Transformerbased Action Spotting in soccer videos

Fundamental Principles of Data Science Master's Thesis

Artur Xarles Esparraguera

Supervisors:

- Dr. Sergio Escalera
- Dr. Albert Clapés

INTRODUCTION

- Deep Learning in Computer Vision
- Action Spotting
- SoccerNet

- HMTAS
- 60.56% Average-mAP
- 6th position challenge (20 participants)

RELATED WORK (I)

- Small sequences of video
- Visual features from ResNet backbone (2fps)
- VLAD descriptors, CALF model [1], multi-tower CNNs
- Baseline [2]:
 - More visual features from SOTA backbones
 - Transformer-based model

[1] A. Cioppa et al. "A context-aware loss function for action spotting in soccer videos." In: CVPR. 2020, pp. 13126–13136.
 [2] Xin Zhou et al. "Feature Combination Meets Attention: Baidu Soccer Embeddings and Transformer based Temporal Detection". In: arXiv (2021).

RELATED WORK (II)

BACKGROUND - Transformer

- Neural networks
- Encoder-decoder structure
- Encoder sub-layers:
 - Self-attention mechanism
 - PFFN
- We omit decoder

BACKGROUND – Attention

- Mimics cognitive attention
- Attention function:
 - Queries (Q)
 - Keys (K)
 - Values (V)
- Scaled Dot-Product Attention
- h attention mechanisms (projections of Q, K and V)

METHODS - HMTAS

METHODS – Embeddings (I)

METHODS – Embeddings (II)

Architecture	Туре	Dimension	Pretrain
TPN	Visual	2048	K400
GTA	Visual	2048	К400
VTN	Visual	384	K400
irCSN	Visual	2048	IG65M+K400
I3D-Slow	Visual	2048	OmniSource
VGGish	Audio	512	AudioSet

Fine-tunned on SoccerNet

Receptive field: 5 / 0.96 seconds

METHODS – Embeddings (III)

- Independent streams
- PFFN Module:
 - Point-wise Feed-Forward Network
 - Batch Normalization
 - ReLU

$$\mathbb{R}^{L \times d_t} \to \mathbb{R}^{L \times 512}$$

METHODS – Unimodal Transformer Encoders (I)

METHODS – Unimodal Transformer Encoders (II)

2 encoder layers with 8 heads
 Same dimensionality
 Global max-pooling
 $\mathbb{R}^{L \times 512} \to \mathbb{R}^{1 \times 512}$

Add & Norm Feed

Forward

Add & Norm Multi-Head Attention

Input

Embedding

Inputs

METHODS – Multimodal Transformer Encoders (I)

METHODS – Multimodal Transformer Encoders (II)

ℝ^{6×512}

- Concatenation of different embeddings
- Same configuration Transformer encoders
- Global max-pooling $\mathbb{R}^{6 \times 512} \rightarrow \mathbb{R}^{1 \times 512}$
- FCNN $\mathbb{R}^{1 \times 512} \to \mathbb{R}^{18}$
- Dropout and sigmoid activation

METHODS – Training Details (I)

METHODS – Training Details (II)

Negative Log-Likelihood Loss with weights

$$NLLL(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{C} \sum_{i=1}^{C} (w_i \cdot y_i \cdot \ln \hat{y}_i + (1 - y_i) \cdot \ln(1 - \hat{y}_i))$$

hediate Supervision Losses

> 5% each modality

$$\mathcal{L} = \frac{1}{K} \sum_{k=1}^{K} \left(\gamma NLLL(\mathbf{y}_k, \hat{\mathbf{y}}_k^{\text{MT}}) + \frac{(1-\gamma)}{E} \sum_{e=1}^{E} NLLL(\mathbf{y}_k, \hat{\mathbf{y}}_k^e) \right)$$

$METHODS-{\rm Inference}$

Sliding window stride 1

Non-Maximum Supression

FRAME	GOAL PROB.
1	0.15
2	0.20
3	0.22
4	0.20
5	0.25
6	0.30
7	0.40
8	0.50
9	0.45
10	0.55
11	0.70
12	0.65
13	0.50
14	0.30

FRAME	GOAL PROB.
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	0
11	0.70
12	0
13	0
14	0

RESULTS - Dataset (I)

550 soccer matches

- > 300 train split
 - 100 validation split
- > 100 test split
- > 50 challenge split

17 different actions

Action	Penalty	Kick-off	Goal	Substitution	Offside	Shots on Target
Nº of times	173	2566	1703	2839	2098	5820
Action	Shots off target	Clearance	Ball out of play	Throw-in	Foul	Indirect FK
Nº of times	5256	7896	31810	18918	11674	10521
Action	Direct FK	Corner	Yellow Card	Red Card	YC -> RC	
Nº of times	2200	4836	2047	55	46	

RESULTS – Dataset (II)

(a) Images for actions: 'Ball out of play', 'Throw-in', 'Offside' and 'Foul'.

High intra-class variability

Low inter-class variability

Non visible actions

(b) Images for actions: 'Shot on Target', 'Shot off Target', 'Direct Free-kick' and 'Indirect Free-kick'.

(d) Images for actions: 'Goal', 'Yellow card', 'Penalty' and 'Red card'.

RESULTS — Evaluation Protocols

P1:

- Stop training —
- Compare models -

train split validation split test split

P2:

- Train model
- Evaluate model

train + validation + test split challenge split Average-mAP: mean AP across classes and tolerances

$$AP = \sum_{t=0}^{T-1} (Recalls(t) - Recalls(t+1)) \cdot Precisions(t)$$

- Summarize precision-recall curve
- Tolerances between 1 and 5 seconds

RESULTS - Test results (I)

≻ M0:

Base model	
7 second sequences	
Single stream	
Max-pooling	
FCNN	

Model	Added feature	Average-mAP
Base models		
M0	FCNN ($L = 7$)	39.89%
M1	FCNN ($L = 3$)	42.59%
Transformer (L	.=3)	
M2	1-layer Transformer Encoder	50.02%
M3	2-layer Transformer Encoder	50.11%
Transformer m	odel (L=3) + Incremental improv	vements
M4	M3 + Hierarchy of streams	50.52%
M5	M4 + Weights in NLLL	55.05%
M6	M5 + Audio modality	56.77%
M7 (HMTAS)	M6 + Intermediate supervision	57.28%

RESULTS – Test results (II)

≻ M1:

3 second sequences

+2.70% Average-mAP

Less context better

Model	Added feature	Average-mAP
Base models		
M 0	FCNN ($L = 7$)	39.89%
M1	FCNN ($L = 3$)	42.59%
Transformer (I	.=3)	
M2	1-layer Transformer Encoder	50.02%
M3	2-layer Transformer Encoder	50.11%
Transformer m	odel (L=3) + Incremental improv	vements
M4	M3 + Hierarchy of streams	50.52%
M5	M4 + Weights in NLLL	55.05%
M6	M5 + Audio modality	56.77%
M7 (HMTAS)	M6 + Intermediate supervision	57.28%

RESULTS - Test results (III)

≻ M2 & M3:

PFFN to reduce dimensionality

Transformer Encoder layers

+7.43% / +0.09% AveragemAP

Model	Added feature	Average-mAP
Base models		
M 0	FCNN ($L = 7$)	39.89%
M1	FCNN ($L = 3$)	42.59%
Transformer (L	.=3)	
M2	1-layer Transformer Encoder	50.02%
M3	2-layer Transformer Encoder	50.11%
Transformer m	odel (L=3) + Incremental improv	vements
M4	M3 + Hierarchy of streams	50.52%
M5	M4 + Weights in NLLL	55.05%
M6	M5 + Audio modality	56.77%
M7 (HMTAS)	M6 + Intermediate supervision	57.28%

RESULTS - Test results (IV)

≻ M4:

Hierarchical architecture

Unimodal + Multimodal Transformer Encoder

+0.41% Average-mAP

Model	Added feature	Average-mAP
Base models		
M0	FCNN $(L = 7)$	39.89%
M1	FCNN ($L = 3$)	42.59%
Transformer (L	.=3)	
M2	1-layer Transformer Encoder	50.02%
M3	2-layer Transformer Encoder	50.11%
Transformer m	odel (L=3) + Incremental improv	vements
M4	M3 + Hierarchy of streams	50.52%
M5	M4 + Weights in NLLL	55.05%
M6	M5 + Audio modality	56.77%
M7 (HMTAS)	M6 + Intermediate supervision	57.28%

RESULTS – Test results (V)

RESULTS – Test results (VI)

≻ M6:

Audio features

+1.72% Average-mAP

Action	YC -> RC	Offside	Foul	Penalty	Goal
mAP M5	28.33%	44.95%	65.80%	76.80%	73.07%
mAP M6	37.24% (+8.91%)	52.69% (+7.74%)	69.94% (+4.14%)	80.53% (+3.73%)	74.82% (+1.75%)

RESULTS - Test results HMTAS (I)

≻ M7:

Intermediate Supervision Losses

57.28% (+0. 51%) Average-mAP

Action	Penalty	Kick-off	Goal	Substitution	Offside	Shots on Target
mAP	80.25%	57.26%	76.90%	47.57%	52.94%	53.33%
Action	Shots off target	Clearance	Ball out of play	Throw-in	Foul	Indirect FK
mAP	52.74%	53.95%	73.92%	69.61%	69.11%	43.66%
Action	Direct FK	Corner	Yellow Card	Red Card	YC -> RC	
mAP	58.86%	76.83%	51.33%	21.47%	34.02%	

RESULTS – Test results HMTAS (II)

- VTN best visual embeddings
- irCSN worse visual embeddings
- Audio worse than visual features

Embedding	TPN	GTA	VTN	irCSN	I3D-Slow	VGGish
Train NLLL	0.0884	0.0864	0.0527	0.1035	0.0938	0.1983
Validation NLLL	0.0926	0.0870	0.0797	0.1100	0.0976	0.1372

RESULTS – Challenge results

- Evaluation protocol P2
- 60.56% Average-mAP
- +10.98% Average-mAP respect baseline
- 6th position Soccernet 2022 Action Spotting Challenge

Model	Average-mAP	
Yahoo Research	67.81%	
PTS	66.73%	
AS & RG	64.88%	
mt_sdu_action	62.26%	
Rkrystal	61.84%	
HMTAS	60.56%	
cihe	59.97%	
GUC	58.71%	
intro and inter	53.30%	
memory	52.89%	
stargazer	52.04%	
Baseline	49.56%	

$RESULTS-{\tt Ensemble experiments}$

- Ensemble of different HMTAS with different sequences length (2, 3, 4, 5)
- Fusion strategies:

Mean

Weighted mean Squared weighted mean Learning fusion

Ensemble Strategy	Mean	Weighted mean	Squared weighted mean	Learning fusion
Average-mAP test	56.98%	56.86%	56.87%	56.92%

DISCUSSION (I)

- Action Spotting task on soccer videos
- Difficulties:
 - Unbalanced data
 Difficult actions (even for humans)
 - Intra-class and inter-class variability > Non visible actions
- HMTAS:
 - 60.56% Average-mAP (+10.98% over baseline)
 - 6th position SoccerNet 2022

DISCUSSION (II)

Main improvements:

✓ Hierarchical Multimodal architecture with intermediate supervision

- ✓ Audio features
- 2 papers under revision at ACM MMSports 2022 workshop:

Challenge analysis with organizers

HMTAS model explanation

DISCUSSION (III)

- Limitations:
 - Not end-to-end solution Need of post-processing technique
 Not long-term relationships Longer sequences
- Applications:

Automatic information retrieval from soccer matches

Automatic summarization

Questions?

