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University of Barcelona

• Universitat de Barcelona, established in 1450, is one of the top public 
universities in Barcelona, Spain. It is ranked #168 in QS Global World 
Rankings 2022.

• 16 faculties & 10 affiliated centres.
• 63K students, 5.2K teachers+researchers, 4.5K trainee researchers, 600 PhD 

thesis (2018).
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University of Barcelona – Faculty of Mathematics and 
Informatics

• Informatics degree, Prof. 
Sergio Escalera head of 
Informatics

• Mathematics degree

• Master involvement 
(interuniversitary):
• AI
• Data Science
• Computer Vision
• Behavioral Data Science



Computer Vision Center (CVC-UAB)

• CVC is a legally independent non-profit institution founded in 1995, belonging to the 
Catalan CERCA network. Located in Bellaterra (Barcelona). Dedicated to research, 
technology transfer, training, and outreach.

• 38 senior researchers + 52 students (2019)
• 45 JCR indexed journals, 65 international conference papers, 12 thesis (2019).
• HuPBA, head Prof. Sergio Escalera, 1 of the 8 strategic research lines

25
YEARS

130+
STAFF

+70
PUBLICATIONS/YEAR

+6 
THESIS/YEAR

3,8 M
€/YEAR INCOME

Only Center in Europe fully devoted to Computer Vision
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Computer Vision ecosystem en Catalonia
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15+
MEMBERS

400+
TOTAL PUBLICATIONS

13
YEARS

50+
COMPETITIVE PROJECTS

20+
INTERNATIONAL COMPETITIVE 
PROJECTS

30+
TRANSFER ACTIVITIES



Examples of transfered technology
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Visual and multimodal monitoring         ADHD and mental health monitoring                   SLR                           Physiotherapy and fitness 
in neurorehabilitation

Risk event monitoring                                        Coaching for the elder                                     Virtual try ons

http://sergioescalera.com/wp-content/uploads/2015/09/Care-Respite.png


Overview of current research lines in LAP
VISUAL (AND MULTIMODAL) MODELING OF HUMANSFACE ANALYSIS 3D (& 4D) POSE, SHAPE, TEXTURE (IN 3D 

AND FROM 2D)

BEHAVIOR ANALYSIS
UNDERSTANDING AND EXPLAINING HUMAN BEHAVIOR (Affective & Personality Computing)
-INTERPRETABILITY & EXPLAINABILITY
-FAIRNESS

BIAS ANALYSIS
VISUALIZATION

INTERPRETING AND 
EXPLAINING 
LEARNING
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Face analysis

• Gaze
• Facial Action Units
• Multimodal app.

Palmero et.al. BMVC 2018
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Face analysis

• Gaze
• Facial Action Units
• Multimodal app.

Corneanu et.al. ECCV 2018
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Face analysis

• Gaze
• Facial Action Units
• Multimodal app.

Faces and Gestures, 2019



Body Analysis
• Posture and multimodal

Shanxin Yuan et.al. CVPR 2018
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Sanchez et.al. FG 2019



Body Analysis
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Madadi et.al. PR 2020
Bertiche et.al. ICCV 2021, SIGGRAPH ASIA 2021 & 2022

• Posture and multimodal






Behavior

Oliu et.al. ECCV 2018

Sudhakaran et.al. CVPR 2019, CVPR 2020
EPIC Kitchens 2019, 2020, Top-3 winning solutions
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Behavior

Dyadformer
David Curto, Albert Clapés, ICCV 2021

• Moving towards affective HCI and assistive
technology

• Regressing self-reported personality from dyadic
multimodal video data 






Interpretability
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Corneanu et.al. CVPR 2019, CVPR 2020
CVPR best paper award nominee   



ChaLearn
• Non-profit organization. Berkeley. We organize challenges to stimulate research in this field. The web sites of 

past challenges remain open for post-challenge submission as ever-going benchmarks Promoting open data, 
educational materials, and challenge organization. Link with ChaLearn and Codalab initiatives. 

• President: Isabelle Guyon, Google, Université Paris-Saclay, France
• Vice-president: Sergio Escalera, University of Barcelona, Spain
• Involved in the implementation of Neurips Competition track and Neurips Benchmarking track
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• > 25 new datasets
• > 25 organized challenges at CVPR, ICCV, ECCV, NeurIPS, …

• > 25 organized workshops at CVPR, ICCV, ECCV, NeurIPS, …
• > 10 organized Special Issues to related workshop/challenge topics

~10 edited volumes up to date

Main sponsors
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• Preferred open source competition platform by the 
community.

• More than thousand organized competitions
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Research interests

• Main interest in image, video, and multimodal data analysis for LAP
• Promoting explainability and interpretability for transparency
• Bias detection and mitigation for fairness, context, personalization
• Multimodal learning and with noise and asynchronous data
• Self-supervised learning to manage huge amount of data and reduce 

the need of annotated data
• Domain adaptation
• Uncertainty estimation and human in the loop
• LAP challenges design and implementation
• Real applications for good!
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Video Transformers
Javier Selva Castelló

javierselva.github.io



Outline
● Transformers.
● Video pre-processing.
● Architectures for video.
● Training Video Transformers.
● Conclusions.
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Transformers
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Transformer Overview
● Sequence modeling (tokens).
● Multi-head Attention.

○ Non-local interactions.

● Position-wise FeedForward.
○ Evolve token representations.

Vaswani, A. et al.  “Attention is all you need.” In NeurIPS (2017).
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Non-local Token Mixing
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Queries, Keys and Values are linear transformations of the input.

Vaswani, A. et al.  “Attention is all you need.” In NeurIPS (2017).
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Long-term Modeling 
for Video

Wang, X. et al.  “Non-local neural networks.” In CVPR (2018).

● Video is inherently a sequence.
● Opposed to RNNs or CNNs, 

allows to model long-term 
interactions in a single operation.

● Benefit motion modeling.
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Challenges
Video:

- Highly dimensional.
- Highly redundant:

- Appearance-based semantics vary slowly with time.
- Capturing fine-grained motion requires temporal fidelity! [1]

[1] Feichtenhofer, C. et al.  “SlowFast Networks for Video Recognition.” In ICCV (2019).
[2] Zhang, Z. et al.  “Slow Feature Analysis for Human Action Recognition.” In TPAMI (2012).
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Challenges
Video:

- Highly dimensional.
- Highly redundant.

Transformers:

- Token smoothness

Chen, T. et al.  “The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy.” In CVPR (2022).
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Challenges
Video:

- Highly dimensional.
- Highly redundant.

Transformers:

- Token smoothness
- Quadratic complexity O(N²)

Pair-wise
token affinity

For scale, 25 frames at
256 x 256 resolution, 
tokenized as 1 x 16 x 16 
sized patches, results in 
~41M elements in A.

Q K

Patches

(A)ttention Matrix
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Challenges
Video:

- Highly dimensional.
- Highly redundant.

Transformers:

- Token smoothness
- Quadratic complexity O(N²)
- Lack of inductive biases

- Versatile architecture.
- Requires large datasets!

Dosovitskiy, A. et al.  “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.” In ICLR (2021).
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Video 
pre-processing
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Pre-processing
Tokenization: Turned into a sequence of elements.

Embedding: Map raw pixel values into continuous vector representation.

Positional information: Transformers are agnostic to position.
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Tokenization
Defines granularity at which interactions can be learned.

More token receptive field, less fine-grained feature modeling.

Defines complexity of the self-attention computation.

Smaller tokens = More tokens = More compute!
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Embeddings
Minimal Embeddings: Single layer

Large Embedding Networks: Complete SOTA architectures

Dimensionality reduction.

CNNs will alleviate Transformer training.

Minimal Embeddings Large Embedding Networks
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Architectural 
designs
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Restricted Approaches
General techniques to reduce complexity!

Limit scope of attention operation.

Depend on stacking to account for complete input.

Duke, B. et al. “SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation”. In CVPR (2021).
16



Aggregation
Leverage a reduced set of tokens.

May help reduce redundancy.

Needs to be done carefully:
 - May lose ability to model some dependencies later on!

Hierarchy                              vs.                          Query-driven Compression
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Aggregation: Hierarchy (Abrupt)

Girdhar, R. et al. “Anticipative Video Transformer”. In ICCV (2021).

Abrupt approaches:

- Early aggregation: 
    miss fine-grained motion

- Local neighborhoods
- CLS token
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Aggregation: Hierarchy (Progressive)
Progressive approaches:

- Gradual aggregation.
- Global interactions.
- Local learned pooling.

Fan, H. et al.  “Multiscale Vision Transformers.” In ICCV (2021).
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Aggregation: Hierarchy (Progressive)

Liu, Z. et al.  “Video Swin Transformer.” In CVPR (2022).

- Maintain temporal fidelity.
- Feature dimensionality increase with depth.
- Best performance/cost ratio!
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Aggregation: Query-driven Compression
General technique, allows many different applications.

Compress full sequence into fewer tokens. Reduce complexity!

Dot-product

Weighted sum

Contextualized 
Sequence 
Representation

Attention Matrix

Q

K

V

Jaegle, A. et al.  “Perceiver: General Perception with Iterative Attention.” In ICML (2021).
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Aggregation: Query-driven Compression
Data driven  

Girdhar, R. et al.  “Video Action Transformer Network Rohit.” In CVPR (2019).
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Long-term modeling
Memory

● Stores several past observations.
● Can be accessed:

○ Through Cross-Attention.
○ By concatenation.

● Generally compressed:
○ At storing time.
○ Sparse sampling.
○ Query-driven Compression.

● Discard old elements:
○ FIFO.
○ Relevance (attention).

Wu, C. et al.  “MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Long-Term Video Recognition.” In CVPR (2022).
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Long-term modeling
Recurrence

● Collapses past observations in a single 
recurrent state.

● Send information to next time-step:
○ Within the Attention Operation.
○ Forwarding Output.

● Used when forwarding local temporal 
information is enough.

● Maintain access to full resolution at each 
new observation.

Images source: https://github.com/timmeinhardt/trackformer 

Meinhardt, T. et al.  “TrackFormer: Multi-Object Tracking with Transformers.” In CVPR (2022). 

24

https://github.com/timmeinhardt/trackformer


Long-term modeling: Recurrence

Yang, J. et al.  “Recurring the Transformer for Video Action Recognition.” In CVPR (2022).

Attention Gate
(Aggregates current input

with recurrent state)

Traditional Recurrence Unrolling
(Replaces RNN Units with a 

Transformer)
25



Training the 
Transformer
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Training Regime
Solving lack of inductive biases:

Large datasets.

Self-supervised Learning.

Computational limitations! 

End-to-end training of embedding layers.

Large batches, videos, architecture…

Multiple training stages.

● Minimal Embedding Networks:
○ End-to-end
○ Require large-datasets or SSL.

● End-to-end with Large Emb. Net.:
○ Small Transformer.
○ Efficient designs.
○ CNN-Transformer tandem.

● Frozen embeddings:
○ Most common.
○ Transformer boost!
○ Limited by the pre-trained features.

● Image vs Video pre-training
○ Appearance variability 
○ Motion modeling.
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Self-Supervised Learning (SSL)
Allows to leverage un-annotated data.

Provides data-specific biases.

Traditional Instance-based Learning.

● Spatial data augmentation.
● Align views through InfoNCE [1].
● Learn: 

○ invariance to perturbations.
○ instance-based representations.

[1] Oord, A. et al.  “Representation Learning with Contrastive Predictive Coding.” In ArXiv (2018). 
[2] Chen, T. et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In ICML (2020).
[3] Purushwalkam, S. et al.  “Demystifying Contrastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases.” In NeurIPS (2019).
[4] Feichtenhofer, C. et al.  “A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning.” In CVPR (2021). 

May learn invariance to temporal deformations!
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SSL: Masked Token Modeling
Force to leverage global appearance and motion semantics…

… to solve local token-dependent prediction tasks.

Crucial: High masking ratios, mask entire tubes!

Tong, Z. et al.  “VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training.” In NeurIPS (2022).
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Conclusions
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Conclusions
Complexity:

Reduce appearance redundancy.

Careful! Need to keep fine-grained motion.

Progressive aggregation. 

Memory models (variable length!).

MTM exploits Transformer abilities.

31



Thank you!
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