.

Recently, a new framework called OptiLIME presented in (Visani, 2020) [54] has been
developed to find the best kernel width so that LIME explanation is ensured to represent
the tangent to the ML curve.

Appendix G

Possible joining orders

Ways of adding player 1

to form the grand coalition

Marginal contributions

of player 1

v(S ∪ {1})− v(S)

Assigned weight to

marginal contribution

|S|!(|N|−|S|−1)!
|N|!

{1} → {1, 2} → {1, 2, 3} v({1})− v({∅}) 1/3

{1} → {1, 3} → {1, 3, 2} v({1})− v({∅}) 1/3

{2} → {2, 1} → {2, 1, 3} v({1, 2})− v({2}) 1/6

{2} → {2, 3} → {2, 3, 1} v({1, 2, 3})− v({2, 3}) 1/6

{3} → {3, 1} → {3, 1, 2} v({1, 3})− v({3}) 1/3

{3} → {3, 2} → {3, 2, 1} v({1, 2, 3})− v({2, 3}) 1/3

Table 4: Three players example, that is |N| = 3. The different subsets S created by adding participants to
build the grant coalition N are shown in the first column, concretely 3! = 6. The marginal contributions of
players in each of these adding possibilities are presented in the second column, and the weight assigned
to each marginal contribution is presented in the third column.

Possible

joining orders

Ways of adding players to

form the grand coalition

Marginal contributions

of player 1

v(S ∪ {1})− v(S)

Marginal contributions

of player 2

v(S ∪ {2})− v(S)

Marginal

contribution

weight

|S|!(|N|−|S|−1)!
|N|!

Shapley values (ϕi(v))

∑S⊆N\{i}
|S|!(|N|−|S|−1)!

|N|! (v(S ∪ {i})− v(S))

ϕ1 ϕ2

{1} → {1, 2} v({1})− v({∅}) = 1 v({2})− v({∅}) = 2 1/2

1.5 2.5
{2} → {1, 2} v({1, 2})− v({2}) = 2 v({1, 2})− v({1}) = 3 1/2

Table 5: Two players example, that is |N| = 2. The different subsets S created by adding participants to
build the grant coalition N are shown in the first column, concretely 2! = 2. The marginal contributions
of players in each of these adding possibilities are presented in columns two and three, and the weight
assigned to each marginal contribution is presented in the fourth column. The Shapley values for player
1 and player two are displayed in the last two columns. The values used in this example are v({1}) = 1,
v({2}) = 2, v({1, 2}) = 4.
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Appendix H

Feature name Descripted labels Type
HighBP 0 = no high blood preasure; 1 = high blood preasure Categorical
HighChol 0 = no high cholesterol; 1 = high cholesterol Categorical

CholCheck
0 = no cholesterol check in 5 years;
1 = yes cholesterol check in 5 years

Categorical

BMI Body Mass Index Numerical

Smoker
Have you smoked at least 100 cigarettes in your entire life?

[Note: 5 packs = 100 cigarettes] 0 = no; 1 = yes
Categorical

Stroke Ever diagnosed with a stroke? 0 = no; 1 = yes Categorical

HeartDiseaseorAttack
Coronary heart disease or myocardial infarction?

0 = no; 1 = yes
Categorical

PhysActivity
Realised physical activity in the past 30 days (not including job)?

0 = no; 1 = yes
Categorical

Fruits
Consume fruit 1 or more times per day?

0 = no; 1 = yes
Categorical

Veggies
Consume Vegetables 1 or more times per day?

0 = no; 1 = yes
Categorical

HvyAlcoholConsump
Adult men >= 14 drinks per week

Adult women >= 7 drinks per week
0 = no; 1 = yes

Categorical

AnyHealthcare Have any kind of health care coverage? 0 = no; 1 = yes Categorical

NoDocbcCost
Was there a time in the past 12 months when you

needed to see a doctor but could not because of cost?
0 = no; 1 = yes

Categorical

GenHlth
Would you say that in general your health is? scale 1-5
1 = excellent; 2 = very good; 3 = good; 4 = fair; 5 = poor

Categorical

MentHlth Days of poor mental health in the past 30 days. Scale 1-30 Numerical
PhysHlth Physical illness or injury days in the past 30 days. Scale 1-30 Numerical

DiffWalk
Do you have serious difficulty walking or climbing stairs?

0 = no; 1 = yes
Categorical

Gender 0 = female; 1 = male Categorical

Age
13 - level age category (_AGEG5YR see codebook)

1 = 18-24; 9 = 60-64; 13 = 80 or older; etc.
Numerical

Education
6 - level education level (EDUCA see codebook)
1 = Never attended school; 2 = elementary; etc.

Categorical

Income
8 - level income scale (INCOME2 see codebook)
1 = less than $10,000; 8 = $75,000 or more; etc.

Categorical

Table 6: Description of the 21 predictor features of the diabetes database.

A much more detailed description of the features can be found at the BRFSS codebook
<https://www.cdc.gov/brfss/annual_data/2015/pdf/codebook15_llcp.pdf>.
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Appendix I

In Figure 21 we can see the explanation for the instance explained in Figure 14, now, in
a more intuitive way using a barplot.
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FIGURE 21: SHAP explanation for a single instance barplot.
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