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Towards Efficient and Realistic Animation of 3D Garments with Deep Learning

by Hugo BERTICHE ARGILA

Machine learning has experienced a soar thanks to the proliferation of deep learn-
ing based methodologies. 3D vision is one of the many fields that benefited from
this trend. Within this domain, I focused my research on human-centric scenarios.
As a starting point, I begin with a 3D human pose and shape reconstruction ap-
proach from still images. Relying on a powerful CNN and a novel inverse graphics
solution, I define the steps to predict volumetric humans as 3D meshes. As a nat-
ural extension, I turn my attention to the modelling of 3D garments for complete
human representation. Deep learning models require huge volumes of data. For
this reason, next, I explain my work developing the biggest 3D garment dataset,
CLOTH3D. This was motivated by the lack of such data for the study of cloth on
humans. Additionally, in the same context, I describe a baseline model for 3D gar-
ment generation trained on CLOTH3D. After identification of the major drawbacks
of the baseline model, I introduce a novel solution for the garment animation prob-
lem. Deep learning models usually require data with a fixed dimensionality. Related
works proposed expensive data pre-processings to make data uniform, albeit dimin-
ishing the quality, among other issues. By focusing purely in garment animation, I
designed a fully-convolutional model that does not suffer from the aforementioned
problem. This new model can animate even completely unseen outfits. Nonethe-
less, cloth animation is a tremendously complex problem. In practice, deep models
which encode multiple garments end up showing poor quality. Moreover, I noted
significant drawbacks in supervised learning schemes for garments. Motivated by
these observations, I devised a novel technique that allows unsupervised training
for the 3D garment animation task. As a consequence, this methodology leads to
smaller, more robust models that can be obtained in a matter of minutes. Further-
more, it shows an unprecedented level of performance. Because of this, it became
the first viable option for deep-based real-time garment animation in real life appli-
cations. Nonetheless, it is a quasi-static approach. Cloth dynamics are crucial for
proper garment animation. Finally, the last of my contributions describes how to
learn cloth dynamics unsupervisedly, making the solution for garment animation
complete. Additionally, I establish the bases of this new unsupervised neural gar-
ment animation framework.
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Chapter 1

Introduction

History of clothing dates back to prehistoric times. Modern studies suggest the first
clothes were being worn as early as 170000 years ago, or as late as 90000 years ago
(Barber, 1991; Barber, 1995). We cannot find in the world any other animal with
the ability to gather, craft or wear clothes. It is an exclusively human characteristic.
Furthermore, all human civilizations have developed this unique feature. At first,
primarily functional fabrics were crafted from animal skin or vegetation as a mean
to protect ourselves from the inclemency of the weather. This might have been a key
factor in the success of humans in proliferating to other regions with harsher climate.
Soon, mankind knowledge would improve into developing sewing tools and, later,
into the crafting of textiles, as opposed to attaching pieces of animal skin together.
Fig. 1.1 shows ancient samples of human weaving skills. From a piece of fabric
as old as 34000 years to different garments few thousands of years old. Not much
further in time, clothing would already serve a higher purpose within the cultural
aspects of civilizations. Also playing an important role in ancient trading and as a
symbol of social status. Fast-forwarding to the current age, the textile industry main-
tains an important position in our modern society, culture and economy. In a rapidly
evolving technological world, humankind has given birth to a parallel digital reality.
Hastily, the scientific community took an interest on transferring clothes into virtual
worlds. The initial attempts, just a few decades ago, rely on the knowledge about
geometry and the physical laws that govern cloth behaviour (Weil, 1986; Feynman,
1986; Terzopoulos et al., 1987). Since then, we have witnessed an exponential growth
in the quality of 3D garment animation through Physically Based Simulation (Baraff
et al., 1998; Carignan et al., 1992; Haumann, 1987; Breen et al., 1992; Provot et al.,
1995; Narain et al., 2012; Pfaff et al., 2014; Kaldor et al., 2008; Kaldor et al., 2010). We
find plenty of evidence about this in all major animation studio films, where it is far

FIGURE 1.1: Oldest preserved garments in the world. At left, the oldest samples of cloth
and thread found, thought to be more than 34000 years old. In the middle, the Tarkhan
Dress, which dates back to the end of the fourth millennium B.C. At right, an ancient pair of
trousers that are approximately 3300 years old.
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from uncommon to observe astoundingly realistic clothes. Nonetheless, such results
come at a high computational price, while there still are plenty of applications that
demand real-time garment animation. The main ones being video-games and Aug-
mented/Virtual Reality (AR/VR). To this end, many recent efforts from the research
community aimed to the implementation of faster, more efficient, cloth simulation
algorithms. While significant progress has been achieved (Müller et al., 2007; Liu
et al., 2013; Macklin et al., 2016) often quality is sacrificed or expensive hardware is
required. This is not enough to bring faithful garment animation to scenarios where
computing power is scarce (mobile devices) or is required for other complex tasks
(video-games and AR/VR). Inspired by the recent success of deep learning in many
3D problems (Socher et al., 2012; Richardson et al., 2016; Qi et al., 2017; Han et al.,
2017; Arsalan Soltani et al., 2017; Omran et al., 2018; Madadi et al., 2020), current
trends explore the possibility of obtaining the coveted fast, efficient and realistic gar-
ment animation through neural networks. In this book, I will describe my journey
into the scientific meadow of deep learning to the boundaries of the neural garment
animation and how I pushed them further in a slight, but meaningful way.

All stories need a beginning, and for me, this was human 3D pose and shape
estimation from RGB images. Classical computer vision methodologies were built
around hand-crafted features. Then, with the appearance and success of deep learn-
ing methodologies, neural networks quickly became the standard. The problem
of human pose and shape recovery was not an exception. In Chapter 2 I describe
a deep-based solution for this problem inspired by the limitations seen in related
works. Thanks to the combined efforts of the scientific community, human pose es-
timation has seen a significant progress since it was first tackled. In spite of that,
even with accurate 3D shape recovery to complement pose, something important
was missing. That is, cloth. As previously explained, clothes play an important
role in our society. Human analysis, retrieval and modelling would not be complete
without clothing. Deep learning has proved to be capable of solving an innumerable
variety of tasks. Therefore, its application to cloth-related problems was the next
natural step. Neural networks are data-hungry models, but public clothing dataset
were scarce. In Chapter 3 I address this issue by defining, designing and gener-
ating the largest dataset of dressed humans, CLOTH3D. This dataset fills the gaps
observed in related works: garment dynamics and outfit variability. While origi-
nally thought as a milestone towards dressed human reconstruction from images,
due to its complexity, purely 3D clothing presented itself as an enthralling research
subject. Along with the dataset, I also introduce a baseline generative model for 3D
clothing. It was then clear that 3D garment generation and animation were two sep-
arate problems that needed different solutions. In Chapter 4 I define an approach
for the specific problem of garment animation. One of the major challenges of work-
ing with 3D garments is the heterogeneity of their representations. Usually as 3D
meshes, garments show a notable variability in terms of geometry, topology, mesh
resolution, vertex order and connectivity. While neural networks usually require
fixed input dimensionality and order. I propose a model architecture able to handle
any kind of 3D mesh, allowing modelling an indefinite number of outfits using the
same network, and even generalizing to unseen outfits. Afterwards, Chapter 5 will
introduce a completely novel and interesting methodology for outfit animation. In-
spired by Physically Based Simulation, I devise the first unsupervised deep-based
methodology to train outfit-specific neural networks for cloth animation. By remov-
ing the need of data, this approach hugely reduces the time required to obtain ani-
mated outfit models. Moreover, the results qualitatively outperform all the related
works in spite of using the simplest neural network architecture. It also achieves
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never-seen-before execution times due to its simplicity. This solution became the
first viable option for real-life applications thanks to its remarkable properties and
establishes a promising research direction for the domain, neural cloth simulation.
Finally, in Chapter 6, I dive deep into neural cloth simulation. On one hand, I of-
fer for the first time a methodology able to learn cloth dynamics unsupervisedly.
This complements the previous methodology, which is limited to quasi-static defor-
mations. And on the other side, I provide of extensive analysis and insights in the
specific domain of neural cloth simulation, which presents some particularities of its
own. Next, I will summarize the main contributions of this thesis. Contributions are
organized as separate self-contained chapters, each with its own sections for related
works, methodology and results.

Chapter 2. SMPLR, a methodology for human 3D pose and shape retrieval. Hu-
man pose estimation, both in 2D and 3D, is performed by regressing the location of
a set of body joints to form a skeleton (Eichner et al., 2012; Atrevi et al., 2017; Zhou
et al., 2017; Luvizon et al., 2018). The concept of a simplified skeleton to describe
pose comes from the computer graphics literature (Magnenat-thalmann et al., 1988).
One can see how it would be desirable to extract not only 3D pose but also the body
shape or geometry (Bogo et al., 2016; Kanazawa et al., 2018; Kolotouros et al., 2019).
It is standard to use meshes, as a set of triangles, to represent 3D objects. This in-
creases the complexity of the problem from predicting a few joints to thousands of
vertices. For this reason, it is common to use parametric body models instead. For
the chosen parametric model in this work, SMPL(Loper et al., 2015a), body pose is
a 72-dimensional array and body shape a 10-dimensional array. This reduces the
problem to a regression of only 82 parameters from an RGB image. While direct su-
pervision over this parameters it is possible, since SMPL is differentiable, the most
common solution is to append this model at the end of the neural network and back-
propagate through it by supervising the 3D mesh directly. Nonetheless, this leads
to unrealistic predictions with unrealistic pose and shape. Related works propose
strong regularization terms to avoid bad predictions (Kanazawa et al., 2018). A more
effective solution is to use intermediate representations (Omran et al., 2018; Pavlakos
et al., 2018). This solution has been explored with 2D representations, which are sub-
optimal for inferring 3D, and using 3D joints only, which makes body shape and the
orientation of some specific joints ambiguous. Here I propose a solution that uses as
intermediate representation a set of 3D joints and landmarks placed across the body
surface.

Chapter 3. CLOTH3D, a dataset of 3D draped humans and a baseline gener-
ative model trained on these data. After tackling the problem of human 3D pose
and shape retrieval from images, the next necessary step is to move the scope to-
wards garments. It is known that neural networks require huge volumes of data
to be trained. Unfortunately, for the domain of clothing, such data is not publicly
available at large scale. At the time, the only 3D garment datasets with realistic cloth
behaviour were the BUFF dataset (Zhang et al., 2017), real data obtained with 3D
scans, TailorNet data (Patel et al., 2020) and the dataset used in (Wang et al., 2018),
both being synthetic data obtained through simulation. Nonetheless, these datasets
are small in terms of garment variability, poses and body shapes while showing low
to none cloth dynamics. Other related datasets are 3DPW (Marcard et al., 2018) and
3DPeople (Pumarola et al., 2019a), but these represent draped humans through rigid
transformations only, and therefore, they lack of realistic cloth behaviour. Then,
aiming to fill the gaps of the publicly available data, CLOTH3D is the first large
scale dataset of its kind, containing over 2M samples, focusing in cloth dynamics
and outfit and body shape variability. CLOTH3D is a syntehtic dataset generated
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using Physically Based Simulation (PBS). This is preferred due to the constrained
and expensive setup needed to gather real data, plus the additional required post-
processing and intrinsic measurement error. Note that PBS has its drawbacks as well.
It demands a significant amount of computational resources and it may present a
slightly lower level of realism, specially for very complex cloth-to-body interactions.
On the other hand, synthetic data has zero ground-truth error and has already been
successfully used in deep learning (Nikolenko, 2019; Ros et al., 2016; Varol et al.,
2017a). The baseline model proposed is inspired in related works (Alldieck et al.,
2018a; Ma et al., 2019; Patel et al., 2020; Yang et al., 2018a). Garments are encoded
uniformly on top of the human body as offsets from skin to cloth. Then, using a
Graph Conditional Variational Auto-Encoder architecture, it is possible to learn a
shared space for all garments and later generation conditioned on pose, shape, gen-
der and garment code.

Chapter 4. DeePSD, a neural network capable of converting any 3D outfit mesh
into an animation model. Some related works, including the baseline in the previous
chapter, handle multiple garment types by encoding them as body offsets (Alldieck
et al., 2018b; Alldieck et al., 2019; Bhatnagar et al., 2019; Patel et al., 2020). This
has important limitations that manifest as poor quality predictions in which body
geometry is transferred, surface is noisy and texturing shows artifacts due to over
stretching or compression. Additionally, encoding cloth as body offsets bounds the
solution to garments that take the form of a body homotopy and non-overlapping
clothes. This mainly implies only that these methodologies can only be applied to a
set (often just a few) of specific individual garments. In this chapter I re-formulate
the problem. Instead of representing multiple garment types with a latent code, in-
put parameters or using pre-defined classes to later animate them, I propose using
as input the 3D mesh of the whole outfit instead. To do so, I design a novel fully-
convolutional graph neural network that can take as input any 3D mesh, regardless
of its vertex count, order or connectivity. As a first advantage, this removes the need
of running an expensive lossy registration process of garments against the body. Us-
ing the original 3D outfit template also allows enforcing cloth priors to obtain a more
realistic behaviour. Finally, I present a novel interesting property, generalization to
unseen outfits.

Chapter 5. PBNS, the first methodology for unsupervised training of neural net-
works for outfit animation. It is common for neural networks to require big volumes
of data to be trained. Data gathering is always expensive, and cloth domain is not
an exception, whether it is with 3D scans or Physically Based Simulation. Unsuper-
vised training for garment animation greatly reduces computational and econom-
ical cost. To achieve it, inspired by cloth simulation (Baraff et al., 1998; Liu et al.,
2013; Macklin et al., 2016), I formulate the training as the optimization of an energy
loss function based on physical laws that govern cloth behaviour. As it is common
in the domain, outfits are skinned w.r.t. the underlying body and the network pre-
dicts deformations in rest pose. Back-propagating the energy loss creates some forces
(F = −∇U) that push the cloth vertices to the correct locations by updating the net-
work weights. This is effectively a simulation, as garment deformations are baked
into the network by physical forces. I call this Physically Based Neural Simulation
(PBNS). Opposed to related works that propose complex network architectures to
deal with the difficulties of learning realistic cloth deformations (Gundogdu et al.,
2019a; Vidaurre et al., 2020; Patel et al., 2020), this approach works with the simplest
form of neural network, a Multi-Layer Perceptron. The quality and robustness of
the results allows to identify the flaws of supervised learning. Then, unsupervised
garment animation is not only practical, but it is also a more suitable approach. Due
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to its qualitative and computational performance, models trained with PBNS are the
first viable option for real world applications. This approach is also the first to pro-
pose a formulation to explicitly handle cloth-to-cloth interactions, thus, the first to
permit robust animation of multiple pieces and layers of cloth, instead of individual
garments.

Chapter 6. Neural Cloth Simulation, as the first complete methodology to sim-
ulate garments into neural networks. Despite its novelty and success, PBNS is an
incomplete solution. This is because it is limited to quasi-static deformations. For
this reason, it is not a suitable solution for looser garments that often present rich
dynamics. Motivated by this limitation, in this last chapter I describe how to bake
garment dynamics into deep learning models. A first attempt to extend PBNS to the
temporal dimension can be found in the work of (Santesteban et al., 2022), based on
the optimization scheme proposed in (Liu et al., 2013; Martin et al., 2011; Gast et al.,
2015). Unfortunately, their adaptation of the inertia loss term –which accounts for
dynamics– to the deep learning framework incorrectly back-propagates forces back
in time. In practice, their predictions show a lack of dynamics. On the other hand,
I propose the first methodology for unsupervised learning of garment dynamics.
Neural cloth simulation presents a set of peculiarities and specific challenges. In this
chapter I also describe them along with in-depth analysis to establish the bases of the
domain and support future research. Finally, I tackle the problem with a specific dis-
entangled network architecture and input descriptors that allow learning different
sub-spaces for static and dynamic garment deformations, which brings interesting
properties: increased generalization, a novel motion augmentation for training and
a never-seen-before motion control property during inference.

Chapter 7. In this final chapter I state the conclusions of the thesis as well as
the obtained results, for each of the contributions and as a whole. The main goal to
achieve in this thesis is, as the title describes it, an efficient and realistic animation
of 3D garments through deep learning techniques. In the conclusions I will explain
the progress made in each step of the way, how much has been achieved and how
much is there to be achieved. This shall provide of a measure of my contribution
in the domain. The footprint I left on it, which I hope is only the first of many. I
also define what I believe the future of the research will be like for neural garment
animation, which challenges need to be addressed and which could be promising
solutions. Finally, we all have witnessed how deep learning has proven not only
useful for many tasks but also growingly compelling, and I am eager to see what the
future of the field will bring us.

As a result of this thesis I made the following publications in relevant venues:

• Meysam Madadi et al. (2020). “SMPLR: Deep learning based SMPL reverse for
3D human pose and shape recovery”. In: Pattern Recognition, p. 107472

• Hugo Bertiche et al. (2020). “CLOTH3D: Clothed 3D Humans”. In: European
Conference on Computer Vision. Springer, pp. 344–359

• Meysam Madadi et al. (2021a). “Deep unsupervised 3D human body recon-
struction from a sparse set of landmarks”. In: International Journal of Computer
Vision 129.8, pp. 2499–2512

• Meysam Madadi et al. (2021b). “Learning Cloth Dynamics: 3D+Texture Gar-
ment Reconstruction Benchmark”. In: Proceedings of the NeurIPS 2020 Com-
petition and Demonstration Track. Ed. by Hugo Jair Escalante et al. Vol. 133.
Proceedings of Machine Learning Research. PMLR, pp. 57–76. URL: https:
//proceedings.mlr.press/v133/madadi21a.html

https://proceedings.mlr.press/v133/madadi21a.html
https://proceedings.mlr.press/v133/madadi21a.html
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• Hugo Bertiche et al. (2021a). “Deep Parametric Surfaces for 3D Outfit Recon-
struction from Single View Image”. In: 2021 16th IEEE International Conference
on Automatic Face and Gesture Recognition (FG 2021), pp. 1–8. DOI: 10.1109/
FG52635.2021.9667017

• Hugo Bertiche et al. (2021b). “Neural Implicit Surfaces for Efficient and Ac-
curate Collisions in Physically Based Simulations”. In: CoRR abs/2110.01614.
arXiv: 2110.01614. URL: https://arxiv.org/abs/2110.01614

• Hugo Bertiche et al. (2021d). “DeePSD: Automatic deep skinning and pose
space deformation for 3D garment animation”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5471–5480

• Hugo Bertiche et al. (2021c). “PBNS: Physically Based Neural Simulation for
Unsupervised Garment Pose Space Deformation”. In: ACM Trans. Graph. 40.6.
ISSN: 0730-0301. DOI: 10.1145/3478513.3480479. URL: https://doi.org/10.
1145/3478513.3480479

More information about the outcomes of my thesis in hbertiche.github.io. The
more recent ones have a publicly available repository with the implementation of
the methodologies. Code for Chapter 6 will be available there soon too.

https://doi.org/10.1109/FG52635.2021.9667017
https://doi.org/10.1109/FG52635.2021.9667017
https://arxiv.org/abs/2110.01614
https://arxiv.org/abs/2110.01614
https://doi.org/10.1145/3478513.3480479
https://doi.org/10.1145/3478513.3480479
https://doi.org/10.1145/3478513.3480479
hbertiche.github.io
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Chapter 2

SMPLR: Deep learning based
SMPL reverse for 3D human pose
and shape recovery

2.1 Introduction

We have defined the goal of this thesis as efficient and realistic animation of 3D gar-
ments through deep learning. Nonetheless, as explained in Chapter 1, this deep
learning journey begins in human 3D pose and shape recovery from RGB. 3D hu-
man pose estimation from still RGB images is a challenging task due to changes in
lighting conditions, cluttered background, occlusions, inter and intra subject pose
variability, as well as ill-posed depth ambiguity. Moreover, due to its nature, ac-
curate annotation of captured data is not a trivial task and most available datasets
are captured under controlled environments (Ionescu et al., 2014; Sigal et al., 2010;
Mehta et al., 2017).

One case of human pose representation is 3D joint locations. However, 3D joints
do not implicitly show the morphology of the body. Being able to estimate body
shape or mesh along with joints allows a wide method applicability, including movie
editing, body soft-biometrics measurements or cloth retexturing, among others. Be-
sides, such a dense body representation may help to achieve more accurate estima-
tions of 3D joints. Available body models range from simple geometrical objects,
like compositions of cylinders and spheres, to complex parametric statistical models
such as SCAPE (Anguelov et al., 2005) and SMPL (Loper et al., 2015a). SMPL (Bogo
et al., 2016; Pavlakos et al., 2018; Kanazawa et al., 2018) generates realistic body
meshes based on PCA shape components along with relative axis-angle rotations of
joints. Rotations form body pose in a defined kinematic tree and are computed for
joints with respect to their parent’s nodes. The goal is to estimate SMPL parameters
from an RGB image such that generated body mesh describes and fits as much as
possible to the visible human in the image. This can be done by fitting generative
models (Sigal et al., 2008; Guan et al., 2009; Lassner et al., 2017) or training discrimi-
native deep models (Kanazawa et al., 2018; Omran et al., 2018; Varol et al., 2018). On
the one hand, regular generative optimization solutions are shown to be sensitive to
noise and need a careful and complex design of objective functions. On the other
hand, while deep models have shown superior performance over the former solu-
tions, they are data-hungry approaches. In both cases, a direct regression of SMPL
parameters is a complex task because: 1) SMPL is a many-to-one complex function1

which is sensitive to data noise (i.e. optimizing SMPL parameters may converge to

1SMPL details are given in the section 2.3.1



8
Chapter 2. SMPLR: Deep learning based SMPL reverse for 3D human pose and

shape recovery

FIGURE 2.1: Illustration of the proposed model output. Given 1) an input RGB image, 2) an
initial estimation of 3D joint locations is applied based on a given CNN (volumetric stacked
hourglass (SHN) (Newell et al., 2016) in this case). Green line shows ground truth and red
line shows 3D estimated joints. 3) Our denoising autoencoder model is able to recover pose
from structured error. Finally, 4) body mesh is rendered by SMPL based on the proposed
SMPL reverse strategy.

invalid values), and 2) accurate image annotation with SMPL pose and shape pa-
rameters in large in-the-wild datasets is infeasible. Therefore, researchers developed
their solutions based on available 2D joints by applying intermediate representa-
tions (Pavlakos et al., 2018; Omran et al., 2018) or adversarial training (Kanazawa
et al., 2018) for 3D inference. However, it is known that estimation of 3D data from
2D is ill-posed and can lead to sub-optimal solutions.

In this chapter, given an RGB image, we first estimate 3D joints and a sparse
set of landmarks placed along body surface. Then, we use them to regress SMPL
pose and shape parameters which are fed to SMPL model. The output is a detailed
body mesh. We call this procedure SMPL reverse (SMPLR). One can imagine SM-
PLR as an autoencoder where latent embeddings are pose and shape components.
We define encoder as a number of Multi-layer Perceptron (MLP) networks while
decoder is SMPL. By first estimating 3D joints and landmarks, as an intermediate
representation, 1) we avoid a direct regression of SMPL parameters, which easily
yields non-realistic body meshes, 2) we can safely train SMPLR, even end-to-end, in
a simple way without explicit constraints on SMPL, and 3) we provide flexibility to
the design, i.e. SMPLR can be trained independently of RGB data using millions of
generated mocap-like data, thus allowing cross-dataset generalization.

When 3D ground truth data is available for RGB images, any state-of-the-art
CNN can be used to estimate 3D joints and landmarks. However, such ground truth
data is not available for in-the-wild datasets. Besides, estimated 3D joints can have
structured error due to depth ambiguity or occlusions. To handle these cases we
design a denoising autoencoder (DAE) network (Vincent et al., 2010) as an extra
module between CNN and SMPLR able to lift 2D joints to 3D and/or recover from
structured error. We show the proposed model output in Fig. 2.1.

In summary, our main contributions are as follows:

• We build a denoising autoencoder that learns to recover input data from struc-
tured error. The model transforms 2D/3D joints to more human-consistent 3D
joint predictions, enforcing symmetry and proportions on bone lengths.
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• We design a two-branch MLP network to regress SMPL parameters from 3D
joints and landmarks given by DAE. We refer to the combination of DAE, MLP
and SMPL as SMPLR. This allows the inference of human body mesh from
a sparse point representation. Finally, we gain an improvement over chosen
CNN by end-to-end training with SMPLR.

• Throughout our experiments, we demonstrate that it is possible to obtain an
accurate human body model from a set of joints and landmarks predictions.
We obtain state-of-the-art results for SMPL-like architectures on Human3.6M
(Ionescu et al., 2014) and SURREAL (Varol et al., 2017a) datasets.

2.2 Related work

In this section, we review state-of-the-art works on 3D human pose estimation from
still RGB images.

Lifting 2D to 3D. Depth regression from 2D is an ill-posed problem where sev-
eral 3D poses can be projected to the same 2D joints. (Atrevi et al., 2017) assign 3D
joints from a dataset by 2D body silhouette matching, while (Chen et al., 2017) show
that copying depth from 3D mocap data can provide a fair estimation when a near-
est 2D matching is given. However, (Moreno-Noguer, 2017) shows that distance of
random pairs of poses has more ambiguity in Cartesian space than Euclidean dis-
tance matrix. Recent works show that directly using simple (Martinez et al., 2017)
or cascade (Hoang et al., 2018) MLP networks can be more accurate. Additionally,
2D joints can be wrongly estimated, making previous solutions sub-optimal. (Yang
et al., 2018b) use adversarial training and benefit from available 3D data along with
2D data to infer depth information. In our case, the proposed denoising autoencoder
is used to lift 2D pose to 3D in the lack of paired image and 3D ground truth data.

Direct regression refers to regressing 3D pose directly from an RGB image. Due
to the nonlinear nature of the human pose, 3D pose regression without modeling
correlation of joints is not a trivial task. (Brau et al., 2016) estimate 3D joints and
camera parameters without direct supervision on them. Instead, they use several
loss functions for projected 2D joints, bone sizes and independent Fisher priors. (Sun
et al., 2017) propose a compositional loss function based on relative joints with re-
spect to a defined kinematic tree. They separate 2D joints and depth estimation in
the loss. We avoid relying on such complex losses by using 3D joints and landmarks
as intermediate representation.

Probability maps are joints likelihood computed for each pixel/volume. From
2D joint heatmaps different solutions are applied to infer the third dimension. (Tome
et al., 2017) iteratively minimize a function based on 2D belief map and a learnt 3D
model to find the most likely 3D pose. Since probability maps are dense predictions,
fully convolutional networks are usually applied. (Luo et al., 2018) extend stacked
hourglass (SHN) (Newell et al., 2016) to estimate 2D joint heatmaps along with limb
orientation map in each stack. (Pavlakos et al., 2017) extend SHN to output 3D
volumetric data by a coarse-to-fine architecture where at each stack the third dimen-
sion is linearly increased with 2D heatmaps. (Nibali et al., 2018) propose marginal
heatmaps from different axis viewpoints.

Pose and shape estimation. In order to compute a detailed body model, it is
common to estimate body volume or mesh along with 3D pose. Early proposals were
mainly based on the combination of simple geometric objects (Stoll et al., 2011; Sigal
et al., 2012), while recent approaches are PCA-based parametric models like SMPL
(Loper et al., 2015a). (Bogo et al., 2016) were the first to apply SMPL for body pose
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and shape recovery. Their method was based on regular optimization procedures
given an objective function with several constraints, minimizing projected joints and
pre-estimated 2D joints. Such a complex function design is critical for the success
of optimization procedures, since SMPL is a many-to-one function and sensitive to
noise. (Lassner et al., 2017) extended the previous work by including a bi-directional
distance between projected mesh and body silhouette. Recent works embed SMPL
within deep models. (Tung et al., 2017) regressed SMPL pose and shape along with
camera parameters. They trained the model with supervision on synthetic data and
fine-tuned without supervision at inference time using 2D joints, silhouette and mo-
tion losses. Similarly, (Kanazawa et al., 2018) regressed as well SMPL and camera
parameters, but in addition, they applied adversarial training. Predictions are fed to
a discriminator network which classifies them as real/fake with respect to real body
scans. Similar to our work, (Pavlakos et al., 2018; Omran et al., 2018; Zanfir et al.,
2018) estimate pose and shape parameters from intermediate information, like body
segments (Omran et al., 2018), 2D joint heatmaps and body mask (Pavlakos et al.,
2018) or 3D joints (Zanfir et al., 2018). They include SMPL to obtain 3D joints and
mesh which are used to compute the loss either in 2D (back-projected from 3D) or
3D. However, this process is ill-posed and sub-optimal because of the loss of depth
information (in the case of (Pavlakos et al., 2018; Omran et al., 2018)) or the ambigu-
ity in joint orientations and shape parameters (in the case of (Zanfir et al., 2018)). We
show 3D joints and surface landmarks can better deal with this problem outperform-
ing aforementioned solutions. Recently, (Varol et al., 2018) proposed a multi-tasking
approach to estimate body 2D/3D pose, pixel segments and volumetric shape. They
use SMPL to generate ground truth body volumes and do not embed SMPL function
within the network.

In this chapter, we propose an approach to estimate 3D body pose and shape by
the use of intermediate information and SMPL model. We can benefit from end-to-
end training. Besides, our method can be adapted to 2D-to-3D solutions when just
2D ground truth data is available.

2.3 Methodology

We estimate 3D joints J = {j}K
1 and surface vertices T = {t}C

1 from a single RGB im-
age I, where j, t ∈ R3, and K and C are the number of body joints and surface points,
respectively. We define L ⊂ T as a set of sparse surface landmarks and J+ as a con-
catenation of the two matrices. In order to compute a detailed mesh, we use SMPL
model (Loper et al., 2015a). Our goal is to estimate SMPL parameters from image I
using deep learning without directly regressing them. This way, we avoid possible
artifacts while keeping the architecture flexible in the lack or presence of 3D ground
truth data. Our network contains three main modules shown in Fig. 2.2. First, joints
and landmarks locations are estimated by any chosen CNN (J+CNN). Afterwards,
DAE filters structured error or lifts 2D to 3D (J+DAE). Finally, SMPLR recovers pose
and shape from the predictions of the previous module and reconstructs a detailed
body mesh and skeleton. Next, we explain DAE and SMPLR in detail.

2.3.1 SMPL review

SMPL is a statistical parametric function M(β, θ; Φ) which maps shape parameters
β and axis-angle pose parameters θ into vertices T, given learnt model parame-
ters Φ. Given a template average body mesh with vertices T∗ and a dataset of
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FIGURE 2.2: System pipeline. A CNN estimates volumetric heatmaps. Soft argmax converts
heatmaps to joints locations and feeds them to denoising autoencoder module. Soft argmax
is differentiable, thus, gradients can be backpropagated. Finally, we compute normalized
relative distances B (eq. 2.3) and normalized relative joints N (eq. 2.1) which are fed to two
independent networks designed to regress SMPL parameters. At the end SMPL is responsi-
ble to render a realistic body mesh. Dashed arrows show where the loss is applied.

scanned bodies, two sets of principal components S = [S1, ..., S|β|] ∈ R3C×|β| and
P = [P1, ..., P9K] ∈ R3C×9K are learnt to form model parameters Φ (where |β| = 10,
C = 6890 and K = 24). Then, template shape vertices T∗ can be morphed to T∗

s by
vec−1

3,C(S × β) + T∗ where vec−1(.) is a reshaping operator. Template 3D joints must
be updated as well w.r.t. the body shape. This is done by a regressor matrix J (as
part of parameters Φ) from updated vertices T∗

s . Bases Pi are responsible for small
pose-based displacements due to body soft-tissue behavior and have small contri-
bution in the shape deformation. Given a kinematic tree (i.e. Fig. 2.3) a set of relative
rotation matrices R = [R1, ..., RK] ∈ R3×3 are computed for each joint with respect to
their parents. Each Ri is a function of θi ∈ R3 and is computed based on Rodrigues
formulation. These rotation matrices are mainly used because of two reasons: i) to
pose the mesh by rotating body parts relatively in the kinematic tree, and ii) to up-
date the template shape in rest pose θ∗ by basis Pi. Please read (Loper et al., 2015a)
for more detailed explanations of the SMPL.

SMPL model has several characteristics. First, it is differentiable, which yields
the possibility to be used along with deep networks. Secondly, it does not constrain
invalid pose and shape values and, thus, it is a many-to-one function. This means
that given an RGB image, end-to-end training of a CNN from scratch with SMPL
attached on top may converge to a non-optimal solution. One of the main reasons
of this is the usage of Rodrigues formulation and axis-angle pose parameters, as it
is known not to be unique (periodicity of θ). A possible solution is to directly use
rotation matrices as proposed in (Lassner et al., 2017; Omran et al., 2018). Finally,
SMPL is a generative model which allows us to generate mocap-like data for free.
Also, it can be used to generate synthetic realistic images (Varol et al., 2017a).

2.3.2 SMPL reverse

A natural way of embedding SMPL in a deep network is to estimate β and θ given
image I and feed them to SMPL. However, this is a challenging task because of the
aforementioned many-to-one property, plus the noise sensitivity of the model. Be-
sides, direct regression of SMPL parameters may generate artifacts (Kanazawa et al.,
2018; Tan et al., 2017). Instead, researchers use intermediate representations like 2D
joints and body silhouette (Pavlakos et al., 2018) or body segments (Omran et al.,
2018) to regress SMPL parameters. Although such data is easier to annotate from
RGB images than SMPL data, they provide sub-optimal mapping to SMPL param-
eters, because 1) estimating 3D from 2D is an ill-posed problem, and 2) the loss is
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FIGURE 2.3: SMPL kinematic tree for a) joints, b) and c) proposed landmarks. d) Assigned
numbers to the landmarks. Pelvis is set as root. Points are shown in red.

computed from noisy back-projected 2D estimations. In this chapter, we instead
propose an autoencoder-like scheme, i.e. the input 3D data is recovered in the out-
put, while pose and shape are obtained in the encoder and SMPL is taken as decoder.
We refer to this model as SMPL reverse (SMPLR, see Fig. 2.2).

This design has several benefits: SMPLR can be trained 1) without the need of
constraints on SMPL, 2) independent to RGB data using millions of generated 3D
mocap-like data, and 3) end-to-end with a CNN. All of these provide simplicity and
flexibility in the design and training of the entire network. In the results section we
show that SMPLR formulation can generate more accurate estimations than state-of-
the-art SMPL-based alternatives. Furthermore, SMPLR acts as a strong regulariza-
tion on CNN model when trained end-to-end and it enhances the internal coherence
among joints for CNN predictions. In sec. 2.4.5 we propose an effective incremental
training for this task.

We model SMPLR encoder with deep MLP networks. We design two indepen-
dent networks R = Ω(N; ϕp) and β = Ψ(B; ϕs) with the same architecture (see
Fig. 2.2 for details) for pose and shape estimation, respectively, where ϕ. corresponds
to network parameters, N is a vector of normalized relative joints and B is a vector of
normalized relative distances. A reason for the choice of two networks is that R and
β are independent variables. Besides, we want the encoder to be cross-dataset ap-
plicable and explainable w.r.t. the pose and shape parameters. In available datasets,
while pose parameters have a high variability, there is no much variability in shape
parameters. For instance, Human3.6M dataset (Ionescu et al., 2014) only consists of
11 subjects and training Ψ is not feasible by relying just on this dataset. In the results
section we show the contribution of each network to the final joint estimates.

Since we define SMPLR as an autoencoder, its input must be J and T. However,
T is a high dimensional vector and all vertices do not necessarily contribute equally
in the computation of pose and shape parameters, wasting network capacity if all
of them are considered. To cope with this issue, we empirically select a subset of
points as landmarks L ⊂ T, which represent body shape and complement J. Without
landmarks, network converges to the average body fatness and the problem still
remains ill-posed due to the ambiguity of joints orientation. Landmarks help to
cope with these two problems. Besides, it is cheaper to gather landmarks in mocap
datasets rather than scanning the whole body. We show the 18 selected landmarks
and their assigned kinematic tree in Fig. 2.3. Next, we explain networks details.

J and L are concatenated to form J+ which has been estimated beforehand by
DAE (i.e. J+DAE). For the easiness of the reading we omit the subscript .DAE from
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J+DAE in the next formulations. Given a kinematic tree κ ∈ R42, we define N as:

Ni =
J+i − J+κ(i)

∥J+i − J+κ(i)∥2
, for i ∈ [2..42], (2.1)

where κ(i) defines parenthood indices. The reason for this normalization is that,
in order to compute relative joint rotation R, we do not need to know relative dis-
tances. This frees network capacity from unnecessary data variability. Such relative
distances are embedded in the computation of shape parameters. Thus, given rel-
ative distances B∗ computed from template joints and landmarks J+∗, we define B
as:

B∗
i = ∥J+∗

i − J+∗
κ(i)∥2, for i ∈ [2..42], (2.2)

Bi = ∥J+i − J+κ(i)∥2 − B∗
i , for i ∈ [2..42]. (2.3)

SMPL originally provides two different models for male and female. Selecting a
proper gender model for each sample has a crucial impact on the accuracy at infer-
ence time. Therefore, we also include gender as an extra term on the shape param-
eters β. We assign gender a value from the set {−1,+1} and learn it as a regression
problem along with other shape parameters.

Loss function. L2 loss has been commonly applied in recent regression problems
(Tan et al., 2017; Pavlakos et al., 2018). However, we found L2 loss to have problems
in convergence and generalization in case of noisy inputs. Instead we use L1 loss
on R and β, called LR and Lβ, to supervise Ω and Ψ networks. Firstly, this is done
isolated from SMPL, which means no back-propagation is applied through SMPL.
This is important for a stable training and fast convergence. Then, for performance
gains, we fine-tune the networks adding L1 loss on SMPL output, called LSMPL.
SMPL output contains J and T. However, to have SMPLR architecture resembling
an autoencoder, we compute LSMPL on landmarks rather than the whole T. The final
SMPLR loss is LR + Lβ + LSMPL.

2.3.3 Denoising autoencoder

Estimated joints by any CNN may have structured noise. For instance, in the case of
occluded joints the error is higher due to their ambiguity and the lack of visual ev-
idence. Visible joint predictions have as well structured error, following a Gaussian
distribution. Such structured or Gaussian noise can be detected and learnt explic-
itly, helping to further improve initial estimation of J+CNN to be fed into SMPLR
module. Denoising autoencoder networks (Vincent et al., 2010) are useful tools for
such scenario, being able to learn structured patterns of the input better than ordinal
autoencoders.

In this chapter, we propose a DAE network as a bridge between CNN backbone
and SMPLR. With the proposed DAE we are able to denoise 3D joints and land-
marks. This procedure can be critical for error-prone CNNs, such as shallow net-
works. Moreover, it can be detached from CNN and trained independently given
a large amount of mocap or synthetic SMPL-generated data. However, DAE may
not generalize well to the noisy test data if it is trained with noise-free ground truth
data. Therefore, it is important to train DAE with adversarial noise in this scenario
for generalization purposes. In the section 2.4.4 we show it is possible to train DAE
with constrained uniform or Gaussian noise mimicking structured error without loss
of generalization. It is also possible that only 2D joints are annotated in a given
dataset. In sections 2.4.4 and 2.4.6 we also show DAE can lift 2D estimations to 3D.
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This could also be done by the use of mocap or synthetic 3D data projected to 2D
and adversarial noise. The architecture of DAE is shown in Fig. 2.2. We apply two
dropouts, one right after the input and the other after last encoder layer. By applying
skip connections between encoder and decoder layers we force the network to learn
noise structure in a fast and stable way. The input to DAE is the initial estimation
of J+CNN and the output is denoised J+DAE. We apply L1 loss (so called LDAE) on
J+DAE to train this network. In order to force the awareness of adjacent joints corre-
lations, we applied an L1 loss on the relative joints (B in Eq. 2.3) as well. However,
we observed no significant impact on the results.

2.4 Experiments

This section describes training details, datasets, and evaluation protocol. Then, we
perform an ablation study of the different model components and compare it against
state-of-the-art alternatives.

2.4.1 Training details

We build our backbone CNN based on the well-known stacked hourglass network
(SHN) (Newell et al., 2016) using 5 stacks. We extend final layers of each stack to vol-
umetric heatmaps, i.e. including an extra dimension to discretize depth of the joints
into 16 bins. The output of each stack is a tensor of size 64 × 64 × 16 × 41, where
64 is the size of X-Y axis and 41(= 23 + 18) is the number of joints and landmarks.
We train this network with softmax cross entropy loss. All models and experiments
were implemented on TensorFlow and trained on a GTX 1080 Ti. We used Adam
optimizer in all the experiments with a learning rate of 0.01 for SHN and 0.001 for
DAE, Ω and Ψ networks. All networks are trained from scratch using a Xavier ini-
tializer. SHN converged in 150-250 epochs with batch size 6-10 samples. The rest
of networks in the ablation analysis were trained with batch size 256. We used a
keeping probability 0.8 for dropout layer in DAE.

Preprocessing. Images are cropped to a square. To do so, we assume camera
focal length and object distance to camera is available beforehand. First, the corners
of a 2.5 × 2.5m grid, centered at average joint location and perpendicular to cam-
era axis, are projected to image plane and define the cropping area. Then, cropped
images are scaled to network input size (256 × 256). This enforces a proportionality
among pixel and real world sizes, larger people will appear bigger in image space
as well. In those cases where the crops land outside the frame, a random image
from VOC Pascal dataset is used for padding. Following (Varol et al., 2018) we use
ground truth focal length and object distance to the camera in all experiments, both
in training and inference time. However, to study the impact of scale ambiguity on
the 3D joint prediction, we also estimate the cropping area in Human3.6M (Ionescu
et al., 2014) dataset and show the results (see section 2.4.6).

End-to-end training. We applied incremental training. First, all networks (i.e.
SHN, DAE, Ω and Ψ) were trained independently and then the whole network was
fine-tuned end-to-end. In the ablation study we analyze the effect of different com-
binations of modules in the training.

2.4.2 Datasets

UP-3D (Lassner et al., 2017). This dataset was designed by fitting a gender neutral
SMPL model into images from LSP, LSP-extended and MPII-HumanPose datasets,
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Model Hd Ts Sr Ew Wt Hp Kn Ft Avg. Avg. Avg.
Jt Lm Bn

CNN Alexnet 100.0 41.6 99.0 179.9 246.9 34.6 138.5 217.3 133.0 - 31.9
SHNnL 47.5 23.0 44.2 77.2 112.0 16.3 61.9 102.7 62.8 - 10.4
SHN 46.2 23.0 43.0 75.5 110.2 15.3 61.2 102.2 59.9 61.5 9.3
SHNe2e 45.1 22.2 43.3 74.4 108.2 16.0 57.9 94.2 57.8 59.6 9.0
SHNaug 45.0 22.3 41.1 72.7 105.7 14.4 59.6 99.8 57.5 59.3 9.0
SHN f inal 40.8 20.9 38.0 66.8 93.4 14.3 55.7 92.9 53.0 54.3 9.7

DAE DAEAlexnet 89.3 37.1 87.2 160.8 230.8 29.6 131.7 205.9 121.5 - 22.7
DAESHN 45.8 22.2 42.2 75.4 108.5 14.4 61.8 103.2 59.2 61.1 9.5
DAE2d

SHN 51.4 23.1 46.2 83.7 121.7 15.1 66.6 115.4 65.2 66.1 11.8

SMPLR Ψ 16.5 9.1 13.8 17.3 19.9 5.8 11.7 21.3 14.4 11.5 6.6
Ω 55.1 22.3 48.8 85.8 127.1 13.4 68.6 122.3 67.8 - -
Ωsmpl 50.1 20.1 44.9 83.6 123.6 12.4 63.9 111.9 63.8 - -
single channel 58.7 24.3 53.6 94.1 142.5 16.0 68.8 116.7 71.8 74.9 8.6

ALL ALL 57.9 24.0 52.8 92.7 140.4 15.8 67.8 115.0 70.8 73.8 8.4
ALLProc 53.7 26.1 49.7 86.2 129.9 21.6 67.0 109.2 67.8 70.6 7.7

TABLE 2.1: Ablation study of model components. Error in mm. Hd:Head, Ts:Torso,
Sr:Shoulder, Ew:Elbow, Wt:Wrist, Hp:Hip, Kn:Knee, Ft:Foot, Jt:Joints, Lm:Landmarks and
Bn:Bone length, {.}nL: training without landmarks, {.}aug: training with data augmentation,
{.} f inal : training with limb heatmaps and data augmentation, {.}Alexnet: Alexnet estimations
as input, {.}SHN : SHN estimations as input, {.}2d: input depth is set to 0, {.}smpl : training
with LR + LSMPL loss, {.}e2e: model after end-to-end training, {.}Proc: results after Procrustes
mapping. Best results are bolded.

keeping samples with better estimates. This yields a total of 8515 labeled images in
the wild, splitted into 5703 for training, 1423 for validation and 1389 for test. Every
sample is provided with 2D joints annotations and SMPL parameters.

SURREAL (Varol et al., 2017a). Synthetic dataset of humans generated with
SMPL model, containing exact annotations. It is composed of 68K videos containing
SMPL generated humans moving on top of random backgrounds. For sampling, we
skip a frame if the average joint distance is lower than 5cm w.r.t. to last sampled
frame. This results in 2.8M training, 27K validation and 665K test samples.

Human3.6M (Ionescu et al., 2014). Human3.6M is a large dataset offering high
precision 3D data thanks to MoCap sensors and calibrated cameras. It is composed
of RGB videos of 11 subjects performing 15 actions twice while being recorded from
4 different viewpoints. It contains around 3.6 million frames. We sampled 1 of every
5 frames, ending with 312K training and 110K validation samples. Following state-
of-the-art works, we use subjects S1, S5, S6, S7 and S8 for training, and S9 and S11 for
testing. We generated ground truth SMPL parameters from the 3D data and body
scans available in the dataset. Body scans allow an accurate estimation of shape
parameters, computed only once per subject (shape does not change in short peri-
ods of time). Afterwards, we empirically defined a correspondence between SMPL
joints and available 3D MoCap data. This matching is not perfect for some joints,
which are weighted between [0.25, 0.75] empirically to provide good estimations.
This weighted matching allows optimization of pose through an L2 loss. Finally,
correspondence of back joints is not accurate, so instead, we use a loss that penalizes
unrealistic back bends, by correcting back’s pose parameters that land outside an
empirically defined symmetrical range centered at 0.
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FIGURE 2.4: Sample volumetric heatmap of joints (middle) and limbs (right), each limb
coded with a different color.

2.4.3 Evaluation protocol

We evaluate the models by mean per joint position error (MPJPE) in millimeters
(mm). The same metric is extended to surface points to report error of the generated
body meshes. Following related works we apply two protocols: Protocol 1 where
all joints/points are subtracted from the root joint and, Protocol 2 where estimated
joints are aligned with ground truth through Procrustes analysis. We also report
mean Intersection over Union (IoU) on body silhouette after mesh projection to the
image plane.

2.4.4 Ablation study

In this section, we study different components of the proposed model on SURREAL
validation set. For this task we subsample the training dataset into 89K frames such
that every pair of samples has at least one joint displaced 150mm w.r.t. to each
other, thus enforcing a uniform distribution over the whole dataset. We use the setup
in Sec. 2.4.1 to train each component. We explored several combination strategies
during training to see the impact of each on the validation set. Except end-to-end
training, all building blocks are trained isolated from the rest. We show results and
description of each module in Tab. 2.1.

CNN backbone

We first evaluate the performance of the CNN backbones. The results are shown
in Tab. 2.1 under CNN row. We first train a baseline Alexnet to regress 3D joints
(without landmarks) using L2 loss, Adam optimizer, learning rate 0.01 and batch size
32. We chose Alexnet for two reasons: 1) to compare the results with the proposed
volumetric SHN, and 2) it is a shallow network and prone to have structured error
so that we can study DAE impact as well. As expected Alexnet is not performing
well to directly regress 3D joints. We then train volumetric SHN to predict J+ and J
(so-called SHN and SHNnL, respectively). As a result, landmarks help SHN to gain
3mm improvement over SHNnL. Next we explain our contributions to the default
volumetric SHN.

Final volumetric heatmap model. To evaluate our method against state-of-the-
art we extend default volumetric SHN to include limb heatmaps in the output and
train the model using data augmentation. Besides regular data augmentation (in-
cluding random color noise, flipping and rotation), two extra methods are applied:
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random background and artificial occlusion. By using binary masks for subjects pro-
vided at each frame, we remove the default background and replace it with a ran-
dom image from VOC Pascal dataset. Similarly, we place random objects from VOC
Pascal on random locations of the image to artificially create occlusions (Saŕańdi et
al., 2018). In both cases we do not use images containing humans. SHN trained with
data augmentation is called SHNaug which shows 2.4mm improvement over SHN
for average joint error (see Tab. 2.1).

Limb heatmaps are 4 additional volumetric heatmaps in the outputs of SHN.
These heatmaps correspond to limb representations, created by composing segments
from joint to joint (see Fig. 2.4). By fitting these heatmaps we expect to enforce the
model to learn spatial relationships among joints to improve generalization. We
train SHNaug with limbs heatmaps and call this model SHN f inal . The results dis-
played in the Tab. 2.1 show how these simple limb heatmaps indeed enhance the
performance of SHNaug by about 4.5mm on average joint error.

Denoising autoencoder

We also evaluate DAE trained with different inputs in several scenarios. Results are
shown in Tab. 2.1 under DAE row.

Could we train DAE independent to SHN? Since DAE sequentially appears
after SHN, it receives estimations from SHN. To answer this question we train DAE,
as input, with i) 3D ground truth joints plus uniform noise with adapted bounds for
each joint and ii) 3D joints estimated by SHN (so-called DAEnoise and DAESHN). We
then evaluate both models with SHN estimations as input at test time. As a result,
DAEnoise has an average error of 61.7mm (not shown in the table) which is similar to
DAESHN (61.9mm). This shows the generalization ability of DAE.

Is DAE able to recover from structured noise? Other than DAESHN , we also
train and test DAE with Alexnet estimations (called DAEAlexnet). For Alexnet predici-
tons, DAE improves the error by 11mm, while on SHN the improvement is 0.7mm.
This shows the ability of DAE to learn structured error.

Is DAE able to lift 2D joints to 3D? To answer this question, we train and test
DAE, following (Martinez et al., 2017), with SHN estimations while depth is set
to 0 (called DAE2d

SHN). In fact, we want to test how DAE performs in the lack of
3D ground truth data. As a result, the average error is slightly higher than 65mm.
Although the average error is 3mm higher than SHN, it shows DAE can lift 2D pose
to 3D with successful results. We note that training DAE2d

SHN converges way slower
than DAESHN .

SMPLR

In this section, we evaluate different components of SMPLR using SHN estimations
as input in both training and test. The results are shown in Tab. 2.1 under SMPLR
row. We first evaluate the impact of shape and pose estimations isolated from each
other within SMPLR. In test time, shape and pose estimations are fed into SMPL to
evaluate final joints error.

Shape estimation. We train Ψ network with Lβ loss. During test we feed esti-
mated β along with ground truth R to SMPL. The results are shown as Ψ in Tab. 2.1.
As one can see shape estimation has a low impact on final error (around 14mm avg.
joints error).

Pose estimation. We train Ω network first with LR loss and then fine-tune it
with LR + LSMPL loss. The results are shown as Ω and Ωsmpl in Tab. 2.1, respectively.
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(A) (B) (C)

FIGURE 2.5: Qualitative results of the ablation analysis. a) Visualization of the improvement
on shape estimation due to landmarks. Left: image. Middle: estimation without landmarks.
Right: estimation with landmarks. b) Prediction improvement due to end-to-end training.
Left: image. Middle: prediction before end-to-end training. Right: prediction after end-to-
end training. Green and red skeletons correspond to ground truth and predictions, respec-
tively. c) Random samples with mistaken gender or viewpoint. Left: image. Middle: SMPL
mesh. Right: SMPL mesh after Procrustes.

During test we feed estimated R along with ground truth β to SMPL. As a result we
gain 4mm improvement in pose estimation by applying LR + LSMPL loss. In general,
the higher source of errors in SMPLR is in pose parameters rather than shape.

Impact of landmarks. Landmarks provide more visual evidence to the CNN
when they are available in the dataset. Comparing SHN to SHNnL in Tab. 2.1, one
can see landmarks improve head, arms and hip estimations. We also train Ψ network
with and without landmarks. Some qualitative results are shown in Fig. 2.5a.

Gender. We evaluate the accuracy of gender estimation in Ψ and achieve 89.5%
accuracy. Such a high accuracy is critical for SMPL rendering. This means a given
vector of shape parameters is interpreted differently by each gender model, i.e. a
correctly estimated shape parameter but wrong gender estimation produces a wrong
mesh generation, introducing a high error in SMPL mesh.

SMPLR architecture analysis. We compare two stream network with a single
channel one. We keep the same architecture as Ω for the single channel network
outputting shape and pose parameters in a single vector with size 11 + 24 × 3 × 3.
We directly feed estimated joints and landmarks to the network and train it similar
to Ωsmpl . As a result, single channel network has around 1mm higher error than
the proposed two stream network (see Tab. 2.1). We also study the impact of the
proposed skip connection (inspired by inception module A). The SMPLR without
skip connections performs 5mm worse than the proposed network for average joint
error.

2.4.5 End-to-end training

Here, we describe how the end-to-end training was performed. Thanks to soft-
argmax, the model is differentiable and trainable end-to-end. We first explore a
regular end-to-end training by stacking already trained models SHN, DAESHN , Ψ
and Ωsmpl along with SMPL on top. The loss is a summation of all intermediate
losses. The order of magnitude of SHN loss is several times lower than the other
losses. Therefore, without a proper balancing, the weights of the SHN vanish after
few training steps. We empirically set this balance to be around 1e-5. Fine-tuning is
performed with a low learning rate, empirically set to 1e-4, to ensure learning stabil-
ity. We observed this model does not show improvements. Therefore, we propose
the next procedure for end-to-end training.
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Prot. 1 Prot. 2

Bogo et al., 2016 - 82.3
Lassner et al., 2017 - 80.7
Tung et al., 2017∗ 98.4 -
Pavlakos et al., 2018 - 75.9
Omran et al., 2018 - 59.9
Kanazawa et al., 2018 87.9 56.8
Kolotouros et al., 2019 74.7 51.9
ALL 67.9 52.2
ALLProc 62.6 52.2

(A)

Prot. 1 Prot. 2

Tome et al., 2017 88.4 70.7
Pavlakos et al., 2017 71.9 51.9
Zhou et al., 2017 64.9 -
Martinez et al., 2017 62.9 47.7
Sun et al., 2017 59.1 48.3
Sun et al., 2018∗∗ 64.1 -
Fang et al., 2018 60.4 45.7
SHN f inal 61.3 50.1
SHN f inal

e2e 56.5 46.3

(B)

TABLE 2.2: State-of-the-art MPJPE error in mm. on Human3.6M for both protocols. Best
results are bolded. (a) SMPL-based methods comparison. SMPLR outperforms all SMPL-
based methods. SMPL surface errors on this dataset are 88.2 and 81.3mm for ALL and
ALLProc, respectively. (b) 3D pose comparison. The simple proposed updates on SHN show
state-of-the-art-results after end-to-end training without using any extra data. * (Tung et al.,
2017) use 32 joints. ** (Sun et al., 2018) report the results with and without extra data in the
training. For a fair comparison we take this number from where no extra data has been used.

SMPL surface 3D joints

Tung et al., 2017 74.5 64.4
Varol et al., 2018 (independent) 74.5 46.1∗

Varol et al., 2018 (multi-task) 65.8 40.8∗

SHN f inal - 42.8∗

SHN f inal
e2e - 40.8∗

ALL 66.0 50.6
ALLProc 62.3 48.2

TABLE 2.3: Errors (mm) on SURREAL dataset (protocol 1). Best results are bolded. .∗ are
intermediate estimated 3D joints used to predict SMPL surface.

SURREAL Human3.6M UP-3D

Varol et al., 2018 (multi-task) - - 0.73
ALLProc 0.75 0.71 0.77

TABLE 2.4: Silhouette IoU on three datasets.

We first train DAE, Ψ and Ωsmpl with ground truth 3D joints until they overfit
on training data. Once trained, they are frozen and appended to SHN. Fine-tuning
is performed with the same loss balancing and learning rate as before. The network
shows improvement after the first training epoch, and after an additional epoch it
fully converges. To ensure that this improvement is the result of the proposed end-
to-end training, we trained SHN alone for more than 10 additional epochs without
showing any improvement. The results of SHN after end-to-end training in Tab. 2.1
(called SHNe2e) shows more than 2mm improvement. Some qualitative results are
shown in Fig. 2.5b.

Recover SMPLR error. We stack all trained models to report final SMPL predic-
tions (row ALL in Tab. 2.1). SMPLR naturally has a generalization error. Wrongly
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FIGURE 2.6: Qualitative results. Top: SURREAL. Bottom: Human3.6M. Last sample of each
row shows a failure case due to inaccurate pose estimation produced mainly by occlusion
and/or background confusion.

FIGURE 2.7: UP-3D results. Based on estimated 2D joints (middle) we compute 3D joints
and render mesh (right).

estimated gender is a source of error in SMPLR. Not only gender, but also global
rotation error embedded in Ω can degrade the results. Fortunately, the mesh can
be partially corrected by an affine transformation as a post-processing. To do so we
apply Procrustes mapping from SMPLR output to its input J+ and update the mesh
accordingly. The results in Tab. 2.1 shows 4mm error recovery of ALLProc vs. ALL.
Some qualitative examples are shown in Fig. 2.5c. Note that for this post-processing
step, no ground truth information is required, as we align SMPLR output with SHN
output (both model predictions), knowing that SHN is more accurate. This is differ-
ent from protocol 2, where final predictions are aligned with ground truth.

2.4.6 State-of-the-art comparison

Human3.6M. We compare our results to state-of-the-art on Human3.6M in Tab. 2.2,
split in two sets: SMPL-based solutions (2.2a) vs. only 3D pose recovery (2.2b). In
the former, our proposed ALLProc outperforms state-of-the-art, especially in proto-
col 1 improving (Kolotouros et al., 2019) over 12mm. We note that we use Ψ network
trained on SURREAL dataset to estimate shape parameters, since Human3.6M con-
tains just 5 subjects in the training set (therefore, only 5 shapes). The results in the
second set show that our simple modifications to SHN achieve state-of-the-art re-
sults after end-to-end training (SHN f inal

e2e ). Compared to (Pavlakos et al., 2017), a
fixed small depth resolution of 16 bins in the volumetric heatmap works better than
a coarse-to-fine setup. As we mentioned earlier, we also want to study the results
when image cropping is not based on ground truth data. Therefore, we estimate
camera focal length and object distance to camera following (Saŕańdi et al., 2018)
and use them to compute the cropping. The error on cropped image is less than
5px on each corner. To be robust against this error we fine-tune SHN f inal with an
additional random scaling image augmentation. As a result, the 3D joints error is
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Batch size 2D SHN Vol. SHN DAE SMPLR HMR

Train 6 1.5 2.9 0.03 0.40 0.31
Test 6 0.25 0.66 0.008 0.08 0.19
Test 1 0.18 0.25 0.007 0.07 0.09

TABLE 2.5: Processing time (in sec.) of 1 step. 2D SHN is the default stack hourglass network
for 2D joints estimation. Both 2D and vol. SHN have 5 stacks with 41 heatmaps/points. Vol.
SHN has 16 depth bins. SMPLR includes SMPL on top. HMR (Kanazawa et al., 2018) uses
ResNet-50-V2 as the CNN backbone which is 3× faster than vol. SHN in test time for a batch
size of 1.

increased less than 1mm in average which is quite marginal on this dataset. Fig. 2.6
shows some qualitative results.

SURREAL. The competitors on this dataset are (Varol et al., 2018) and (Tung et
al., 2017). Note that (Varol et al., 2018) relies on all ground truth data in a multi-
task setup to generate volumetric body shape which limits applicability. That is,
volumetric body shape is a coarse representation and not parametric. The results in
Tab. 2.3 show ALLProc outperforms (Varol et al., 2018) by 3.5mm for SMPL surface
error. Interestingly, our SHN f inal

e2e achieves same 3D joints estimation error (40.8 mm)
than (Varol et al., 2018) without performing multi-task learning. We show some
qualitative results in Fig. 2.6.

UP-3D. We use this dataset to show results in a in-the-wild scenario lifting 2D
joints to 3D. To do so, we fine-tune SHN f inal

e2e pre-trained on SURREAL. Note that
we do not train this model end-to-end on UP-3D dataset. Since this dataset is of
small size, we include a subset of 18K images from SURREAL for training. During
training the input to DAE is ground truth joints plus uniform noise and depth is set
to 0 following the same procedure as (Martinez et al., 2017). During testing, SHN
estimations (with depth set to 0) are fed to DAE. The inputs to SMPLR are DAE
estimations. The SMPL errors in test set before and after Procrustes mapping are
around 91mm and 87mm, respectively, being below the 100.5mm error reported in
(Pavlakos et al., 2018). Fig. 2.7 shows some qualitative results.

Silhouette IoU. To check the quality of rendered body, we also compute silhou-
ette IoU of the estimated mesh after projection to image plane. The results can be
seen in Tab. 2.4. We achieve a high IoU (more than 0.7) on all datasets without ex-
plicitly training the network for this task.

2.4.7 Time complexity

We show the processing time of each module of the proposed network in Tab. 2.5.
Experiments were conducted on a GTX1080TI GPU. We compare a default 2D SHN
with our proposed volumetric SHN (both SHNs have 5 stacks). As expected, volu-
metric SHN is around 2 times slower than 2D SHN in the training for a batch size of
6. However, there is not much difference between them at inference time for a batch
size of 1. We must note that 2D SHN can be fit in GPU memory for a batch size of 12
while volumetric SHN can have at most a batch size of 6. Our SMPLR implementa-
tion can be run in 14 FPS for a batch size of 1 at inference time. As one can see, the
CNN backbone is the most time-consuming module. We also run HMR (Kanazawa
et al., 2018) which uses ResNet-50-V2 as the CNN backbone and compare in Tab. 2.5.
As expected ResNet-50-V2 runs 3× faster than volumetric SHN in test time for a
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batch size of 1. We note that our approach is not dependent on CNN backbone and
volumetric SHN can be replaced by any state-of-the-art 3D joints estimation CNN.

2.5 Conclusions

We proposed a deep-based framework to recover 3D pose and shape from a still RGB
image. Our model is composed of a SHN backbone followed by a DAE and a net-
work capable of reversing SMPL from sparse data. Such model is able to accurately
reconstruct human body mesh benefiting from end-to-end training. We experimen-
tally found that processing SHN output joints with DAE removes structured error.
We have also shown that SMPL model can be reversed and used to recover 3D pose
and shape. Finally, we exploit SMPLR capabilities in the training of deep learning
networks by backpropagating SMPL related errors through the SHN. We evaluated
our proposal on SURREAL and Human3.6M datasets and improved SMPL-based
state-of-the-art alternatives by 3.5 and 12 mm, respectively on each dataset.

Our model is flexible in design and applicability. For instance, SHN can be re-
placed by shallow models in mobile devices while DAE helps to improve perfor-
mance. In the lack of 3D annotations for RGB images, estimated 2D joints can be
lifted to 3D by training DAE on synthetic data. However, end-to-end training is
not applicable in this case. Also, two independent networks for pose and shape
regression make SMPLR explainable w.r.t. these parameters. Although landmarks
help to disambiguate joint orientation, annotating them in in-the-wild datasets is a
challenging task.

As future work, hybrid approaches could be applied to improve joint orientation.
Given the difficulty of data annotation, unsupervised training is also a demand. At
the end, accurate body pose and shape estimation under variable clothing has not
been vastly explored due to cloth simplicity in current datasets. This is also an inter-
esting future work in the field. Moreover, not only human pose and shape should be
regressed, but also the 3D garments. To do so, it is first required a deep understand-
ing of 3D cloth. This line of research is explored from Chapter 3 onward. The first
problem to tackle is the lack of publicly available datasets with challenging garments
that present realistic cloth dynamics.
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Chapter 3

CLOTH3D: Clothed 3D Humans

FIGURE 3.1: Left: CLOTH3D is the first big scale datasets of animated clothed humans. It
contains thousands of different outfits and subjects, high variability of poses and rich cloth
dynamics. Right: generated 3D garments with proposed GCVAE. (http://chalearn.cvc.
uab.es/dataset/38/description/)

3.1 Introduction

Previously, on Chapter 2, we discussed about human 3D pose and shape recovery
from RGB. As a next step, it is useful to tackle also garment regression from RGB.
Nonetheless, 3D clothing is a challenging problem with many sides to be studied
to achieve a fine understand of garments. The modelling, recovery and generation
of 3D clothes will allow for enhanced virtual try-ons experience, reducing design-
ers and animators workload, or understanding of physics simulations through deep
learning, just to mention a few applications. However, current literature in the mod-
elling, recovery and generation of clothes is almost focused on 2D data (Dong et al.,
2017; Lin et al., 2015; Pumarola et al., 2019b; Shin et al., 2019). This is because of two
factors. First, deep learning approaches are data-hungry, and nowadays not enough
3D cloth data is available (see Tab. 3.1). Second, garments present a huge variability
in terms of shape, sizes, topologies, fabrics, or textures, among others, increasing the
complexity of representative 3D garment generation.

One could define three main strategies in order to produce data of 3D dressed
humans: 3D scans, 3D-from-RGB, and synthetic generation. In the case of 3D scans,
they are costly, and at most they can produce a single mesh (human + garments).
Alternatively, datasets that infer 3D geometry of clothes from RGB images are in-
accurate and cannot properly model cloth dynamics. Finally, synthetic data is easy
to generate and is ground truth error free. Synthetic data has proved to be helpful
to train deep learning models to be used in real applications (Nikolenko, 2019; Ros
et al., 2016; Varol et al., 2017b).

http://chalearn.cvc.uab.es/dataset/38/description/
http://chalearn.cvc.uab.es/dataset/38/description/
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Dataset 3DPW BUFF Untitled 3DPeople TailorNet CLOTH3D
(Marcard et al., 2018) (Zhang et al., 2017) (Wang et al., 2018) (Pumarola et al., 2019a) (Patel et al., 2020)

Resolution 2.5cm 0.4cm 1cm -1 1cm 1cm
Missing x ✓ x x x x
Dynamics x ✓ x x x ✓
Garments 182 10∼20 33 High4 20 11.3K
Fabrics x x x x x ✓
Poses5 Low Low Very low Low 1782 High
Subjects 182 6 2K 80 9 8.5K
Layered x x ✓ -1 ✓ ✓
#samples 51k 11K 24K 2.5M 55.8k 2.1M
Type Real Real Synth. Synth. Synth. Synth.
RGB ✓ x ✓ ✓ x x
GT error 26mm 1.5-3mm None None None None

TABLE 3.1: CLOTH3D vs. available 3D cloth datasets. 1: 3D data includes depth, normal
and scene flow maps, but not 3D models. 2: 3DPW contains 18 clothed models that can be
shaped as SMPL. 3: garments of (Wang et al., 2018) are shaped to different sizes. 4: Garment
variability not specified, nonetheless, authors propose a generation pipeline that can modify
template garments into many different sizes. 5: poses are strongly related to number of
frames, and in (Wang et al., 2018) most samples share the same static pose.

In this work, we present CLOTH3D, the first synthetic dataset composed of thou-
sands of sequences of humans dressed with high resolution 3D clothes, see Fig.3.1.
CLOTH3D is unique in terms of garment, shape, and pose variability, including
more than 2 million 3D samples. We developed a generation pipeline that creates
a unique outfit for each sequence in terms of garment type, topology, shape, size,
tightness and fabric. While other datasets contain just a few different garments, ours
has thousands of different ones. On Tab. 3.1 we summarize features of existing
datasets and CLOTH3D.

Additionally, we provide a baseline model able to generate dressed human mod-
els. Similar to (Alldieck et al., 2018a; Ma et al., 2019; Yang et al., 2018a) we encode
garments as offsets connecting skin to cloth, using SMPL(Loper et al., 2015b) as hu-
man body model. This yields an homogeneous dimensionality on the data. As
in (Pons-Moll et al., 2017), we use a segmentation mask to extract the garment by
removing body vertices. In our case, the mask is predicted by the network. We pro-
pose a Conditional Variational Auto-Encoder (CVAE) based on graph convolutions
(Bronstein et al., 2017; Defferrard et al., 2016; Ma et al., 2019; Niepert et al., 2016;
Wu et al., 2019; Yuan et al., 2019) (GCVAE) to learn garment latent spaces. This later
allows for the generation of 3D garments on top of SMPL model for any pose and
shape (right on Fig.3.1).

3.2 Related Work

3D Garment Datasets. Current literature on 3D garment lacks on large public avail-
able datasets. One strategy to capture 3D data is through 3D scans. The BUFF
dataset (Zhang et al., 2017) provides high resolution 3D scans, but few number of
subjects, poses and garments. Furthermore, scanning techniques cannot provide
layered models (one mesh for the body and one for each garment) and often one
can find regions occluded at scanning time, meaning missing vertices or corrupted
shapes. The work of (Pons-Moll et al., 2017) proposed a methodology to segment
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scans to obtain layered models. Authors of (Yu et al., 2019) combined 3D scans
with cloth simulation fitting at each frame to deal with missing vertices. Similarly,
(Bhatnagar et al., 2019) provided a dataset from 3D scans. However, the amount of
samples is in the order of a few hundreds. The 3DPW dataset (Marcard et al., 2018)
is not focused on garments, but rather on pose and shape in-the-wild. The authors
proposed a modified SMPL parameterized model for each outfit (18 clothed mod-
els), which, as SMPL, can be shaped and posed. Nevertheless, resolution is low and
posing is through rigid rotations. Therefore, cloth dynamics are not represented.
The dataset of (Wang et al., 2018) is synthetically created through physics simula-
tion, with three different garment types: tshirt, skirt and kimono. They propose
an automatic garment resizing based on real patterns, but provide only static sam-
ples on few different poses. The work of (Patel et al., 2020) also includes a synthetic
dataset obtained through simulation of 20 combinations of different garment styles
and body shapes into 1782 static poses. Finally, 3DPeople dataset (Pumarola et al.,
2019a) is the most comparable to ours in terms of scale, but has significant differ-
ences w.r.t. CLOTH3D. On one hand, this dataset has been designed specifically for
computer vision. Data are given as multi-view images (RGB, depth, normal and
scene flow), there are no 3D models. On the other hand, the garments are rigged
models, so there is no proper cloth dynamics. And lastly, source pose data is sparse,
70 pose sequences with an average length of 110 frames. Our CLOTH3D dataset
aims to overcome previous datasets issues. We automatically generate garments to
obtain a huge variability on garment type, topology, shape, size, tightness and fabric.
Afterwards, we simulate clothes on top of thousands of different pose sequences and
body shapes. Tab.3.1 shows a comparison of features for existing datasets and ours.
In CLOTH3D we focus on sample variability (garments, poses, shapes), containing
realistic cloth dynamics. 3DPW and 3DPeople sequences are based on rotations on
rigged models, datasets of (Patel et al., 2020; Wang et al., 2018) contain static poses
only, and BUFF has very few and short sequences. Moreover, none other provides
metadata about fabrics, which has a strong influence on cloth behaviour. Similarly,
the scarcity of these datasets implies low variability on garments, poses and subjects.
Finally, note how only synthetic datasets provide with layered models and have no
annotation error.

3D Garment Generation. Current works in 3D clothing focus on the genera-
tion of dressed humans. We split related work into non-deep and deep-learning
approaches. Regarding non-deep learning, the authors of (Guan et al., 2012) pro-
posed a data-driven model that learns deformations from template garment to gar-
ment fitted to the human body, shaped and posed. They factorize deformations into
shape-dependant and pose-dependant by training on rest pose data first, and later
on posed bodies. Transformations are learnt per triangle, and thus it yields incon-
sistent meshes that need to be reconstructed. The data-driven model of (Pons-Moll
et al., 2017) is able to recover and retarget garments from 4D scan sequences relying
on masks to separate body and cloth. Authors propose an energy optimization pro-
cess to identify underlying body shape and garment geometry, later, cloth displace-
ments w.r.t. body are computed and applied to new body shapes. This means infor-
mation such as wrinkles is "copied" to new bodies, which produces valid samples
but cannot properly generate its variability. Regarding deep learning strategies, the
work of (Gundogdu et al., 2019a) deals with body and garments as different point
clouds through different streams of a network, which are later fused. They also use
skin-cloth correspondences for computing local-features and losses through nearest
neighbour. The works of (Alldieck et al., 2018a; Ma et al., 2019; Patel et al., 2020;
Yang et al., 2018a) consider encoding clothes as offsets from SMPL body model with
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different goals. In (Ma et al., 2019) authors propose a combination of graph VAE
and GAN to model SMPL offsets into clothing. Similarly, in (Patel et al., 2020), au-
thors propose encoding garments as SMPL offsets and topology as a subset of SMPL
vertices, later, they learn two models for low and high frequency details which ef-
fectively generate realistic wrinkles on the garments. In (Wang et al., 2018; Yang
et al., 2018a) a PCA decomposition is used to reduce clothing space. In (Alldieck
et al., 2019; Lahner et al., 2018), authors register garments to low resolution meshes
(garment templates and SMPL respectively), to later use UV normal maps to rep-
resent high-frequency cloth details (wrinkles). Authors of (Santesteban et al., 2019)
propose learning Pose Space Deformation models for template garments by training
deep models instead of SVD (as SMPL). The work of (Wang et al., 2019) presents
a template garment autoencoder where latent spaces are disentangled into motion
and static properties to realistically interpolate into 3D keyframes. Similar to previ-
ous approaches, our proposed methodology also encodes clothes as SMPL offsets.
Nevertheless, the assumption that garments follow body topology does not hold for
skirts and dresses. In this sense, we propose a novel body topology specific for those
cases. Additionally, our model predicts garment mask along offsets to generate lay-
ered models.

3.3 Dataset

CLOTH3D is the first big scale dataset of 3D clothed humans. The dataset is com-
posed of 3D sequences of animated human bodies wearing different garments. Fig.
3.1 depicts a sequence (first row) and randomly sampled frames from different se-
quences. Samples are layered, meaning each garment and body are represented
by different 3D meshes. Garments are automatically generated for each sequence
with randomized shape, tightness, topology and fabric, and resized to target human
shape. This process yields a unique outfit for each sequence. It contains over 7000
non-overlapping sequences of 300 frames each at 30fps, yielding a total of 2.1M sam-
ples. As seen in Tab. 3.1, garment and pose variability is scarce in available datasets,
and CLOTH3D aims to fill that gap. To ensure garment type balance, given that
females present higher garment variability, we balance gender as 2:1 (female:male).
Finally, for validation purposes, we split the data in 80% sequences as training and
20% as test. Splitting by sequences ensures no garment, shape or pose is repeated in
training and test.

The data generation pipeline starts with sequences of human bodies in 3D. Hu-
man pose data source is (Carnegie-Mellon Mocap Database n.d.), later transformed
to volumetric bodies through SMPL (Loper et al., 2015b). These sequences might
present body self-collisions which will hinder cloth simulation, not only on affected
regions, but also in global garment dynamics. We automatically solve collisions or
reject these samples. Human generation process is described in subsec. 3.3.1. Later,
we generate unique outfits for each sequence. We start from a few template meshes
which are randomly shaped, cut and resized to generate a unique pair of garments
for each sample, with the possibility to be combined into a single full-body garment.
Fig. 3.2 shows the generation process, which is also detailed in subsec. 3.3.2. Finally,
once human sequence and outfit are done, we use a physics based simulation to
obtain the garment 3D sequences. Simulation details are described in subsec. 3.3.3.
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FIGURE 3.2: Unique outfit generation pipeline. First, one upper-body and lower-body gar-
ment template is selected. Then, garments are individually shaped, cut and resized. Finally,
garments might be combined into a single one.

3.3.1 Human 3D Sequences

SMPL. It is a parametric human body model which takes as input shape β ∈ R10

and pose θ ∈ R24×3 to generate the corresponding mesh with 6890 vertices. We use
this model to generate animated human 3D sequences. We refer to (Loper et al.,
2015a) for SMPL details. To generate animated bodies, we need a source of valid
sequences of SMPL pose parameters θ ∈ R f×24×3. We take such data from the work
of (Varol et al., 2017b), where pose is inferred from CMU MoCap data (Carnegie-
Mellon Mocap Database n.d.) following the methodology proposed at (Loper et al.,
2014). These pose data come from around 2600 sequences of 23 different actions
(dancing, playing, running, walking, jumping, climbing, etc.) performed by over 100
different subjects. SMPL shape deformations are linearly modeled through PCA. To
obtain a balanced dataset we uniformly sample shape within range [−3, 3] for each
sequence.

Self-collision. Body collides with itself for certain combinations of pose and
shape parameters. Intersection volumes create regions where simulated repel forces
are inconsistent, corrupting global cloth dynamics. We classify these collisions in
three generic cases. Solvable Fig.3.3(a): small intersection volumes near joints, spe-
cially armpits and crotch. We use SMPL body parts segmentation to linearly sepa-
rate the collided vertices to permit a correct simulation. Separation space is 4mm so
that a folded cloth can fit. Unsolvable Fig.3.3(b): big intersection volumes or incom-
patible intersections (e.g.: arm vs. leg). We reject or re-simulate with thinner body.
Special cases Fig.3.3(c): removing hands, forearms or arms for short-sleeved upper-
body and lower-body garments significantly increases the amount of valid samples.
This requires manual supervision. Self-collision solution is not stored, hence, if col-
lided vertices change significantly, garments might present interpenetration w.r.t.
unsolved body. Only small intersected volumes are corrected and the rest are re-
jected (or simulated with thinner body). The goal of self-collision solving is to avoid
invalid cloth dynamics. Accurate, realistic solving of soft-body self-collision is out
of the scope of this work.
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FIGURE 3.3: Types of self-collision: a) collided vertices can be linearly separated with the aid
of a body part segmentation, b) no trivial solution, we reject this kind of sample, c) correct
simulation might be possible if forearm is removed.

3.3.2 Garment Generation

Garment Templates. Generation starts with a few template garments for each gen-
der. Garments can be classified in upper-body and lower-body. Lower-body can be
further split into trousers and skirts. These three categories, and combinations be-
tween them, encompass almost any day-to-day garment. Template garments have
been manually created by designers from real patterns and are: t-shirt, top, trousers
and skirt.

Shaping. On sleeves, legs and skirt, we find a significant shape variability. It
is possible to define them as cylinders of variable width around certain axes: along
arms for sleeves, legs for trousers and vertical body axis for skirt. For sleeves and
legs, width will be constant or decreasing while moving towards wrist/ankle, and
beyond a randomly sampled point along its axis, it might start increasing (widen-
ing). For skirts, width always increases, from waist to bottom. Rate of width de-
crease/increase is uniformly sampled within ranges empirically set per garment.
More formally:

W(x) = α1x + α2 max(0, x − xoffset) + W0, (3.1)

where x is position along axis (0 at shoulder/hips), W(x) is width at position x, W0
is width at x = 0, xoffset is a uniformly sampled point along the axis and α1 and
α2 are constants empirically defined for each garment. For t-shirts and trousers,
α1 < 0 < α2. For skirts, α1 > α2 = 0.

Cut. Template garments cover most of the body (long sleeves, legs and skirt). At
this generation step, garments are cut to increase variability on length and topology.
Cuts are along arms, legs and torso. Plus, upper-body garments have specific cuts
to generate different types of garments (e.g., t-shirt, shirt, polo).

Resizing. Garments are resized to random body shapes. It is safe to assume
that size variability on garments is similar to body shape variability. Following this
reasoning, SMPL shape displacements are transferred to garments by nearest neigh-
bour. Nevertheless, this process is noisy and human body details are transferred
to garment. To address these issues, an iterative Laplacian smoothing is applied
to shape displacements, removing noise and filtering high frequency body details,
while preserving the geometry of the original garment. On SMPL, first and second
shape parameters correspond to global human size and overall fatness. Knowing
this, garments are resized to a different target shape. This new shape has two offsets
at first and second parameters, the garment tightness γ ∈ R2. These offsets on gar-
ment resizing will generate loose or tight variability. As tighter garments present less
dynamics and complexity, we bias the generator towards loose clothes by sampling
tightness on the range [−1.5, 0.5].
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Walk Animal Fight Jump Run Sing Wait Swim Story Sports Dance Yoga Spin

27.49% 10.79% 4.38% 2.78% 2.49% 2.38% 2.31% 1.97% 1.70% 1.63% 1.37% 1.01% 0.90%

Exercise Climb Carry Stand Wash Balancing Trick Sit Interact Drink Pose Others

0.84% 0.71% 0.67% 0.66% 0.63% 0.54% 0.51% 0.28% 0.20% 0.14% 0.14% 33.48%

TABLE 3.2: CLOTH3D statistics per action label.

Jumpsuits and Dresses. Full-body garments can be generated by combining
upper-body and lower-body garments. After generating the clothes individually, a
final step automatically sews them together.

3.3.3 Simulation

Cloth simulation is performed on Blender, an open source 3D creation suite. Blender’s
cloth physics, as it is in version 2.8, has been implemented with state-of-the-art al-
gorithms based on mass-spring model. The simulation performs 420− 600 steps per
second, depending on the complexity of the garment.

Fabrics. Changing the parameters of the mass-spring model allows simulation of
different fabrics. Blender provides different presets for cotton, leather, silk and denim,
among others. These four fabrics have been used for the creation of the dataset.
Upper-body garments might be cotton or silk, while the rest of the garment types can
be any of those fabrics. Different fabrics produce different dynamics and wrinkles
on simulation time.

Elastics. At simulation time, sleeves and legs have a 50% chance each of present-
ing an elastic behaviour at their ends, also at waist on full-body garments.

3.3.4 Additional dataset statistics

Tab.3.2 shows the CLOTH3D statistics in terms of action labels by grouping them
into generic categories. Note that original data action label is very heterogeneous,
specific and incomplete. These labels are gathered from CMU MoCap dataset. We
observe a high density on Walk, but it is important to note that this gathers many
different sub-actions (walk backwards, zombie walk, walk stealthily, ...) as many
other action labels do. Additionally, most of these actions were performed by dif-
ferent subjects, which implies an increase in intra-class variability. The label ’others’
contains all action labels that cannot be included in any of the categories plus all the
missing action labels.

3.4 Dressed Human Generation

This section presents the methodology for deep garment generation. As (Alldieck
et al., 2018a; Ma et al., 2019; Patel et al., 2020; Yang et al., 2018a), data dimensionality
and topology is fixed by encoding it as body offsets. In addition, by masking body
vertices we represent different garment types and separate them from the body, e.g.
in a similar fashion to (Patel et al., 2020; Pons-Moll et al., 2017). To compute ground
truth offsets, a body-to-garment matching is needed. A dedicated algorithm for this
task should be able to correctly register skirt-like garments which have a different
topology than the body. In sec. 3.4.1 we explain details of our data pre-processing.
Our proposed model is a Graph Conditional Variational Auto-Encoder (GCVAE).
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FIGURE 3.4: Dual topology and registration. a) New additional proposed topology, where
inner legs are connected. This topology is used for graph convolutions as well. b) Result
of Laplacian smoothing of inner leg vertices. It is used only for skirt/dress registration. We
show top view of meshes around an imaginary red cutting plane. c) Garment in rest pose.
d) Garment registered to body model.

By conditioning on available metadata (pose, shape and tightness), we learn a latent
space encoding specific information about garment type and its dynamics (details
are given in sec. 3.4.3). Fig. 3.5 illustrates the proposed model.

3.4.1 Data Pre-processing

In order to match among garment and body, we apply non-rigid ICP (Amberg et al.,
2007). Registration is performed once per sequence in rest pose. Due to SMPL low
vertex resolution, garment details could be lost. For this reason we subdivide the
mesh (and corresponding SMPL model parameters). Head, hands and feet are not
used to find correspondences and removing them halves input dimensionality. This
yields a final mesh with N = 14475 vertices. Finally, note that skirt-like garments
do not follow the same topology as SMPL mesh. For this task we introduce a novel
topology explained on the subsection below. An example of the registration is shown
in Fig. 3.4. Finally, body to cloth correspondences and garment mask are extracted
by nearest neighbor matching.

3.4.2 SMPL-Skirt Topology

From SMPL body mesh, a ‘column’ of inner faces of each leg is removed and a new
set of faces is created by connecting vertices from both legs, see Fig.4a. New faces
are highly stretched, producing noisy garment registrations if used as is, NR-ICP
yields optimal results for homogeneous meshes (in garment domain). Because of
this, we apply an iterative Laplacian smoothing to vertices belonging to the inner
parts of each leg, see Fig.4b for the result. This process is repeated before registra-
tion with the corresponding shape of the subject in the sequence in T-pose. This
gives a matching between garment and body vertices to compute offsets. For encod-
ing garments as offsets we use body mesh without smoothing, as this process will
misbehave for posed bodies. Finally, for graph convolutions, we use the Laplacian
matrix corresponding to this new topology for garments of type Dress and Skirt.
This ensures that vertex deep features are aggregated with the correct neighbour-
hood. Afterwards, we transfer body topology to the predicted garment, and it is
therefore crucial to use the correct topology for each garment type.
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FIGURE 3.5: Model pipeline. a) Input garment b) body and offsets w.r.t. body (Sec. 3.4.1).
Model input is the concatenation of body and offsets. c) Network architecture. Conditional
variables (CVAR) are processed by an AutoEncoder. To improve latent space factorization,
CVAR are also regressed from the first encoder FC layer. Decoder outputs are offsets and
mask. d) Reconstruction of the garment by adding offsets to body and removing body ver-
tices according to mask. We set N as 128.

3.4.3 Network

As shown in Fig. 3.5, our network is based on a VAE generative model. The goal
is to learn a meaningful latent space associated to the garments of any type, shape
or with wrinkles which is used to generate realistic draped garments. Garment type
and shape are associated to the static state of the garment while wrinkles belong
to the dynamics of the garments. Here, we disentangle the latent space between
statics and dynamics of the garments, and refer to learnt latent codes as garment
code (zs ∈ R128) and wrinkle code (zd ∈ R128), respectively. To do so, we build
two separate networks, one trained on static garments (so called SVAE) and one
trained on dynamic garments (so called DVAE). To factorize the latent space from
irrelevant parameters to the garment type and shape, we condition SVAE on body
shape (β ∈ R11)1 and garment tightness (γ ∈ R2). Likewise, DVAE is conditioned
on β, γ, body pose (θ ∈ R f×72) and zs, where f is the number of frames in a temporal
sequence. Let cvars and cvard be the stacking of conditioning variables of SVAE and
DVAE in a single vector. It is worth noting that θ is constant in SVAE so that we
do not include it in cvars. We implement graph convolutions as in (Bronstein et al.,
2017; Defferrard et al., 2016; Ma et al., 2019; Niepert et al., 2016; Wu et al., 2019; Yuan
et al., 2019). We also include skip connections throughout the whole network.

Architecture. Let Xs ∈ RVT×3 and Xd ∈ RVT×3 be offsets computed on static and
dynamic samples, respectively. From now on we use subscript s and d for static and
dynamic variables and discard them for general cases. SVAE and DVAE have a sim-
ilar structure with three main modules: encoder {cvarz, z} = Ψ(X̄, T̄), conditioning
{cvar, cvarz} = Γ(cvar) and decoder {X̄, M} = Φ(z, cvarz), where M ∈ RVT×1 is the
garment mask. Conditioning network Γ is an autoencoder with one skip connection
and cvarz is its middle layer features. The goal of this network is to provide a trade-
off between cvar and z. The architecture details are shown in Fig. 3.5. Note that
all GCN layer features (except first and last layers) are doubled in DVAE vs. SVAE.
We refer the reader to the supplementary material for more details on the network
architecture.

Pooling. We resort to a mesh simplification algorithm (Garland et al., 1997) to
create a hierarchy of meshes with decreasing detail in order to implement the pool-
ing operator. We follow (Yuan et al., 2019) to have vertices uniformly distributed
in the graph coarsening. However, this approach does not guarantee a uniform or

1We include gender as an additional dimension to the shape parameters.
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FIGURE 3.6: Mesh hierarchy for pooling. Upper: default (Garland et al., 1997). Lower: pro-
posed. a), b) and c) depict the mesh hierarchy used for graph pooling through the model.
Observe the difference on spatial distribution at a) and b). c) shows how lowest pooling is
more meaningful regarding the segments (one vertex per segment). d) is the visualization
of correspondences (receptive field) between highest and lowest hierarchy levels. The pro-
posed pooling yields more meaningful pooling receptive fields w.r.t. body parts.

meaningful receptive field on a high resolution mesh. To achieve a homogeneous
distribution of correspondences throughout the body between pooling layers, we
define a segmentation (Fig. 3.6(d)) and forbid the algorithm from contracting edges
connecting vertices of different segments. Segmentation contains 21 segments and it
is designed such that regions of the body with highest offset variability have smaller
segments. Thus, more capacity of the network is available to model those parts. See
Fig. 3.6. Our mesh hierarchy is formed by 6 different levels. The dimensionality of
those meshes is: 14475 → 3618 → 904 → 226 → 56 → 21, leaving a single node
for each segment on the last pooling layer. We use max-pooling in the proposed
hierarchy. For unpooling, features are copied to all corresponding vertices of the
immediate higher mesh.

Loss. We train conditioning network Γ independently using L1 loss and freeze
its weights while training VAE. S/DVAE loss is a combination of a garment related
term, a cvar term and KL-divergence:

L = Lg + Lcvar + λKLDKL(q(z|X, cvar)||p(z|cvar)), (3.2)

Garment related term handles offsets, mask (if available), smoothness and collisions:

Lg = Lo + λnLn + λmLm + λcLc, (3.3)

where Lo is an L1-norm applied to output offsets. Ln is the smoothness term based
on L1-norm on normals. We found that regular Laplacian loss ensures smoothness at
the cost of losing high frequency geometric details, while a normal loss makes output
geometry consistent w.r.t. the input. Lm consists on L1-norm on mask. Finally, Lc is
the collision loss. Given that garments are represented as offsets, we design this loss
as:

Lc = max(0,−o · VN), (3.4)

where o are the output offsets and VN are the body normals at the corresponding
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Surface Normals Mask KL loss

All 14.3 1.04 0.9518 0.9820
No normals 22.8 1.07 0.9472 0.5966
No mask 92.7 1.19 - 0.8799
No collision 14.7 1.02 0.9522 0.9414
No CVAR 14.8 1.02 0.9520 1.1009
Default pooling 14.9 1.03 0.9390 0.7623

(A)

Surface Normals Mask KL loss

Top 11.9 1.20 0.9035 0.9536
T-shirt 15.5 1.21 0.9565 1.1701
Trousers 10.9 0.84 0.9475 0.9008
Skirt 21.4 0.79 0.9520 1.0255
Jumpsuit 13.3 1.07 0.9637 0.8788
Dress 16.7 1.06 0.9662 0.9995

(B)

(C) Table 2: (a) Ablation results on the static dataset for all clothes. (b) Ablation results (full model)
on the static dataset for each cloth category. Surface and normal errors are shown in mm and radians,
respectively.

# frames Top T-shirt Trousers Skirt Jumpsuit Dress Avg.

1 21.8/1.24 28.8/1.29 20.7/0.89 37.6/0.92 28.2/1.15 35.5/1.13 29.0/1.10
4 20.1/1.23 28.0/1.28 18.5/0.86 33.2/0.89 26.1/1.09 32.2/1.11 26.1/1.08

TABLE 3.4: Ablation results (full model) on the dynamic dataset conditioning on different
number of frames. Left: surface error (mm) / Right: normals error (radians).

vertices, this penalizes offsets that go within the body. Lcvar is L1 loss on encoder
cvarz regressor.

3.5 Experiments

First, we detail the metrics chosen to analyze the results.
Surface. Given that input and prediction have the same dimensionality and or-

der, we use standard euclidean norm (in mm.).
Normals. Measure of surface quality. We compute normals error based on mesh

face normals by their angle difference (in radians) to ground truth normals.
Mask. Garment mask is evaluated by the intersection over union (IoU).
KL Loss. We use KL loss as a measure of quality of latent code factorization and

meaningfulness of the latent space.

3.5.1 Ablation Study

We trained SVAE on an additional dataset of static samples (in rest pose) with 30K
samples. 20% of the data is kept for evaluation and the rest for training. The results
are shown in Tab. 3.3a and 3.3b.

Normals. Looking at the second row of Tab. 3.3a we observe that enforcing a
reconstruction consistent with normals significantly reduces surface error and, as
expected normals error. However, including normals has a negative impact on KL
loss comparing to first row.

Mask. As seen in third row of Tab. 3.3a, both, surface and normals error are
significantly higher without mask prediction (comparing to first row).

Collision. Fourth row of Tab. 3.3a shows how collision loss helps to improve
vertex location by pushing collided vertices to their correct position. On the other
hand, it is observable a non-significant increase on other losses.

CVARs. As explained in Sec. 3.4.3, conditional variables are regressed from the
first FC layer of the encoder to improve latent space factorization. On fifth row of
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FIGURE 3.7: a) Visualization of the learned latent space for static samples using t-SNE algo-
rithm. b) Transitions of static samples. First three rows: conditioning on shape, tightness or
cloth while the rest are fixed. Last two rows: transition of all variables. Variables are linearly
graduated.

Tab. 3.3a we can see that, while surface or normals error have no significant differ-
ences, KL loss improves.

Pooling. On Sec. 3.4.3 we discussed different approaches for tackling the pooling
on a graph neural network. To do this, we built a mesh hierarchy. We compared
default mesh simplification algorithm versus our proposed modification. Results
are shown in the last row of Tab. 3.3a. While improvement on surface and normals
errors is marginal, this new pooling benefits mask prediction.

Per Garment Category Error. Results per garment are shown in Tab. 3.3b. Skirts
present the highest surface error, as its vertices are further away from the body com-
pared to other garments. Following this reasoning, we find trousers having the less
surface error. If we look at normals error, we find an opposite behaviour for skirts, as
their geometry is the simplest one. On the other hand we see that upper-body gar-
ments present more complex geometries, and therefore, higher normals error. Look-
ing at mask error, we see that garments that cover most of the body have the lowest
error. This is due to IoU metric nature, the lower the number of points, the more
impact shall have each wrong prediction. Finally, looking at KL loss, we observe
the model has difficulties to obtain meaningful spaces for T-shirts. As explained on
Sec. 3.3.2, T-shirts category includes open shirts as well, which highly increases class
variability. We also see that trousers and jumpsuits have the lowest KL loss.

Learned Latent Space. In Fig. 3.7, we show distribution of 5K random static sam-
ples computed by t-SNE algorithm. As one can see, the proposed GCVAE network
can group garments in a meaningful space. Interestingly, dress and jumpsuit that
share more vertices also share the same latent space. Additionally, we show gar-
ment transitions in this space in Fig. 3.7. One can see how garments transit between
two different topologies (3rd row) or among different genders and shapes (4th row).

We study DVAE model in Tab. 3.4. We condition DVAE on pose for a single
frame vs. four frames. Four frames are selected every 3 frames, resulting in a 12-
frame clip. Training the model on a sequence of frames leads to better results in all
garment categories (3mm improvement in average). This is while we do not include
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FIGURE 3.8: Garment reconstruction for sequences. Note that the model has not been trained
to keep temporal consistency.

any temporal information in the encoder nor any specific sequence prediction loss.
DVAE qualitative results for single frames and sequences are shown in Fig. 3.1(right)
and Fig. 3.8, respectively.

3.6 Conclusions

We presented CLOTH3D, the first large scale synthetic dataset of 3D clothed hu-
mans. It has a large data variability in terms of body shape and pose, garment type,
topology, shape, tightness and fabric. Generated garments also show complex dy-
namics, providing with a challenging corpus for 3D garment generation. We devel-
oped a baseline method using a graph convolutional network trained as a variational
autoencoder, and proposed a new pooling grid. Evaluation of the proposed GCVAE
on CLOTH3D showed plausible garment generation. While the proposed approach
successfully learnt a common space to encode numerous garments with different
topologies, sizes and shapes, there is a considerable gap on the quality of the gen-
erated predictions and the ground truth data. The encoding of garments on top of
the human body is responsible for a significant loss on data quality. Nonetheless,
this pre-processing is necessary to train a generative model (latent code mapped to
a uniform output space). Then, in Chapter 4, the generation property is discarded
and only garment animation is considered (conditioning to pose). This will lead to a
noticeable increase on prediction quality.
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Chapter 4

DeePSD: Automatic Deep
Skinning And Pose Space
Deformation For 3D Garment
Animation

FIGURE 4.1: We present a novel approach for outfit animation. Our methodology allows
generalization to unseen outfits. It can handle multiple layers of cloth, arbitrary topology
and complex geometric details without retraining.

4.1 Introduction

With CLOTH3D already introduced in Chapter 3, it is now time to improve on its
complementary baseline. This baseline is able to generate a huge variety of different
garments, but it presents an important quality gap. The goal on this chapter is to en-
hance the quality of the predictions, mainly by discarding the generative part of the
problem and focusing in garment animation. Virtual dressed human animation has
been a topic of interest for decades due to its numerous applications in entertainment
and videogame industries, and recently, in virtual and augmented reality. Depend-
ing on the application we find two main classical computer graphics approaches.
On the one hand, Physically Based Simulation (PBS) (Baraff et al., 1998; Liu et al.,
2017; Provot, 1997; Provot et al., 1995; Tang et al., 2013; Vassilev et al., 2001; Zeller,
2005) approaches are able to obtain highly realistic cloth dynamics at the expense
of a huge computational cost. On the other hand, Linear Blend Skinning (LBS) (Ka-
van et al., 2008; Kavan et al., 2005; Le et al., 2012; Magnenat-thalmann et al., 1988;
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Wang et al., 2007; Wang et al., 2002) and Pose Space Deformation (PSD) (Allen et
al., 2002; Anguelov et al., 2005; Lewis et al., 2000; Loper et al., 2015a) models are
suitable for environments with limited computational resources or real-time perfor-
mance demand. To do so, realism is highly compromised. Then, computer graphics
approaches present a trade-off between realism and computational performance.

Deep learning has already proven successful in complex 3D tasks (Arsalan Soltani
et al., 2017; Han et al., 2017; Madadi et al., 2020; Omran et al., 2018; Qi et al., 2017;
Richardson et al., 2016; Socher et al., 2012). Due to the interest in the topic and the
recently available 3D datasets on garments, we see the scientific community push-
ing this research line (Alldieck et al., 2018b; Alldieck et al., 2019; Bertiche et al.,
2020; Bhatnagar et al., 2019; Guan et al., 2012; Lahner et al., 2018; Patel et al., 2020;
Santesteban et al., 2019). Most proposals are built as non-linear PSD models learnt
through deep learning. These methods yield models describing one or few garment
types and, therefore, they lack on generalization capabilities. To overcome this, re-
cent works propose encoding garment types as a subset of body vertices (Bertiche
et al., 2020; Patel et al., 2020). This allows generalizing to more garments, yet bounds
its representation capacity to body homotopies only. Thus, these approaches need
to model each garment individually and cannot handle details such as pockets nor
multiple layers of cloth, heavily hurting their scalability and applicability in real life
scenarios.

We propose learning a mapping from the space of template outfits to the space
of animated 3D models. We will show how this allows generalization to completely
unseen garments with arbitrary topology and vertex connectivity. We can achieve
this by identifying edition/resizing and animation as separate tasks, and focusing
on the latter. Our method works with whole outfits (instead of single garments),
multiple layers of cloth and resolutions, while also allowing complex geometric de-
tails (see Fig. 4.1 for some examples). Furthermore, we achieve this with a simple
and small-sized neural network. The list of our contributions is as follows:

• Outfit Generalization. To the best of our knowledge, our proposal is the only
work able to animate completely unseen outfits without additional training.
This greatly increases applicability in scenarios with ever-growing number of
outfits, such as virtual try-ons and videogames, where customization is key.

• Compatibility. Our methodology does not predict garment vertex locations,
but blend weights and blend shapes matrices. This is the standard on 3D ani-
mation, and it is therefore compatible with all graphics engines. Also, it bene-
fits from the exhaustive optimization on animation pipelines. Pose Space De-
formations are a specific case of blend shapes that are combined consistently
with object pose.

• Physical Consistency. Related works require a final post-processing step for
collision solving. Alternatively, works that train with a collision-solving loss
need to find a compromise between physical constraints and vertex error. Thus,
predictions still show collisions. We propose to train an independent model
branch such that physical consistency losses and supervised losses do not hin-
der each other. This yields quasi-collision free and cloth-consistent predictions
while leveraging the data as much as possible.

• Explainability. Mapping outfits to animated 3D models yields a more intu-
itive work pipeline for CGI artists. Recent works try to address garment re-
sizing/edition along animation by encoding styles into parametric represen-
tations (Bertiche et al., 2020; Patel et al., 2020). Thus, expert knowledge is
required to obtain the desired results by tuning style parameters.
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4.2 State of the art

Computer Graphics. Obtaining realistic cloth behaviour is possible through PBS
(Physically Based Simulation), commonly through the well known mass-spring model.
Literature on the topic is extensive, focused on improving the efficiency and stabil-
ity of the simulation by simplifying and/or specializing on specific setups (Baraff
et al., 1998; Provot, 1997; Provot et al., 1995; Vassilev et al., 2001), or proposing new
energy-based algorithms to enhance robustness, realism and generalization to other
soft bodies (Liu et al., 2017). Other works propose leveraging the parallel computa-
tional capabilities of modern GPUs (Tang et al., 2013; Zeller, 2005). These approaches
achieve high realism at the expense of a great computational cost. Thus, PBS is not
an appropriate solution when real-time performance is required or computational
capacity is limited (e.g. in portable devices). On the other hand, for applications
that prioritize performance, LBS (Linear Blend Skinning) is the standard approach
on computer graphics for animation of 3D models. Each vertex of the object to ani-
mate is attached to a skeleton through a set of blend weights that are used to linearly
combine joint transformations. In garment domain, outfits are attached to the skele-
ton driving body motion. This approach has also been widely studied (Kavan et al.,
2008; Kavan et al., 2005; Le et al., 2012; Magnenat-thalmann et al., 1988; Wang et al.,
2007; Wang et al., 2002). While it is possible to achieve real-time performance, cloth
dynamics are highly non-linear, which results in a significant loss of realism when
applied to garments.

Learning-Based. Due to the drawbacks found in the classical LBS approach, PSD
(Pose Space Deformation) models appeared (Lewis et al., 2000). To avoid artifacts
due to skinning, corrective deformations are applied to the mesh in rest pose. Ad-
ditionally, PSD handles pose-dependant high frequency details of 3D objects. While
hand-crafted PSD is possible, in practice, it is learnt from data. We find applications
of this technique for body models (Allen et al., 2002; Anguelov et al., 2005; Loper et
al., 2015a), where deformation bases are computed through linear decomposition of
registered body scans. Similarly, in garment domain, Guan et al. (Guan et al., 2012)
apply the same techniques for a few template garments on data obtained through
simulation. Lähner et al. (Lahner et al., 2018) also propose linearly learnt PSD for
garments, but conditioned on temporal features processed by an RNN to achieve a
non-linear mapping. Later, Santesteban et al. (Santesteban et al., 2019) propose an
explicit non-linear mapping for PSD through an MLP for a single template garment.
The main drawback of these approaches is that PSD must be learnt for each tem-
plate garment, which in turns requires new simulations to obtain the correspond-
ing data. To address this issue, many researchers propose an extension of a human
body model (SMPL (Loper et al., 2015a)), encoding garments as additional displace-
ments and topology as subsets of vertices (Alldieck et al., 2018b; Alldieck et al., 2019;
Bertiche et al., 2020; Bhatnagar et al., 2019; Patel et al., 2020). (Alldieck et al., 2018b;
Alldieck et al., 2019) propose a single model for body and clothes, first as vertex dis-
placements and later as texture displacement maps, to infer 3D shape from single
RGB images. Similarly, (Bhatnagar et al., 2019) also learn a space for body defor-
mations to encode outfits, plus an additional segmentation to separate body and
clothes, also to infer 3D garments from RGB. (Jiang et al., 2020) propose 3D outfit
retrieval from images and predicting the corresponding blend weights w.r.t. SMPL
skeleton using, as labels, the weights of the nearest skin vertices. (Patel et al., 2020)
encode a few different garment types as subsets of body vertices and propose a strat-
egy to explicitly deal with high frequency pose-dependant cloth details for different
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body shapes and garment styles. (Bertiche et al., 2020) encode thousands of gar-
ments on top of the human body by masking its vertices. They learn a continuous
space for garment types, on which later they condition, along with the pose, the ver-
tex deformations. Using a body model to represent garments allows handling mul-
tiple types with a single model. Nonetheless, it is still limited to single garments, as
it cannot work with multiple layers of cloth. For the same reason, they cannot han-
dle complex garment details. This reduces their applicability in real scenarios. Our
proposed methodology allows working with arbitrary topologies, number of layers
and complex details. Additionally, output format is highly efficient and allows easy
integration into graphics engines, increasing compatibility and applicability.

4.3 Predicting Animated 3D Models

Computer graphics 3D animated models are constructed using skinning and/or
blend shapes. In the former, given a 3D mesh with N vertices as T ∈ RN×3 and
a skeleton with K joints as J ∈ RK×3, each mesh vertex is attached to each joint with
a blend weights matrix W ∈ RN×K. Then, animating the 3D mesh can be achieved
by posing skeleton J through linear transformation matrices (rotation, scaling and
translation). Vertex transformation matrices are obtained as a weighted average of
joint transformations as described by blend weights. For realistic human and gar-
ment animation, only rotations are applied to the joints, and thus, an axis-angle
representation is used for pose as θ ∈ RK×3. For the latter, given T as defined above,
a blend shapes matrix as D ∈ RM×N×3 encodes M different deformations (shapes)
Di ∈ RN×3 for T. To animate the mesh, M shape keys are required. These keys are
used to linearly combine blend shapes to obtain a final deformation for T. Temporal
evolution of shape keys animates the mesh. More complex 3D models use a combi-
nation of both techniques. First, T is linearly deformed through blend shapes and
later posed along skeleton J according to blend weights. Whenever shape keys are
defined as a function of skeleton pose, we have Pose Space Deformations driven by
pose keys. More formally, in human and garment animation domain:

Vθ = W(T +
M

∑
i

f (θ)iDi, J, θ, W) (4.1)

Where W(·) is the skinning function that poses mesh vertices as described by J and
θ, Vθ is the posed vertices, f (·) is a function that maps pose θ to M pose keys and Di
are the shapes within blend shapes matrix D. These techniques are the standard for
3D animation. All current graphics engines are compatible with these methods.

An example for this is SMPL (Loper et al., 2015a) (human body model). SMPL
consists of a template mesh with vertices T ∈ R6890×3, a skeleton J ∈ R24×3, a blend
weights matrix W ∈ R6890×24 and two blend shapes matrices, one to represent dif-
ferent body shapes, Dshape ∈ R10×6890×3, and another for Pose Space Deformations,
DPSD ∈ R207×6890×3. Body shape is defined by shape keys β ∈ R10 and Pose Space
Deformations by pose keys as flattened rotation matrices (removing global orienta-
tion) R ∈ R207. Because of its formulation SMPL is compatible with current graphics
engines. Through this chapter, we use SMPL as support body model for animating
outfits.

In this work we present a novel approach for garment animation. While recent
works are already leveraging skinning blend weights w.r.t. body skeleton to drive
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garment motion, authors usually rely on complex formulations for Pose Space De-
formations, hindering their compatibility with graphics engines and reducing sig-
nificantly their applicability in real scenarios. We propose learning a mapping from
template outfit (canonical pose) meshes to their corresponding blend weights and
blend shapes matrices through deep learning. That is, learning a neural network M
as:

M : {T, F} → {W, DPSD}, (4.2)

Where T are outfit template vertices and F is mesh faces, W and DPSD are the blend
weights and blend shapes matrices as defined above. Note that in deployment, a
template outfit is processed by the network only once into its standard animated
3D model format. Once blend weights and blend matrices are obtained, the out-
fit is used as any other 3D animated model. This makes predictions automatically
compatible with all graphics engines, and furthermore, due to the exhaustive opti-
mization of rendering pipelines for such models, it is an extremely computationally
efficient representation. This further extends its applicability to portable devices
and low-computing environments. It represents an advantage against other related
works that predict vertex locations directly with neural networks (and often through
large, complex models). Such approaches require major engineering efforts to adapt
to real applications. Furthermore, due to memory footprint and computational cost
of neural networks, these solutions might be impossible to use in low-computing
devices. Finally, we also show how this approach allows generalization to unseen
template outfits without retraining, which greatly enhances scalability.

4.4 Methodology

Given PBS data for outfits on top of human bodies (SMPL) in different action se-
quences, we define samples S = {X, Y} as X = {T, F, θ, β, g} and Y = {VPBS},
where T is the template outfit vertices (canonical pose), F is outfit mesh faces, θ is
body skeleton pose, β is body shape parameters, g is body gender and VPBS is the
outfit vertex locations in the simulated data. Our goal is to train M as defined in
Eq. 4.2 such that W and DPSD yield VPBS after applying Eq. 4.1 (Note that for SMPL,
skeleton is a function of shape β and gender).

4.4.1 PBS Data and Physical Consistency

The mapping from pose-space to outfit-space is a multi-valued function. Differ-
ent simulators, initial conditions, action speeds, timesteps and integrators, among
other factors, will generate different valid outfit vertex locations for the same body
pose and shape and outfit. Training on PBS data falsely assumes that this mapping
is single-valued. Samples with similar X but significantly different Y will hinder
network performance during training and most likely converge to average vertex
location under a supervised loss. Moreover, a final user does not know the ground
truth and therefore cannot perceive the accuracy of the model, but the user can as-
sess the physical consistency of the predictions (collision-free and cloth consistency).
Because of this, while resorting to PBS data for supervision is helpful for training net-
works, minimizing Euclidean error w.r.t. ground truth does not guarantee physical
consistency, and therefore, the applicability of the predictions in real life is limited.
Recent works (Patel et al., 2020; Santesteban et al., 2019) propose post-processing to
solve body penetrations. This partially defeats the purpose of using deep-learning
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FIGURE 4.2: Model overview. The input of the model is a template outfit mesh (with no fixed
topology, vertex order or connectivity). We apply graph convolutions to obtain vertex local
descriptors. Then, local descriptors are processed by a fully-connected layer and aggregated
through per-outfit max-pooling. This yields a global outfit descriptor that is concatenated
with each vertex local descriptor. Final vertex descriptors are processed through different
MLPs to obtain blend weights W and blend shapes matrices Ddata and Dphys. Blend shapes
matrices are combined into DPSD, which is used as described in Eq. 4.1 to obtain final pre-
dictions. Pose keys for blend shapes matrix are obtained by passing θ through an MLP with
4 layers (not shown).

and further compromises method compatibility and performance. We propose com-
bining supervised training with unsupervised physically based training to alleviate
the need of post-processing.

Physical consistency is a crucial part of proper outfit animation. While other
approaches develop complex solutions to better overfit to their PBS data and trans-
late training wrinkles to predictions, their lack of physical constraints is detrimental
for their usability in real applications. Physical consistency is not only limited to
collisions, but also to edge distortion and surface quality. Abnormally stretched or
compressed edges (w.r.t. to its template lengths) will create texture distortions (UV
map edges do not change in length, but mesh edges do). Approaches that represent
garments as a subset of body vertices cannot enforce an edge constraint, as their tem-
plate is the body itself (original template is lost after registration against the body).
Our proposal addresses garment animation independently of edition/resizing, and
therefore, it is possible to leverage the original template outfits to enforce the edge
constraint during learning.

4.4.2 Architecture

The chosen architecture needs to be able to: a) handle unstructured meshes (no fixed
vertex order or connectivity) and b) compute non-linear deformations w.r.t. the pose
θ (as cloth behaviour is highly non-linear). To do so, we define the following com-
ponents: Φ : RN×3 → RN×F, Ω : RN×F → RN×K, Ψ : RN×F → RP×N×3 and
χ : RN×F → RP×N×3. Component Φ computes per-vertex high-level F-dimensional
descriptors with local and global information from template outfit mesh (with F =
512), Ω computes per-vertex blend weights from vertex descriptors, Ψ generates a
blend shapes matrix supervisedly (note that it is equivalent to per-vertex blend shapes
matrices as d ∈ RP×3) and χ generates a blend shapes matrix unsupervisedly that
will yield physical consistency. Note that we define P pose keys for blend shapes
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matrices, instead of the dimensionality of pose θ. We pass θ through an MLP to
obtain a high-level embedding of pose as Θ ∈ RP. The motivation for this is: a)
controlling dimensionality P, and therefore, blend shapes matrix size and capacity
and b) to allow modelling non-linearities from pose-space to vertex-space.

Fig. 4.2 shows an overview of the model. To learn Φ, we use 4 layers of graph
convolutions applied to template mesh. This will yield a local descriptor, with no
global information. Inspired by PointNet (Qi et al., 2017), we process each local
descriptor through an additional fully-connected layer and aggregate all vertex de-
scriptors through max-pooling (per outfit). We concatenate this global descriptor
to each vertex local descriptor. Then, Ω, Ψ and χ are defined as MLPs, with 4
fully-connected layers each, applied to vertex descriptors (vertices are independent
samples). The chosen architecture permits processing unstructured meshes with any
vertex number, order and connectivity. This is a significant advantage against ap-
proaches that rely on the body model for garment representation (Bertiche et al.,
2020; Patel et al., 2020), since it requires an expensive registration for each sample
that introduces error in the data. Then, Ψ and χ both compute blend shapes matri-
ces: Ddata to minimize supervision loss and Dphys for physical consistency. Despite
being independent branches, on deployment, both matrices are combined to obtain
the final PSD matrix DPSD = Ddata + Dphys, thus keeping the aforementioned com-
patibility with graphics engines. Finally, the MLP used to obtain the high-level pose
embedding Θ consists on 4 fully-connected layers. The output of the model during
training is Vθ,data for Ddata and Vθ for DPSD.

4.4.3 Training

Our model combines both supervised and unsupervised training. The supervised
part of the model corresponds to Φ, Ω and Ψ. The goal of this submodel is to minimize
Euclidean error w.r.t. PBS data. Thus, for its training, we apply an standard L2 loss
on predicted vertex locations:

Ldata = ∑ ∥Vθ,data − VPBS∥2, (4.3)

Then, the unsupervised part of the model corresponds only to χ. We define unsu-
pervised losses to satisfy prior distributions based on physical constraints. First, to
ensure cloth consistency of predictions, inspired by mass-spring model (most widely
used PBS model for cloth), we define a cloth loss term as:

Lcloth = LE + λBLB = ∑
e∈E

∥e − eT∥2 + λB∆(n)2, (4.4)

where LE is the edge term and LB is the bending term. Then, E is the set of edges
of the given outfit mesh, e is the predicted edge length and eT is the edge length on
the template outfit T. Then, ∆(·) is the Laplace-Beltrami operator applied to vertex
normals n of the predicted outfit and λB balances both losses. LE enforces the output
meshes to have the same edge lengths as the input template outfit, while LB helps
yielding locally smooth surfaces, as it penalizes differences on neighbouring vertex
normals. To avoid excessive flattening, we choose λB = 0.0005. Then, to handle
collisions against the body, we define a loss as:

Lcollision = ∑
(i,j)∈A

min(dj,i · nj − ϵ, 0)2, (4.5)



44
Chapter 4. DeePSD: Automatic Deep Skinning And Pose Space Deformation For

3D Garment Animation

where A is the set of correspondences (i, j) between predicted outfit and body through
nearest neighbour, dj,i is the vector going from the j-th vertex of the body to the i-th
vertex of the outfit, nj is the j-th vertex normal of the body and ϵ is a small positive
threshold to increase robustness. This loss is a simplified formulation that assumes
cloth is close to the skin, and penalizes outfit vertices placed inside the skin. In our
experiments, we choose ϵ = 5mm. Thus, the unsupervised loss is defined as:

Lphys = Lcloth + λcollisionLcollision (4.6)

where λcollision is the balancing weight for the collision term (around 2-10 in our
experiments). Note how both terms Lcloth and Lcollision are defined as priors (based
only on X, not on Y). We define an additional loss term as an L2 regularization on
deformations due to χ with a balancing weight λ = 1e − 2. This leads χ to use
deformations as small as possible to solve physical constraints. While the whole
model is differentiable and could be trained end-to-end, we back-propagate Lphys
only through χ. The motivation for this is:

• Independent Tasks. We empirically observed how supervised and unsuper-
vised terms fight each other, compromising one or both tasks. Thus, by train-
ing different parts of the model independently, we do not need to find a bal-
ance between low Euclidean error and physical consistency. This allows the
supervised submodel to learn the main deformations leveraging PBS data and
the unsupervised branch to enforce physical consistency without their gradi-
ents hindering each other.

• Unsupervised Training. Since Lphys does not rely on Y, it is possible to train
χ with new samples where θ is replaced in X by any other sample pose. This
increases the amount of available data to train, enhancing generalization of
physical consistency.

In practice, it is not helpful to train χ until the supervised training has converged.

4.5 Experiments

From the public datasets on garments, only CLOTH3D (Bertiche et al., 2020) con-
tains enough outfit variability to implement this approach and achieve proper gen-
eralization. CLOTH3D was introduced in Chapter 3 as the largest by a great margin,
specially in garment variability. It contains ∼ 7.5k sequences, each with a different
template outfit in rest pose plus up to 300 frames. The outfits are simulated on top of
an animated 3D human (SMPL), each with a different body shape. Likewise, we use
SMPL skeleton in Eq. 4.1, so it drives the motion of the outfit, and its body mesh in
Eq. 4.5. For the ablation study, we subsample 50k training frames and 5k test frames
from CLOTH3D in a stratified manner w.r.t. sequences without outfit overlapping
between both sets. Each model is trained for 10 epochs. We additionally present
proof-of-concept computer vision applications as well as a performance analysis in
the supplementary material.

4.5.1 Ablation study

We first evaluate the supervised part of the model (Φ, Ω and Ψ) by using the average
vertex Euclidean error per outfit. In Tab. 4.1 we show the results to justify the de-
sign of the network. First, we propose a baseline model. In this baseline, global
descriptor is not computed and Ψ predicts vertex deformations instead of blend
shapes matrices by concatenating pose to vertex descriptors. The following models
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Euclidean error (mm)

Baseline 29.98
+Global 28.04
+GlobalLite 28.59
+Global+GCN 28.76
+Global with MLP 28.43
DeePSD 25.13
-without pose embedding 30.93

TABLE 4.1: Architecture ablation study. First, as a baseline, we train Ω and Ψ to predict
vertex deformations instead of blend shapes matrices. Subsequent rows are baselines ex-
tensions (deformation prediction) with a global descriptor. DeePSD row corresponds to the
architecture shown in Fig. 4.2. As it can be seen, predicting blend shapes matrices is the best
performing approach.

Euclidean error (mm)

DeePSD 25.13
+ SMPL shape/gender 25.15
+ Fabric 24.76
+ Tightness + Fabric 24.66
+ SMPL + Tightness + Fabric 25.01

TABLE 4.2: Conditioning to metadata available in CLOTH3D (Bertiche et al., 2020) for each
sample. We concatenate metadata to each vertex descriptor: SMPL shape and gender, per-
garment fabric and per-outfit tightness. As shown, body metadata hinders performance,
while outfit metadata enhances it.

Error Edge Bend Collision

No phys. 24.66 1.27 0.031 11.59%
Phys. 33.75 1.13 0.029 1.29%
+poses 34.45 1.12 0.029 1.02%

TABLE 4.3: Unsupervised training. We measure cloth quality with average edge elonga-
tion/compression and bending angle between neighbouring vertex normals. For body col-
lision, we show the ratio of vertices placed within the body.

Euclidean error (mm)

Tshirt 25.77
Top 17.33
Trousers 14.50
Jumpsuit 17.23
Skirt 41.15
Dress 35.94

Total 23.95

TABLE 4.4: Final quantitative results per garment. Note how tighter garment types have a
significantly lower error than others.
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FIGURE 4.3: Qualitative results obtained by enforcing physical consistency. For each sample
we show the results of each experiment in Tab. 4.3 in the same order from left to right.

are modifications of the baseline (predict deformations). The second row shows the
result obtained by using global descriptors. It improves the accuracy of the predic-
tions. The third row corresponds to a model with a lower descriptor dimensionality
(F = 128), and we observe an slight increase in error. In the next experiment, we
implement Ω and Ψ as graph convolutions instead of fully-connected layers. This
worsens results at the cost of extra computational cost, thus we discard the use of
graph convolutions after Φ. Note that this behaviour is expected, as global descrip-
tor is broadcasted through vertices, and therefore, convolutions perform redundant
information passes that hinder the learning. The next row corresponds to a model
where global descriptor is obtained by replacing the single fully-connected layer in
Φ with a MLP. Performance does not improve. DeePSD row corresponds to the ar-
chitecture shown in Fig. 4.2. As one can observe, predicting blend shapes matrices
instead of vertex deformations not only increases model compatibility with graphics
engines, but it also improves performance. The final row corresponds to the same
architecture as DeePSD, but using pose θ as pose keys instead of a high-level pose
embedding. We see that predictions are less accurate, thus pose embedding Θ is
beneficial.

We consider the effect of including additional metadata present in CLOTH3D.
That is, SMPL body shape and gender, garment-wise fabric labels and outfit-wise
tightness values. We combine these metadata by concatenating them to each vertex
descriptor. Tab. 4.2 shows the quantitative results. The first row corresponds to the
best model of Tab. 4.1. Each next row is named after the metadata used. As it can be
observed, outfit metadata reduces Euclidean error while body metadata appears to
be detrimental.

To evaluate the unsupervised model, we design suitable metrics for assessing
cloth quality and physical constraints:

• Edge Length. Length difference between predicted and rest outfit edges, ex-
pressed in millimeters.

• Bend Angle. Cosine distance for pairs of neighbouring vertex normals.
• Collision. Ratio of collided vertices.

Edge metric summarizes cloth integrity. Cloth needs to compress or stretch to fit its
environment in real life and PBS, thus, a zero-valued edge error might be impossi-
ble (even undesirable). Nonetheless, an abnormally high value suggests distorted
predictions. Similarly, bend angle cannot be zero, otherwise we have a completely
flat surface. Again, high values for this metric show poor cloth quality. Finally, for
collisions, a zero-valued metric means physically consistent predictions. In practice,
the training data contains invalid combinations of pose and shape (bodies with self-
collisions), and therefore, a 0% of collided vertices is impossible. Tab. 4.3 shows
the results for the ablation study of the physical consistency. First, we evaluate the
predictions obtained with supervised loss only (best model of Tab. 4.2). Second row
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shows the results obtained with χ trained without pose augmentation. The third
row shows the results after training each sample with randomly chosen poses. We
can observe that while Euclidean error increases, physical related metrics improve,
specially collision. The model is learning to predict outfits farther from ground truth
PBS data, but with higher physical consistency. As explained in Sec. 4.4.1, physi-
cal consistency cannot be summarized in one or few quantitative metrics. Results
must be evaluated qualitatively. Fig. 4.3 shows a qualitative comparison of these
experiments. As it can be seen, without physical constraints, although predictions
have lower error by a large margin, qualitatively they are much worse. Also, we
see that training unsupervisedly with randomly sampled poses further improves
generalization.

We report final supervised results after fine-tuning with all data on Tab. 4.4. We
decompose the error per garment. Note that T-shirt includes open shirts as well.
We observe a worse performance for skirts and dresses. We also find a high error
on T-shirt, likely due to open shirts. This is an expected behaviour, since modelling
garments statically through skinning assumes the cloth will follow the body motion.
Loose garments show a much more complex dynamics, and thus, static approaches
will fail to model such garments. Fig. 4.1 shows qualitative results. We can see how
the model can generalize to unseen complex outfits without retraining. Additionally,
while cloth-to-cloth interaction is not explicitly addressed, the model is able to deal
with multiple layers of cloth. It shows it can also handle complex geometric details
(chest flower). As stated, it maintains cloth consistency, thus no artifacts appear on
texturing. Finally, due to the unsupervised blend weights learning, skirts are robust
against skinning artifacts due to leg motion (see supplementary material for more
details on blend weights).

4.5.2 Comparison with related works

CLOTH3D. We compare DeePSD with CLOTH3D baseline quantitatively in Tab. 4.5
and qualitatively in Fig. 4.4. As it can be seen, our method outperforms CLOTH3D
baseline. On the one hand, CLOTH3D baseline shows noisy boundaries and even
broken suspenders. Furthermore, we observe the body geometry is present in the
CLOTH3D reconstructed garment due to the use of SMPL body for garment repre-
sentation. On the other hand, since DeePSD uses the original templates, boundaries
are smooth and there is no bias to body geometry. Additionally, in spite of not deal-
ing directly with cloth-to-cloth collisions, it appears that DeePSD is more robust in
this aspect.

Euclidean error (mm)

CLOTH3D (Bertiche et al., 2020) 29.0
DeePSD 23.78

TABLE 4.5: Comparison against CLOTH3D baseline. As CLOTH3D (Bertiche et al., 2020),
we report the error garment-wise.

TailorNet. A fair quantitative comparison against the work of (Patel et al., 2020)
is not possible. On one hand, TailorNet original simulations are not public, only the
registered version against SMPL body. This means: a) original templates are lost
and recovering them for each shape-style pair is unfeasible and b) their dataset has a
fixed vertex order and connectivity (SMPL body). Since our main contribution is the
generalization to unstructured meshes, comparing our methodology using a dataset
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FIGURE 4.4: Qualitative comparison against CLOTH3D (Bertiche et al., 2020) baseline. Up-
per row: CLOTH3D. Lower row: DeePSD.

FIGURE 4.5: Comparison with TailorNet. Left: TailorNet. Right: DeePSD. TailorNet heav-
ily relies in post-processing for valid predictions and generates noisy surfaces. The third
sample (green T-shirt) shows two consecutive frames, note how TailorNet cannot guarantee
temporal consistency.

with fixed vertex order against a methodology designed specifically for these data
cannot be done fairly. On the the other hand, TailorNet is an ensemble of around 20
MLPs per each garment and gender which makes adapting it to CLOTH3D unfea-
sible, due to a much higher garment style variability. Thus, in Fig. 4.5, we compare
TailorNet (left) and DeePSD (right) qualitatively. For fairness, since our approach
uses no post-processing, we remove TailorNet post-processing. We gather similar
garments and body shapes in TailorNet data and CLOTH3D and compute the same
sequences using both models. As it can be seen, TailorNet is highly dependant on
its post-processing due to a high amount of collided vertices. For the green T-shirt,
samples correspond to consecutive frames. TailorNet cannot keep temporal consis-
tency. DeePSD does not suffer from such effect. Similar to CLOTH3D baseline, we
observe how body geometry is present on TailorNet predictions (leftmost sample
chest) due to the use of SMPL to represent garments.

TailorNet succeeds in generating wrinkles in their predictions by overfitting an
ensemble of MLPs per each garment type and gender. As stated by its authors:
"Our key simplifying assumption is that two garments on two different people will de-
form similarly...". Nonetheless, this has drawbacks. On one hand, as we have seen,
it strongly compromises physical consistency, and thus, relies on post-processing.
This increases sample generation times by 150-300ms. Note that applying a post-
processing eliminates differentiability. Another drawback is the complexity of their
model. Their ensemble of MLPs takes around 2GB per garment and gender. All of
this hurts its applicability, compatibility and performance (and then, portability). On
the contrary, DeePSD is a single small-sized model (4.4MB) that allows animating
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any outfit (not only individual garments as body homotopies) without retraining.
Predictions are generated as highly computationally efficient models (blend weights
and blend shapes) compatible with any graphics engine. We obtain running times
of 3-6ms for individual samples and around 0.1ms for batched samples (depending
on vertex count). Furthermore, through physically based unsupervised learning,
we alleviate the need of post-processing, thus maintaining differentiability and the
aforementioned computational performance.

4.6 Conclusions and Future Work

We presented a novel approach for garment animation. Breaking the trend of pre-
vious approaches that try to predict vertex deformations through deep learning, we
proposed learning a mapping from outfit space to animated 3D model space. We
showed how this allows generalization to unseen outfits as well as compatibility
with graphics engines. We observed how recent works need to leverage the body
model for garment representation to allow edition/resizing along with animation,
leading to overly complex models with scalability, compatibility and applicability
issues. We addressed these issues by identifying garment animation as an indepen-
dent task. We prioritized physical consistency in our predictions, relieving the need
of post-processing. In summary, we developed an efficient approach applicable in
real-scenarios as it is, even portable devices, that allows a more intuitive workflow
for CGI artists that does not require expert knowledge in deep learning. Compare to
the CLOTH3D baseline presented in Chpater 3, the garment quality has significantly
increase. Mainly thanks to the possibility of using the original template garments.
Lack of generative capacity, while it may look like a drawback, is actually a good
thing. It is much easier for an end user to edit outfits in rest pose for later animation
than trying to find a latent code that better approximates their desired design.

We observed limitations in our approach. First, loose garments, such as skirts
and dresses, cannot be properly modelled with static approaches. To this end, we
set as future work adapting our methodology to work with the temporal dimension.
To keep its compatibility, pose keys should be computed with a temporal neural
network while the training enforces dynamic learning (whether it is from data or
unsupervisedly through physical consistency). We also observed how recent works
grow on complexity to model fine geometric details (wrinkles). We believe a suit-
able approach to deal with garment wrinkles is through normal map generation
because: a) it allows using lower vertex counts without compromising details, b) it
is directly compatible with all graphics engines and c) it is more robust to collisions,
since graphics engines compute face visibility on base geometry. Current works on
this domain appear to be promising (Lahner et al., 2018; Zhang et al., 2020). We set
this as future work. Nevertheless, this solution does not address the accurate 3D
modelling of the cloth. Training a single model on thousands of garments with di-
verse wrinkle distribution converges to average predictions that lack high frequency
details. This may also be in part due to supervised learning being sub-optimal for
cloth. Next, Chapter 5 will focus on learning realistic cloth deformations for single
outfits.
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Chapter 5

PBNS: Physically Based Neural
Simulation for Unsupervised
Garment Pose Space Deformation

FIGURE 5.1: We present a neural simulator for outfits. Our methodology yields skinned
models with Pose Space Deformations through an implicit Physically Based Simulation us-
ing deep learning framework. This figure shows different neurally simulated outfits on dif-
ferent unseen body poses. Our results do not need collision-solving post-processing.

5.1 Introduction

Animation of draped humans has been widely explored by the computer graphics
community because of its wide range of potential applications: videogame, film in-
dustry, and nowadays, also in virtual and augmented reality VR/AR. We can split
the different animation approaches based on their goal: performance or realism. On
one hand, Physically Based Simulation (PBS) (Baraff et al., 1998; Liu et al., 2017;
Provot, 1997; Provot et al., 1995; Tang et al., 2013; Vassilev et al., 2001; Zeller, 2005)
strategies discretize the space and time to apply basic physics laws. The realism
obtained is closely related to how fine-grained is the discretization. On the other
hand, Linear Blend Skinning (LBS) (Kavan et al., 2008; Kavan et al., 2005; Le et
al., 2012; Magnenat-thalmann et al., 1988; Wang et al., 2007; Wang et al., 2002) and
Pose Space Deformation (PSD) (Allen et al., 2002; Anguelov et al., 2005; Lewis et al.,
2000; Loper et al., 2015a) techniques require a significantly lower amount of com-
putational resources but compromise the realism of the animation. These strategies
are suitable for low-computing environments or applications that demand real-time
performance (portable devices and videogames). We close the gap between PBS and
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PSD by proposing an unsupervised approach to learn realistic PSD, and thus, main-
taining their efficiency advantage against PBS.

Due to its recent success in complex 3D tasks (Arsalan Soltani et al., 2017; Han
et al., 2017; Madadi et al., 2020; Omran et al., 2018; Qi et al., 2017; Richardson et
al., 2016; Socher et al., 2012), we find deep learning as a promising approach to
the garment animation problem. The research community has shown an increasing
interest on draped 3D human animation through deep learning during the past few
years (Alldieck et al., 2018b; Alldieck et al., 2019; Bertiche et al., 2020; Bhatnagar
et al., 2019; Guan et al., 2012; Lahner et al., 2018; Patel et al., 2020; Santesteban et
al., 2019). Commonly, authors propose learning non-linear PSD models from big
volumes of PBS data. Hence, these approaches also demand high computational
resources to run the simulations. Another possibility for data gathering is through
the use of 4D scans. While this solution allows capturing real data, it is necessary to
build expensive and constrained setups. Furthermore, data obtained through scans
need to be post-processed to be usable. Supervised deep learning based approaches
not only depend on expensive data, but are also bounded by it. Plus, supervised
training falsely assumes uniqueness of garment vertex locations, which, as we will
show, hinders learning in practice.

In this chapter we propose learning PSD for rigged garments leveraging a deep
learning framework and formulating the problem as an implicit PBS. By using PBS
formulation, we force our models to predict consistent, low-energy configurations
of the physical system that cloth and body represent. Doing this allows applying
unsupervised training, removing the need of data gathering through expensive sim-
ulations or scans. Furthermore, we show that our proposed methodology can yield
cloth-consistent PSD in a short amount of time (minutes). By eliminating the need
of simulating hundreds or even thousands of sequences, we drastically reduce the
time needed from garment design to model deployment. This increases the applica-
bility and scalability of the methodology, broadening the scope of real life scenarios
that will benefit from it. The final animated garments show cloth-consistency, pose-
dependant wrinkles and temporal coherence for unseen pose sequences. Fig. 5.1
shows some qualitative samples obtained with the methodology described in this
chapter. Our main contributions are:

• Unsupervised PSD Learning. By enforcing physical consistency during the
training of the model, we eliminate the dependency of PBS or scan data. As
a consequence, this methodology can be applied to an arbitrary number of
garments, body shapes and poses without the computational cost of obtaining
data for them.

• Efficient Training, Deployment and Compatibility. Related deep based ap-
proaches in the current literature propose complex formulations to obtain real-
istic results. This hinders the training process and posterior deployment. Our
proposed methodology yields blend shapes for LBS models, which is the stan-
dard for 3D animation, and therefore, it is automatically compatible with all
graphic engines and benefits from the exhaustive optimization for these mod-
els. This greatly increases the applicability of the methodology.

• Physical Consistency. Learning based related works are unable to predict
collision-free garments, and thus, require collision-solving post-processing to
be used in real applications (Patel et al., 2020; Vidaurre et al., 2020; Jiang et al.,
2020; Gundogdu et al., 2019b; Guan et al., 2012; Santesteban et al., 2019). This
disables real-time performance, increases the required engineering effort to
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adapt such solutions and removes model differentiability, which hurts their ap-
plicability in research. Some of these works use instead collision-solving losses
during training to alleviate the issue, but body interpenetration still appears.
We show how this is related to supervised training. On the other hand, PBNS
can generate collision-free predictions even under extreme unseen poses, ef-
fectively removing the need of post-processing. Physical consistency is not
limited to collisions, but also to surface quality. Inspired by mass-spring mod-
els, we enforce edge and bending constraints in our predictions. This ensures
outfits have no distorted edges —which would generate texturing artifacts—
and smooth surfaces.

• Cloth-to-cloth Interaction. We are the first to propose a learning-based ap-
proach that is able to explicitly handle cloth-to-cloth interactions between dif-
ferent layers of cloth. Because of this, PBNS is the only current approach
that can animate complete and complex outfits with multiple overlapping gar-
ments.

Contrary to the solution presented in Chapter 4, this methodology is outfit-specific.
Nonetheless, the quality of the results is noticeably improved, as well as its robust-
ness against body collisions or artifacts.

5.2 State-of-the-art

In the computer graphics community, the garment animation problem has been tack-
led for decades. Although deep learning has shown significant progress during re-
cent years, one of its main drawbacks in the case of garment animation is the scarcity
of available data and the data-hungry nature of deep-based approaches.

5.2.1 Computer Graphics

PBS (Physically Based Simulation) permits obtaining highly realistic cloth dynam-
ics, usually relying on the spring-mass model. The literature on this regard is exten-
sive and mainly addresses the efficiency and robustness of the methodology. This
is done through simplifications and specialization on constrained scenarios (Baraff
et al., 1998; Provot, 1997; Provot et al., 1995; Vassilev et al., 2001). As another option,
authors propose energy-based optimization approaches for an increase in stability
and generalization to additional soft-bodies (Liu et al., 2017). Some works describe
technical improvements to leverage the extra computational power that GPU par-
allelization yields (Tang et al., 2013; Zeller, 2005; Tang et al., 2018). Nonetheless, in
spite of the increase on efficiency contributed by other works, achieving a high level
of realism comes at a great computational expense. When such resources are not
available and real-time performance is a must, PBS cannot be applied. To overcome
this, LBS (Linear Blend Skinning) is used. LBS –and other skinning techniques– is
the current standard for real-time 3D animation in computer graphics. Objects mo-
tion is driven by an skeleton defined as a set of joints. Vertices of the mesh that
represent the 3D object are attached to the joints by a set of blend weights. The
transformation (rotation, translation and scaling) of each vertex is the weighted sum
of the transformations of the joints with the aforementioned blend weights. Com-
monly, garments are attached to the same skeleton that controls the 3D body. We
can also find an extensive research regarding LBS (Kavan et al., 2008; Kavan et al.,
2005; Le et al., 2012; Magnenat-thalmann et al., 1988; Wang et al., 2007; Wang et al.,
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2002). This approach allows real-time applications, even in low-computing environ-
ments, by sacrificing realism, specially on garment domain. Currently, we can find
hybrid strategies in the industry. Tight parts of the outfits (e.g., t-shirt and trousers)
are attached to the body skeleton while other apparel (e.g., capes and long coats) are
simulated. This approach is widely used in the videogame industry, as realism is
enhanced without an excessive increase on computational requirements.

5.2.2 Learning-Based Approaches

LBS models achieve real-time performance, nonetheless, linear transformations are
usually not enough to capture the motion of soft-tissue objects such as cloth. Fur-
thermore, LBS might suffer of skinning-related artifacts. PSD (Pose Space Deforma-
tion) aims to address these drawbacks by applying corrective deformations to LBS
models before skinning (Lewis et al., 2000). This helps reducing artifacts and also
allows representation of high-frequency details that depend on the pose of the ob-
ject. Hand-crafted PSD is too labor intensive for complex models (such as the human
body) and it is usually learnt from data. Authors have shown that PSD approaches
are able to model the human body (Allen et al., 2002; Anguelov et al., 2005; Loper
et al., 2015a). Deformations basis are obtained by linear decomposition of hundreds
or thousands of 3D body scans. Following this fashion, for garments, (Guan et al.,
2012) propose applying the aforementioned methodology for synthetic garment data
gathered through PBS. Later, (Lahner et al., 2018) extend the idea by computing the
aforementioned linear decomposition against temporal feature arrays processed by
a Recurrent Neural Network (RNN), achieving non-linearity w.r.t. the pose. (San-
testeban et al., 2019) explicitly apply a non-linear mapping with a Multi-Layer Per-
ceptron (MLP) for a single fixed garment. (Zurdo et al., 2012) show an example based
methodology for non-skinned cloth for coarse simulation up-sampling. (Kim et al.,
2013) compress tens of gigabytes of precomputed cloth simulations into an small
motion graph that allows for fast garment animation. (Hahn et al., 2014) learn a set
of low-dimensional subspace basis for fast garment simulation from training data.
Similarly, (Xu et al., 2016) precompute pose-space basis to efficiently simulate soft-
tissue dynamics on rigged characters. Then, (Chentanez et al., 2020) propose a con-
volutional network for triangular meshes for garment and soft-tissue animation and
coarse simulation up-sampling. (Jin et al., 2020) present a pixel based solution in the
UV space of garments, tackling the problem as a computer vision task. (Holden et
al., 2019; Pfaff et al., 2020) show data-driven approaches for general neural physics.
Also, (Geng et al., 2020) propose a physically based post-processing for garment
predictions from a neural network to alleviate compression and stretching. (Bailey
et al., 2018; Bailey et al., 2020) detail a deep-learning based methodology for a fast
modelling of non-linear pose space deformations for body and face models. While
these approaches achieve appealing results, when applied to garment animation,
each new garment or outfit requires repeating the simulation and learning process,
thus hindering scalability and applicability. Authors commonly address this draw-
back by leveraging existing body models (like SMPL(Loper et al., 2015a)). Garments
are encoded on top of the human body as subsets of displaced vertices (Alldieck et
al., 2018b; Alldieck et al., 2019; Bertiche et al., 2020; Bhatnagar et al., 2019; Patel et al.,
2020). Following the idea of exploiting the human body model, (Patel et al., 2020)
use subsets of body vertices as few different garments to later learn garment-specific
models for high frequency cloth details. The authors of (Bertiche et al., 2020) per-
form a similar encoding for thousands of different garments. This allows learning
a continuous space for garment topology. Later, (Bertiche et al., 2021d) propose a



5.3. Neural Cloth Simulation 55

graph convolutional network to predict blend weights and pose space deformations
for any input mesh, allowing generalization to unseen garments regardless of their
topology. Nonetheless, huge volumes of data are still needed to train these mod-
els. Furthermore, it has been proven that deep neural networks are biased to lower
frequencies (Rahaman et al., 2019), and as noted by (Patel et al., 2020), this effect is
more significant on cloth domain when training a single model to represent many
different garment types. This means that in order to obtain high-resolution garment
predictions, it is better to exhaustively simulate and train for individual garments.
Additionally, most of the aforementioned works for cloth require post-processing
on their predictions to be usable, hindering performance and model differentiabil-
ity. Our proposed methodology allows skipping the simulation step and efficiently
learn, in few minutes, PSD for a given LBS model of a garment or outfit. Further-
more, our predictions are physically consistent and do not require post-processing.

5.3 Neural Cloth Simulation

Classical computer graphics approaches resort to skinning and/or costly simula-
tion, which compromise realism, performance or applicability. On the other hand,
learning based approaches, non-deep and deep, propose a skinning followed by a
data-driven method to compute Pose Space Deformations. Since simulated data is
still necessary, a significant computational investment is required for each new gar-
ment, body shape or fabric. We propose learning garment-specific (or outfit-specific)
PSD unsupervisedly by enforcing physical laws, addressing the main drawbacks of
previous works in terms of data requirements.

5.3.1 PBS Data and Physical Consistency

As aforementioned, the current trend on this domain is supervised learning from
PBS data. We will show how this is suboptimal for learning valid garment deforma-
tions. The mapping from pose-space to outfit-space is a multi-valued function. Dif-
ferent simulators, initial conditions, action speeds, timesteps and integrators, among
other factors, will generate different valid outfit vertex locations for the same body
pose and shape and outfit. Training or evaluating on PBS data falsely assumes that
this mapping is single-valued. Samples with similar θ but significantly different
vertex locations will hinder network performance during training and most likely
converge to average vertex locations under a supervised loss. Moreover, a final user
does not know the ground truth and therefore cannot perceive the accuracy of the
model w.r.t. PBS data, but the user can assess the physical consistency of the predic-
tions (collision-free and cloth consistency). Minimizing Euclidean error w.r.t. ground
truth does not guarantee physical consistency, and therefore, the applicability of the
obtained predictions in real life is limited. Recent works require post-processing to
solve body penetrations (Patel et al., 2020; Santesteban et al., 2019). This partially
defeats the purpose of using deep-learning, removes differentiability and real-time
performance. Thus, standard PBS is always preferred against previous deep-based
approaches. We propose a fully unsupervised training as an implicit physically
based simulation to remove the need of post-processing. Because of this, and the
extreme efficiency of our formulation, ours is the first approach that can be applied
for real-time scenarios in most devices.
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5.3.2 Formulation

Our goal is to obtain cloth-consistent PSD for a given garment or outfit rigged to
the skeleton of an LBS body model, in order to animate cloth and body at once.
Following (Loper et al., 2015a), we denote the per-vertex formulation of skinning
with PSD w.r.t. an articulated skeleton, represented as a set of joints J ∈ RK×3, for a
given template garment or outfit in rest pose T ∈ RN×3 as:

t′i =
K

∑
k

wk,iGk(θ, J)(ti + dti(θ)), (5.1)

where wk,i is a single blend weight for vertex i and joint k, Gk is the linear transfor-
mation matrix corresponding to joint k, θ is the skeleton pose in axis-angle represen-
tation, ti is the i-th garment vertex in rest pose and dti is the pose space deformation
corresponding to this vertex. We need to find a valid skinning as a blend weights
matrix W ∈ RN×K and a PSD as a mapping f : θ → {dT | Tθ = T + dT} such that
the output unposed garment Tθ ∈ RN×3 is properly aligned with the body (no col-
lisions) and shows a realistic cloth-like behaviour after skinning. We propose using
a neural network to approximate f . Note that our formulation is not dependant on
the chosen body model, and the only requirement is to have a database of poses for
the body.

Blend Weights. In the current literature we find authors that rely on the assump-
tion that garments closely follow body motion (Santesteban et al., 2019; Bertiche et
al., 2020; Patel et al., 2020). Results presented by these works prove it is a valid as-
sumption that allows for a significant simplification of the problem. We rely on this
to compute blend weights for our template garment. For each vertex ti ∈ T we as-
sign blend weights equal to those of the closest body vertex, with the body in rest
pose (aligned with garment). Skirts break the assumption that cloth and skin are
close to each other. For these kind of garments, we allow blend weights to be opti-
mized along with network weights. We observed that doing this increases the model
convergence speed. For other types of garments, we see no significant differences,
except the computational overhead of optimizing blend weights along with the rest
of the trainable parameters.

PSD. Skinning alone is not enough to properly model garments, as cloth be-
haviour is highly non-linear. For this reason, we formulate the model with PSD.
Classical computer graphics approaches rely on linear decomposition from training
samples to obtain a PSD matrix like D ∈ R|θ|×N×3, where |θ| is the dimensionality
of the pose array and N is the number of vertices of the 3D mesh to animate. We
propose to first obtain a high level embedding of the pose array θ through a neu-
ral network as X = fX(θ) and use this embedding to obtain the final deformations
with a PSD matrix as D ∈ R|X|×N×3. This allows flexible non-linear mapping from
θ to dT and also to control matrix D size and capacity. Learning of both fX and D is
performed following a deep learning framework, where variables are optimized by
minimizing a loss function with batches of different input pose samples.

5.3.3 Architecture

We design fX as a Multi-Layer Perceptron (MLP). More specifically, it consists of 4
fully connected layers with a dimensionality of 32 and ReLU activation function.
Then, to obtain the posed outfit Vθ for a given θ:



5.3. Neural Cloth Simulation 57

FIGURE 5.2: Methodology overview. Pose parameters are fed to a 4-layer Multi-Layer Per-
ceptron with 32 dimensions in each layer. The output high-level pose embedding is mul-
tiplied with a PSD matrix D to obtain deformations for the garment/outfit. As standard,
deformations are applied in rest pose garments and skinned along with the body (note that
garment blend weights are assigned by proximity w.r.t. the body in rest pose). Finally, we
train by optimizing the potential energy of the output physical system represented by the
body and the cloth. The parts of the model in red correspond to the trainable parameters.

Vθ = W(T + fX(θ) · D, θ,W) (5.2)

Where W(·, θ,W) is the skinning function for pose θ and blend weights W , and
the product fX(θ) · D is computed as ∑|X|

i fX(θ)iDi. Under this formulation, we can
approximate non-linear mappings from θ to Vθ while keeping compatibility with
current graphic engines. Fig. 5.2 shows an overview of the proposed methodology.
The input of the model is the pose array θ, which is processed through the aforemen-
tioned MLP to yield a high-level pose embedding X. This embedding X is multiplied
with the PSD matrix D to obtain garment vertex deformations. Both, the MLP and
the matrix D are learnt through training (and blend weights W are optimized from
their initial proximity-based values for outfits with skirt). Finally, the deformed gar-
ment (or outfit) is skinned along the body according to θ and blend weights W . For
the rest of the chapter, for clarity reasons, we consider the PSD matrix D to be part of
the network. While it should be possible to apply this methodology without an MLP,
we observe it presents important advantages. First, the size of matrix D is several
orders of magnitude larger than the proposed MLP. Thus, controlling the size of this
matrix allows for more efficient models. Without an MLP, the dimensionality of D is
fixed to R|θ|×N×3 (|θ| = 72 blend shapes for SMPL as body model), and each of these
blend shapes would be associated to a single θ parameter. This is clearly sub-optimal
as some of these blend shapes would be irrelevant. Also, blend shapes would be lin-
early tied to their corresponding pose parameters. This is also sub-optimal since the
mapping from axis-angle space to Euclidean space is non-linear. Moreover, cloth
deformations are likely to be non-linear w.r.t. body pose. With an MLP, the model
learns more meaningful blend shapes that are combined non-linearly w.r.t. θ. Em-
pirically, we also find the training to be faster and more stable with an MLP.

5.3.4 Training

Just as physical systems are implicitly optimized by acting forces F = −∇U (where
U is the potential energy of the system), we train our neural network under a loss
defined as a potential energy. This way, our model will learn to predict consistent,
low-energy stable configurations. Note that during back-propagation, F = −∇U is
explicitly computed. Thus, our methodology is implicitly simulating the network
weights as a physical system for a given dataset of poses. We define this as neural
simulation. We define our global loss (or potential energy) as:
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L = Lcloth + Lcollision + Lgravity + Lpin, (5.3)

where Lcloth corresponds to the elastic potential energy of the garment, and guides
the model to predict cloth-consistent meshes. The term Lcollision formulates body
penetrations as a potential energy, thus its gradients will push cloth vertices to valid
locations. Finally, Lgravity is the gravitational potential energy, which will minimize
vertices height within the constraints set by the other loss terms. Additionally, we
define Lpin to regularize deformations of chosen vertices (inspired by PBS).

Cloth consistency. The first term of our loss is related to the cloth consistency
of the predictions. That is, we want the output meshes to fulfill certain properties
we find in cloth. Classical computer graphics approaches usually rely on the mass-
spring model to simulate cloth. We extend this idea to deep learning by designing a
cloth loss term as:

Lcloth = λeLedge + λbLbend = λe ∥E − ET∥2 + λb∆(N)2, (5.4)

where E ∈ RNE is the predicted edge lengths, ET ∈ RNE is the edge lengths on the
rest garment T (with NE as the number of edges in the mesh), N ∈ RNF×3 is the
face normals (for NF triangular faces), ∆(·) is the Laplace-Beltrami operator and λe
and λb are balancing factors. On the one hand, the term Ledge ensures that cloth
is not excessively stretched or compressed. It is formulated as the potential elastic
energy of the system, such that its gradients act as forces. On the other hand, Lbend
enforces locally smooth surfaces by penalizing differences between neighbouring
face normals (hinge-like forces). Note that the latter is computed taking into account
face connectivity, not vertex.

Collisions. Next, the model needs to handle collisions with the body model. To
do so, we design the following loss:

Lcollision = λc ∑
(i,j)∈A

min(dj,i · nj − ϵ, 0)2, (5.5)

where A represents the set of correspondences (i, j) between predicted outfit and
body, respectively, through nearest neighbour, dj,i is the vector going from the j-
th vertex of the body to the i-th vertex of the outfit, nj is the j-th vertex normal of
the body, ϵ is a small positive threshold to increase robustness and λc is a balancing
weight (ϵ = 4mm and λc = 25 in our experiments). This loss is crucial to obtain valid
predictions and its gradients will push outfit vertices outside the body. It is designed
under the assumption that cloth closely follows the skin, which we can safely assume
given that initial skinning blend weights are assigned by proximity. While this is a
naive implementation of a collision loss, it works well in practice and similar L1
formulations have already been used in deep-learning based approaches (Tiwari et
al., 2020; Jiang et al., 2020; Gundogdu et al., 2019b). We opted for a quadratic term
to enhance generalization and stability, plus, it helps achieving a balance w.r.t. the
other loss terms. Note that, as with PBS, invalid bodies (self-collided) might corrupt
the results.

Cloth-to-cloth. To be able to model whole outfits, it is necessary to explicitly
handle cloth-to-cloth interactions. To this end, we define a layer order for each gar-
ment of a given outfit, from inner to outer. Then, we iteratively apply Eq. 5.5 to each
layer, computing correspondences A using body and previous layers. This will sim-
ulate repelling forces for both vertices (i, j) ∈ A whenever correspondences connect
two different cloth layers. To the best of our knowledge, we are the first to explicitly
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tackle cloth-to-cloth interaction for learning based approaches.
Gravity. We include an additional term to enforce more realistic garment predic-

tions. This term models the effect of the gravity. From classical mechanics, we know
that potential gravitational energy is U = m · g · h, where m is the mass of the object,
g is the gravity and h is the height of the object. Since m and g are constant, we can
understand this loss as Lgravity = kVθz. In other words, we are minimizing the Z
coordinate (vertical axis) of each vertex of the predicted garments.

Pinning. For some garments we want certain vertices not to move around. For
example, lower body garments might fall down as training progresses due to the
gravity loss. We want to restrict waist vertices deformation such that it remains
attached to its original position. The concept of pinning appears in most cloth sim-
ulators. To this end, we implement an L2 regularization loss on the deformations dt
of each vertex defined as pinned down. That is, Lpin = λpin ∑i bidt2

i where bi = 1 if
vertex i is pinned, else bi = 0. Note that a hard constraint would most likely produce
collisions against the body, so vertices need to be able to move slightly. Then, we
include it in the loss as an extra term with a balancing weight λpin = 10.

By formulating both Lcloth and Lgravity as physical magnitudes, their correspond-
ing loss balancing weights are directly related to the properties of the fabric we want
to simulate: Young’s modulus for the elasticity and its mass for gravity. This pro-
vides explainability to the approach. The rest of the losses, as with classical com-
puter graphics PBS, are simplifications of the underlying physics. The only require-
ment for the potential energy is to be differentiable.

5.4 Experiments

In this section we will first describe the process to apply the methodology explained
in Sec. 5.3. Then, we define the data and setup for the experimental part.

5.4.1 Body model

SMPL (Loper et al., 2015a) is the current standard in the literature for human analysis
and garment animation. This model is an LBS with a linear PSD obtained through
thousands of accurate 3D scans of different subjects. Its underlying skeleton is de-
fined as a set of K = 24 joints. Public pose databases are available for this model
(AMASS (Mahmood et al., 2019)). We then choose SMPL for the experimental part
because both model and pose data are available to the public. Nonetheless, the
methodology described in this chapter is compatible with any 3D model rigged to an
skeleton. SMPL also allows generating different body shapes through blend shapes.
During neural simulation, body shape is fixed (just as with PBS, where, in general,
we do not want the body shape to change during simulation).

5.4.2 Template outfit

Once a body model is selected, a garment or outfit is designed for the body in rest
pose, with an approximate resolution of 1cm in our experiments. We smooth tem-
plates as much as we can before neural simulation. This will ensure that high fre-
quency details and deformations are indeed generated by the model from the pose.
Then, initial blend weights for the cloth are obtained by proximity to the body.
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FIGURE 5.3: Architecture ablation study. We perform three experiments to assess the effect of
the proposed MLP: 1) PBNS as described, 2) θ as input with no MLP and 3) rotation matrices
Rθ as input with no MLP. For experiment 2 we observe unrealistic V-shaped wrinkles around
the hip. Also, for both models with no MLP, we observe artifacts where both legs merge. This
effect is more evident on skirts. The merging point of left and right side of the skirt presents
an important artifact for experiments with no MLP, despise being trained during hundreds
of epochs (as opposed to 15 epochs for PBNS with MLP).

5.4.3 Pose database

Neural simulation requires a database of valid poses for the selected body model.
We define, as valid poses, those that do not produce self-collisions when applied
to the 3D body model. As with regular PBS, neurally simulating cloth over bodies
with self-collisions will generate inconsistent repelling forces and might corrupt the
results. For SMPL, we have |θ| = 3K = 72. We choose CMU MoCap pose sequences.
This dataset contains 2667 pose sequences of different length, performed by different
subjects. It totals around 4.3M individual poses. We split the database into train
and test per subject, thus ensuring no subject or sequence is repeated in both sets,
as 85/15%. Then, to ensure pose balance, we randomly sample N = 3000 poses
from the training set, such that not any pair of poses have a distance d < 0.5, with
d = max(|θi − θj|). Thus, for any two poses, there is at least one parameter with
a difference equal or bigger than 0.5 radians (we omit global orientation for this
sampling). Later, we split the N = 3000 samples into training and validation set as
85/15% (2550 training poses and 450 validation poses).

5.5 Results

In this section we present the results obtained through experiments. First, a justifica-
tion of the chosen architecture for the model. Then, a comparison against standard
supervised learning. Later, we display and discuss qualitative results. Next, we
show some interesting properties of neural simulation. Following, a comparison
against the state-of-the-art. As it is standard in deep learning, all the presented re-
sults, quantitative or qualitative, correspond to unseen test sequences. Finally, we
illustrate more possibilities for neural simulation: outfit resizing and custom avatar
enhancement.

5.5.1 Multi-Layer Perceptron

In Sec. 5.3.3 we discussed the motivation for the MLP. We found it is possible to
apply this methodology without an MLP by using pose θ to linearly combine the
blend shapes within matrix D ( fX(θ) = θ in Eq. 5.1). We perform three different
experiments to study the effects of an MLP: 1) PBNS as proposed in this chapter,
2) without MLP w.r.t. θ and 3) without MLP w.r.t. the rotation matrices Rθ gener-
ated from θ (to alleviate non-linear relations between axis-angle space and Euclidean
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FIGURE 5.4: Supervision vs PBNS. We compare results obtained with PBNS against a purely
supervised approach and a hybrid approach (L2 plus Eq. 5.3). The same architecture and
the same N = 3000 poses (2550 for training and 450 for validation) are used in these ex-
periments. We additionally compare against PBS data used for supervised training. We
show: a) L2 only, b) hybrid, c) PBNS and d) PBS data. The supervised approach has the
lowest Euclidean error w.r.t. PBS data, but also lowest number of wrinkles and highest
number of collisions. The hybrid approach has more visible wrinkles and fewer collisions,
but generalizes poorly to extreme poses. PBNS has the highest Euclidean error, but realis-
tic pose-dependant wrinkles and shows no collisions, even under extreme poses. We also
observe how PBS is prone to failures when body presents self-collisions (upper-left sample
right elbow and lower-right sample legs). These failures might be transferred to predictions
if trained supervisedly. PBNS is more robust to collisions than PBS.

space). Fig. 5.3 presents the results of these experiments. Each sample has a num-
ber that corresponds to one of the experiments explained. We see how experiment
2 presents unrealistic V-shaped wrinkles around the hip (left samples). Experiment
number 3 does not show this. It means this is the result of linearly approximating
a non-linear relation between axis-angle and Euclidean space. On top of this, we
also observe artifacts on the region where both legs merge for experiments with no
MLP. This effect is more evident on skirts (right samples). These artifacts are present
even after hundreds of training epochs (note that experiment 1 is trained for just 15
epochs).

5.5.2 Supervised learning and quantitative evaluation

To compare our approach against supervised learning and provide of a quantitative
metric, we compute PBS data for the N = 3000 poses described in Sec. 5.4.3. Once
these data is obtained, we perform three different experiments (shown in Tab. 5.1).
In the first row, we train the described architecture supervisedly with an standard L2
loss on the predictions w.r.t. PBS data. In the second row, we train the same model
with L2 loss combined with Eq. 5.3. In the last row, we evaluate our unsupervised
training results against the PBS data. We complement this table with a qualitative
comparison shown in Fig. 5.4. From left to right: a) L2 only, b) hybrid, c) PBNS and
d) PBS data. As can be seen, the supervised approach is able to minimize Euclidean
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Method Error (mm) Edge (mm) Collision Time

L2 7.59 0.78 3.15% ∼ 30h
Hybrid 8.21 0.74 1.08% ∼ 30h
PBNS 15.52 0.66 0.45% ∼ 15m

TABLE 5.1: Quantitative comparison of supervised baseline vs. PBNS. Each row represents
an experiment. All experiments were performed with the same architecture. First row shows
a purely supervised experiment, with an L2 loss w.r.t. PBS data. The second row combines
L2 loss with Eq.5.3. Finally, the last row corresponds to PBNS as described in this chapter.
For each experiment we report Euclidean error against PBS data, average edge compres-
sion/elongation w.r.t. edge rest lengths, the ratio of collided cloth vertices (within human
body) and the time it takes to obtain a trained model. We observe how supervision com-
promises physical consistency (edge distortion and higher collision ratio). Since supervision
requires PBS data, simulation time has to be taken into account. On the other hand, while
Euclidean error is higher, PBNS can generate cloth-consistent and almost collision-free pre-
dictions in a very short amount of time.

error w.r.t. PBS data. Nonetheless, in order to do so, it compromises physical con-
sistency. The supervised approach is prone to collisions, which makes predictions
unusable in real applications. We also observe a minimal amount of wrinkles. The
hybrid approach shows a lower number of collided vertices and slightly more visible
wrinkles. Nonetheless, as can be seen, it generalizes poorly to extreme poses (lower
row samples). Also, in the upper-left sample, we see a failure in the left elbow that is
not present on PBS data. Thus, combining L2 loss with physical consistency has an
unpredictable behaviour. Then, we see how PBNS can generate cloth-consistent and
collision-free predictions, even under extreme poses. Finally, we also show PBS data
in the figure. As can be seen, PBS might fail for poses that present body self-collisions
(upper-left sample right elbow and lower-right sample legs). PBS failures might be
transferred to predictions through supervision. Note how PBNS is more robust to
failures than classic PBS. Human-like skinned models are prone to self-collisions,
and thus, we consider this property a significant advantage over PBS. Finally, we
also compare the amount of time devoted to obtain each model in the table. For
the supervised and hybrid approaches, simulations are needed. New outfits and/or
bodies will require new data. Thus, we include the time devoted to simulations
in Tab. 5.1 In the time needed to obtain a single animated outfit through supervised
approaches, PBNS can generate over a hundred of different models for different out-
fits. Overall, we have shown how unsupervised training is not only more efficient
(no need to generate PBS data), but it also qualitatively outperforms supervised ap-
proaches. Furthermore, it shows higher robustness against simulation failures than
traditional PBS. We have also shown how Euclidean error is misleading (lower does
not mean better).

5.5.3 Qualitative

For a qualitative evaluation of the results, we refer first to Fig. 5.1. In this image we
show a few samples with different pose, outfit and, one of them, different body. As
it can be seen, our learnt PSD can generate appropriate wrinkles around bent joints
in a realistic manner to fulfill the energy balance requirements imposed by our loss
during training. Then, for a more in-depth analysis, we refer to Fig. 5.5. Here we
show, on one hand, the template outfit of each sample. Templates are smoothed as
much as possible. Later, for each template, the output for two extra unseen poses are
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FIGURE 5.5: Qualitative results. Leftmost, we depict the template outfit of each row. Note
how templates are smoothed as much as possible. Then, for each row we visualize the output
for two unseen test poses. For each sample, we show the output dressed human (left) along
with its corresponding deformed outfit in rest pose (right). As it can be seen, the learnt Pose
Space Deformations generate folds and wrinkles to fulfill the energy balance requirement of
the physical system. The last row depicts results of simulation with a different body shape
(and its appropriately aligned template outfit) to show generalization to different bodies. All
of the shown samples were obtained after just a few minutes of training.
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FIGURE 5.6: Textured qualitative samples. This rendering gives an approximate idea to
the final application-level looks that our methodology yields. These results correspond to
neural simulations of 3 additional outfits on top of 3 different bodies, further showing the
generalization capabilities of our methodology.

shown (different from Fig. 5.1). For each of these samples, the final rigged draped
human is visualized (left) along with the unposed deformed template garment Tθ

(right). Templates show deformations to satisfy the energy constraints which would
not be possible with skinning alone. From the first row, we can notice how big defor-
mations are due to collisions for extreme poses. Also, while deformed template can
look noisy, it looks realistic after skinning. On the second row we can see deforma-
tions on the back of the outfit. Nonetheless, as human bodies usually bend forward,
wrinkles in the front are more evident. The third row shows samples with a skirt.
Note how in the second sample, the skirt deformations need to correct rotations due
to leg movements (deformed template has a discontinuity). For outfits with skirt, we
allow optimization of blend weights, along with the rest of the network, to alleviate
the correction required due to leg motion. In spite of this, the effect on the template is
not fully mitigated. Finally, the last row shows results obtained with a different body
shape. As aforementioned, the methodology presented in this chapter is compatible
with any 3D model rigged to an skeleton. On Fig. 5.6 we rendered more qualita-
tive results for different bodies and outfits. All of these visualizations correspond to
models trained during just a few minutes without any post-processing.

5.5.4 Multiple Layers and Controllable Parameters

The proposed collision loss can be extended to deal with multiple layers of cloth (see
Sec. 5.3.4). Fig. 5.7 contains the results obtained for some outfits that present cloth-
to-cloth interaction. For each sample, from left to right: outfit in rest pose, posed
outfit without outer layer, whole posed outfit and cross section. First, we see how
templates in rest pose show collisions, against the body and cloth-to-cloth. The col-
lision loss term is able to recover all of these inter-penetrations. Note that not even
standard PBS is able to recover inter-penetrations between open meshes (cloth-to-
cloth). Thus, again, PBNS appears to be more robust than PBS against collisions.
Nonetheless, PBS is a more general solution. This property can be convenient for
3D artists, as it allows faster outfit design without hurting the final results. These
results also show PBNS can handle cloth-to-cloth interactions accurately with mini-
mal layer spacing. In the first sample, near the waist, we see up to three overlapping
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FIGURE 5.7: PBNS results for outfits with overlapping layers of cloth. Each row shows a
sample. From left to right: template outfit, posed sample without outermost layer, posed
sample with whole outfit and cross section. The proposed collision loss can handle multiple
layers of cloth, even when the template outfit presents inter-penetrations. As we can observe
on the cross section, PBNS is able to generate consistent predictions with minimal layer
spacing. Also note how it is possible to neurally simulate different fabrics –different wrinkle
count and size– within the same outfit by assigning per-vertex weights to cloth related losses.
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FIGURE 5.8: PBNS vs. TailorNet. We show two different bodies and outfits in three different
poses each. For each pose, from left to right: TailorNet raw predictions, TailorNet after
post-processing and PBNS. As observed, TailorNet heavily relies on post-processing, hurting
performance and removing model differentiability. TailorNet predictions are noisy, show a
bias towards body geometry and is unable to model cloth-to-cloth interactions. On the other
hand, PBNS predictions show physically cloth-consistent predictions without body or cloth-
to-cloth interpenetrations (raw predictions).

layers of cloth correctly sorted out –four layers if we consider the body. Addition-
ally, different layers of cloth show different wrinkle count and size. This is due to
the controllability of neural simulation parameters. Just like classic PBS, it is possi-
ble to simulate different fabrics by assigning per-vertex weights for Ledge and Lbend.
Higher weights will produce fewer, larger wrinkles (outer layers in the figure). Fi-
nally, the figure also shows the possibility to neurally simulate complements like
gloves and boots. Rigid objects (boots) can be included into the neural simulation
through parameter controllability (high weights). We are the first to propose a learn-
ing based methodology able to deal with cloth-to-cloth interactions, to allow result
controllability by tuning parameters related to fabric physical properties –enhancing
explainability– and defining a common framework for garments and complements.

5.5.5 Comparison

The current reference in the garment animation domain within the context of deep
learning is TailorNet (Patel et al., 2020). We qualitatively compare results obtained
with PBNS against TailorNet predictions. Note that TailorNet also addresses gar-
ment edition and resizing along animation. We choose two different body shapes
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FIGURE 5.9: Results obtained using PBNS for outfit resizing. Body shape changes from left
to right. Outfit tightness changes from upper to lower rows. All the previous properties
discussed for PBNS are also present when it is used for outfit resizing.

and outfits and compare predictions obtained with both models. Authors of Tailor-
Net post-process their predictions to solve collisions. For the sake of the comparison,
since PBNS does not require post-processing, we show TailorNet with and without
post-processing. Note that post-processing hugely increases computational time and
removes model differentiability. Fig. 5.8 shows the results obtained. For each sample
we show, from left to right: TailorNet raw predictions, TailorNet post-processed and
PBNS. As can be seen, TailorNet predictions heavily rely on post-processing. Tai-
lorNet models individual garments independently, and it is thus unable to handle
cloth-to-cloth interactions. On the other hand, PBNS can almost guarantee collision-
free predictions even under extreme poses for cloth-to-body and cloth-to-cloth inter-
actions. We can see that PBNS predictions are less noisy and better resembles cloth.
Since TailorNet encodes garments as body offsets, body geometry is transferred to
predictions for unseen body shapes (middle right and bottom right samples). We
observe TailorNet quality diminishes as we move outside their training pose and
shape distribution. Moreover, while both approaches are static (no dynamics), we
observe TailorNet is unable to achieve temporal consistency, while PBNS does. In
conclusion, while TailorNet compromises physical consistency and generalization
to learn wrinkles, PBNS is able to generate pose-dependant wrinkles for completely
unseen poses by imposing physical consistency. Additionally, PBNS complexity and
computational time is several orders of magnitudes lower than TailorNet. TailorNet
model size is in the order of gigabytes, while PBNS requires a few megabytes. Re-
garding computational time, for TailorNet we obtain around 3 − 5FPS without post-
processing and 0.6 − 0.9FPS with post-processing, while PBNS can easily achieve
hundreds or even thousands of executions per second (see Tab. 5.2).
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FIGURE 5.10: PBNS is not limited to work with SMPL. Since it needs no PBS data, the en-
gineering effort for the adaptation to custom avatars is minimum. Here we show different
garments and outfits neurally simulated on top of custom avatars. For each, we show the
avatar body in rest pose and two different viewpoints of a posed sample. PBNS can be used
to enhance rigged 3D characters by animating their clothes.

5.5.6 Garment Resizing

In the current literature, we observe an interest on automatic garment resizing (Vi-
daurre et al., 2020; Tiwari et al., 2020; Patel et al., 2020). Current approaches rely
as well on data, which requires gathering, labelling, formatting and other issues al-
ready discussed. We observe that, again, the problem can be solved unsupervisedly
using a standard 3D animation format. We propose to use PBNS to automatically
obtain 3D animated models –as blend shapes– that morph into different body shapes
and sizes. Note that given a body shape, the resulting outfit model should be able
to be retargeted to this body, but also change in size. We refer to this concept as
tightness, while in previous works has been referred as style (Patel et al., 2020). To
this end, we replace PBNS input θ with the body shape β concatenated with the
garment tightness represented as γ ∈ R2. We also remove skinning. Finally, we
compute an estimation for ET in Eq. 5.4 transferring smoothed SMPL blendshapes
by proximity. Fig. 5.9 contains the results obtained for a given outfit. We show three
different body shapes (columns) and two different tightness (rows). As observed,
PBNS allows resizing to the desired body shape and outfit tightness.

5.5.7 Custom Avatars

PBNS formulation is not dependant of SMPL, and thus, it can be applied to animate
outfits on top of any rigged 3D animated model. We gather different avatars and
poses from Mixamo1, a free repository of 3D animated characters. We design or
reuse outfits for the selected avatars. Then, we apply PBNS as described in this
chapter. Since no PBS data is required, we obtain animated outfits for the avatars
in a matter of minutes. Fig. 5.10 illustrates the results of this experiment. We show
three different avatars. First, in rest pose, and then, two different viewpoints of
the same pose. As can be seen, PBNS can be used to enhance rigged 3D characters
by providing of realistic cloth behaviour to their outfits. This further proves the
usefulness of the presented methodology for animated 3D character design.

5.6 Performance

We train our model on our subset of 2550 training poses with a batch size of 16
and Adam optimizer. We run our experiments on a GTX1080Ti. It takes around
1 − 2 minutes per epoch, depending on the amount of collisions against the body.
Using no GPU, it takes around 2 − 4 minutes per epoch. Thus, training a model

1https://www.mixamo.com/
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Single Batch

CPU 213 FPS 1235 FPS
GPU 455 FPS 14286 FPS

TABLE 5.2: PBNS performance. Tests done using an outfit with 12k vertices and 23.7k tri-
angles, (the same as in Fig. 5.4). We run the trained model in CPU and GPU for single and
batched samples. As observed, the chosen architecture is extremely efficient. No related
work (deep-based or PBS) comes close to this level of performance.

using the methodology presented in this chapter does not require expensive hard-
ware, enhancing accessibility for small film or videogame studios. Since there is no
quantitative error, the stop criterion consists on qualitatively assessing validation
predictions. It might take from 10 to 50 epochs to converge, depending on outfit
complexity and body shape. During test, PBNS is extremely efficient. Tab. 5.2 shows
the animation speed obtained with an outfit of 12k vertices and 23.7k triangles (same
outfit as Fig. 5.4). We run the model in both, CPU and GPU, for single and batched
samples. As can be seen, our methodology can generate over 14k samples per sec-
ond. No previous work (deep-based or PBS) is near this level of performance. This
is actually the expected behaviour, since PBNS yields skinned models with PSD. As
aforementioned, these models are the standard for 3D animation and are designed
to be extremely efficient. The only extra component is a small MLP that does not
grow with vertex count. Since PBNS does not require post-processing, the reported
numbers are the effective speed we would see in final applications. Additionally,
due to the low size of the model, this solution is the only current methodology that
can be applied in scenarios were computational resources must be available for other
tasks, such as videogames and virtual reality, or in portable devices.

5.7 Conclusions, Limitations and Future work

We presented the first unsupervised deep learning based approach for outfit ani-
mation. More specifically, we described a methodology to neurally simulate outfits
into blend shapes as Pose Space Deformations of Linear Blend Skinning models. Be-
cause of this, our solution is extremely efficient and can be easily integrated into any
current 3D animation pipeline and run in almost any device (even low-computing
or portable environments). We enabled unsupervised learning by formulating our
problem as an implicit Physically Based Simulation. Furthermore, our proposed ap-
proach can be trained in a matter of minutes, even without a GPU. Therefore, the
time from outfit design until model deployment is drastically reduced compared to
previous approaches. PBNS can handle multiple layers of cloth, allowing neural
simulation of complete outfits. Furthermore, we also show it can be easily adapted
to any 3D avatar. This gives the methodology a broader applicability and higher
scalability. CGI artists can design new animated draped characters more efficiently,
and both, videogames and virtual try-ons, can easily introduce new 3D animated
models for their outfit databases. Additionally, we presented the possibility of using
this approach for automatic unsupervised outfit resizing. While the trained models
do not present garment generalization as in Chapter 4, the many advantages out-
weigh this fact. That is, no need of costly data gathering, trained on a matter of
minutes, more robust models thanks to unsupervised learning and a superior over-
all prediction quality. Additionally, while DeePSD can also handle complete outfits,
PBNS explicitly learns cloth-to-cloth interactions.
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In our approach, neither the input nor the potential energy formulation take into
account the temporal dimension. This means that the learnt mapping from pose to
mesh is unique. One can easily see how this pose-to-mesh uniqueness assumption
does not hold by imagining simulating the same pose sequence at different speeds.
A given pose θ on the sequence shall produce different meshes Vθ. This is spe-
cially important for neural simulation of very loose garments (dresses, long skirts,
etc.). Such garments present a very dynamic behaviour that static approaches can-
not reproduce. Thus, the presented methodology, as it is, is limited to quasi-static
deformations and does not model cloth dynamics. Then, it works best for tight-
fitting clothes. Chapter 6 explores including the temporal dimension in our neural
simulator, while keeping its efficient formulation, to overcome the main limitations
of PBNS.

Finally, also note that the idea of unsupervisedly learning to predict stable and
physically consistent systems opens the possibility to generalize this methodology
to handle other soft-tissue bodies. For example, hair, or human body self-collisions.
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Neural Cloth Simulation

FIGURE 6.1: We present a general solution for the garment animation problem through neu-
ral cloth simulation. More specifically, an unsupervised deep learning methodology inspired
in physically based simulation. Ours is the first methodology able to learn cloth dynamics
without any ground truth data.

6.1 Introduction

Cloth animation has been the focus of research during decades. This is mainly due
to its numerous applications in the entertainment and fashion industry. First, com-
puter graphics approaches that rely on physically based simulation to animate cloth
(Baraff et al., 1998; Müller et al., 2007; Narain et al., 2012; Liu et al., 2013; Pfaff et al.,
2014; Hahn et al., 2014; Macklin et al., 2016). While it is possible to obtain physically
accurate results, these methodologies are computationally expensive and not suit-
able for scenarios where real-time is a requirement, such as video-games or VR/AR.
The research community, inspired by the success of deep learning in other 3D tasks
(Socher et al., 2012; Richardson et al., 2016; Qi et al., 2017; Han et al., 2017; Arsalan
Soltani et al., 2017; Omran et al., 2018; Madadi et al., 2020) and its fast inference
properties, has recently turned to neural networks as a suitable solution for a fast
garment animation.

Initially, authors relied on supervision (Wang et al., 2019; Gundogdu et al., 2019b;
Patel et al., 2020; Bertiche et al., 2020; Bertiche et al., 2021d). To simplify the prob-
lem, garments are usually skinned w.r.t. the underlying skeleton that drives the
body motion. Then, the network task is to predict cloth deformations in rest pose.
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These approaches present some drawbacks. Supervised learning requires huge vol-
umes of computationally expensive data. Then, the process has to be repeated for
each garment and body. Additionally, more often than not, data requires heavy
pre-processing to be ready for training. Finally, predictions usually present body
penetrations, which motivates the use of post-processing or strong regularization
terms. Authors of (Bertiche et al., 2021c; Santesteban et al., 2022) identified these
drawbacks and proposed unsupervised learning schemes. While these approaches
addressed some drawbacks of supervised methodologies, they do not handle cloth
dynamics. On one hand, PBNS (Bertiche et al., 2021c) uses a static formulation, and
it is therefore unable to learn cloth dynamics. This methodology was previously pre-
sented in Chapter 5. On the other hand, SNUG (Santesteban et al., 2022) propose to
use an inertia term from the computer graphics literature. Nonetheless, their adapta-
tion of the inertia term to a deep learning framework only temporally smooths cloth
particle velocities. We will see how this is not the same as learning cloth dynamics
(Sec. 6.4.5).

We present the first methodology able to learn real cloth dynamics without the
need of ground truth data. By doing so, we define the first general solution to neural
garment simulation. The list of our contributions is as follows:

1. Unsupervised Cloth Dynamics. In the computer graphics literature we can
find simulation based works that recast the equations of motion as an opti-
mization problem. This means that a similar solution can be applied to deep
learning. We adapt this solution to unsupervised training of neural networks.
We will show how our methodology is the first to be able to learn cloth dy-
namics in an unsupervised fashion.

2. Disentangled Cloth Subspace. We analyze the nature of the garment anima-
tion problem to motivate a novel architecture that allows an automatic disen-
tanglement of cloth static and dynamic deformations at a subspace level. We
will see how this improves model performance as well as allowing controlla-
bility over cloth dynamics. Additionally, we leverage the disentanglement to
propose a novel motion augmentation technique that further improves model
generalization.

3. In-depth Analysis on Neural Garment Simulation. Unsupervised garment
animation differs from other deep learning tasks, supervised or unsupervised.
We provide of detailed analysis on the problem to understand its peculiarities
and help to establish the bases of neural simulation for garments.

The rest of the chapter is as follows. In Sec. 6.2 we review the literature on cloth
simulation and deep learning based methodologies on garments. Next, Sec. 6.3 de-
scribes the methodology we propose. Then, Sec. 6.4 contains an analysis on the dif-
ferent metrics, an ablation study and a comparison with the state-of-the-art. Finally,
in Sec. 6.5 we discuss limitations and future research.

6.2 Related Work

Cloth simulation. Computer graphics has been tackling the cloth animation prob-
lem for decades now. The first advances in the field were done by (Weil, 1986), as
static geometry based models. Later, researchers developed elastic continuum mod-
els for cloth (Feynman, 1986; Terzopoulos et al., 1987; Baraff et al., 1998; Carignan et
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al., 1992) that permit dynamic simulations. On the other hand, other authors (Hau-
mann, 1987; Breen et al., 1992; Provot et al., 1995) noted cloth is not a continuum,
but a combination of mechanical interactions between cloth yarns. From here, al-
ternative particle based formulations for cloth were developed, like the mass-spring
model. Later, the work of (Baraff et al., 1998) presented triangle-based formulation
for cloth that allowed fast simulation of complex garments. To this day, this work
is still the foundation of many current methodologies for cloth simulation (Narain
et al., 2012; Pfaff et al., 2014). Later, (Kaldor et al., 2008; Kaldor et al., 2010) proposed
modelling cloth at yarn-level to achieve highly realistic behaviour. These method-
ologies –while accurate– are computationally expensive, therefore, not suitable for
many applications that demand real-time performance. Simpler, more efficient for-
mulations have been developed in favor of a faster simulation (Müller et al., 2007;
Liu et al., 2013; Macklin et al., 2016) at the cost of accuracy or realism. Nonethe-
less, realistic simulation of fine cloth dynamics in real-time is still unfeasible with
standard simulation. Specially as the number of cloth triangles increase and consid-
ering some of these real-time applications often require computational resources for
other tasks. Subspace physics has proved a valid fast alternative for soft body sim-
ulation (Teng et al., 2014; Pan et al., 2015). This alternative has also been proposed
for clothing (De Aguiar et al., 2010; Kim et al., 2013; Hahn et al., 2014), although in
practice, collisions are not properly handled. Then, while computer graphics offers
realistic and accurate solutions, efficient real-time cloth animation remains an open
challenge.

Deep learning. During recent years, neural networks have proved their useful-
ness in many complex tasks. One of their main advantages is a fast inference time.
Then, given their success in challenging 3D problems (Socher et al., 2012; Richardson
et al., 2016; Qi et al., 2017; Han et al., 2017; Arsalan Soltani et al., 2017; Omran et al.,
2018; Madadi et al., 2020), researchers have already turned to deep-based solutions
for garment animation. Most of the current literature on the domain relies on super-
vised learning (Gundogdu et al., 2019b; Wang et al., 2019; Patel et al., 2020; Bertiche
et al., 2020; Bertiche et al., 2021d; Santesteban et al., 2021). To this end, it is neces-
sary to run hundreds or thousands of offline physics based simulations to gather the
data required for training. Data gathering needs to be repeated for every garment,
body and fabric parameters. This hurts the scalability of these solutions. Addi-
tionally, supervised learning is biased towards lower frequencies, yielding overly
smooth garments. Moreover, supervision does not guarantee physical constraints
are satisfied. Finally, simulators display a chaotic behaviour. Garment simulation
on top of very similar body motions may result in considerably different outputs.
This translates as noisy data, which hinders training. Authors of (Bertiche et al.,
2021c) proposed PBNS, an alternative unsupervised solution that does not suffer
from the drawbacks related to simulated data. To do so, they propose formulating
physically based constraints as energy losses. This permits learning garment defor-
mations without ground truth data. Nonetheless, their formulation is purely static,
meaning they do not handle cloth dynamics. Similarly, SNUG (Santesteban et al.,
2022) uses the same unsupervised scheme as PBNS to learn garment deformations.
With the only addition of an inertia loss term from the physics based simulation lit-
erature (Liu et al., 2013; Martin et al., 2011; Gast et al., 2015) to model dynamic defor-
mations. However, in this work we will see how their adaptation of the inertia term
is not modelling true cloth dynamics. Following the trend of unsupervised learn-
ing for garment animation, we present the first work able to learn cloth dynamics
without ground truth data. Thus, defining the first general solution for neural cloth
simulation. Moreover, we propose a novel model architecture that automatically
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disentangles static and dynamic cloth deformations. This, in turn, shows improved
performance and interesting novel properties.

6.3 Methodology

The goal of this work is to define a deep-learning based methodology for the gar-
ment animation problem. This problem corresponds to the animation of cloth draped
around skinned 3D body models. Following the current trend (Bertiche et al., 2021c;
Santesteban et al., 2022), we propose an unsupervised training inspired on phys-
ically based simulation. We additionally achieve a disentanglement of static and
dynamic cloth deformations by considering the nature of both cases in our model
design.

6.3.1 Neural Cloth Subspace Solver

Defining the problem. Our methodology for learning cloth dynamics unsupervis-
edly is inspired in classical computer graphics physical simulation (Baraff et al.,
1998; Müller et al., 2007; Liu et al., 2013). To this end, cloth is presented as a par-
ticle system x ∈ RN×3. Cloth solvers compute the cloth configuration at instant t
from the previous cloth state, which is defined by the particle locations and veloc-
ities at t − 1. Additionally, the solver must also consider external forces –colliders,
wind, etc– that act on the cloth. Within the scope of this work –garment animation–
the external forces correspond to collisions with the underlying skinned 3D model
draped with the clothes and gravity, which is constant. Then, given a skinned 3D
model parametrized by its pose and location θ, the solver can be written as:

xt = f (θt, xt−1, vt−1), (6.1)

where v is the particle velocities. Velocities will depend on the current and previous
particle locations, therefore, we can rewrite the expression as xt = f (θt, xt−1, xt−2).
Likewise, we have that xt−1 = f (θt−1, xt−2, xt−3). The same could be done for xt−2,
xt−3 and so on and so forth. This yields the following:

xt = f̂ (θt, θt−1, θt−2, ..., θ0, x0). (6.2)

Thus, assuming the 3D body model parametrized by θ and the gravity are the only
external forces, the cloth can be fully parameterized by the body pose history –or
motion– Θt = {θt, θt−1, θt−2, ..., θ0}. We can intuitively assume that early poses
will have less impact on the current cloth state. This allows to safely discard poses
outside a given temporal window. To ensure the problem remains well-posed, the
temporal window size should be sufficiently large. Garments that may show more
complex, longer dynamics –like dresses or skirts– will require a larger temporal win-
dow size than garments that will not show complex dynamics –like tight pants. We
also identify separately the static case, a special case of garment animation in which
there is no body or cloth motion. This corresponds to the result of draping a body
staying still in a given pose during an infinite –long enough– amount of time. For
such case, we have xt = xt−1 = ... = x0 and θt = θt−1 = θ0, hence, the cloth can
–and must– be fully parametrized using only θt.

Cloth subspace. Once we have been able to establish a relationship between
the body motion space and cloth space, we are implicitly declaring that a clothing
subspace Z ⊂ Rd exists (with d ≪ N × 3). That is, Θt → zt → xt, with zt ∈ Z .
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Then, inspired on subspace physics (De Aguiar et al., 2010; Kim et al., 2013; Hahn
et al., 2014), our proposed model must be able to solve the next cloth configuration
from the current subspace encoding:

zt+1 = g(θt+1, zt), (6.3)

where g(·) corresponds to a neural cloth subspace solver. Additionally, it must be
designed in a way that ensures that given a static sample –no motion– the subspace
encoding should not change, zt = zt−1 = ... = z0. The optimal solution must
naturally fall back to a static formulation when there is no input body motion. We
know the static solution to be a special case of the general problem, likewise, the
subspace of all static cloth states zS ∈ ZS is a subspace of the subspace of all possible
cloth states, ZS ⊂ Z , in the same way that the body pose space is a subspace of the
body motion space. That is:

θt → zs
t , Θt → zt. (6.4)

We know the pose space to be a single continuous manifold, henceforth, due to
eq. 6.4, the static cloth subspace must also be a single continuous manifold. Simi-
larly, we can extend this reasoning to the motion space and the full cloth subspace.
We can then conclude that subspace Z is a higher-dimensional manifold around the
static subspace ZS.

Neural network. Motivated by all of the exposed, we propose an encoder-decoder
recurrent neural network as a suitable architecture for this problem. The model takes
body motion Θt as input, encodes it as zt and finally decodes it into the predicted
cloth xt. Also, we present a novel disentangled encoder that will enforce –by design–
the expected static and dynamic behaviour. We will show how this results in an
improved performance and explainability. Moreover, by disentangling static and
dynamic deformations, we allow controllability on the level of motion in our predic-
tions. This property will help artists to achieve the desired looks for a given appli-
cation. We also define a novel motion augmentation technique that greatly increases
model robustness. As it is usual in the literature (Gundogdu et al., 2019b; Bertiche
et al., 2020; Bertiche et al., 2021d; Patel et al., 2020; Bertiche et al., 2021c; Santesteban
et al., 2022), the network predicts cloth deformations in rest pose. Then, the garment
is skinned w.r.t. the underlying body skeleton and it is posed along the body mesh.

6.3.2 Body Motion Descriptors

As explained, to fully parametrize the garment state xt we need the body pose
history, which to we refer as body motion Θt. To keep the problem tractable, we
safely truncate the pose history using a reasonable temporal window size. Window
size will be directly related to the maximum cloth motion length that our network
will be able to learn. Looser garments –like skirts– require longer temporal win-
dows. For the rest of the chapter, we will refer to the truncated pose history as
Θt = {θt, θt−1, θt−2, ..., θt−n}. Then, during training, we predict each sample xt us-
ing Θt as network input. For inference, the model can be fed with indefinitely long
sequences, as new poses θ are used to update the hidden recurrent state.

The naive baseline solution would be to feed body pose sequences –as joint
orientations– along the global velocity. While this would suffice to avoid an ill-posed
problem, this representation is sub-optimal and dynamics are entangled with static
information. The model would need to learn by itself to extract body motion infor-
mation from the input poses. This increases the required training data and time, as
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well as model capacity, while hurting generalization. We propose a set of disentan-
gled descriptors more suitable for this problem.

Static descriptors. To describe the body pose it is common to use joint relative
orientations (relative to the parent joint). The usual axis angle or quaternion rep-
resentations suffer from a many-to-one problem and discontinuities in the rotation
space. Thus, we opt for the 6D descriptors proposed in (Zhou et al., 2019). Then, we
observe relative orientations are local descriptors. Garment deformations depend
on the global body configuration. Small changes in the first joints of the kinematic
tree can lead to significantly different garment states. Therefore, samples close to
each other in the input space would need to be mapped to points very far from
each other in the output space, which makes training and generalization more chal-
lenging. On the other hand, using global joint orientations would make the input
space extremely large and noisy. Rotations around the gravity axis would create
completely different inputs, while the output should remain the same. We propose
using for each joint –besides the local 6D descriptor– a unit vector with the unposed
direction of the gravity. That is:

ĝj = R−1
j g/g, (6.5)

where j is the joint index, R is the rotation matrix corresponding to the global joint
orientation, g is the gravity vector and g = 9.81m/s2. This descriptor contains in-
formation about the global orientation of each joint and it is invariant to rotations
around the gravity axis. Additionally, it will be correlated with the direction of local
cloth deformations –in rest pose– due to gravity. We concatenate our local and global
descriptors, yielding a 9-dimensional feature array per joint, that is, θS ∈ RK×9

where K is the number of joints.
Dynamic descriptors. To describe body motion we take the derivatives in time of

the joint orientations and locations. Orientation derivatives are computed from the
static descriptors explained in the previous paragraph. Then, location derivatives
are computed from the joint locations in space. Note that these derivatives would
suffer from the same issues as the global joint orientations, i.e. a large and noisy
input space. We address the issue by unposing derivatives as in eq. 6.5 without nor-
malizing them. This greatly reduces the input space as well as defining a descriptor
that it is more strongly correlated to the local cloth dynamic deformations due to
motion, both in magnitude and direction. We assume no air resistance, therefore,
dynamic cloth deformations will appear only when the body is under acceleration.
Hence, we use as motion descriptors the first derivative of joint orientations –any ro-
tation implies an acceleration– and the second derivative of the joint locations. Both
descriptors are concatenated into a 12-dimensional descriptor per joint, which gives
us θD ∈ RK×12.

Skinned 3D models have often many joints in hands, feet and face which are
unlikely to be relevant for garment dynamics. We remove these joints from the input.

6.3.3 Model

In this section we present our model architecture. As explained, we propose a re-
current encoder-decoder network architecture. Our encoder is composed of two
different modules, a static and a dynamic encoder, each fed with the corresponding
descriptors. Both encodings are combined by addition to be later decoded into local
cloth deformations. Finally, the garment is posed along the body. Fig. 6.2 depicts
our model.
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FIGURE 6.2: Model architecture. We design our model as a recurrent encoder-decoder. The
input of the model is the body motion as described in Sec. 6.3.2. The encoder is disentangled
into a static a dynamic encoder, each fed with the corresponding descriptors. Dynamic en-
coder layers have no bias, ensuring a direct correlation between input motion and dynamic
activations. Encodings are combined by addition and decoded into local cloth deformations.
Finally, the garment is skinned along the body.

Static encoder. We implement this encoder as a set of 4 fully connected layers.
The encoder is fed only with the current pose θS

t , which is flattened first into a 9K-
dimensional array. The output of the encoder is a static latent code zS

t .
Dynamic encoder. This module is implemented in two blocks. A set of fully

connected layers and a Gated Recurrent Unit (GRU). First, 2 fully connected layers
are applied to per-joint descriptors individually –as if joints were samples– to obtain
a high-level feature array per joint. We empirically observed this to be beneficial
since dynamic descriptors are a concatenation of different modalities. Later, the ar-
ray is flattened and fed to an additional 2 fully connected layers. Finally, the output
is passed through the GRU, which combines it with its hidden state –that encodes
the history of dynamics– to obtain the dynamic latent code zD

t . Note that zD
t is com-

puted with the whole motion Θt. We observe adding multiple GRUs makes training
unstable and hurts model inference speed. All layers of the dynamic encoder have
no bias. Without bias, zero input translates to zero output (this is not necessarily
true the other way around). This ensures that a static sample will have a null zD

t ,
since time derivatives –dynamic descriptors– will be zero. Thus, addition with zS

t
will have no impact. Furthermore, samples with high body motion will generally
produce high values for zD

t , creating high dynamic deformations due to a high per-
turbation of zS

t . Additionally, the hidden state of the GRU will fade away to zero as
long as new poses with no motion are being fed to the model. This means that the
latent code z will naturally fall back to zS when motion stops. This also guarantees
that, if no motion is present, neither z nor the output will change, as it will depend
only on θt. It would not be possible to ensure this with an entangled encoder or bi-
ases in the dynamic branch. Finally, this design allows padding sequences with still
frames without altering the value of zD

t . This property is convenient during training.
Separate encoders have an additional advantage. Their respective input spaces

have less variability. Because of this, their latent codes will be more meaningful
and they will generalize better. An entangled encoder would need to learn an input
space with combinations of static and dynamic descriptors. This would make the
task more challenging.
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6.3.4 Training

We train our model unsupervisedly by applying losses inspired in physically based
simulation, following the trend of (Bertiche et al., 2021c; Santesteban et al., 2022).
Losses are implemented as energy functions of the physical system composed by
cloth and body. As training progresses, the network learns to predict garment states
that satisfy the energy constraints.

Cloth Model. In the computer graphics literature we can find multiple ways of
defining cloth models. From a simple mass-spring model to more sophisticated con-
tinuous approaches that compute triangle deformation energies (Baraff et al., 1998;
Liu et al., 2013; Narain et al., 2012). To be able to use a cloth formulation within a
deep learning framework, the only requirement is to be differentiable. This makes
our approach compatible with most cloth models, allowing them to be freely inter-
changed. For this work, we implemented mass-spring model as in (Bertiche et al.,
2021c), a squared version of the continuum formulation of (Baraff et al., 1998) and
Saint Venant Kirchhoff elastic material model as in (Santesteban et al., 2022). As a
loss Lcloth, this term will penalize in-plane deformations.

Bending Loss. We implement our bending term for out-of-plane deformations
as the squared difference of the angle between adjacent faces w.r.t. the angle in the
rest garment (Pfaff et al., 2014). Then, for each pair of adjacent faces:

Lbending = kb
l2

8a
(ϕt − ϕR)2, (6.6)

where kb is the bending stiffness, l is the length of the common edge, a is the sum-
mation of the area of both faces, ϕt is the dihedral angle and ϕR is the dihedral angle
in the rest garment. With this formulation, the garment will try to retain its original
shape. Scaling the loss as a function of the edge length and triangles area makes it
agnostic to mesh resolution and connectivity.

Collisions. In computer graphics simulations, cloth interaction with external
objects is obtained by detection and solving of collisions. Similarly, we implement
a loss term that penalizes collisions and creates repelling gradients, pushing cloth
vertices outside the body (Bertiche et al., 2021d; Bertiche et al., 2021c):

Lcollision = kcmin(d(xt; θt)− ϵ, 0)2, (6.7)

where kc is a balancing factor, d(·; θ) is the signed distance to a body mesh parametrized
by θ, with negative values inside, and ϵ is a small threshold to ensure robustness.

Inertia Loss. Following the laws of motion, a moving object will retain its veloc-
ity unless forces act on it. Thus, differences in the location of the cloth particles xt and
the projected location obtained with the previous velocity xproj

t = xt−1 + vt−1∆t =
2xt−1 − xt−2 are due to other acting forces. A similar observation has already been
made in the context of simulation (Liu et al., 2013; Martin et al., 2011; Gast et al.,
2015). This led to the possibility of obtaining the next garment state by finding the
critical points of the following expression:

h(xt) =
1
2
(xt − xproj

t )TM(xt − xproj
t ) + ∆t2E(xt), (6.8)

where M is the mass matrix of the particle system, ∆t is the time step of the simula-
tion and E(·) is the potential representing internal and external forces. This leads to
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the following loss term for each particle:

Linertia =
1

2∆t2 m(xt − xproj
t )2, (6.9)

where m is the particle mass. Since xproj
t depends on xt−1 and xt−2, we need to run

the model for Θt−1 and Θt−2 as well. It is crucial not to back-propagate gradients
through xt−1 and xt−2. Otherwise, while the loss value gets lower, the model will
not show true cloth dynamics. The reason for this is that xt would have influence
in the location of xt−1 and xt−2 by generating pulling or pushing gradients. Thus,
information would be travelling back in time. Note how simulation based related
works from which we extract this loss term do not optimize xt−1 or xt−2 to satisfy
eq. 6.8. One important observation is that this loss will penalize differences in ve-
locities. Thus, whenever the underlying body skeleton joints present no rotations
or accelerations, there will not be accelerations in the cloth –since it is attached by
blend weights to the skeleton– and gradients from this term will be zero. Then, no
dynamic deformations would be necessary to satisfy the loss. This is consistent with
the explanation in Sec. 6.3.2 regarding the choice of dynamic descriptors.

Gravity. As previous unsupervised approaches, we include the effects of gravity
by implementing its potential energy as a loss:

Lgravity = −Mxtg. (6.10)

This term will push vertices in the direction of the gravity, weighted by particles
mass and gravity.

6.4 Results

In this section we explain the results obtained with the proposed methodology. First,
we describe the data that we use, as well as the experimental setup. Next, we de-
fine the different metrics that we use to evaluate our methodology along with a
discussion on how to interpret them. Then, we explore the impact of different cloth
material models, followed by an ablation study where we analyze the value of each
contribution. Later, we compare our methodology with the current state-of-the-art.
Finally we show a novel motion control property that arises thanks to our proposed
disentangled architecture.

6.4.1 Experimental setup

To run our methodology for a given skinned 3D body model we need a dataset of
pose sequences. To do so, we gather a few 3D avatars and pose sequences from
Mixamo1. The motions include a few tens of variations for different kind of ac-
tions: walking, running, jumping, turning and spinning. Note that some motions
contain combinations of these actions. This totals around 450 motion sequences,
containing around 45000 poses. For each action, we use 5% for validation and 10%
for test. Additionally, in order to compare with state-of-the-art methodologies –
PBNS (Bertiche et al., 2021c) and SNUG (Santesteban et al., 2022)– we use AMASS
dataset (Mahmood et al., 2019) for SMPL model (Loper et al., 2015a). For fairness, to
allow comparison against SNUG public checkpoint, we train PBNS public code and
our methodology on the same data. While poses are discrete in time, we implement

1https://www.mixamo.com/
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a continuous sampling by using Slerp (Shoemake, 1985). This allows training our
methodology with arbitrary time steps ∆t. During training, samples Θ are batched.
For each sequence Θt, we predict the garment for the last 3 time instants to compute
Linertia. As explained, it is crucial to back-propagate the inertia loss only through xt.
While the static loss terms can be safely applied to all 3 predictions, we observe this
creates a sampling bias that hurts performance.

Balancing terms of each loss are related to desired fabric properties. For the cloth
term, the values will depend on the chosen cloth material model. Usually within
the range [5, 15] for structural stiffness and [0, 1] for shearing. For bending, we use
values in the range [1e−5, 1e−4]. For collisions, we set kc to a value similar to the
chosen structural stiffness and a threshold ϵ = 4mm. Higher values for kc will com-
promise other metrics without improving generalization. Collision-free predictions
will depend mostly on training data distribution. Particle mass m –or mass matrix
M– is computed from vertex area –from the garment mesh representation– and the
chosen fabric surface density. Then, the temporal window will depend on the loose-
ness of the garment. We go from 0.5 seconds for tighter garments up to 2 seconds
for looser garments. Training times until convergence will differ greatly depending
on garment, body and motions. From 1 hour for simpler garments up to a day for
garments that show complex and rich dynamics. Inference is extremely fast, as we
show in Tab. 6.4. We refer to the supplementary code for additional details. The
code will be publicly released.

6.4.2 Metrics

Traditionally, specially for supervised approaches, lower values for error metrics in-
dicate better predictions. This is not the case for this specific unsupervised problem.
Furthermore, the metrics will behave differently for the static case. For that reason,
it must be considered and evaluated separately.

Cloth Model. This metric must be related to the cloth material model used dur-
ing training. For mass-spring, edge elongation is the most suitable. For continuous
formulation, the strain or triangle deformation is a better choice. This metric will
measure in-plane cloth deformations. Cloth is resistant to stretching forces, thus,
lower values are desired in this case. Some formulations allow modelling shearing
forces separately. Cloth is not resistant to shearing, and thus, lower values do not
necessarily imply better predictions.

Bending. Measured as the average error on dihedral angles w.r.t. rest angles for
each pair of adjacent faces. Cloth is not resistant to bending. Lower is not neces-
sarily better. A higher bending stiffness will reduce this error, but generate different
wrinkles. Thus, a lower error does not imply better predictions, but a stiffer fabric.
Note that a null bending error would only be achieved by the template garment in
rest pose. Nonetheless, extremely high values for this metric might suggest a failed
simulation. Ultimately, this property must be assessed qualitatively.

Collisions. Expressed as the percentage of vertices placed within the body. Col-
lisions are to be avoided. For this metric, lower values are desired. For the dy-
namic case this metric shows an interesting behaviour in the validation data. First,
it rapidly decreases until a minimum. Afterwards, as the network learns to predict
cloth dynamics, the metric slightly increases until it plateaus. This behaviour does
not appear using a static formulation.

Gravity. Computed as the potential energy of the predicted garments. This en-
ergy is defined relative to an arbitrary 0. Then, it is not possible to define a goal
for this metric. Its value will also depend on the garment, fabric density, 3D body
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FIGURE 6.3: Comparison of cloth material models. Our methodology is compatible with
any differentiable formulation for cloth. We test and compare three different ones as a static
optimization problem: A) mass-spring model as in (Bertiche et al., 2021c), B) the continuous
formulation proposed by (Baraff et al., 1998) and C) the Saint Venant Kirchhoff material
used in (Santesteban et al., 2022). For static optimization, we can use gravity as a measure of
convergence.

and pose data. Static case: the optimal solution is achieved when the garment has
reached an equilibrium state. For this case, given the same aforementioned experi-
ment conditions, lower is better. Other metrics must be considered as well. A lower
cloth stiffness would allow further stretching in the direction of gravity. In such case,
we could not conclude the approach converges to a more optimal solution. On the
other hand, we can state that training converged when this metric plateaus. Dy-
namic case: adding motion to the problem changes the behaviour of this metric. For
example, a spinning skirt will raise against gravity when dynamics begin to appear,
increasing the value of this metric. Likewise, jumping sequences will make the gar-
ment float when the falling motion begins. This means the garment is not always at
its lowest position. For this reason, it is not possible to conclude that lower values
are better. Usually, the static formulation gives lower values for gravity. Therefore, a
dynamic model with lower gravity metric might be due to a lack of cloth dynamics.

Inertia Loss. Measured as the error between xt and xproj
t weighted by the particle

mass. As explained in Sec. 6.3.4, lower values do not translate into true cloth dynam-
ics. We empirically observe it behaves the other way around. As training advances
and cloth dynamics are being learnt, the value of this metric increases. On the con-
trary, under the static formulation, this metric will usually decrease. Similar to how
gravity metric indicates model convergence for the static case, this metric does the
same for the dynamic case. Convergence in training but divergence in validation
shows overfitting. This metric also gives an intuition of the level of motion in the
predictions. The value of this metric and its evolution during training will greatly
depend on garment, fabric, body and motion data.

6.4.3 Cloth Model

We analyze the effect of different cloth material models. To this end, we simulate
in a static fashion the same garment, body and poses with different cloth models.
We test a mass-spring formulation used by authors of (Bertiche et al., 2021c), the
continuous formulation of (Baraff et al., 1998) and the Saint Venant Kirchhoff (StVK)
elastic material model as in (Santesteban et al., 2022). We adapt the material model
of (Baraff et al., 1998) by squaring their constraints for stretching and shearing. We
depict the obtained results in Fig. 6.3. As shown, the chosen cloth formulation has al-
most no impact on the qualitative result. Nonetheless, we observe some differences
worth mentioning. As opposed to continuous formulations, mass-spring fabric pa-
rameters depend on mesh resolution and connectivity. On the other hand, we find
that StVK formulation has much more difficulties achieving convergence. We can
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FIGURE 6.4: Training progress for different batch sizes. The upper row corresponds to static
experiments. The lower row corresponds to dynamic experiments. Using bigger batch sizes
significantly increases convergence of the predictions. On the dynamic problem, bigger
batches result in a more stable training.

see this in the gravity plot adjoined to Fig. 6.3. This formulation may be sub-optimal
within an optimization framework. Finally, the formulation of (Baraff et al., 1998)
allows explicit control of shearing stiffness. We observed each cloth model scores
lower in their respective strain –as expected– and thus, it is not useful to compare
strains quantitatively.

6.4.4 Ablation

Batch size. Unsupervised garment animation is quite sensitive to batch size. The
reason for this is as follows. Model evolution during training is similar to physical
simulation. In the static case, each input sample θi has a theoretical optimal output
xi. Under supervised training, gradients in the output will point directly towards xi,
with stronger magnitudes for more erroneous predictions. This is not the case for
unsupervised garment animation. Gradients will try to greedily update the output
cloth by pointing to an intermediate state x̂i, similar to how a simulation would com-
pute intermediate states until achieving the fully converged solution xi. Moreover,
there is no guarantee that x̂i will be closer in space to xi than previous predictions.
The path the model has to follow to convergence is not straight-forward. Further-
more, gradient magnitudes cannot be used as a measure of convergence, except in
the extremely unlikely case that their value is 0 for all the samples in our dataset.
On top of that, we have to consider special constraints found in deep learning. Net-
work updates, specially for small batches, can undo the work of previous iterations.
Then, the network gets stuck in sub-optimal local minima. This produces stiff gar-
ments with wrinkling patterns that repeat across different poses. With dynamics, the
problem becomes more complex, since the gradients for xt depend on xt−1 and xt−2,
which are also predictions. Fig. 6.4 shows training metrics for static and dynamic
problems with different batch sizes. For the static case, we see that increasing batch
size greatly improves model convergence. For the dynamic case, we see that using
a small batch size makes the training noisy. There is no plot for batch size 16 for
dynamics since small batches make training unstable and usually fails.

Static descriptors. We study the impact of the proposed static descriptors under
a static formulation. This means training without Linertia. We test three different
static descriptors. Tab. 6.1 contains the results obtained. The first row corresponds
to raw pose data as quaternions or axis angle representations. Next, 6D descriptors
as in (Zhou et al., 2019). Finally, the static descriptors proposed in Sec. 6.3.2. The
proposed descriptors present fewer collisions, showing better generalization. They
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Strain (mm) Bending (rads) Collision (%) Gravity

Raw 0.35463 0.0168 0.087418 0.1845
6D 0.37374 0.01372 0.10778 0.1811
6D+G 0.35145 0.01475 0.073881 0.1765

TABLE 6.1: Static descriptors ablation. We run experiments for each static descriptor under a
static formulation. First, raw joint orientation data as quaternions or axis angles. Second, 6D
descriptors as in (Zhou et al., 2019). Finally, our proposed static descriptors. Our approach
shows better generalization and convergence without compromising cloth integrity.

also achieve higher convergence, since gravity is lower. Finally, we see also a lower
strain value, which means it did not compromise cloth integrity to minimize the
other metrics.

Dynamic descriptors. We test three different alternatives as motion descriptors.
First, as baseline, we use body pose and root joint velocity. This descriptor is the
minimum requirement to avoid an ill-posed problem. Second, we gather joint ro-
tation speed and accelerations without unposing (full-space). Finally, our proposed
descriptors, after unposing joint accelerations (local-space). Fig. 6.5 depicts the train-
ing plots for collisions and inertia. We omit other metrics since their values barely
differ. At left, we have collision metric. At right, inertia metric. The first row cor-
responds to training set plots, and the lower row to the validation set. It is inter-
esting to notice that training plots (top row) are almost the same. For validation
(bottom row), we observe full-space descriptors show more collisions. These de-
scriptors have a higher variability. Thus, it is a much more challenging task for the
network to learn the whole input space. This results in worse generalization. The
other two descriptors are local, then, validation set distribution is more likely to fall
in the same distribution learnt by the network. For the inertia metric, training and
validation plots –although differ in absolute values– show similar curves. We see
the baseline features diverge from the other curves. This indicates a lower gener-
alization. The model has difficulties in extracting meaningful motion information
from the baseline representation. Providing of explicit joint rotation speeds and ac-
celerations helps the network to better learn the dependency between body motion
and dynamic cloth deformations.

Architecture. We perform an analysis on model architecture by comparing our
disentangled approach against a single encoder. For this experiment, the entangled
encoder is fed with static and dynamic descriptors. Next, the GRU receives the out-
put encoding. Finally, the decoder predicts garment deformations. The result of
this comparison is shown in the first two rows of Tab. 6.2. First row corresponds
to a single entangled encoder. The second row corresponds to the proposed dis-
entangled architecture. We see that separate encoders have better generalization
–lower strain and collisions– than a single encoder. Additionally, disentangled en-
coders make training much more stable. Training with an entangled encoder usually
fails. This justifies our motivations in the network design.

Temporal window. As presented in eq. 6.2, predictions need of the pose history.
We analyze the effect of different temporal window sizes. For this experiment, we
neurally simulate a t-shirt with a window size of 0.1 seconds, 0.5 seconds and 1 sec-
ond. We present the metrics of this experiment in Fig. 6.6. As we can see from the
inertia metric, a smaller window gives a lower level of dynamics. During training,
a reduced input data has a direct impact on the discriminative power of the net-
work. The model cannot properly differentiate motions that are similar within the
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FIGURE 6.5: Ablation on dynamic input features. Baseline features contain body pose and
root joint velocity. The other experiments contain body pose and joint rotation speeds and
accelerations. For the local-space features, we unpose accelerations. We evaluate collision
(left) and inertia (right) metrics. Upper row corresponds to training data. Lower row to val-
idation data. We see local-space features generalize better –fewer collisions– while showing
a similar level of dynamics as the training data –same inertia curves. We omit color labels
for training plots since they are almost the same.

Strain Collisions (%) Gravity Inertia

Entangled 9.7840 1.101 1.068 1.889
Disentangled 8.2391 0.694 1.066 1.891
+Mirror 8.2146 0.505 1.067 1.864
+Aug. motions 7.6241 0.323 1.068 1.905

TABLE 6.2: Ablation study on network architecture and data augmentation. Experiments
with + contain the improvements from the previous rows. First row: single encoder. Second
row: disentangled encoder. Third row: pose mirroring. Last row: motion augmentation.
First and second experiment have no data augmentation. Second, third and fourth exper-
iment have the same architecture. We see how a disentangled encoder and the proposed
data augmentations have a beneficial impact. Additionally, we see gravity and inertia show
no significant difference. Therefore, these improvements do not compromise other cloth
properties.
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FIGURE 6.6: Ablation on temporal window size. We compare neural simulation metrics for
a t-shirt with a temporal window size of 0.1 seconds, 0.5 seconds and 1 second. We can see
the level of dynamics –inertia metric– is much lower with a small temporal window. We
can also observe a slight decrease in gravity metric in this case. This is an example of the
effect of dynamics on gravity explained in Sec. 6.4.2. On the other hand, we see that further
increasing temporal window size has almost no impact in the results. We omit other metrics
since their values are almost equal.

0.1 second window, but have a different past. Because of this, predictions converge
to the average of the motions that are close to each other in this reduced input space,
which lowers the level of dynamics. Additionally, we observe a lower value for the
gravity metric for the smaller window size. This is related to the discussion on the
effect of dynamics on gravity in Sec. 6.4.2. On the contrary, we observe an even
larger temporal window size has no significant impact in cloth dynamics –for this
specific case– but increases the required VRAM and time for training. Therefore, for
each specific garment, body and motions, it is important to find a window size that
achieves a compromise between dynamics and efficient training. Note that during
inference, sequence length can be arbitrarily large. We additionally test the effect of
∆t by training at different frame rates, 15 and 60 (for all other experiments the frame
rate is 30). We notice the model is able to learn realistic cloth dynamics even at lower
frame rates. Furthermore, at 15 fps training is significantly faster. On one hand, the
amount of samples is halved. On the other hand, for the same temporal window,
the length of the pose sequences is smaller, which means less operations. Finally, the
gradients generated by Linertia are larger, and dynamics take less time to appear. On
the contrary, increasing the frame rate makes the task much more challenging for
the same reasons (but opposed). Nonetheless, training at higher frame rate allows
learning finer cloth dynamics.

Augmentation. As the model learns cloth dynamics, collisions in the validation
set increase. We study the possibility of mitigating this effect with data augmenta-
tion. On one hand, we use standard pose mirroring with probability of 50%. On the
other hand, leveraging our disentangled approach, we devise a novel motion aug-
mentation technique. To do so, during training, we shuffle the dynamic latent code
zD for a portion of the samples from each batch (20% in this experiment). We can
apply only the static loss terms to the augmented samples. We do not back-propagate
gradients to the encoders for these samples. This will give the decoder more data
points from Z and around ZS, increasing generalization. Tab. 6.2 shows the effect of
the different augmentations. Second row, no augmentation. Third row, pose mirror-
ing. Last row, motion augmentation. We see that for both augmentations, strain and
collision metrics are noticeably reduced, specially for motion augmentation. More-
over, we see it almost completely mitigates the increase of collisions as cloth dynam-
ics are being learnt. This is shown in Fig. 6.7, left plot (collisions). It is also important
to notice that gravity and inertia metrics show very little difference. This means the
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FIGURE 6.7: Data augmentation ablation. Collision (left) and inertia (right) metrics evolution
for validation set during training for different augmentation techniques. First: no augmen-
tation. Next: pose mirroring. Finally, a novel motion augmentation technique. The latter
is only possible thanks to disentangled encoders. As cloth dynamics are being learnt by
the network, collisions slightly increase. Pose mirroring reduces this effect, while motion
augmentation mitigates it almost completely. We also see the evolution of cloth dynamics
–inertia metric– is not compromised by these changes.

FIGURE 6.8: Sample sequence. We illustrate predictions for a dress during a spinning mo-
tion. It can be seen how the dress coils up the mannequin body as it spins.

generalization improvement does not compromise other properties.
We show qualitative results of our methodology for different garments, bodies

and motions in Fig. 6.1, 6.8 and 6.9. Fig. 6.1 shows results for SMPL model with
different body shapes and the mannequin model from Mixamo. The samples show
rich and meaningful cloth dynamics. Fig. 6.8 depicts predictions for a dress during
a spinning sequence. As observed, as the motion begins, the dress coils up the man-
nequin body as we would expect to happen. Finally, in Fig. 6.9 we can see how our
methodology can generalize to different articulated 3D bodies and garments.

6.4.5 State-of-the-art Comparison

We evaluate our methodology against recent unsupervised approaches for garment
animation. On one hand, a quasi-static solution, PBNS (Bertiche et al., 2021c). On
the other hand, a methodology that claims to model dynamic cloth deformations,
SNUG (Santesteban et al., 2022). SNUG authors provide of a checkpoint we use
for comparison. Nonetheless, their methodology is adapted to work with the body
shape variability of SMPL. For fairness, we also implement and train their method-
ology –based on their public code and paper– using constant body shape. Tab. 6.3
shows quantitative results for each model. Qualitative evaluation is included in
Fig. 6.10. We show samples for different body motions: a) jumping, b) leap forward,
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FIGURE 6.9: Qualitative samples. Our methodology is compatible with any articulated 3D
body and garment. Here we show predictions obtained after neural simulation of different
garments draped on different bodies.

FIGURE 6.10: Qualitative comparison for different kind of motions. The motions are: a)
jumping, b) leap forward, c) quasi-static pose, d) quasi-static pose, e) jumping, f) dancing
jump, g) flapping arm motion and h) fast spin. We use PBNS public code. For samples a,
b, c and d, we use SNUG public checkpoint. For samples e, f, g and h, we implement and
train SNUG based on authors public code and paper. Since PBNS uses a static formula-
tion, it shows no cloth dynamics. Then, we see SNUG appears to be unable to show any
meaningful dynamics. This is mainly due to an incorrect implementation of the inertia loss.
Additionally, looking at the quasi-static samples (c and d), we notice wrinkling patterns that
repeat for most poses. This gives a stiff and less realistic look. Finally, our approach shows
dynamic cloth deformations consistent with body motion.
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Strain Bending Collision (%) Gravity Inertia

PBNS 3.18 0.20 0.274 0.6274 0.937
SNUG 3.89 0.20 0.283 0.6299 0.553
Ours 4.2 0.15 0.276 0.6403 1.219

TABLE 6.3: Quantitative comparison with state-of-the-art: PBNS (Bertiche et al., 2021c) and
SNUG (Santesteban et al., 2022). SNUG achieves a much lower value for the inertia term.
Nonetheless, see in Fig. 6.10 that their approach shows no cloth dynamics. As explained in
Sec. 6.4.2, lower values do not translate to cloth dynamics.

c) quasi-static pose, d) quasi-static pose, e) jumping, f) dancing jump, g) flapping
arm motion and h) fast spin. We use PBNS public code. We know PBNS to be a
static solution and therefore, as expected, it does not show dynamic cloth deforma-
tions. It is interesting to notice that for quasi-static samples, our solution and PBNS
converge to a similar garment. This is the expected behaviour, since our network de-
sign ensures the model naturally falls back to a static formulation when there is no
input motion. For SNUG, samples a, b, c and d are obtained with their checkpoint.
Samples e, f, g and h are obtained with our implementation of SNUG. We observe
SNUG does not show any meaningful cloth dynamics. After analyzing SNUG, we
notice their approach is unable to learn dynamics by design. First, authors observe
that Linertia depends on xt, xt−1 and xt−2 and assume that it is possible to train with
sub-sequences of only 3 body poses. From eq. 6.2 we know the whole body motion
is needed. During SNUG training, xt−1 and xt−2 are computed from {θt−1, θt−2} and
{θt−2} respectively. This is severely ill-posed, thus, their estimation of xproj

t will be
poor. In practice, this means their model will be unable to learn any motion longer
than ∼ 0.0666 seconds (3-frame time span for 30 FPS sequences). On the other hand,
based on their public code and results, we observe they incorrectly back-propagate
Linertia through xt−1 and xt−2. This will give lower values for the loss but not true
cloth dynamics. See in Tab. 6.3 how their inertia metric is the lowest by far. This is
even more noticeable in looser garments. See the skirt sample h under a fast spin-
ning motion in Fig. 6.10. For circular motions, we have an acceleration a = ω2r.
Back-propagating Linertia through previous frames –as SNUG– will modify particle
locations on all frames to minimize accelerations. Then, their implementation gen-
erates gradients pointing inwards that close the skirt to minimize a by minimizing r.
On the other hand, our implementation minimizes the distance between xt and xproj

t ,
without modifying the latter. For circular motions, particle velocities are tangential
to the circumference. This means that xproj

t will always be outside this circumference.
Our approach generates gradients pointing outwards that open the skirt to minimize
the distance to xproj

t . In their paper, SNUG authors mention that training on longer
sequences resulted in lower inertia values but not true dynamics. Their approach is
not learning cloth dynamics, it is smoothing cloth particle velocities. This may give
the illusion of a slight cloth dynamic deformation for very specific motions and gar-
ments –in some jumping motions– but it will fail for the general case, as we show in
all other motions. See supplementary video for additional comparison. Because of
these reasons, we cannot consider that SNUG is able to learn cloth dynamics. Ad-
ditionally, in samples c and d, we see wrinkling patterns repeating. This happens
across most poses. This gives a stiff and unrealistic look to the cloth. Because SNUG
is trained with a small batch size, it suffers from the issue explained in Sec. 6.4.4.

We additionally compare running times of the different methodologies. In the
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PBNS SNUG Ours

FPS 7.5K 15 853.9

TABLE 6.4: Comparison of running times against state-of-the-art: PBNS (Bertiche et al.,
2021c) and SNUG (Santesteban et al., 2022). Due to its simple formulation and no temporal
dimension, PBNS is the fastest approach by far. Then, due to the use of pre-computed data
from the body, multiple GRUs and the need of post-processing, we see that SNUG struggles
to achieve a reasonable performance. Our approach, while it does not achieve the efficiency
of PBNS, can easily run faster than real-time.

FIGURE 6.11: Motion control. In this image we show a still frame of a spinning motion.
Thanks to the disentanglement of static and dynamic cloth deformations achieved by the
network design, it is possible to control the level of motion in the cloth. To do so, we scale
the latent dynamic code to linearly interpolate –and extrapolate– from the static subspace to
the full subspace. Leftmost to middle samples: linear interpolation from static latent code zS

to latent code z. Middle to rightmost samples: linear extrapolation.

literature we find authors that consider only the forward pass of the network as run-
ning time. This is misleading. We measure the time it takes to compute the final
prediction along the underlying body from the raw pose data. This gives a much
more accurate idea of the running times to be expected on final applications. We
report the results in Tab. 6.4. PBNS achieves the fastest performance by far due to
their simple formulation and no need to model temporal dimension. For SNUG, we
use the checkpoint and code provided by its authors. Their model struggles to keep
15 frames per second for garments with only 4K vertices. We see that SNUG heav-
ily depends on post-processing to solve collisions. To this end, it needs expensive
precomputed data for each sample that makes it much slower. Finally, while our
approach does not achieve the performance offered by PBNS, it runs significantly
faster than real-time. We run all performance tests in a machine with AMD Ryzen 7
5800H and a RTX3060.

6.4.6 Cloth Subspace Disentanglement and Motion Control

The methodology presented in this work is designed to automatically learnt disen-
tangled subspaces for static and dynamic cloth deformations. To prove our model is
effectively doing so, we linearly interpolate and extrapolate between the static cloth
subspace ZS and the full cloth subspace Z . To this end, we scale the dynamic la-
tent code given by the dynamic encoder zD with w ∈ [0, 2]. That is, z = zS + wzD.
This can be seen in Fig. 6.11. From left to right, the values for w go from 0 to 2 with
steps of 0.2. The sample in the middle is the standard network output. This is learnt
automatically by the network without any sample or latent code manipulation.
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6.5 Conclusions and Limitations

We presented a general methodology for unsupervised garment animation. Con-
trary to previous related works, our work is the first methodology able to learn
cloth dynamics without ground truth data. Additionally, we devise a novel dis-
entangled architecture that improves generalization, opens the possibility of a new
motion augmentation technique that greatly increases robustness and allows for mo-
tion controllability, which is a useful never seen before property for artists. Also, we
provide of detailed analysis and insights on neural cloth simulation that will help
future research on the domain. We proved the effectiveness of our methodology
with different 3D avatars and garments. In Chapter 5 I introduced PBNS, a novel
methodology for unsupervised garment animation. Due to its simplicity, efficiency,
robustness and qualitative results, it is the first viable option for garment anima-
tion in real-life applications. Nonetheless, it is limited to quasi-static deformations.
In this chapter a overcome this limitation and present a complete solution for the
unsupervised neural garment animation problem for the first time. While this com-
promised the performance of the model (compared to PBNS), it is still largely faster
than real time.

Removing the need of gathering ground truth data is a huge advantage in the
domain, already noted by previous works (Bertiche et al., 2021c; Santesteban et al.,
2022). Nonetheless, simulation cannot be completely skipped. Instead of being an
offline preprocessing, simulation and training are now the same. The first time the
network sees a given training sample, its corresponding xproj will be an estimation
implicitly computed from body motion (transferred to the cloth through garment
blend weights). The next epoch, this estimation will be more accurate. So on and so
forth. This means that fine cloth dynamics take time to appear, since they have to
be indeed simulated within the network. It would not be possible for the network
to learn these dynamics without going through these intermediate states. This ef-
fect is even greater for looser garments. This means that supervised training will
always be much faster, even without considering that unsupervised losses are more
computationally expensive. Nonetheless, the methodology still has a significant ad-
vantage over supervised approaches, since similar sample motions will contribute
to each others neural simulations. On the contrary, even for very similar motions,
data gathering through simulation has to be done from scratch for every sequence.
Another advantage of unsupervised training is that the network will converge to the
simplest solution. That is, similar motions will show similar deformations. On the
other hand, offline simulations may show a huge variability for similar motions. Be-
cause of this, supervised training needs to deal with noisy data that makes the task
much more challenging. Finally, supervised training shows a bias towards lower
frequencies and does not satisfy physical constraints without explicit regularization.
Then, overall, unsupervised training is still much less time-consuming than data
gathering through simulations and will generally converge to simpler, more robust
models. We believe an interesting line of research for the future is to study the pos-
sibility to kickstart neural simulation with sparse simulated data. Afterwards, fine-
tuning by neural simulation will permit training on an arbitrary number of motions
with the desired fabric parameters.
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Chapter 7

Conclusions

Within this thesis I portrayed my personal adventure through the wilderness of the
research world and into the deep learning domain in pursuit of an efficient and
realistic 3D garment animation. I look back and I can contentedly state I laid an
additional brick on the stairs leading to the desired goal, on top of the ones previ-
ously placed by innumerable researchers, and below the countless ones that are yet
to come. Hopefully, not long from now, I will be able to behold the fruit of my labour
implemented as part of some popular film or videogame. On the meantime, I will
review the results obtained through this thesis. First, I will analyze the outcome of
each of the chapters, this will give an idea of how much has been achieved. Next, I
will highlight what is missing, that is, how far the research community still is from
the final goal. Finally, I will give my intuitions regarding promising research lines
that may help achieve what is missing.

In the first chapter I described a methodology for human pose and shape recov-
ery from still RGB frames. This method relies on an intermediate 3D representation
that consists not only on body joints, but also in landmarks placed across the body
surface. As opposed to other works, this allows unambiguous prediction of body
shape and the orientation of some specific joints. The results show an improvement
with respect to related works. I noticed 3D pose and shape estimation quickly gained
popularity and the domain became saturated, with new methods showing marginal
improvements. At this point, I put my focus on a less explored topic within human-
centric scenarios, 3D clothing. At first, with the goal of complementing 3D human
regression from images with garments. As a next step, in the following chapter,
I introduced CLOTH3D dataset. I created CLOTH3D motivated by the scarcity of
publicly available data. At the time it was clear how 3D garment by itself is already
a challenging task. Then, I shifted my aim from computer vision towards 3D vision.
In this direction, the dataset is accompanied of a baseline generative model for 3D
garments. This baseline, trained on CLOTH3D, allows generation of a great vari-
ety of garment types conditioned on human pose and shape. On one hand, I note
cloth simulation on arbitrary human shapes and poses is very challenging. There are
many factors that may lead to corrupted results, invalidating the data. Additionally,
cloth quality is not fully faithful to its real-life counterpart, specially for complex
cloth-to-body interactions. Then, despite I was able to publish a large dataset with
thousands of valid sequences thanks to manual supervision, unfortunately, data
generation for garments is not a straightforward process that can be easily auto-
mated pressing a button. On the other hand, from the generative model, I observe
that the common registration process of garments against the body is prone to lose
geometric details and diminishes the overall quality of the garments. Also, trying to
design a single model able to generate such a large number of garment types for any
shape and pose is too ambitious. Nonetheless, it is worth noting that it was possible
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to learn a meaningful shared latent space for all the garments. The latter observa-
tions on cloth modelling with deep learning led to the next chapter, DeePSD. For
this method, I focus on garment animation only instead of jointly with generation.
In this new formulation of the problem, I assume I have the template 3D garment in
rest pose as input. This approach yields higher quality results. Additionally, it al-
lows enforcing priors on the cloth surface based on the template garment. Moreover,
it is the first solution able to handle multiple garments, overlapping pieces of cloth
and generalize to completely unseen outfit meshes. Furthermore, with efficiency in
mind, I formulated the network such that it does not predict garments directly, but a
set of blend weights and blend shapes. This is the standard format for 3D animated
models. Thus, during test, this methodology achieves real-time trivially (hundreds
or thousands of executions per second). In spite of this, I observed how different gar-
ments, bodies, materials and other factors led to significantly different wrinkles and
cloth deformations. It is extremely hard to learn such fine details for thousands of
different garments using a single model. Then, DeePSD tends to show coarser wrin-
kles that are common for most garments. Cloth behaviour is not satisfying yet. I
also observed this in related works, where the quality of the garments also has room
for improvement. Noticing this, I reduce even further the focus of my research. No
garment generation, and now, no garment variability anymore. The goal is to obtain
efficient and realistic garment animation for a single outfit per network. To this end,
it would be necessary to collect exhaustively samples for the chosen outfit in many
different poses, which I know it is specially challenging. Inspired by the previous
priors I successfully applied in DeePSD training, I design a fully unsupervised loss
function. I explore this solution in the PBNS chapter. I combine this loss with a
simple Multi-Layer Perceptron. Surprisingly, the results greatly outperform qualita-
tively any other previous work. The outfits present realistic cloth behaviour, without
over stretching or compression, fine coherent wrinkles and barely no collisions, all
of this even under extreme unseen poses. I extended the collision term of the loss
to explicitly learn, for the first time, cloth-to-cloth interactions. Robust animation of
full outfits with multiple layers of cloth is now a reality. On top of that, training takes
only a few tens of minutes, almost completely excusing the outfit-specific nature of
the solution. Finally, thanks to the simple architecture, the methodology achieves
an entirely unprecedented level of performance. All of the characteristics that PBNS
show make it the first viable deep learning based solution for real-life applications.
PBNS implies a leap forward in the quality of garment animation in real-time appli-
cations. The simplicity of its formulation and how easily it can be trained places the
solution at the reach of even small videogame or film studios. PBNS is a strong step
towards the goal of this thesis. There is a drawback. PBNS is limited to quasi-static
deformations. Looser garments that show rich dynamics cannot be properly mod-
elled with this solution. They show a stiff and unrealistic behaviour. In the final con-
tribution, Neural Cloth Simulation, I explicitly address this issue. I propose another
unsupervised formulation that is additionally able to learn realistic dynamics. The
obtained results show an unparalleled garment quality and dynamics compared to
other deep learning solutions. I also introduce a novel architecture design and input
descriptors that permit automatic disentanglement of static and dynamic garment
subspaces. Noticing the peculiarities of the domain, I provide of detailed analysis
of it to guide future research. I show how subspace disentanglement has interest-
ing applications, such as a novel motion augmentation technique for training and a
never-seen-before motion control property, which might prove useful for 3D artists.
Despise the increased complexity of the problem, the proposed solution is still able
to achieve real-time performance easily with a small memory footprint and without
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expensive hardware requirements. Neural Cloth Simulation is another significant
step towards the goal of this thesis.

At first, I tried solving the 3D garment problem as a whole, generation and an-
imation of arbitrary garments, body shapes and poses. While potentially possible,
it was too ambitious at the time. Then, first I removed the generation part. Next,
garment and body shape generalization. I focused on designing methodologies for
efficient and realistic animation of single outfits. By the end of this thesis, I obtained
results comparable with Physically Based Simulation. As next steps, a first rele-
vant challenge for neural garment animation is self-collision. Commonly, computer
graphics approaches use the garment history to avoid self-collisions. An initial state
with no self-collisions and careful simulation allows solving them before they ap-
pear. As of now, it is not possible to guarantee valid initial states in deep learning.
Suitable history-free algorithms for self-collision solving are necessary. Once this is
a reality, it would be time to go back, step by step, to the initial problem, without
compromising quality nor efficiency. For PBNS I successfully explored body shape
generalization. Intuitively, Neural Cloth Simulation can use as input any body pa-
rameterization (such as body shape and/or pose). Body shape generalization would
mean more training time with a bigger model. Unhandled, this may make Neural
Cloth Simulation a feasible solution for large 3D studios only. Actual progress is
achieved only when everyone can benefit from it. In this regard, the methodology
would greatly improve by kickstarting dynamics, perhaps with sparse supervision
or a better formulation. The next interesting step is garment generalization, while it
is also the most complex. The reason for this is that garments show strong global cor-
relations. Pick up a piece of cloth by two opposite corners and let it hang a bit. Now,
pull one of its corners. This will instantly change the whole geometry of the cloth.
In practice, this means different garments may show completely different deforma-
tions under the same poses, even if the only difference is the location of the seams.
Fortunately, in this domain, accuracy is not the priority, but looks. There is no need
for a neural network to show the exact same wrinkles a given garment would show
in real life, only plausible ones. In this sense, a possible shortcut could be to learn
the building blocks of the garments, like a set of eigenwrinkles, and learn how to
place them to satisfy the physical constraints imposed by the underlying body and
cloth material. The final step I envision would be a complete generalization to any
piece of cloth and collider (body or other objects). This would be a neural simulator
(not to confuse with neural simulation). Whether this is possible or not is not the
challenge. The challenge is to beat modern simulation algorithms, which get faster
every day. There are three possible way to do so: less operations per vertex, more
efficient collision handling and larger time steps. Can a neural network compute a
simulation step with less vertex operations than modern simulators? Many simula-
tors present a bottleneck at the collision solving step, would it be possible for neural
networks to simplify this task while generalizing to any collider? Finally, simulators
often require hundreds of steps per second, could a neural network simulate large
time steps (∆t = 1/30s) in a stable, realistic and efficient way? It is unlikely for neu-
ral networks to reduce the number of operations per vertex and step. On the other
hand, standard collision solving is a complex issue because it is hard to parallelize
(to leverage GPU computational power). A neural based solution would not face
this issue. Finally, even if a neural network requires more operations per step, this
would be compensated by using large time steps. It is not unrealistic to believe neu-
ral networks could do so with higher stability than standard simulation. Overall,
neural cloth animation is still in its infancy and only time will tell how tall it will
grow, and as a player or a fan, I hope to see it myself.
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Saŕańdi, Istvań et al. (2018). “Synthetic Occlusion Augmentation with Volumetric
Heatmaps for the 2018 ECCV PoseTrack Challenge on 3D Human Pose Estima-
tion”. In: ECCV PoseTrack Workshop.

Shin, Dongjoe and Yu Chen (2019). “Deep Garment Image Matting for a Virtual Try-
on System”. In: The IEEE International Conference on Computer Vision (ICCV) Work-
shops.

Shoemake, Ken (1985). “Animating rotation with quaternion curves”. In: Proceedings
of the 12th annual conference on Computer graphics and interactive techniques, pp. 245–
254.

Sigal, Leonid, Alexandru Balan, and Michael J Black (2008). “Combined discrimi-
native and generative articulated pose and non-rigid shape estimation”. In: Ad-
vances in neural information processing systems, pp. 1337–1344.

Sigal, Leonid, Alexandru O Balan, and Michael J Black (2010). “Humaneva: Synchro-
nized video and motion capture dataset and baseline algorithm for evaluation of
articulated human motion”. In: International journal of computer vision 87.1-2, p. 4.

Sigal, Leonid et al. (2012). “Loose-limbed people: Estimating 3D human pose and
motion using non-parametric belief propagation”. In: International journal of com-
puter vision 98.1, pp. 15–48.

Socher, Richard et al. (2012). “Convolutional-recursive deep learning for 3d object
classification”. In: Advances in neural information processing systems, pp. 656–664.

Stoll, Carsten et al. (2011). “Fast articulated motion tracking using a sums of gaus-
sians body model”. In: ICCV. IEEE, pp. 951–958.

Sun, Xiao et al. (2017). “Compositional human pose regression”. In.
Sun, Xiao et al. (2018). “Integral human pose regression”. In: Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pp. 529–545.
Tan, Vince, Ignas Budvytis, and Roberto Cipolla (2017). “Indirect deep structured

learning for 3D human body shape and pose prediction”. In: BMVC.
Tang, Min et al. (2013). “A GPU-based streaming algorithm for high-resolution cloth

simulation”. In: Computer Graphics Forum. Vol. 32. 7. Wiley Online Library, pp. 21–
30.



Bibliography 101

Tang, Min et al. (2018). “I-Cloth: Incremental collision handling for GPU-based in-
teractive cloth simulation”. In: ACM Transactions on Graphics (TOG) 37.6, pp. 1–
10.

Teng, Yun, Miguel A Otaduy, and Theodore Kim (2014). “Simulating articulated sub-
space self-contact”. In: ACM Transactions on Graphics (TOG) 33.4, pp. 1–9.

Terzopoulos, Demetri et al. (1987). “Elastically deformable models”. In: Proceedings of
the 14th annual conference on Computer graphics and interactive techniques, pp. 205–
214.

Tiwari, Garvita et al. (2020). “Sizer: A dataset and model for parsing 3d clothing and
learning size sensitive 3d clothing”. In: arXiv preprint arXiv:2007.11610.

Tome, Denis, Christopher Russell, and Lourdes Agapito (2017). “Lifting from the
deep: Convolutional 3d pose estimation from a single image”. In: CVPR 2017
Proceedings, pp. 2500–2509.

Tung, Hsiao-Yu et al. (2017). “Self-supervised learning of motion capture”. In: Ad-
vances in Neural Information Processing Systems, pp. 5236–5246.

Varol, Gül et al. (2017a). “Learning from Synthetic Humans”. In: CVPR.
Varol, Gul et al. (2017b). “Learning from synthetic humans”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 109–117.
Varol, Gül et al. (2018). “BodyNet: Volumetric Inference of 3D Human Body Shapes”.

In: ECCV.
Vassilev, Tzvetomir, Bernhard Spanlang, and Yiorgos Chrysanthou (2001). “Fast cloth

animation on walking avatars”. In: Computer Graphics Forum. Vol. 20. 3. Wiley
Online Library, pp. 260–267.

Vidaurre, Raquel et al. (2020). “Fully Convolutional Graph Neural Networks for
Parametric Virtual Try-On”. In: Computer Graphics Forum. Vol. 39. 8. Wiley On-
line Library, pp. 145–156.

Vincent, Pascal et al. (2010). “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion”. In: Journal of
machine learning research 11.Dec, pp. 3371–3408.

Wang, Robert Y, Kari Pulli, and Jovan Popović (2007). “Real-time enveloping with
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