Segmentation-guided Privacypreservation in Visual Surveillance Monitoring

Author:

Daniel Geryous Fares

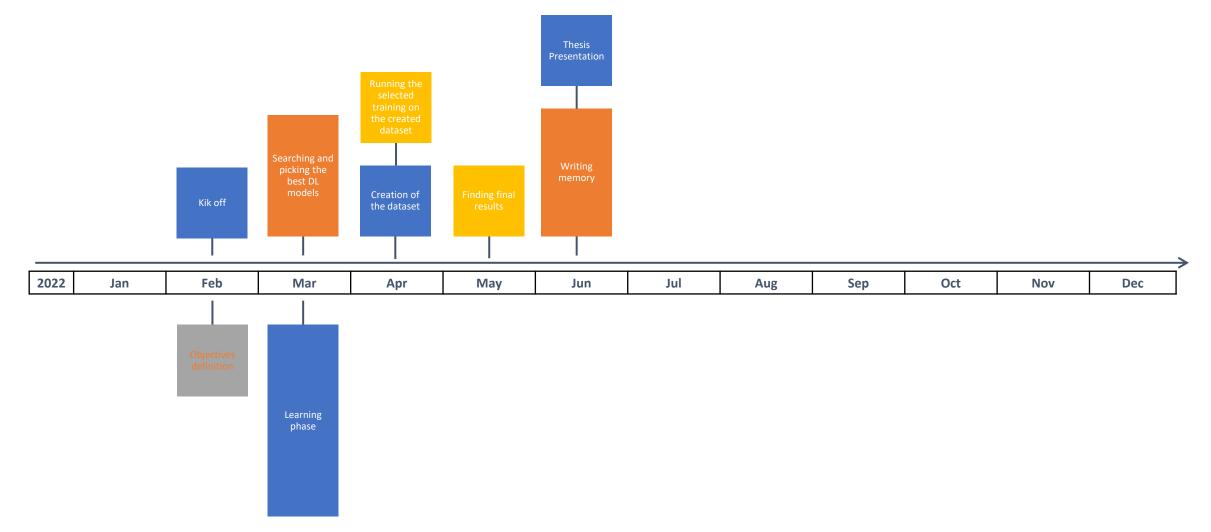
Directors:

Dr. Sergio Escalera Guerrero Zenjie Li Kamal Nasrollahi

CONTENT

1	Introduction & motivation
2	Privacy preservation in video sequences
3	Semantic segmentation
4	Dataset
5	Methods
6	Experiments & results
7	Privacy preservation results
8	Future work 📃
9	Conclusion

Timeline



Introduction & Motivation Problem

In today's world, video surveillance has become a necessity for safety and security.

CCTV cameras are installed in private and public spaces.

Privacy is compromised for monitored individuals.

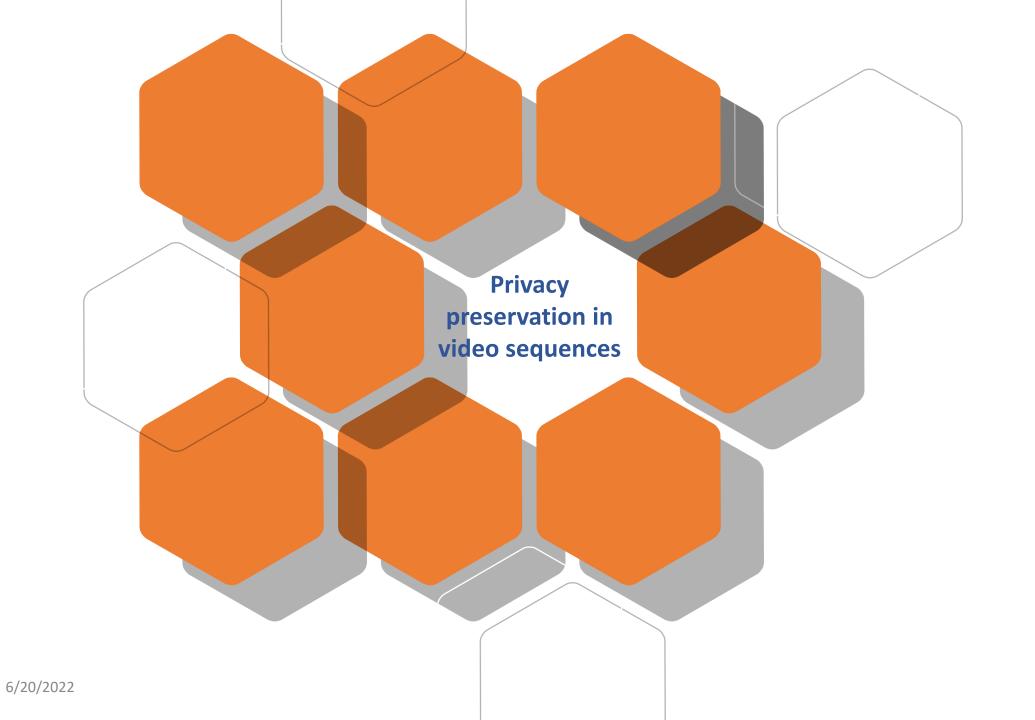
Introduction & Motivation Solution

Real-time visualization of privacy protected video sequences.

Make sure monitored persons' personal information is protected.

Maintain the ability to monitor and identify potential risk behaviors.

F



Privacy preservation in video sequences GDPR & AI

GDPR: Protection of individuals' fundamental rights and freedom as well as giving them control over their collected data and how it is being processed.

Region of Interest: Any data that can be used to identify a person in a video sequence.

AI within GDPR context:

- Privacy by design system.
- Irreversible results safeguarding personal data.
- Minimization of accessible/visible personal data.
- Minimization of quasi-identifiers that cannot be fully protected (gait, way of speaking. Language).
- Ensuring integrity, confidentiality, privacy.

F

Privacy preservation in video sequences Existing methods.

- Blanking and masking.
- Obfuscation and scrambling.
- Pixelation and Blurring.
- Mosaic.

=

- Cartooning.
- Warping.
- Morphing.
- Visual Abstraction.
- Tokenization.
- False Colors.
- Hashing.

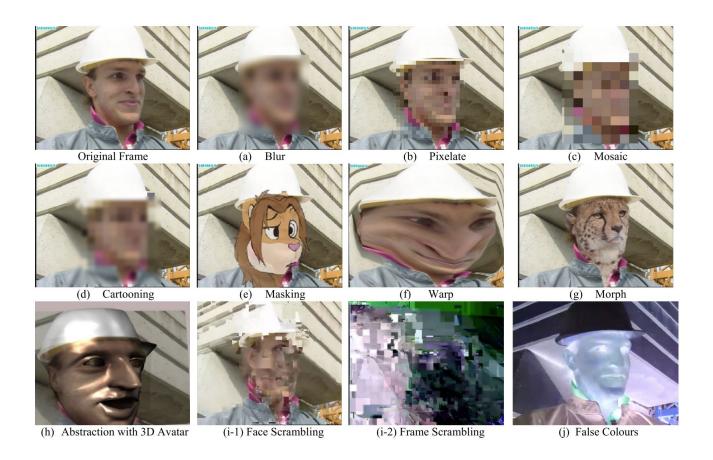
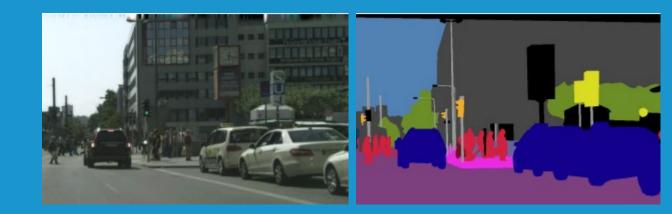
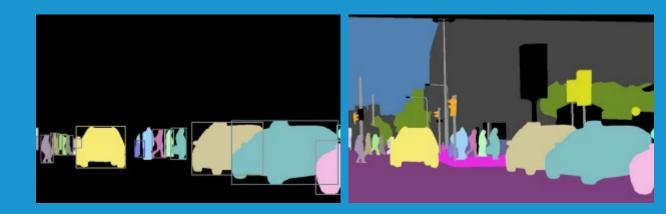


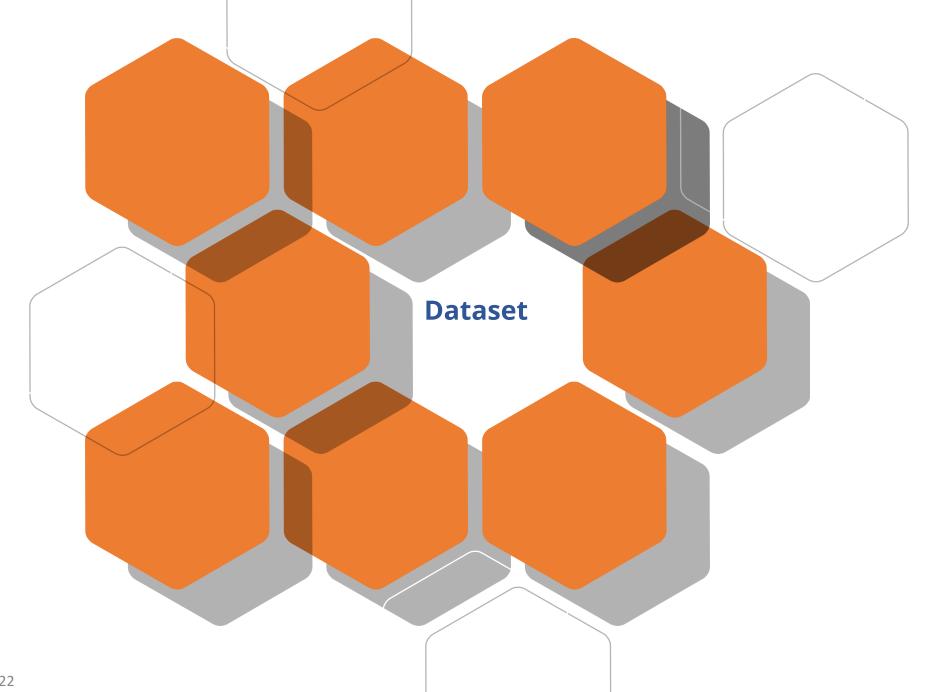
Image segmentation Semantic segmentation

• Types:

- Semantic segmentation
- Instance segmentation
- Panoptic segmentation
- Evaluation metrics:
 - Pixel accuracy
 - Intersection over Union (IoU)
 - Mean (IoU)
 - Dice coefficient







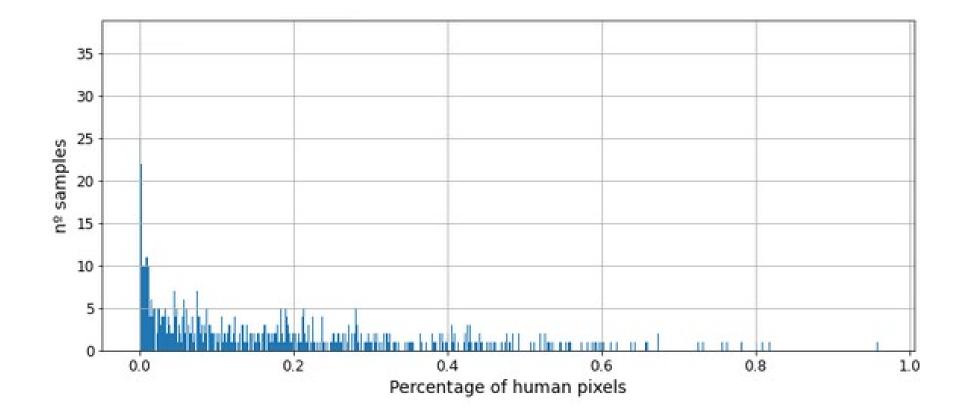
Merging 3 datasets:

F

- Identifying images that has human class.
- Isolate these images.
- Binarize these images (1 for human and 0 for any other class).
- Analysis and evaluation.
- Data cleansing.
- Merge and split datasets.
- Revaluation of the result dataset.

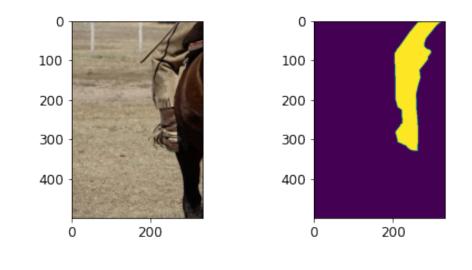
F

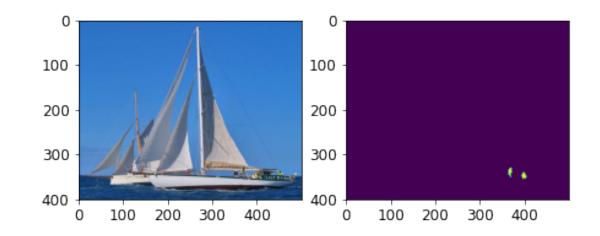
Original Dataset	shape	Total Size	Train Size	Test Size		Human Test Size	+ No-human images	Human Train Size	Human Test Size	Human Pixels % (training)	Human Pixels % (validation)
VOC Pascal	512x512	11540	5717	5823	3270	817	20%	4038	980	0.153	0.236
cocoStuff164	512x512	123287	118287	5000	63965	2681	20%	76758	3217	0.13	0.13
ADE20K	512x512	22210	20210	2000	5069	510	10%	5569	610	0.052	0.051
TOTAL		157,037	144,214	12,823	72,255	4,030	19.5% approx.	86,365	4,807	0.126	0.135

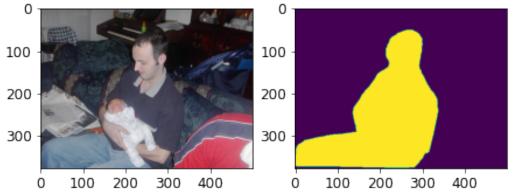


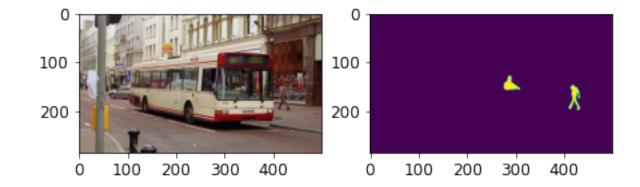
Dataset Cleaning process

Dataset Cleaning process









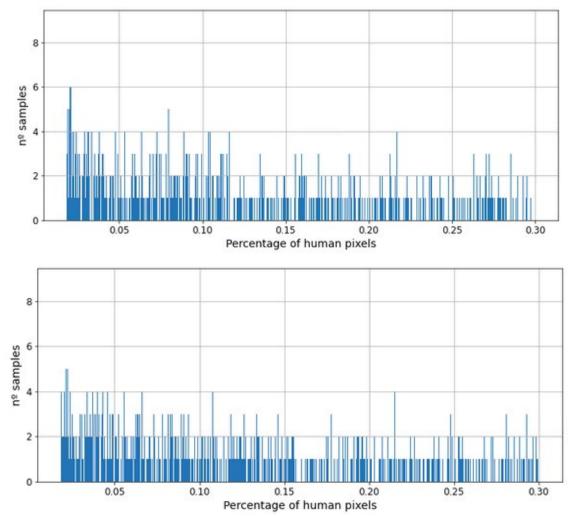
Dataset Cleansing process

Dataset	Human Train Size			Human Pixels % (validation)
Old	86,365	4,807	0.126	0.135
New	43,675	4,855	0.11	0.11

New Dataset	Total+noHuman20%	Removed
Validation	4,413 + 442	1,676
Training	39,704+3,971	28,050

Ę

Dataset Cleansing process



Dataset Split and merge

Dataset	Human Train Size	Human Validation Size	Human Test Size	Human Pixels % (training)	Human Pixels % (validation)	Human Pixels % (test)
new	43,675	4,855		0.11	0.11	-
Result	41,492	2,183	4,855	0.11	0.11	0.11

New Dataset	Total+noHuman20%	Removed
Validation	1977 + 206	-
Training	37727 + 3,765	2,183
Test	4,413 + 442	-

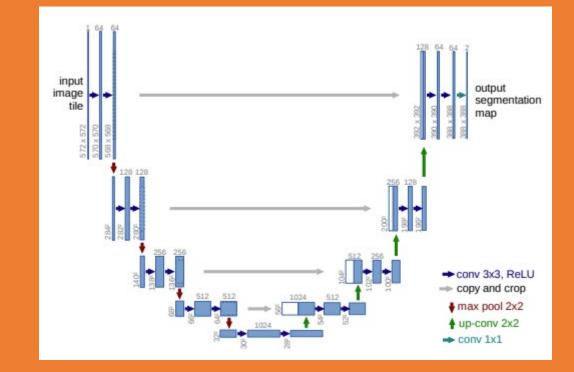
First steps to chose our model was by running through the results provided by <u>mmsegmentation</u>.

- This is one of the tables that were created in the early stages of this research:
 - Yields a better understanding and a clearer picture on the most extensively used datasets in semantic segmentation task.
 - Visualize how different and modern stateof-the-art approaches are behaving on them.
- Speed benchmark:
 - 8 NVIDIA Tesla V100 (32G) GPUs
 - Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

CityScapes	resolution	Lr schd (iter)	FPS	mloU
ISANet	512x1024	80000	2.35	80.32
FCN		40000	2.66	75.45
PSPNet		40000	2.68	78.34
UNet		160000	3.05	69.1
DeepLabV3 (FP16)		80000	3.86	80.48
SegFormer (B1)		160000	4.3	78.56
DeepLabV3+ (FP16)		80000	7.87	80.46
Semantic FPN		80000	10.29	75.8
STDC1 (No Pretrain)		80000	23.06	71.82
STDC2 (No Pretrain)		80000	23.71	73.15
ICNet	832x832	80000	27.12	68.14
BiSeNetV2	1024x1024	160000	31.77	73.21
BiSeNetV1 (No Pretrain)	1024x1024	160000	31.77	74.44

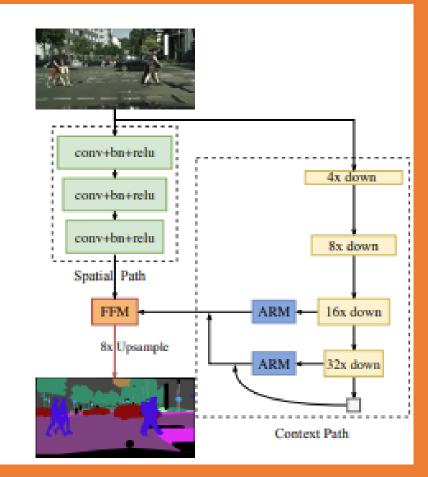
Models UNet

- Built upon Fully Convolutional Network (FCN).
- Consists of two paths:
 - Contracting path
 - Expansive path
 - Plus, two 3x3 conv + ReLU and one final layer of 1x1 convolution.



Bilateral Segmentation Network

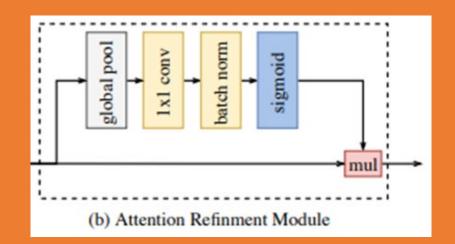
- BiSeNet has two parts:
 - Spatial Path (SP) to tackle the loss of spatial information problem.
 - Context Path (CP) to tackle the shrinkage of the receptive field.

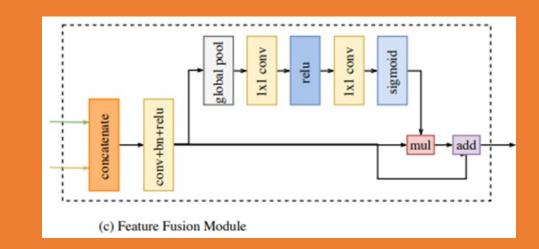


The length of block indicates the spatial size, while the thickness represents the number of channels.

Bilateral Segmentation Network

- For better accuracy without loss of speed, they introduce FFM and ARM:
 - Feature Fusion Module (FFM) to fuse the two paths.
 - Attention Refinement Module (ARM) for the refinement of final prediction.

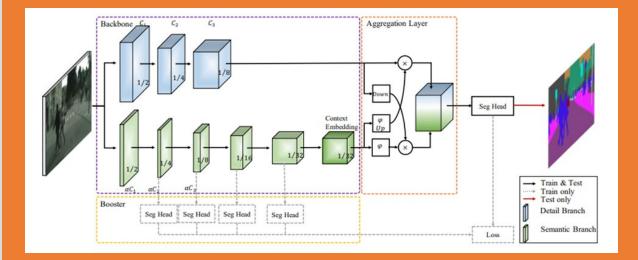


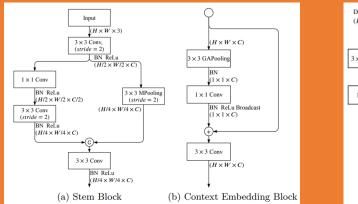


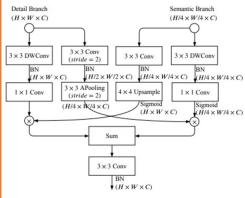
Models BiSeNet V2

Bilateral Segmentation Network

- Two-pathway architecture:
 - **Detail Branch** to capture the spatial details with wide channels and shallow layers.
 - Semantic Branch to extract the categorical semantics with narrow channels and deep layers.
- Guided Aggregation layer: merges both types of feature representation.
- **Booster** (auxiliar prediction heads) to improve segmentation without increasing computation cost.

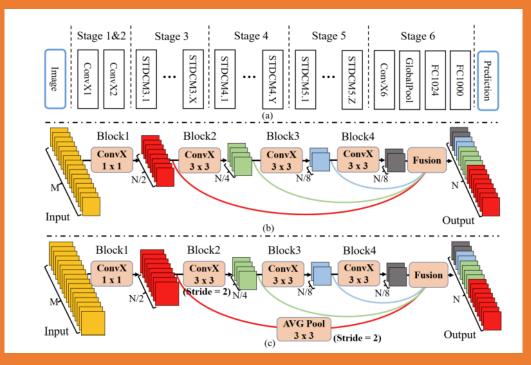






Short-Term Dense Concatenate

- Dense Concatenate Module to extract deep feature with scalable receptive field and multiscale information.
- Replaces the extra path of BiSeNet V1 with Detail Aggregation Module
- Guide the low-level layers for the learning of spatial details by generating detail ground truth.
- More precise preservation of spatial details in low-level layers without the extra computation cost during the inference time.



STDC module	Block1	Block2	Block3	Block4	Fusion
RF(S = 1)	1×1	3×3	5×5	7 imes 7	$\begin{array}{c} 1\times1, 3\times3\\ 5\times5, 7\times7\end{array}$
RF(S = 2)	1×1	3×3	7×7	11×11	$\begin{array}{c} 3\times 3 \\ 7\times 7, 11\times 11 \end{array}$

Models STDC

Short-Term Dense Concatenate

• Stage 1 and 2:

• They are regarded as low-level layers. For sake of efficiency there is only one convolutional bloc in each stage.

• Stages 3,4,5:

- They are used to produce the feature maps with down sample of 1/8, 1/16, 1/32, respectively. Adopted from the context path from **BiSeNet** to encode the context information using **pretrained network** as backbone of the encoder.
- **Global average pooling** to provide global context information with large receptive field.
- **U-shape structure** to up-sample the features stem from the global feature and combine each of them with the counter part from the last two stages 4 and 5 during the encoding phase.
- Feature Refinement Module is used to fuse the output from stage 3 in the encoder and the counterpart from the decoder.

• Stage 6:

• The stage 6 outputs the prediction maps by one convolution layer and one global average pooling and two fully connected convolutional layers.

Stages	Output size	KSize	S	ST	DC1	ST	DC2
Stages	Output size	KSIZC	3	R	C	R	C
Image	224×224				3		3
ConvX1	112×112	3×3	2	1	32	1	32
ConvX2	56×56	3×3	2	1	64	1	64
Stage3	28×28		2	1	256	1	256
Stage 3	28×28		1	1	230	3	230
Stage4	14×14		2	1	512	1	512
Stage+	14×14		1	1	512	4	
Stage5	7×7		2	1	1024	1	1024
Stages	7×7		1	1	1024	2	1024
ConvX6	7×7	1×1	1	1	1024	1	1024
GlobalPool	1×1	7×7					
FC1					1024		1024
FC2					1000		1000
FLOPs				81	I3M	14	46M
Params				8.4	44M	12.	.47M

Models STDC

Short-Term Dense Concatenate

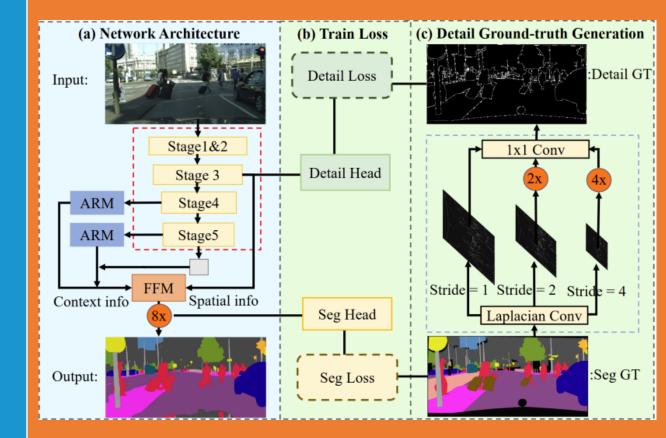
- Detail Guidance of low-level Feature:
 - Detail Ground-truth Generation.
 - Detail head inserted in stage 3 Guide the low-level layers to learn features of spatial details.

• Detail Ground-truth Generation:

- Generates the **detail feature map** from the semantic segmentation ground-truth.
- This is carried out by 2-D conv Laplacian kernel and trainable 1x1 conv.
- The Laplacian operator is used to produce soft, thin detail feature maps with different strides to obtain multi-scale details information.
- Up-samples the details feature maps to the original size and fuse it with a trainable 1 x 1 conv for dynamic re-weighting.
- Adopts a threshold 0.1 to convert the predicted details to the final binary detail ground-truth with boundary and corner information.

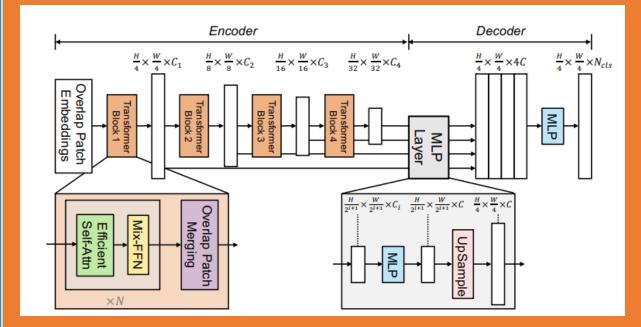
• Detail Head:

- Produces the detail map to guide the shallow layer to encode spatial information.
- Includes a 3 x 3 conv-BN-ReLU operator followed with a 1 x 1 convolution to get the output detail map.



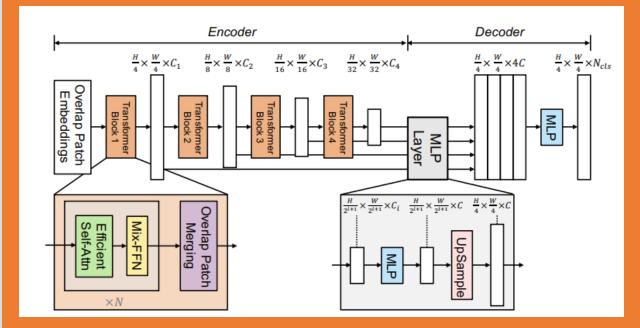
Models SegFormer

- Encoder-decoder model:
 - The encoder par is a hierarchical Transformer module to extract coarse and fine features.
 - The decoder part is a Lightweight MLP model.
- This architecture divides the image into patches as input to the hierarchical Transformer encoder.
- The extracted multi-level features are passed to the MLP decoder to predict the segmentation mask.

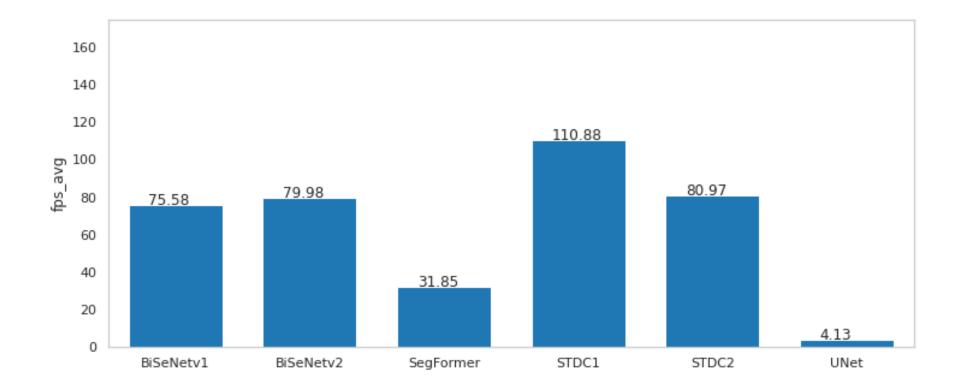


Models SegFormer

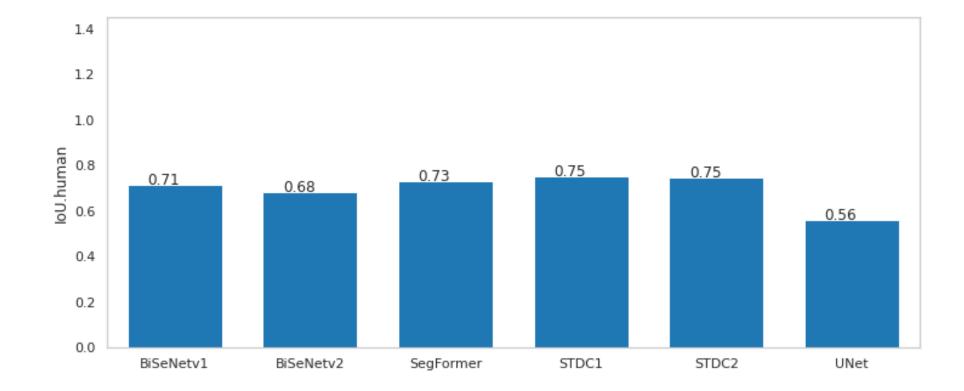
- Overlap Patch Merging
 - Shrinks the hierarchical features from Ci to Ci+1 with stride = 2.
- Mix-FFN
 - By using a 3x3 conv in feed forward network FFN allow to use different test resolution then the training one. And it sufficient to provide positional information for Transformer.
- Efficient Self-Attention module
 - Instead of using the original multi-head self-attention process it uses the sequence reduction process to reduce the length of the sequence thus, reduces it cost from $O(N^2)$ to $O(\frac{N^2}{R})$ where R is reduction ratio



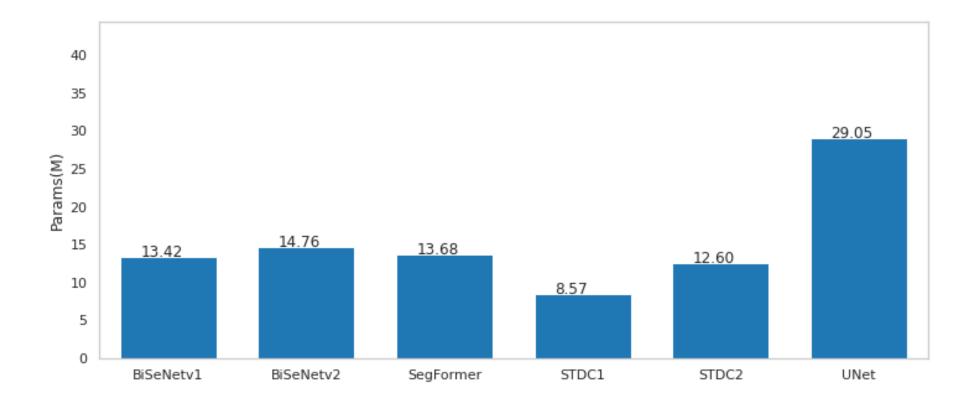
Results Speed experiments



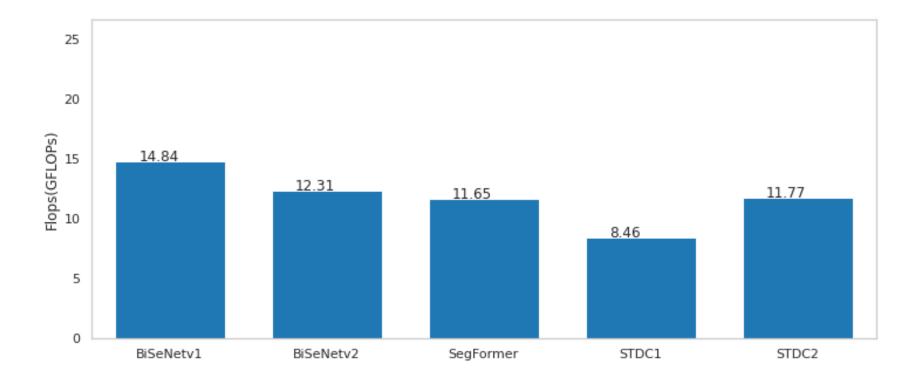
Results Accuracy experiments



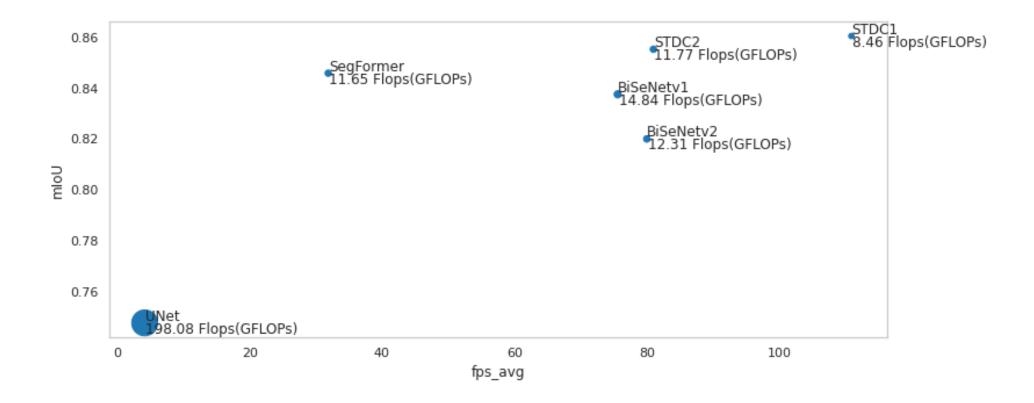
Results Complexity experiments



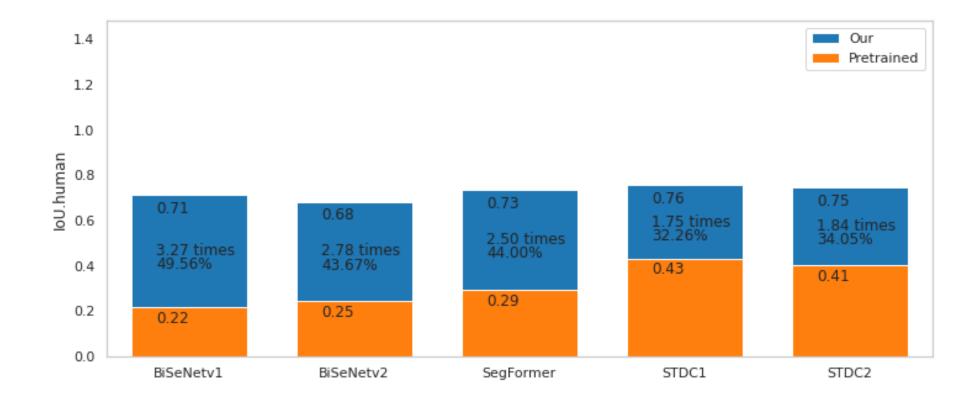
Results Complexity experiments



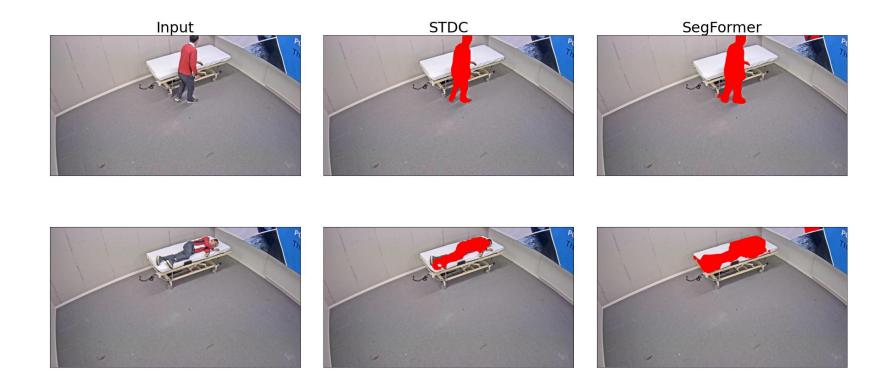
Results Overall



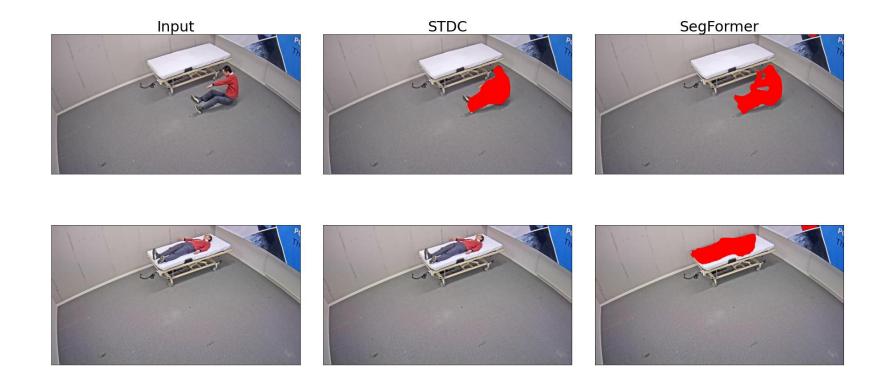
Results Comparison



Privacy preservation Result

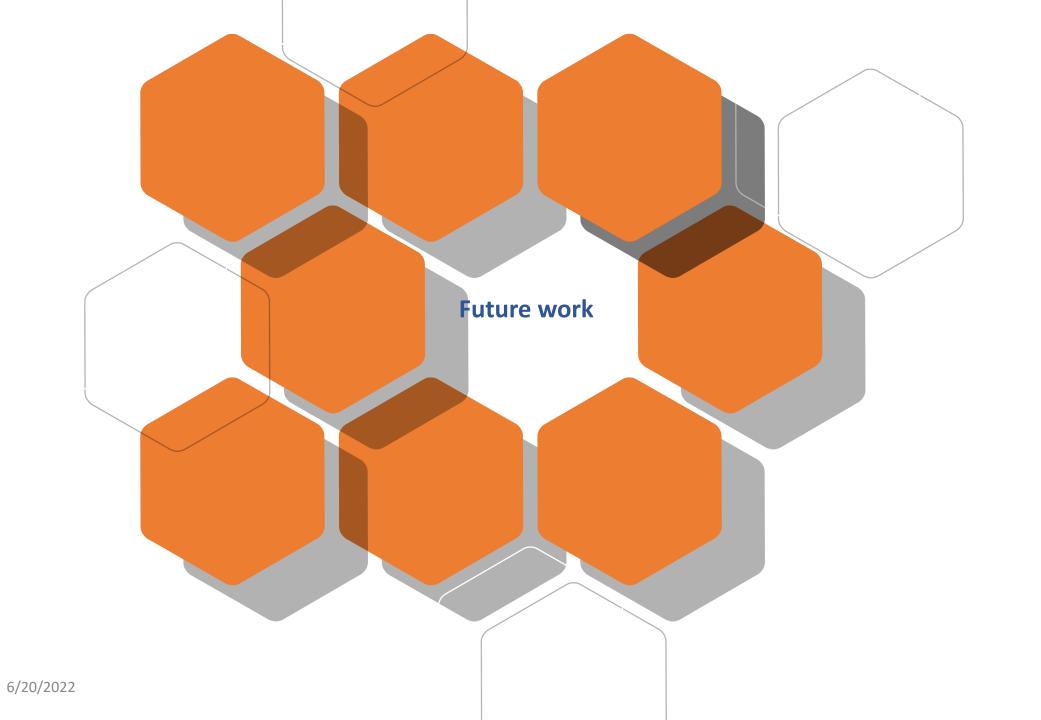


Privacy preservation Result



Privacy preservation Demo

Ţ



Future work Induced ideas

We are working on more inclusive dataset.

Understanding the definition of surveillancelike images.

2

In health-care context such as segmenting humans in laying or sitting positions.

