Towards Efficient and Realistic Animation of 3D Garments with Deep Learning

Author: Hugo Bertiche Supervisor: Sergio Escalera Co-supervisor: Meysam Madadi

Thesis Defense

Universitat de Barcelona

Contents

- Chapter 1 Introduction
- 2 Chapter 2 SMPLR
- Chapter 3 CLOTH3D
- 4 Chapter 4 DeePSD
- 5 Chapter 5 PBNS
- 6 Chapter 6 Neural Cloth Simulation
- Chapter 7 Conclusions

Chapter 1

Introduction

Cloth

- Exclusive of humans
- Feature of all societies
- Relevance:
 - Functionality
 - Status
 - Religion
 - Expression of self
 - ...
- Fashion Industry = \$1.7 trillion

¹Image source: https://en.wikipedia.org/wiki/Clothing

Motivation

- Entertainment industry:
 - TV & Films
 - Video-games
 - VR/AR
 - Social media content
 - ...
- Fashion industry:
 - Virtual try-on
 - e-commerce
 - Design
 - ...

¹Image source: https://ardev.es/en/virtual-fitting-room-augmented-reality/ https://www.millenium.gg/noticias/34878.html

Motivation

- Classical solutions are too slow!
- Deep Learning fast inference time
- Deep Learning success in complex 3D tasks

Preamble

Preamble: Linear Blend Skinning

Preamble: Linear Blend Skinning

- Body mesh with *N* vertices
- Skeleton with K joints/bones
- Joint transforms $T \in \mathbb{R}^{K \times 4 \times 4}$
- Posed vertices: $v'_i = \sum_j^K w_{i,j} T_j v_i$

Preamble

Preamble: Blend Shapes

Preamble: Blend Shapes

M different shapes with *N* vertices
Final shape S_f:

$$\mathbf{S}_f = \sum_i^M w_i \mathbf{S}_i \tag{1}$$

- Blend Shapes Matrix $\mathbf{S} \in \mathbb{R}^{M \times N \times 3}$
- Animate mesh \leftrightarrow Animate $\mathbf{w} \in \mathbb{R}^M$

¹Image source: http://www.3dstudents.com/2015/02/blend-shapes.html

Preamble

Preamble: Pose Space Deformation

Preamble: Pose Space Deformation

¹ Image sources: Lewis, J. P., Cordner, M., & Fong, N. (2000, July). Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques (pp. 165-172).

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2015). SMPL: A skinned multi-person linear model. ACM transactions on graphics (TOG), 34(6), 1-16.

Bickel, B., Lang, M., Botsch, M., Otaduy, M. A., & Gross, M. H. (2008, July). Pose-Space Animation and Transfer of Facial Details. In Symposium on Computer Animation (pp. 57-66).

Preamble

Preamble: SMPL

Preamble: What is SMPL?

- N = 6890 vertices
 - (> 20000 parameters)
- Pose $\theta \in \mathbb{R}^{72}$
- Shape $\beta \in \mathbb{R}^{10}$
- Gender $g \in \{0,1\}$
- Total: 83 parameters

Chapter 2

SMPLR: Deep Learning Based SMPL Reverse for 3D Human Pose and Shape Recovery

Motivation

¹ https://towardsdatascience.com/realtime-multiple-person-2d-pose-estimation-using-tensorflow2-x-93e4c156d45f
Ning, G., Zhang, Z., & He, Z. (2017). Knowledge-guided deep fractal neural networks for human pose estimation.
https://www.analyticsvidhya.com/blog/2018/06/ai-guardman-machine-learning-application-estimates-poses-detect-shoplifters/
Sasaki, K., Shiro, K., & Rekimoto, J. (2020, March). ExemPoser: Predicting Poses of Experts as Examples for Beginners in Climbing Using a Neural Network.

H. Bertiche

Universitat de Barcelona

3D Humans from RGB: Overview

Joints and Landmarks

3D Human from RGB: SMPL Reverse

Results

Conclusions

SMPLR contributions:

- 3D Humans from still RGB images
- SMPLR: recovers SMPL parameters
- DAE: recovers from structured error and 2D/3D lifting
- Joints and Landmarks
- State-of-the-art results

Chapter 3

CLOTH3D: Clothed 3D Humans

Motivation

- Data-hungry approaches
- No large scale dataset
- Push research

H. Bertiche

Motivation

Dataset	3DPW $[18]$	BUFF[35]	Untitled[29]	3DPeople[24]	TailorNet[21]	CLOTH3D
Resolution	$2.5 \mathrm{cm}$	$0.4 \mathrm{cm}$	1cm	-1	1cm	$1 \mathrm{cm}$
Missing	х	\checkmark	x	x	x	x
Dynamics	х	\checkmark	x	x	x	\checkmark
Garments	18^{2}	$10\sim 20$	3^{3}	${ m High}^4$	20	11.3K
Fabrics	х	х	x	x	x	\checkmark
$Poses^5$	Low	Low	Very low	Low	1782	High
Subjects	18^{2}	6	2K	80	9	$8.5 \mathrm{K}$
Layered	х	х	\checkmark	-1	\checkmark	\checkmark
#samples	51k	11K	24K	$2.5\mathrm{M}$	55.8k	$2.1\mathrm{M}$
Type	Real	Real	Synth.	Synth.	Synth.	Synth.
RGB	\checkmark	x	\checkmark	\checkmark	x	х
GT error	$26 \mathrm{mm}$	1.5-3mm	None	None	None	None

 $^{18}\mathrm{3DPW:}$ 3D Poses in the wild dataset

³⁵BUFF: Bodies Under Flowing Fashion, 4D dataset

²⁹Learning a shared shape space for multimodal garment design

²⁴ 3DPeople: Modeling the Geometry of Dressed Humans

 $^{21}\ensuremath{\mathsf{TailorNet:}}$ Predicting Clothing in 3D as a function of Human Pose, Shape and Garment Style

H. Bertiche

Universitat de Barcelona

Data Generation: Overview

Consistent garment procedural generation

Data Generation: Humans

Walk	Animal	Fight	Jump	Run	Sing V	Vait S	Swim	Story	v Sports	Dance	e Yoga	Spin
27.49%	10.79%	4.38%	2.78%	2.49%	2.38% 2.	31% 1	1.97%	1.70%	6 1.63%	1.37%	1.01%	60.90%
Exercis	e Climb	Carry	Stand	Wash	Balancin	ng Tri	ick S	Sit I	nteract	Drink	Pose	Others
0.84%	0.71%	0.67%	0.66%	0.63%	0.54%	0.51	1% 0.2	28%	0.20%	0.14% (0.14%	33.48%

Data Generation: Simulation

Dataset: samples

Baseline

Baseline

Baseline: Pre-process

- · Garments vs Body: NR-ICP
- · Nearest Neighbour matching
- · Compute offsets
- · Mask: Garment topology
- * SuperSMPL
- * SMPL-Skirt topology

Heterogeneus garments V into uniform space²:

$$\mathbb{R}^{|V| imes 3} o \mathbb{R}^{14475 imes 4}$$

²4th dimension for body mask.

H. Bertiche

(5)

Baseline: GraphCVAE

- Static vs. Dynamic: disentangled
- Latent space for garment topology
- Latent space for dynamics (wrinkles)

Baseline: results

Baseline: Static latent space

Conclusion

CLOTH3D contributions:

- First large scale 3D dataset on clothes
- Huge topology, shape and dynamics variability
- Aid researchers on current challenges:
 - Heterogeneus meshes
 - High and low frequency information
 - Complex dynamics
 - Collisions
 - ...
- Baseline inspired in SOTA:
 - Learns continuous topologic space for later use in generation
 - Learns garment dynamics as a function of pose and garment style (topology, shape and tightness)

Chapter 4

DeePSD: Automatic Deep Skinning and Pose Space Deformation for 3D Garment Animation

Motivation

- Outfit variability is limitless
- Discard outfit generation
- Focus on outfit animation

$$f: \theta \to \mathbf{V}_{\theta}$$

(6)
Contributions

- Outfit generalization
- Compatibility
- Physically consistency
- Intuitive workflow

Architecture

Training

Supervised loss:

$$\mathcal{L}_{data} = \sum \|\mathbf{V}_{\theta, data} - \mathbf{V}_{PBS}\|^2$$
(7)

Unsupervised loss:

$$\mathcal{L}_{cloth} = \mathcal{L}_{E} + \lambda_{B} \mathcal{L}_{B} = \sum_{e \in E} \|e - e_{T}\| + \lambda_{B} \Delta(\mathbf{n})^{2}$$
$$\mathcal{L}_{collision} = \sum_{(i,j) \in A} \min(\mathbf{d}_{j,i} \cdot \mathbf{n}_{j} - \epsilon, 0)^{2}$$
$$\mathcal{L}_{phys} = \mathcal{L}_{cloth} + \lambda_{collision} \mathcal{L}_{collision}$$
(8)

vs CLOTH3D Baseline

vs TailorNet

DeePSD TailorNet DeePSD TailorNet DeePSD TailorNet

Virtual Try-on

Conclusions

- Outfit generalization
 - Scalability
 - Intuitive workflow for artists
- Compatibility
 - Low engineering effort to adapt
 - Efficient!
- Physically based loss
 - Pose augmentation (train)
 - Robust predictions (test)

Chapter 5

PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation

Motivation

- High applicability of outfit animation
- Deep learning success in 3D
- Deep learning inference efficiency
- Data hungry algorithms

Contributions

- Unsupervised
- Physically consistent results
- Cloth-to-cloth interaction
- Extremely efficient

Architecture

- Outfit skinned w.r.t. body skeleton
- $\bullet~\theta$ processed by MLP
- Pose Space Deformations as Matrix D
- MLP and D are learnt

Loss

Energy based formulation:

$$\mathcal{L} = \mathcal{L}_{cloth} + \mathcal{L}_{collision} + \mathcal{L}_{gravity} + \mathcal{L}_{pin}$$

 $\mathcal{L}_{cloth} = \mathcal{L}_{edge} + \mathcal{L}_{bend}$

- Internal energies \rightarrow Cloth
- $\bullet~\mbox{External energies} \rightarrow \mbox{Collision, Gravity and Pin}$

(9)

Loss - Edge

Inspired in mass-spring models

Edge loss:

$$\mathcal{L}_{edge} = \lambda_e \| E - E_T \|^2 \tag{10}$$

- *E* : predicted edge lengths
- E_T : template edge lengths
- λ_e : balancing weight

Spring energy:

$$E_{spring} = \frac{1}{2}k\Delta x^2 \tag{11}$$

Loss - Bend

Bend loss:

$$\mathcal{L}_{bend} = \lambda_b \Delta(\mathbf{N})^2$$
 (12) Hinge-like energy

Squared discrete Laplacian for graph:

$$(\Delta\phi)(v) = \sum_{w:\mathcal{N}(v)} [\phi(v) - \phi(w)]^2 \qquad (13)$$

- Graph G = (V, E):
 - V : faces
 - E : face adjacency
- $\phi(\cdot)$ computes face normal
- λ_h : balancing weight

Penalizes adjacent face normals differences

. . .

Loss - Collision

Collision loss:

$$\mathcal{L}_{collision} = \lambda_c \sum_{(i,j) \in \mathcal{A}} \min(\mathbf{d}_{j,i} \cdot \mathbf{n}_j - \epsilon, 0)^2$$
(14)

- *A* : cloth-to-body correspondences
- $d_{j,i}$: body-to-cloth vector
- n_j : *j*-th body vertex normal
- ϵ : threshold
- λ_c : balancing weight

Repulsion gradients (forces)

Loss - Collision - Cloth-to-cloth

Cloth-to-cloth interaction:

- Multiple ordered layers of cloth
- Apply $\mathcal{L}_{collision}$ iteratively
- For layer *n*, consider layers 1, ..., n-1 as body
- Gradients push both layer vertices

Loss - Gravity / Pin

Gravity loss:

$$\mathcal{L}_{gravity} = \sum m \cdot g \cdot h$$
 (15)

- *m* : vertex mass
- g : gravity
- h : height

Pin loss:

$$\mathcal{L}_{pin} = \lambda_{pin} \sum_{i} b_i dt_i^2 \tag{16}$$

- b_i : *i*-th vertex is pinned $\{0, 1\}$
- *dt* : *i*-th vertex deformation
- λ_{pin} : balancing weight

Results

Results - Performance

	Single	Batch
CPU	213 FPS	1235 FPS
GPU	455 FPS	14286 FPS

- Run on GTX1080Ti
- Outfit with 23.7k triangles
- Training: 1-2 min/epoch
- Memory: few MBs

Results - Layers

Results - Custom Avatars³

³https://www.mixamo.com/

H. Bertiche

Universitat de Barcelona

Results - Resizing

Conclusion

PBNS properties:

- Unsupervised
- Physical consistency
- Control cloth properties
- Multiple layers of cloth
- Boots, gloves, ...
- Extremely efficient: +14K samples/s
- Simple formulation: minimal engineering effort

Chapter 6

Neural Cloth Simulation

Motivation

Contributions

- Unsupervised Cloth Dynamics
- Disentangled Cloth Subspace
- Domain Analysis

Static vs Dynamic

Static

Dynamic

Disentangled Network

Losses

Loss

$$\mathcal{L} = \mathcal{L}_{cloth} + \mathcal{L}_{bending} + \mathcal{L}_{collision} + \mathcal{L}_{inertia} + \mathcal{L}_{gravity} = E(x; \theta)$$
(17)

- Loss = Energy
- Training = Simulating

Cloth Model

- Mass-spring
- Finite Element Methods
- Saint-Venant Kirchhoff
- o ...

Bending

Bending Loss

$$\mathcal{L}_{\text{bending}} = k_b \frac{l^2}{8a} (\phi_t - \phi^R)^2 \tag{18}$$

- k_b : bending stiffness
- *l* : edge length
- *a* : triangle area
- ϕ_t : dihedral angle at t
- ϕ^R : rest dihedral angle

Collisions

Collision Loss

$$\mathcal{L}_{ ext{collision}} = k_c \min(\mathsf{d}(x_t; heta_t) - \epsilon, 0)^2,$$

- k_c : collision *stiffness*
- $d(\cdot)$: signed distance
- x_t : cloth vertex locations at t

1

- θ_t : body parameterization
- ϵ : small threshold (robustness)

(19)

Inertia

Inertia Loss

$$egin{aligned} \mathcal{L}_{ ext{inertia}} &= rac{1}{2\Delta t^2} m (x_t - x_t^{ ext{proj}})^2 \ x_t^{ ext{proj}} &= 2 x_{t-1} - x_{t-2} \end{aligned}$$

- Δt : time step
- *m* : vertex mass
- x_t : cloth vertex locations at t
 Do NOT back-propagate through x_{t-1} and x_{t-2}!!!

(20)

Gravity

Gravity Loss

$$\mathcal{L}_{\text{gravity}} = -M x_t g$$

- M : mass matrix
- x_t : vertex locations at t
- g : gravity

Data: Pose Sequences

PBNS vs SNUG vs NCS vs Simulation

Qualitative

Motion Control

Conclusions

- Unsupervised Cloth Dynamics
- Novel set of descriptors
- Disentangled subspaces for Static/Dynamic cloth deformations
 - Improved generalization
 - Novel motion augmentation (train)
 - Novel motion control (test)
- Compatible with arbitrary 3D characters/garments
- Real-time performance
- In-depth domain analysis

Chapter 7

Conclusions

Achieved Milestones

- SMPLR: retrieve 3D humans from RGB images
- CLOTH3D: First large scale clothing dataset
- CLOTH3D Baseline: 3D generative model and learnt space for all garments
- DeePSD: automatic animation of arbitrary outfits
- PBNS: first unsupervised learning-based solution
- Neural Cloth Simulation: unsupervised cloth dynamics

What's next?

- Faster convergence & more efficient methods
- Garment & Body generalization
- Universal deep cloth simulator
- More...

Thesis Publications

- Meysam Madadi et al. (2020). "SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery". In: Pattern Recognition, p. 107472
- Hugo Bertiche et al. (2020). "CLOTH3D: Clothed 3D Humans". In: European Conference on Computer Vision. Springer, pp. 344–359
- Meysam Madadi et al. (2021a). "Deep unsupervised 3D human body reconstruction from a sparse set of landmarks". In: International Journal of Computer Vision 129.8, pp. 2499–2512
- Meysam Madadi et al. (2021b). "Learning Cloth Dynamics: 3D+Texture Garment Reconstruction Benchmark". In: Proceedings of the NeurIPS 2020 Competition and Demonstration Track. Ed. by Hugo Jair Escalante et al. Vol. 133. Proceedings of Machine Learning Research. PMLR, pp. 57-76. URL: https://proceedings.mlr.press/v133/madadi21a.html
- Hugo Bertiche et al. (2021a). "Deep Parametric Surfaces for 3D Outfit Reconstruction from Single View Image". In: 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), pp. 1–8. DOI: 10.1109/FG52635.2021.9667017
- Hugo Bertiche et al. (2021b). "Neural Implicit Surfaces for Efficient and Accurate Collisions in Physically Based Simulations". In: *CoRR* abs/2110.01614. arXiv: 2110.01614. URL: https://arxiv.org/abs/2110.01614
- Hugo Bertiche et al. (2021d). "DeePSD: Automatic deep skinning and pose space deformation for 3D garment animation". In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5471–5480
- Hugo Bertiche et al. (2021c). "PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation". In: ACM Trans. Graph. 40.6. ISSN: 0730-0301. DOI: 10.1145/3478513.3480479. URL: https://doi.org/10.1145/3478513.3480479