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Abstract

Recent joint embedding-based self-supervised methods have surpassed standard
supervised approaches on various image recognition tasks such as image classifica-
tion. These self-supervised methods aim at maximizing agreement between features
extracted from two differently transformed views of the same image, which results
in learning an invariant representation with respect to appearance and geometric
image transformations. However, the effectiveness of these approaches remains
unclear in the context of gaze estimation, a structured regression task that requires
equivariance under geometric transformations (e.g., rotations, horizontal flip). In
this thesis, we propose SwAT, an equivariant version of the online clustering-based
self-supervised approach SwAV, to learn more informative representations for gaze
estimation. We identify the most effective image transformations for self-supervised
pretraining and demonstrate that SwAT, with ResNet-50 and supported with uncu-
rated unlabeled face images, outperforms state-of-the-art gaze estimation methods
and supervised baselines in various experiments. In particular, we achieve up to
57% and 25% improvements in cross-dataset and within-dataset evaluation tasks on
existing benchmarks (ETH-XGaze, Gaze360, and MPIIFaceGaze).
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Chapter 1

Introduction

Eye gaze is a fundamental non-verbal signal in human communication and a
powerful tool to infer attention and intention. Model-based and appearance-based
are the main approaches to estimate gaze direction. Model-based approaches [18,34,
49,66] estimate gaze direction via constructing a geometric 3D model of the eye along
with a specific personal calibration process. Such methods promise a high degree
of accuracy in presence of a high-resolution image, thus they are typically found in
head-mounted devices and fixed settings with dedicated lighting. However, they are
less suitable for assessing gaze behavior in everyday scenarios, where a non-obtrusive
solution capable of functioning in more challenging conditions is preferred. On the
flip side, appearance-based approaches [45, 47] can be used with remote camera
systems, which offer a trade-off between accuracy and usability, and can be applied
in general everyday applications under real-world conditions. Appearance-based gaze
estimation, consisting in regressing the gaze direction directly from face or eye images,
is the preferred approach for remote camera scenarios. It enables many applications
including human-computer interaction (HCI) [26,50,62], cognitive and behavioral
understanding [43,48], and autonomous driving [42]. However, appearance-based gaze
estimation remains a non-trivial problem to solve within the computer vision field
due to the large variability across appearance and geometric factors. Convolutional
neural network (CNN) based methods [6,10,23,25,36,39,63] have achieved promising
performances fueled by large-scale datasets [23, 25, 27, 60]. Nonetheless, there is
still a large gap to achieve a desirable performance especially when it comes to
generalizing to unseen distributions with novel head poses, appearances, geometry,
and illuminations. One way to address this problem is through the acquisition of
even larger in-the-wild, gaze-annotated datasets with more variability. However,
collecting data with accurate gaze annotations is an unscalable and laborious process
that requires controlled conditions, complicated setups, tedious camera calibration,
and subject recruitment. An inexpensive solution is therefore needed to extend
variability in terms of appearance and geometric factors.

Recently, joint embedding-based self-supervised methods, including contrastive
and non-contrastive, have obtained remarkable accuracy on various vision tasks,
such as image classification [2–5,17], object detection [54], and hand-pose estima-
tion [44]. These approaches have proven successful at learning generalizable features
by leveraging large-scale unlabeled data [22,30].

Similarly, these methods could leverage the vast amount of unlabeled face
images that are publicly available on the Internet to learn useful representations for
appearance-based gaze estimation. However, no attention has been paid to investigate
their effectiveness for the gaze estimation task to the best of our knowledge. Therefore,
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Figure 1.1. Global view of our approach. In the first stage, we pre-train an encoder
via an online clustering approach on a large-scale set of unlabeled face images while
encouraging equivariance through our proposed method (SwAT). In the second stage,
we transfer the learned knowledge from the first stage and fine-tune on a small-scale set
of gaze-annotated images.

the main goal of this work is to explore the efficacy of a self-supervised approach in
the context of gaze estimation to reduce the reliance on large-scale gaze-annotated
data that is laborious to acquire.

In a nutshell, self-supervised learning aims at solving a pretext task to learn a use-
ful representation. The representation is then used in downstream tasks via transfer
learning. The common pretext task among (non-)contrastive self-supervised methods
(e.g., SimCLR [4], MoCo [20], SwAV [3], BYOL [17], and VICReg [2]) is to enforce
consistency between features extracted from two differently transformed views of the
same image. As a result, the feature extractor is encouraged to learn an invariant
representation with respect to the image-space transformations, such as appearance
(e.g., color jitter) and geometric (e.g., horizontal flip). Although invariance might
be a desired property for most image recognition tasks, the structured regression
task of gaze estimation requires equivariance under geometric transformations. In
fact, applying geometric transformations to a face/eye image results in respective
changes in gaze direction. Thus, in this work, our goal is to learn an equivariant
representation under geometric transformations to align with our downstream task
of interest i.e., gaze estimation. By definition, a representation is equivariant with
respect to an input image transformation when the transformation is reflected in
the representation output, whereas in the invariance scenario, the transformation is
not transferred to the representation output.

In this thesis, we propose Swapping Affine Transformations (SwAT), a novel
method to achieve the desired property of equivariance. It can be thought of as a plug-
and-play method that can be added to any joint embedding-based self-supervised
approach. As Fig. 1.1 depicts, we perform self-supervised pretraining on large-scale
unlabeled face images while encouraging equivariance through SwAT. Then, we
transfer the learned knowledge to the downstream gaze estimation task and finetune
with gaze labels. More precisely, we first extract two views of the same face image by
applying appearance and geometric transformations. Then we map the transformed
views to embedding vectors using an encoder. SwAT encourages equivariance
via equalization of geometric transformations in feature space, performed by a
feature transform layer. The consistency between equalized feature vectors is then
enforced via a non-contrastive online clustering-based approach called SwAV [3].
Intuitively, SwAT allows the feature extractor to transfer the image-space geometric
transformation to the representation output which preserves the intrinsic structure
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of the transformations.
Our proposed self-supervised approach potentially deconcentrates research in

gaze estimation from the non-trivial process of large-scale annotated data collection
towards effectively leveraging widely available large-scale unlabeled data. More
importantly, leveraging such unlabeled data with more variety enhances the gener-
alizability of gaze estimation models upon novel distributions. We show that the
equivariance property provided by SwAT leads to learning better representations for
gaze estimation, compared to other pretraining regimes. In addition, we show that
the unsupervised features provided by SwAT surpass the commonly used ImageNet
supervised features in gaze estimation. We perform extensive experiments to verify
the effectiveness of our approach under various challenging evaluation settings. In
particular, we demonstrate that SwAT outperforms the supervised baselines in low-
data regimes where only a few annotations (10% and 30%) are available. Supported
with unlabeled data, SwAT achieves state-of-the-art results on existing benchmarks
and improves the supervised baselines for cross- and within- dataset evaluation tasks
by 57% and 25%, respectively. In summary, our main contributions are:

• As far as we know, this work is the first that systematically explores the effective-
ness of a self-supervised approach for full-face appearance-based gaze estimation.

• We extend a self-supervised approach with equivariance to learn a more informative
representation for gaze estimation.

• We identify the top-performing transformations for self-supervision and propose
an effective policy to compose them.

• Our proposed self-supervised approach outperforms supervised baselines in the
semi-supervised setting where only a few annotations are available.

• We perform extensive evaluations that show that our approach achieves state-of-
the-art results on the existing benchmarks.
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Chapter 2

Related Work

2.1 Self-Supervised Learning
Self-supervised learning aims at learning informative representations without

relying on manual annotations such that the reliance of downstream tasks on
large-scale data is diminished. Early self-supervised approaches attempted to learn
useful representations from unlabeled data via solving handcrafted pretext tasks
such as Jigsaw puzzle [35], colorization [59], transformation prediction [1,16], and
inpainting [41]. More recently, contrastive-based methods [4, 20,33] have achieved
notable results on various computer vision tasks such as image classification. However,
these methods are inherently computationally inefficient as they require pairwise
contrasts with a large set of negative examples. Consequently, non-contrastive
approaches [2, 3, 5,17] are receiving special attention. Clustering-based approaches
such as SwAV [3] discriminate between groups of images with similar features instead
of individual images while achieving state-of-the-art results in image classification on
ImageNet. However, both contrastive and non-contrastive methods are designed to
learn invariant representations under image transformations, while gaze estimation
requires equivariance under geometric transformations. Hence, in this work, we
extend SwAV [3] via introducing equivariance under geometric transformations.

2.2 Equivariance in Self-Supervised Learning
Equivariance in self-supervised learning is starting to attract attention [13,44,

55]. Despite their proven effectiveness, these methods bear some limitations that
do not align with our assumptions. While our goal is to promote equivariance
for multiple affine transformations, Dangovski et al. [13]’s work is limited to a
single transformation and Xie et al. [55]’s method is not scalable as the number of
transformations increments. Most similarly, Spurr et al. [44] propose an equivariance
formulation for the task of 3D hand-pose estimation. However, their equivariance
formulation together with a contrastive loss explicitly pushes apart the pseudo-
negative pairs that may include faces with similar affine information, gaze, and head
directions.

2.3 Appearance-based Gaze Estimation
Recent progress in appearance-based gaze estimation has been mainly achieved via

collecting large-scale datasets [23,25,27, 60], task-specific tailored architectures [6, 9,
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12,39], and data normalization methods [61,65]. Nevertheless, appearance-based gaze
estimation still suffers from performance degradation when it comes to distribution-
shift. To overcome this problem, various variants of domain adaptation approaches
have been proposed [7,8,19,28,29,31,38,51,57] to adapt a source domain to a target
domain. Apart from supervised gaze estimation, weakly-supervised and unsupervised
methods have started to receive more attention in gaze estimation. Kothari et al. [24]
propose a weakly-supervised approach based on videos of people looking at each other.
MTGLS [15] utilizes off-the-shelf models to obtain pseudo labels for unlabeled eye
images in order to learn a gaze representation. Recent generative-based unsupervised
gaze estimation approaches [46,58] make use of unlabeled eye images to learn gaze
representations. Nevertheless, these approaches have limitations as they require
supervision in the form of paired eye images of the same person [46, 58] with similar
head-pose [58]. Wu et al. [53] employ self-supervision as an auxiliary task for
supervised gaze estimation. Unlike the previous methods, we pretrain a standard
CNN architecture for gaze estimation in a self-supervised fashion via leveraging
large-scale unlabeled face images. Our approach is less complex while more scalable
as it does not make any assumption on the kind of unlabeled data and does not
require multiple auxiliary losses for training as in [46,58]. Furthermore, in contrast
to previous unsupervised works that use eye images, we use full-face images, which
have been proven to contain useful auxiliary information (e.g., head-pose, geometric
features) for gaze estimation [25,37,64].
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Chapter 3

Method

To learn an unsupervised representation for the gaze estimation task (Sec. 3.1),
as Fig. 1.1 depicts, our goal is to pretrain an encoder on large-scale unlabeled face
images using a self-supervised approach (Sec. 3.2) while encouraging equivariance
via SwAT (Sec. 3.3). Afterward, we transfer the knowledge to the gaze estimation
task via supervised fine-tuning (Sec. 3.4).

3.1 Supervised Gaze Estimation
Gaze estimation is a regression task that aims at learning a mapping function

H : x → g that maps the high-dimensional RGB images x ∈ RH×W×3 to low-
dimensional 2D angles g ∈ R2 i.e., yaw and pitch. The 2D angles are a compact
representation of the 3D gaze direction vector in the camera coordinate system, the
origin of which is the center of the face or the midpoint between the eyes, depending
on the dataset. H is a parameterized function, composed of a backbone encoder
(e.g., ResNet) as well as a linear head (e.g., MLP). Given image and gaze vector
pairs {xi, gi}Ni=1, we minimize the following loss function (Lgaze) to train H,

Lgaze = 1
N

N∑
i=1

||gi − ĝi||1, (3.1)

where N is the number of samples and ĝi = H(x).

3.2 Self-Supervised Pretraining
In this work, as the pretext task, we aim at maximizing the mutual information

between the features from two different views of the same image. As shown in Fig. 3.1
(left), two differently transformed views of an image x are computed via applying
two different sets of transformations i.e., x1 = t1(x) and x2 = t2(x) where, t1 ∼ T
and t2 ∼ T are sampled from the same transformation catalog T . An encoder fϕ(.)
parameterized by ϕ is used to map the transformed views to vector representations,
z1 = fϕ(x1) and z2 = fϕ(x2). The encoder fϕ(.) is composed of a backbone (e.g.,
ResNet) and a projection head (e.g., MLP). Then, we maximize agreement between
the feature vectors Max(z1, z2) using an online clustering-based self-supervised
approach called SwAV [3]. SwAV enforces agreement using intermediate cluster
assignments computed in an online fashion, where the cluster assignments are treated
as the targets to predict from feature vectors. To compute the cluster assignments c1
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Figure 3.1. Left. Two differently transformed versions of the same image x are obtained
via applying two different sets of transformations i.e., x1 = t1(x) and x2 = t2(x). An
encoder is used to map the transformed views to vector representations, z1 and z2. To
achieve equivariance, we equalize z1 and z2 in terms of affine information. To do so, we
swap the affine transformations applied in image space t1 and t2, then we use the feature
transform layer (FTL) to apply the swapped transformations to the feature vectors i.e.,
z̃1 = FTL

(
t2, z1

)
and z̃2 = FTL

(
t1, z2

)
. Then, we maximize agreement between the

resulting feature vectors, z̃1 and z̃2. Right. Details of the feature transform layer (FTL).
vec−1(z) transforms z from 1D to 2D in order to enable matrix-matrix multiplication
with the 2D affine matrix, resulting in z̃. Then, vec(z̃) transforms back z̃ from 2D to
1D. L2-norm is then applied.

and c2, the vector representations (z1 and z2) are compared to a set of M learnable
prototype vectors P ψ = {p1, ...,pM}, parameterized by ψ. Maximizing agreement is
achieved via swapping the computed cluster assignments and predicting them using
feature vectors. The idea is to predict the cluster assignment c1 from the feature
z2, and c2 from z1. Intuitively, if two feature vectors contain mutual information
then it should be possible to predict the cluster assignment c1 (c2) from the other
feature z2 (z1). The self-supervised loss function is as follows:

LSwAV = ℓ(z1, c2) + ℓ(z2, c1), (3.2)

where ℓ(z, c) is the cross entropy loss between the cluster assignments and the
probability computed by applying softmax to the dot products of zi and prototypes
(P ψ), as in Eq. 3.3. The cross entropy loss measures agreement between a feature
and cluster assignment. ℓ(zi, cj) is defined as follows:

ℓ(zi, cj) = −
∑
m

c
(m)
j log

(
exp( 1

τ zi
⊤pm)∑

m′ exp( 1
τ z⊤

i pm′ )

)
, (3.3)

where τ is a temperature parameter and m denotes the mth prototype. The overall
loss function (Eq. 3.2) is minimized with respect to both parameters of the encoder
ϕ and trainable prototypes ψ. The method is online since only the features within
a batch are used to compute the cluster assignments. To avoid trivial solutions
i.e., assigning the same cluster for every image within a batch, score adjustment is
performed using an optimal transport algorithm, namely Sinkhorn-Knopp [11]. It
encourages equipartition guaranteeing that the cluster assignments are distinct for
images within a batch.
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3.3 Equivariant Representation Learning
Similar to other (non-)contrastive self-supervised approaches, the SwAV formula-

tion (Sec. 3.2) encourages invariance under appearance and geometric transformations.
In image recognition tasks such as image classification, applying geometric transfor-
mations (tg) to an image does not change the label. However, in the gaze estimation
task, applying geometric transformations in image space results in respective changes
in label space. Thus, instead of learning an invariant representation, we aim at
learning an equivariant representation.
Definition (Equivariance) A mapping function fϕ : x → z is said to be equivariant
with respect to image-space transformation tgI when mapping the transformed input
image, fϕ(tgI(x)), produces the same result as transforming the vector representation
of the input image, i.e., tgF (fϕ(x)):

fϕ(tgI(x)) = tgF (fϕ(x)), (3.4)

where transformations tgI and tgF are used to apply the same transformation in different
spaces i.e., image space and feature space, respectively. Intuitively, equivariance
property enables fϕ to learn a direct relationship between image space and feature
space, thereby preserving the intrinsic structure of the transformations [52].
Swapping Affine Transformations. Eq. 3.2 enforces consistent mapping between
two transformed views via intermediate cluster assignments. Abstractly, it aims
to maximize the mutual information between the features from two views. Thus,
ideally,

fϕ(tg1(x)) = fϕ(tg2(x)). (3.5)

The only way that the above equality is satisfied is through encouraging fϕ
to be invariant with respect to the applied geometric transformations tg1 and tg2.
Instead, to let the mapping function fϕ be equivariant under affine transformations
applied in image space, we propose the Swapping Affine Transformations (SwAT)
method. SwAT achieves equivariance via equalization of vector representations in
terms of applied image-space affine transformations. To achieve that, as in Eq. 3.6
and Fig. 3.1, we swap the affine transformations applied in image-space, and then
we apply them in feature-space via a feature transform layer (FTL), detailed later.
Thus,

z̃1 = FTL
(
tg2, z1

)
, z̃2 = FTL

(
tg1, z2

)
. (3.6)

Intuitively, z̃1 and z̃2 contain the same affine transformation information. Thus,
enforcing consistency between transformation-equalized vector representations pre-
vents fϕ from becoming invariant with respect to transformations. In contrast,
since unequalized vector representations z1 and z2 contain different transformation
information, enforcing consistency would result in invariance as in Eq. 3.5. The
self-supervised loss (Eq. 3.2) becomes:

LSwAT = ℓ
(
z̃1, c̃2

)
+ ℓ
(
z̃2, c̃1

)
, (3.7)
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Figure 3.2. Transformation Catalog. The appearance and geometric transformations
explored in this work for self-supervised representation learning.

where,
c̃2 = z̃2 P ψ, z̃2 ∈ Rd, P ψ ∈ Rd×M. (3.8)

Feature Transform Layer. As Fig. 3.1 (right) depicts, to be able to apply the
feature-space equivalent (tgF ) of the image-space transformation (tgI), we introduce a
non-trainable feature transform layer (FTL). This layer takes as input the 2D affine
transformation matrix T θ (e.g., 2D rotation matrix with angle θ) and 1D feature
vector z. It first transforms z from 1D to 2D via an inverse vectorization, vec−1

2×k(z),
where k = d

2 and d is the dimensionality of the projection head. Afterward, it
performs a matrix-matrix multiplication, resulting in z̃. Finally, z̃ is transformed
back to a 1D feature vector via a vectorization, vec(z̃), and then L2-norm is applied.

Transformations. Fig. 3.2 shows the explored transformations in this work
which fall into two groups, namely appearance and geometric transformations. For
appearance transformation, we consider color drop, color jitter, Gaussian blur,
Gaussian noise, cutout, and Sobel filtering. As geometric transformations, we
examine horizontal flip, rotation, and scale. In the context of gaze estimation,
appearance and scale transformations do not change the 3D gaze direction label with
respect to the camera coordinate system. In contrast, applying horizontal flip and
rotation in image space results in respective changes in label space. As an example,
for a horizontally flipped view of an image, the sign of the yaw angle is reversed.
Thus, for our proposed SwAT method, we only swap horizontal flip and rotation
transformations.

3.4 Fine-tuning for Gaze Estimation
To perform gaze estimation, we first initialize the weights of the backbone network

with the pretrained weights previously learned through self-supervised pretraining.
Then, the whole network is finetuned with gaze-annotated data using the L1 loss
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between the estimated angles ĝ = H(x) and actual angles g, as follows:

Lgaze = 1
N

N∑
i=1

||gi − ĝi||1, (3.9)

where N is the number of samples.
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Chapter 4

Implementation details

In this chapter, we provide the full implementation details. The datasets used
in this thesis, the default implementation details, and the experimental protocol
are presented in Sec. 4.1. Supplementary details of the pretraining stage can be
found in Sec. 4.2. Details of evaluation settings namely, linear evaluation (Sec. 4.3),
semi-supervised setting (Sec. 4.4), and supervised fine-tuning (Sec. 4.5) are explained.
Details of the evaluation protocol on each dataset are provided in Sec. 4.6. Lastly,
details of explored transformations in this thesis can be found in Sec. 4.7. Throughout
all the experiments related to linear evaluation (Sec. 4.3), semi-supervised setting
(Sec. 4.4), and supervised fine-tuning (Sec. 4.5), we use Adam as the optimizer, batch
size of 512, an input size of 224×224 pixels, and a learning rate decay factor of 0.1
unless otherwise stated.

4.1 Experimental Setting
Datasets. For the self-supervised pretraining stage, we use a curated dataset i.e.,
ETH-XGaze [60] without labels. It contains 756,540 images and 80 subjects for
training, captured under controlled laboratory conditions. Since ETH-XGaze is
specifically collected for the task of gaze estimation under controlled conditions,
it is unclear whether the quality of unsupervised features remains the same while
using an uncurated dataset. To shed light on this, we also use the VGG-Face
dataset [40] for pretraining. VGG-Face is collected from the web, including 2,622
identities and about 1.5 M face images. For the fine-tuning phase, throughout various
experiments, we use other publicly available datasets in addition to ETH-XGaze,
such as Gaze360 [23] and MPIIFaceGaze [64]. Gaze360 is a physically unconstrained
dataset consisting of 238 subjects collected in indoor and outdoor environments
with a wide range of head poses. MPIIFaceGaze is a subset of the MPIIGaze [63]
dataset that contains 15 subjects and 3000 samples per subject, recorded while doing
activities on the laptop.
Implementation Details. For the pretraining phase, we use SGD + LARS [56]
optimizer with a batch size of 1024 distributed over 8 NVIDIA GeForce RTX 3090
GPUs. We pretrain for 100 epochs and experimentally found it to be sufficient.
We use a weight decay of 10−6 and the learning rate is set to 0.45 followed by an
initial linear warmup stage for 10 epochs. Afterward, we use cosine learning rate
decay [32] with a final value of 0.00045. As the encoder, we use ResNet [21] and the
projection head consists of a 2-layer MLP that maps the encoder output to 128-D.
We experimentally set the number of prototypes M to 500.
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Experimental protocol. We use the dataset partitions provided by each dataset.
A prior data normalization stage is commonly applied by creating a virtual camera
with fixed intrinsic and extrinsic camera parameters, which reduces head pose
variability and hence the training space [61]. However, this normalization may
conceal the benefits of enforcing equivariance for geometric transformations, especially
for already constrained datasets with little geometric variability. Furthermore,
this stage cannot be applied accurately if camera parameters are not provided.
Therefore, for the finetuning part of our methods (baselines and SwAT) we apply
data normalization only to ETH-XGaze, since its test evaluation assumes normalized
data, and to MPIIFaceGaze, to compare against previous approaches that performed
the normalization stage. We also evaluate the unnormalized version of MPIIFaceGaze
(referred to as MPIIFaceGaze*) to better quantify the benefits of SwAT and compare
its performance against the normalized counterpart. Throughout this work, we use
average angular gaze error in degrees to measure performance. Hence, the 2D angles
in the spherical coordinate system are transformed back to 3D gaze direction vectors
in the camera coordinate system.

4.2 Supplementary details of pretraining
As mentioned in Sec. 3.2, SwAV [3] performs score adjustment using the Sinkhorn-

Knopp [11] algorithm to avoid trivial solutions. We refer the reader to the SwAV
paper [3] for the details of the Sinkhorn-Knopp algorithm. This algorithm has two
hyperparameters, namely, the number of iterations and Sinkhorn regularization
parameter (ϵ). We perform 3 Sinkhorn iterations as in SwAV and set ϵ = 0.03. Note
that a high value of ϵ leads to trivial solutions, i.e., same cluster assignment for
every image within a batch, whereas a too low value results in numerical instability.

4.3 Implementation details of linear evaluation
For linear evaluation (Sec. 5.1 and Sec. 5.2), we freeze the backbone and train a

linear regressor on top for 100 epochs. We set the initial learning rate to 0.01, which
is decayed using cosine decay with a final value of 0.0001. We also used a weight
decay of 0.0001.

4.4 Implementation details of semi-supervised learning
In semi-supervised learning (Sec. 5.3), we finetune the whole network using two

subsets (10% and 30%) from the ETH-XGaze dataset, at the subject level. We
finetune SwAT for 100 epochs with an initial learning rate of 0.001 for the backbone
and 0.01 for the linear regression head. Then, we decay the learning rates after 40
and 80 epochs. We also used a weight decay of 0.0001. The supervised baseline is
trained in the same manner except we initialize the learning rate of the backbone
with 0.01.

4.5 Implementation details of supervised fine-tuning
This section provides implementation details of Sec. 5.4. For supervised fine-

tuning, we use different hyperparameters for each dataset. In the case of ETH-XGaze,
we finetune SwAT for 25 epochs following [60]. The learning rates of both the
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Method Color Blur Noise Flip Rotate Scale Cutout Sobel
SwAV 1.0 0.7 0.8 0.0 0.4 0.6 0.5 0.9
SwAT 1.0 0.5 0.6 0.6 0.4 0.3 0.0 0.8

Table 4.1. Computed probabilities (p) using the soft assignment policy.

backbone and linear regressor are set to 0.001, which are then decayed at epoch
15. In addition, we use a weight decay of 0.0001. However, we train the supervised
counterpart for 100 epochs with an initial learning rate of 0.01, decayed after 40
and 80 epochs. On Gaze360, we finetune SwAT for 80 epochs following [23]. The
learning rate of backbone and the linear head are set to 0.001 and 0.01, respectively,
which are decayed using cosine decay with a final value of 0.0001. In the case of
MPIIFaceGaze, we perform fine-tuning for 40 epochs with an initial learning rate of
0.0005, decayed at 20 and 30 epochs. For MPIIFaceGaze∗, we finetune for 25 epochs,
decaying the learning rate at 10 and 20 epochs. For all datasets, we use horizontal
flip and scaling s ∈ [0.7, 1.4] as data augmentation.

4.6 Details of evaluation protocol on each dataset
ETH-XGaze contains 756K images and 80 subjects for training. The test set
is composed of 15 subjects with a total of 159K samples. Since the dataset does
not have an official validation set, we manually split the training set into two
subject-independent sets, i.e., 90% (72 subjects) training set and 10% (8 subjects).
We selected the subjects via visual inspection ensuring diversity across gender,
ethnicity, and eyewear accessories. The validation set was only used for ablation
study, evaluation of transformations, and evaluating the unsupervised features. The
rest of the experiments are trained using 100% of the training data and evaluated
with the test set. Note that the test set of ETH-XGaze is kept private and online
evaluation is performed via the dedicated submission webpage. For semi-supervised
learning, we selected two subsets from the training data at subject level, i.e., 10% (8
subjects) and 30% (24 subjects). The ID of the subjects are as follows:

• 10% subset (8 subjects) = {3, 32, 48, 52, 80, 88, 101, 109}

• 30% subset (24 subjects) = {0, 3, 8, 9, 13, 24, 28, 32, 33, 36, 38, 40, 45, 48,
52, 62, 79, 80, 88, 92, 101, 103, 109, 111}

Gaze360 contains 129K training, 17K validation, and 26K test samples collected
from 238 subjects. We use a subset of the dataset whose faces come with bounding
boxes, resulting in around 85K, 11K, and 16K samples for training, validation, and
test, respectively.
MPIIFaceGaze comes with 45K samples and 15 subjects each having 3K samples.
We perform a leave-one-person-out cross-validation for each subject to evaluate and
compare the methods.
MPIIFaceGaze∗ is the unnormalized version of the MPIIFaceGaze dataset. We
performed 3-fold cross-validation where the folds were chosen uniformly at random.
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4.7 Details of Transformations
In this section, we provide the details of transformations for self-supervised

pretraining (Sec. 5.1). When composed together, each transformation is applied
with probability pt, which is determined by soft assignment policy. The computed
probabilities for each transformation depending on the pretraining approach (SwAV
or SwAT) can be found in Tab. 4.1. In the following, we provide the details of each
transformation in the same order they are applied during implementation.

Sobel. Since the two transformed views are assumed to be different, we apply the
Sobel filter to only one view.

Blur. Gaussian blur is applied using a Gaussian kernel where we randomly sample
the radius σ ∈ [0.1, 2.0]. We do not apply the blur transformation to views with
Sobel transformation applied.

Color. We apply color transformation following SimCLR [4]. More concretely,
this transformation is composed of two sub-transformations, i.e., color jittering
(brightness, contrast, saturation, and hue) and color dropping (grayscale). We
randomly apply color jittering with probability of 0.8, and color dropping with 0.2.
We do not apply the color transformation to views with Sobel transformation applied.

Noise. We add Gaussian noise N ∼ (0, 30) to an image. Once Sobel is applied, we
do not apply Gaussian noise.

Cutout. We randomly cutout a patch of size h×h pixels, where h = 64 × (Hx/224)
and Hx is the height (or width) of the input image (x).

Flip. Applying horizontal flip to both views results in the same image. Thus, we
only applied it to one view.

Rotate. We apply rotation via randomly sampling the rotation angle (θ) from
θ ∈ [−45, 45] degrees.

Scale. Scaling (s) is applied via randomly sampling the scale factor s ∈ [0.7, 1.4].
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Chapter 5

Experiments and Results

In this chapter, we assess the usefulness of the image transformations considered in
this thesis for self-supervised learning (Sec. 5.1), and the performance of the proposed
SwAT method through an exhaustive experimental evaluation. In particular, we
first compare SwAT to other pretraining schemes to determine the utility of the
equivariance property (Sec. 5.2). We then evaluate SwAT under low-data regimes
(Sec. 5.3), and compare it to state-of-the-art approaches for within- (Sec. 5.4) and
cross-dataset (Sec. 5.5) settings. We analyze the accuracy of SwAT as a function of
gaze direction and head pose (Sec. 5.6). We quantify the equivariance capability,
showing the relative improvements made by SwAT over SwAV (Sec. 5.7). Then, we
visualize the estimated gaze directions of SwAT and supervised baseline (Sec. 5.8).
We provide the ablation studies of key hyperparamters such as number of prototypes
(Sec. 5.9.1), number of pretraining epochs (Sec. 5.9.2), and the dimensionality
of projection-head (Sec. 5.9.3). Lastly, we compare our equivariance solution to
PeCLR [44] (Sec. 5.10).

5.1 Evaluation of Transformations
Fig. 3.2 shows the studied transformations in this work. To identify the most

effective transformations, we perform individual transformation evaluation. To do
so, we pretrain an encoder on the ETH-XGaze dataset (without labels) using each
individual transformation. Then, we freeze the backbone and train a linear gaze
regressor on top. For this experiment, we use ResNet-50 as the backbone and we set
the input size to 112 × 112. We manually create a validation set from the training
set of ETH-XGaze by splitting the data into two subject-independent sets i.e., 90%
training set and 10% validation set.
Individual Transformation Evaluation. Tab. 5.1 shows the results of individual
transformations for SwAV and SwAT methods. Note that both methods behave
identically under appearance and scale transformations, whereas they differ in terms
of horizontal flip and rotation. As can be seen, SwAT outperforms SwAV in the case
of horizontal flip and rotation, achieving around 15% and 5% relative improvements,
respectively. This demonstrates the benefit of enforcing equivariance under affine
transformations via SwAT, producing feature representations that are more aligned
with the gaze estimation task.
Composition of Transformations. A stronger image distortion can be realized
via composing multiple transformations in a sequential manner. To achieve that, we
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Method Color Blur Noise Flip Rotate Scale Cutout Sobel Composition
SwAV 27.1 28.9 28.4 33.8 30.8 29.7 30.7 27.7 26.4
SwAT 27.1 28.9 28.4 28.6 29.2 29.7 30.7 27.7 26.0

Table 5.1. Evaluation of Transformations. Performance of SwAV and SwAT for each
individual transformation on the validation set of ETH-XGaze, in terms of average
angular gaze error (degrees). Note that SwAV and SwAT only differ in terms of Flip
and Rotation while behaving identically in the case of other transformations. The last
column shows the results of composition of transformations using the soft assignment
policy.

compose the transformations using a soft assignment policy. Let us denote p as the
probability of applying a transformation. We compute p by mapping the individual
performances (Tab. 5.1) to [0,1] via scaling, such as:

pt = 1 − et − emin
emax − emin

, (5.1)

where t is a given transformation chosen from the transformation catalog i.e.,
t ∈ {color, blur, ..., sobel}, et corresponds to the gaze error of the transformation
during individual transformation evaluation, and emax and emin are the maximum
and minimum gaze error across all the individual transformations of the method i.e.,
SwAV and SwAT (rows of Tab. 5.1). This way, all the transformations contribute to
data augmentation with respect to their individual performances. The last column
of Tab. 5.1 (Composition) shows that the soft assignment policy improves the
performance compared to individual transformations. We find such a soft assignment
policy more promising than a hard assignment counterpart such as selecting top-k
transformations and then performing an exhaustive search as in [44]. In particular,
we get 0.9◦ improvement using the soft assignment policy compared to the best
composition of the hard assignment method.

5.2 Evaluating the Unsupervised Features
After assessing the effectiveness of each individual transformation and finding

an optimal composition for SwAV and SwAT (Sec. 5.1)), we evaluate the quality
of unsupervised features. More precisely, the goal of this experiment is twofold:
to explore whether the equivariance property provided by SwAT leads to a better
representation compared to the invariance counterpart (SwAV), and to shed light
on the quality of the unsupervised features with the curated (ETH-XGaze) and
uncurated datasets (VGG-Face), used for pretraining. To do so, we perform a linear
evaluation, where we freeze the backbone (ResNet-50) after pretraining and train a
linear gaze regressor on top. Then, we measure the performance on the validation
set that we manually create by splitting the available ETH-XGaze training set
intro training and validation sets. We also compare the unsupervised features with
ImageNet supervised features, which are widely used in current gaze estimation
works as initialization.

Fig. 5.1 (left) shows the results of the linear evaluation on the validation set of
ETH-XGaze. We can see that SwAT outperforms SwAV with both curated (ETH-
XGaze) and uncurated (VGG-Face) datasets. More importantly, SwAT surpasses
the supervised features pretrained on ImageNet, decreasing the gaze error from 22.8◦

to 20.6◦. In the next experiments, we focus on comparing and evaluating SwAT in
presence of labels for finetuning.
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Figure 5.1. Left. Results of evaluating the unsupervised features of SwAV and SwAT
pretrained with ETH-XGaze and VGG-Face datasets compared to random and ImageNet-
based initializations. Performance is measured on the validation set of ETH-XGaze.
Right. Results of semi-supervised learning using two subsets (10% and 30%) of the
ETH-XGaze dataset, at the subject level. Performance is measured on the test set of
ETH-XGaze.

Method Pretrain Arch. ETH-XGaze Gaze360 MPIIFace MPIIFace∗

Full-Face [64] ImageNet AlexNet+SW N/A N/A 4.8 N/A
Dilated-Net [6] ImageNet Dilated-CNN N/A N/A 4.8 N/A
RT-GENE [14] ImageNet VGG-16 N/A N/A 4.8 N/A
Gaze360 [23] ImageNet ResNet-18 N/A 13.2 N/A N/A
MTGLS [15] MS-Celeb-1M ResNet-50 N/A 12.8 N/A N/A
ETH-XGaze [60] ImageNet ResNet-50 4.5 N/A 4.8 7.1†

Baseline (ours) Random Init. ResNet-50 5.9 12.2 5.7 8.5
SwAT (ours) ETH-XGaze ResNet-50 4.5 11.9 5.2 7.5
SwAT (ours) VGG-Face ResNet-50 4.4 11.6 5.0 6.9

Table 5.2. Comparison of SwAT with state-of-the-art appearance-based gaze estimation
works, reported as average angular gaze error (degrees). Best results are bolded. Per-
formances of the state-of-the-art approaches are shown as reported by their authors,
except values marked with †. MPIIFaceGaze∗ denotes the unnormalized version of
MPIIFaceGaze.

5.3 Semi-supervised Learning
In this evaluation, we examine the label-efficiency of SwAT. To achieve that, we

perform semi-supervised learning on two subsets of the ETH-XGaze dataset. More
precisely, we define two subsets i.e., 10% and 30% at subject level, and finetune
the whole network on these subsets. As a baseline, we train a counterpart on the
same subsets and with the same architecture but instead of using pretrained SwAT
weights, we randomly initialize the weights. Fig. 5.1 (right) depicts the results of
the semi-supervised learning. As can be seen, ResNet-50 pretrained with SwAT
improves the baseline up to 1.0◦ when only 10% and 30% of labeled data at the
subject level is available. This is of great importance in the gaze estimation context
as recruiting fewer subjects saves cost and time.

5.4 Comparison to state of the art
We compare SwAT with state-of-the-art methods for full-face appearance-based

gaze estimation on four datasets, namely, ETH-XGaze, Gaze360, MPIIFaceGaze,
and MPIIFaceGaze∗. We pretrain SwAT with ResNet-50 as encoder on ETH-



5.5 Cross-dataset Evaluation 18

Method TrainTest ETH-XGaze Gaze360 MPIIFace MPIIFace∗

ETH-XGaze - 30.0 23.5 17.5
Supervised Gaze360 25.6 - 30.4 21.5

MPIIFace 32.2 27.4 - -
MPIIFace∗ 35.5 28.9 - -

SwAT
ETH-XGaze - 22.9 12.1 11.6

SwAT Gaze360 19.4 - 13.0 12.8
MPIIFace 29.5 24.9 - -
MPIIFace∗ 32.6 25.5 - -

Table 5.3. Comparison between supervised baseline and SwAT on cross-dataset evaluation.
Numbers denote gaze error in degrees. Best results are bolded.

XGaze (without labels) and VGG-Face datasets. Then, we finetune the whole
network using the aforementioned datasets. As a baseline, we also train the same
encoder (ResNet-50) solely in a supervised fashion. Tab. 5.2 shows the comparison
with the state of the art along with the datasets used for pretraining and the
type of encoder. As can be seen, the supervised baseline is unable to outperform
the state of the art, except on Gaze360. However, the same encoder boosted
with SwAT unsupervised pretrained features achieves up to 25%, 5%, 14%, and
19% improvements compared to the supervised baseline on ETH-XGaze, Gaze360,
MPIIFaceGaze, and MPIIFaceGaze∗, respectively. Furthermore, SwAT pretrained
with the VGG-Face dataset outperforms SwAT pretrained on ETH-XGaze (without
labels) on all four benchmarks. This suggests that SwAT can effectively make use of
uncurated datasets. On ETH-XGaze, SwAT pretrained with VGG-Face outperforms
the state of the art that utilizes the pretrained ImageNet supervised weights. In
addition, SwAT improves the state of the art up to 9% on Gaze360 while slightly
underperforming it on MPIIFaceGaze. However, we can better observe the benefit
of SwAT on the unnormalized version of MPIIFaceGaze (MPIIFaceGaze∗), where
SwAT improves the ETH-XGaze method with no data normalization by 0.2◦. These
results demonstrate the superior performance of SwAT in unrestricted scenarios.

5.5 Cross-dataset Evaluation
To evaluate the out-of-distribution generalization capability of SwAT, we perform

a cross-dataset evaluation, i.e., training on a given dataset and testing on other
datasets. We consider four datasets, namely, ETH-XGaze, Gaze360, MPIIFaceGaze,
and MPIIFaceGaze∗. We use ResNet-50 as encoder, pretrained on VGG-Face using
SwAT. We compare our self-supervised approach (SwAT) to a supervised baseline
that is solely trained in a supervised fashion. Tab. 5.3 shows the results of cross-
dataset evaluation. SwAT improves the supervised baseline by a large amount.
In detail, SwAT achieves up to 24% relative improvement on the ETH-XGaze
dataset, and outperforms the supervised counterpart by 24% on Gaze360, by 57%
on MPIIFaceGaze, and by 41% on MPIIFaceGaze∗.
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Figure 5.2. Gaze estimation error across horizontal (left) and vertical (right) for gaze and
head pose directions in degrees.

5.6 Robustness Analysis
Mean gaze error is not quite an informative indicator of how a method performs

within a specific gaze direction and head pose range. Thus, we conduct a robustness
analysis to shed light on the performance of our method across gaze and head pose
angles. Fig. 5.2 depicts the gaze error in degrees across horizontal and vertical gaze
and head pose angles on the test set of ETH-XGaze. We observe that the performance
of the supervised baseline substantially decreases as a function of the number of
samples in ETH-XGaze (gaze angles follow a Gaussian-like distribution centered
at 0, whereas the head pose distribution is multimodal [60]). In contrast, SwAT
demonstrates superior robustness across all directions compared to the supervised
baseline. However, SwAT pretrained with VGGFace is consistently more stable than
SwAT pretrained on ETH-XGaze (without labels), especially in case of extreme
gaze and head pose angles. We repeat the same analysis for the semi-supervised
setting (Sec. 4.3). As shown in Fig. 5.3, overall, across both horizontal and vertical
directions, the performance of SwAT is superior to the supervised (Random Init.)
baselines. Nevertheless, the error curves slightly fluctuate for extreme head poses.

5.7 Equivariance Analysis
To evaluate the equivariance capability, we rely on the definition of equivariance

(Eq. 3.4) and calculate the following metric (Lequ):

Lequ = 1
N

N∑
i=1

||fϕ(tgI(xi)) − tgF (fϕ(xi))||2. (5.2)

We compare fϕ pretrained with SwAV and SwAT on the VGG-Face dataset. As
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Figure 5.3. Robustness Analysis for Semi-Supervised Setting. Gaze estimation
error across horizontal (left) and vertical (right) for gaze and head pose directions in
degrees. The percentages show the amount of labeled data used for finetuning.

the evaluation datasets, we specifically focus on unconstrained gaze scenarios and
calculate Lequ for Gaze360 and MPIIFaceGaze∗. We expect SwAT to achieve lower
values, which indicates enforcing equivariance. Fig. 5.4 depicts the results of Lequ on
Gaze360 (left) and MPIIFaceGaze∗ (right), varying rotation degrees. As shown, in
both cases SwAT consistently outperforms SwAV in the whole rotation range. More
precisely, on average, SwAT achieves 27% and 21% relative improvements compared
to SwAV on Gaze360 and MPIIFaceGaze∗, respectively. Moreover, we calculate Lequ
for horizontal flip and find that SwAT improves SwAV by 26% on Gaze360 and 21%
on MPIIFaceGaze∗.

5.8 Qualitative Results
Fig. 5.5 shows the estimated gaze direction on the test set of Gaze360. As shown,

the supervised model demonstrates a large discrepancy compared to the ground-truth
vectors while SwAT estimations better match the ground truth. It can be seen that
SwAT is able to better estimate the gaze direction in extreme head-pose conditions.
In the last column, we show some failure cases where SwAT and supervised model
are not on par with the ground truth. In addition to Gaze360, we also show the
estimated gaze direction on MPIIFaceGaze in Fig. 5.6. Note that in the case of
MPIIFaceGaze, we performed leave-one-person-out evaluation for two subjects. The
visual results in Fig. 5.6 suggest that SwAT achieves higher performance than the
supervised baseline in the challenging case of extreme illumination condition. The
last column in Fig. 5.6 shows some failure cases where both SwAT and supervised
model fail to follow the ground-truth. Nevertheless, as can be seen from the failure
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Figure 5.4. Results of calculating Lequ for SwAV and SwAT on Gaze360 (Left) and
MPIIFaceGaze∗ (Right) datasets. The dotted lines shows the relative improvement
achieved by SwAT over SwAV.

Figure 5.5. Visual results of estimated gaze direction on the test set of Gaze360. The
green, red, and blue colors are, SwAT ( ), Supervised ( ), Ground-truth ( ),
respectively. The last column shows examples of failure cases.

case of closed eyes in both figures (Fig. 5.5 bottom row, Fig. 5.6 top row), despite the
fact that the ground truth indicates the theoretical gaze direction, SwAT estimates
a downward direction, which is more aligned with the closed eye direction.

5.9 Ablation Studies
In this section, we vary some of the key hyperparameters of SwAT such as

the number of prototypes (Sec. 5.9.1), the number of epochs (Sec. 5.9.2), and the
dimensionality of the projection head (Sec. 5.9.3). Throughout these experiments,
we use ResNet-50 as the backbone encoder and ETH-XGaze (without labels) dataset
for pretraining. Then, we freeze the backbone and train a linear regressor on top
using the training set of ETH-XGaze, and measure the performance on the validation
set. We set the input image size to 112×112. The default values for the number of
prototypes, number of epochs, and dimensionality of projection-head are 500, 100,
and 128, respectively, unless otherwise specified.
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Figure 5.6. Visual results of estimated gaze direction on the test set of MPIIFaceGaze.
The green, red, and blue colors are, SwAT ( ), Supervised ( ), Ground-truth
( ), respectively. The last column shows examples of failure cases.

Number of prototypes d epochs
500 1500 3000 6000 128-D 256-D 100 200 400

Gaze Error 25.8 26.0 25.9 26.0 26.0 25.7 26.0 26.3 26.4
Table 5.4. Results of ablation study on the number of prototypes, the dimensionality of the

projection head (d), and the number of epochs. Numbers denote gaze error in degrees.
Best results are bolded.

5.9.1 Number of prototypes
In this experiment, we investigate the effect of the number of prototypes (M) on

the performance of SwAT. To achieve that, we consider four candidates, i.e., 500,
1500, 3000, and 6000. As shown in Tab. 5.4, we observe a slight difference in the
performance of SwAT with different numbers of prototypes. This shows that the
number of prototypes has a negligible impact on the performance of SwAT.

5.9.2 Number of epochs
We aim at increasing the number of epochs for pretraining from 100 to 200 and

400 epochs to assess whether SwAT takes advantage of longer pretraining. Results
in Tab. 5.4 suggest that 100 epochs is sufficient and further pretraining leads to
worse results.

5.9.3 Dimensionality of projection-head
In this experiment, we increase the dimensionality of the projection head d from

128-D to 256-D. As shown in Tab. 5.4, SwAT achieves a slightly better result with
256-D compared to 128-D.

5.10 Comparison with PeCLR [44]
In this subsection, we shed light on the differences between our equivariance

formulation (SwAT) and PeCLR [44], a self-supervised approach for the task of 3D
hand pose estimation. To avoid trivial solutions, PeCLR uses a contrastive loss that
attracts the positive pairs while repelling the negative pairs. Furthermore, PeCLR
achieves equivariance via inverting the image-space affine transformations in feature
space which results in having the same affine information for both positive and
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negative pairs. Thus, the contrastive loss has to push apart representations with
the same affine information in feature space. Additionally, the negative pairs may
also contain faces with similar gaze or head poses. In contrast, SwAT equalizes the
feature vectors in terms of affine information and does not require negative samples.
SwAT learns more geometry-aware representations as throughout training iterations
SwAT sees the same image under various transformation information in feature
space. Thus, the same image can have different cluster assignments depending on the
randomly sampled transformation. Whereas, throughout training, PeCLR observes
the same image with the same transformation information in feature space.

We compare both methods in the same setting and we use rotation as the only
affine transformation. We evaluate the quality of the features by linear evaluation
where we freeze the backbone and train a linear regressor on top. The results show
that SwAT achieves better performance (29.2◦) compared to PeCLR (29.6◦).
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Chapter 6

Conclusion

In this thesis, we explored the effectiveness of a self-supervised method in the
context of gaze estimation, and proposed a novel approach (SwAT) to learn an equiv-
ariant representation for geometric transformations, i.e., rotations and horizontal flip.
Our approach is task-agnostic and can be applied to any joint embedding-based self-
supervised approach. We showed that SwAT learns more informative representations
than other pretraining schemes for the task of gaze estimation. We also showed that
our approach fueled by a large-scale uncurated dataset achieves more generalizable
and consistent results, outperforming the supervised baselines and state-of-the-art
approaches for both within- and cross-dataset settings. We also showed that our
method achieves superior performance with fewer subjects. Thus, our approach can
be leveraged to boost the performance of current gaze estimation systems in the real
world via leveraging large-scale freely available face images on the Internet.
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