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Abstract

Generalisation measures are metrics that indicate how well a neural network will perform in presence
of unknown data. Differentiable generalisation measures with respect to the parameters of a neural
network that use only the training set are candidates to be used as loss regularisation terms to
improve neural network training processes. Recently, persistent homology has been used to build
robust generalisation measures of this kind by means of persistence diagrams. However, some
of these measures involve non-standard distances, and thus the usual stability and differentiability
results are not valid. In this thesis, we prove more general stability and differentiability results that fit
the conditions required by the previous topological measures. Also, we define a new measure called
topological redundancy that we use together with one of the previous topological terms to improve
accuracies of networks with respect to usual training without topological regularisation terms.

Keywords

TDA, topological data analysis, topology, metric, distances, differential calculus, persistent homology,
persistence diagrams, correlation, machine learning, deep learning, neural networks, regularisation,
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1. Introduction

1.1 Motivation

Neural networks are parameterised, computational graph models that are, under some assumptions,
able to approximate any reasonable function [31]. This important result is called universal approxi-
mation theorem and, although it theoretically proves the efficacy of neural networks, it is not possible
to build the ideal models proposed in it in practice due to several limitations: partial knowledge of the
function to approximate, insufficient computational resources, physical limitations, etc. In particular,
neural networks are normally used to approximate functions that are known only on a limited set of
points. Once a graph architecture is fixed and a similarity measure between functions is set, the pro-
cess of finding the parameter values that yield the best approximation of our target function with the
specific neural network architecture is called training. The final performance of the network once the
parameters are selected is directly related to both the architecture and the training process. However,
although the deep learning field has evolved dramatically during the last years, there is no mathe-
matical theory that guides the training and architecture selection processes. This is due to a lack of
knowledge of which properties of a network are determinant to produce better neural networks given
a problem. In fact, the usual approach to build models is based on experimental heuristics, and not
on deductive processes.

During the last few years, researchers have been working on solving a simplification of the previ-
ous problem called the generalisation prediction. Generalisation prediction consists of associating
a generalisation value given by a generalisation measure to each neural network that is directly
related to the quality of the approximation of the target function by the neural network. Most state-
of-the-art generalisation measures are gathered in the article [23] and in the competition [22], whose
results are analysed in the article [21]. In particular, developing precise and robust generalisation
measures would allow deep learning practitioners to improve architecture and parameter selection
processes to get better approximations. This is crucial in context-critical problems like disease detec-
tion or autonomous driving, where a small error of the output can produce dangerous situations.

Differentiable generalisation measures with respect to the parameters of neural networks allows
the training process of these networks to be improved. During the training process, a differentiable
measure, sometimes called loss function, between the partially-known target function we want to
approximate and the predictions of the neural network for a few known points is minimised. Adding
our generalisation measure to this loss function allows us not only to use generic distance measures
between the real and predicted points but also to use additional information given by our general-
isation measures. This technique is part of a broad set of methods used to improve the training
process of a neural network called regularisation methods. In particular, we say that we add a
regularisation term to our loss function when adding a new formula to the original loss function to
be minimised.

According to [21], one of the main categories of generalisation measures presented in [22] was re-
lated to the study of intermediate representations of the input data given by the vertices in the graphs
of neural networks. These representations are often analysed by means of geometrical methods.
In particular, methods from computational algebraic topology are used in [1] to build generalisation
measures capable of obtaining competitive results in predicting the generalisation gap of a neural
network, an important measure of generalisation in classification problems. A classification prob-
lem is usually defined as the problem of approximating a function f : D → L ⊂ N knowing only a
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subset D′ ⊂ D. We usually do not use the whole set D′ to train our neural network but we split
D′ = D′

train ∪ D′
test to train our neural network with the set D′

train and to test the resulting approxi-
mation with the set D′

test. In particular, the topological methods applied in [1] use only the values
of the vertices in the computational graphs when fed with the inputs in the set D′

train to predict the
generalisation gap, a measure computed from both sets D′

train and D′
test.

The methods from algebraic topology used in [1] belong to a specialty called topological data
analysis. Topological data analysis (TDA) is a broad field of computational topology that studies the
shape of data, either quantitatively or qualitatively, being persistent homology one of its most promi-
nent subfields. Persistent homology studies how homology groups derived from certain structures,
usually finite sets of points, evolve in terms of one or more parameters. Persistent homology is an
emerging field that was first introduced in the works [14] and [32] according to [30]. Persistent homol-
ogy has been broadly used in many areas of science due to its robustness to noise, its descriptive
capacity, and the algorithms and data structures that allow to compute and store persistent homology
objects easily and quickly in a computer [2, 17, 36].

Robustness of persistent homology methods comes from stability results. Stability results state
that persistence diagrams, the main object of study of persistent homology, are similar when the
structures yielding the persistence diagrams are similar. Stability of persistent homology is itself
a big area inside persistent homology with an active community of researchers working on it. For
our purposes, the main results of stability were published in [9], where it is proven that persistence
diagrams coming from similar sets of points in a metric space with respect to the Gromov-Hausdorff
distance are close with respect to the bottleneck distance of persistence diagrams, that we define in
Section 2.1.4.

On the other hand, the recent article [26] defines a a very general framework for differentiating
persistence diagrams. Adapting these results to the persistent homology tools used in [1] allows us to
use the generalisation measures proposed in the article to build new regularisation terms for neural
network loss functions. This is not the first time differentiability of persistence diagrams has been used
to improve the loss functions used during a training process. In particular, earlier works on topological
machine learning used differentiability without specifying a concrete framework to regularise neural
networks by means of new terms in the loss functions. We describe some of them in Section 1.2.

During the thesis, we use persistent homology tools to add regularisation terms based on the
results of [1] and [26] to loss functions. We use a new theoretically-based regularisation term called
topological redundancy, explained in Section 3.2.1, as well as one of the generalisation measures
proposed in [1], namely standard deviation of death values in dimension zero persistence diagrams
generated from network functional graphs. Finally, we show that topological regularisers can consis-
tently improve the generalisation capacity of neural networks with respect to their accuracy in test. In
particular, minimising the standard deviation of deaths in dimension zero persistence diagrams has
proved to be the most effective method to regularise neural networks during training, improving the
final accuracies in almost all the networks that we have examined and all our experiments. These
results are consistent with the plots shown in [1, Figure 4.3], where the lower the standard deviation
is, the better the generalisation capacity of the neural network is.

1.2 State of the art

As mentioned in the previous section, several approaches have been undertaken on adding topolog-
ical regularisers to loss functions.
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In [10], persistent homology is applied mainly to binary classification problems (L = {l1, l2}) in
which neural networks represent functions N : D → R where an input x is classified as label l1 if
N (x) < 0 and as l2 otherwise, where the set N−1(0) is called the decision boundary of the neural
network N and the connected components of D \ N−1(0) are called decision regions. In particu-
lar, they develop a regularisation term based on persistent homology that penalises weak decision
regions, that is, decision regions R where maxx∈R |x | is near zero.

In [20], a topological regulariser is used in an image segmentation context. Image segmentation
is the process of assigning labels to all the pixels of an input image, e.g., detecting the pixels of
a heart in an image. Usually, these labels are related with geometrical properties, like having an
specific number of connected components or handles. Some of these geometrical properties can
be tracked with (persistent) homology. In this paper, they add to the usual loss functions for image
segmentation problems a regulariser that rewards conserving persistent homology features of the
known segmentations in the neural network segmentation predictions. Similar work is done in [20],
where a prior description of the topological structure is known and the topological regulariser tries
to fit the neural network predictions to have the desired topological structure. Finally, in [19] authors
apply discrete Morse theory and persistent homology on image segmentation neural networks to
identify important topological structures during training and to use these structures to improve the
results of the neural network.

In [15] we find a framework of persistent homology differentiability and its implementation in the
Python package PyTorch [29]. The framework is tested successfully by minimising/maximising certain
persistent homology descriptors in three different problems: topological noise reduction and regular-
isation, optimisation of generative models, and generation of adversarial attacks. This framework is
generalised in the subsequent articles [6, 26], that are the first ones to provide an explicit framework
for differential calculus in persistence diagrams.

In [18], the authors use persistent homology to build a differentiable regularisation term that allows
to control topological and geometric properties of an autoencoder’s latent space. An autoencoder is
a type of neural network N : D → S whose objective is to learn better representations of inputs
I ⊆ D with respect to some property, like the dimension of D and S. The output space is called the
autoencoder’s latent space. In particular, they find that pairwise distances between representation
of points x , y ∈ I in the autoencoder’s latent space N (x),N (y) ∈ S are close to a fixed distance η,
showing that this property is beneficial for these kind of neural networks.

In [7], the authors apply differentiability of persistence diagrams to generative models. Generative
models are neural networks that, given an input, that may be even noise, produce an output with
some desired properties (like being an image of a cat) satisfied in a set of examples D. In particular,
they penalise that (big) sets of generated outputs do not share the persistent homology descriptors
yielded by the set of original examples.

1.3 Contributions

The main objective of this thesis is to develop new regularisation terms based on the previous work [1]
that can help to choose better parameters of a neural network during training. To do that, we use
persistence diagrams coming from Vietoris-Rips filtrations, that are nested families of Vietoris-Rips
simplicial complexes (2.14). Vietoris-Rips filtrations are common for practical purposes due to the
efficient algorithms developed to compute them [2, 17, 36]. However, stability results have been
mainly proven for Vietoris-Rips-based persistence diagrams coming from metric spaces [9, 13]. Also,
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the differential calculus framework for persistence diagrams developed in [26] consider only Vietoris-
Rips persistence diagrams in Euclidean metric spaces. This is a limitation because many practical
applications use similarity functions to compute distances between objects of interest. In our case,
we follow the framework developed in [1], that applies persistent homology in vectors coming from
vertices in the neural network where the way to measure a distance between vectors is given by the
function d(x , y) = 1− |Corr(x , y)|. In this work, we

1. prove stability results for Vietoris-Rips filtrations using similarity functions that are not neces-
sarily metrics under some mild assumptions that the function 1− |Corr(x , y)| satisfies;

2. develop the differentiability framework of persistence diagrams published in [26] for general
Vietoris-Rips filtrations using a similarity function instead of the Euclidean distance;

3. formalise, unify and adapt the theory of neural networks and deep learning using the theory of
computational graphs to use the persistent homology framework presented in [1];

4. build successful regularisation terms based on both theoretical and empirical considerations
about neural network properties captured by persistence diagrams using the framework of [1].

The first two contributions are developed in Subection 2.2 whereas the last two (contributions 3
and 4), are developed in Subsection 3.2 and Section 4, respectively.

1.4 Outline

The thesis is divided into the following sections: Introduction 1, Persistence Stability and Differentia-
bility 2, Deep Learning 3, Experimental Results 4, and Conclusions 5.

The Introduction contains a brief motivation of the work 1.1, a review of the state of the art 1.2,
and the contributions done in this thesis 1.3.

The Persistence Stability and Differentiability section contains an introduction of persistent homol-
ogy 2.1 and its classical results, including the differentiability results of [26] in 2.1.5. After that, our
own results on stability and differentiability for similarity functions are developed in Subsection 2.2.

The Deep Learning section contains a formalisation of the main terms of deep learning and neural
networks 3.2 based on the theory of computational graphs, presented in 3.1. Lastly, a new topological
regularisation term is presented in 3.2.1.

The Experimental Results section contains details of the experiments performed and their re-
sults. The first three subsections include a definition of the regularisation terms we use in our exper-
iments 4.1, a basic explanation of how dropout works 4.2, and a way to plot meaningful graphics of
dimension zero persistence diagrams with density functions 4.3. The last two subsections are ded-
icated to the description of the experiments performed and their results, in Subsections 4.4 and 4.5
respectively.

Finally, the Conclusions section contains a discussion about the results 5 and possible future work
related to this thesis 5.1.
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2. Persistence stability and differentiability

2.1 Persistent homology

2.1.1 Fundamentals of persistence modules

In this chapter we define persistent modules and persistence diagrams from finite sets of points with
an associated distance. Most definitions and results are extracted from [9].

Definition 2.1. ([9, Definition 1.1]) Let K be a field and R the set of real numbers. A persistence
module over K is an R-indexed family of K-vector spaces

V = {Vt : t ∈ R}

together with a doubly-indexed family of linear maps{
v ts : Vs → Vt | s, t ∈ R, s ≤ t

}
which satisfy the composition law

v ts ◦ v sr = v tr

whenever r ≤ s ≤ t, and where v tt is the identity map on Vt for all t.
We say that a persistence module V is pointwise finite-dimensional if Vt has finite dimension for

every t.

Equivalently, a persistence module can be regarded as a functor from the partially ordered set
(R,≤) to the category VectK of vector spaces over K. This category-theoretical point of view is
useful in many instances. For example, it leads to a short definition of a morphism of persistence
modules, and consequently of an isomorphism of persistence modules, as follows.

Definition 2.2. ([9, Definition 1.3]) A morphism η : V→W between persistence modules V and W is
a natural transformation of persistence modules regarded as functors. It is an isomorphism if η is an
isomorphism of functors.

The category of persistence modules Pers has persistence modules as objects and morphisms
between them as arrows.

In the next definition, an interval is any connected subset of R with the usual topology.

Definition 2.3. ([9, Definition 1.4]) Let J ⊆ R be an interval and K a field. We denote by IJ the
persistence module over K with

It =

{
K if t ∈ J,
0 otherwise,

i ts =

{
IdK if s, t ∈ J,
0 otherwise.

Definition 2.4. ([9, Definition 1.5]) The direct sum W = U ⊕ V of two persistence modules U, V is
defined as

Wt = Ut ⊕ Vt , w t
s = uts ⊕ v ts for all s ≤ t.
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Theorem 2.5 (Crawley-Boevey [12]). Any pointwise finite-dimensional persistence module V over a
field K has a unique decomposition as a direct sum of interval modules, that is, there exists a unique
multi-set J of intervals of R such that

V ∼=
⊕
J∈J

IJ . (1)

For persistence modules decomposed as in Theorem 2.5, the multi-set J is called the barcode
of V, where the interval modules are depicted as a collection of parallel horizontal bars. Barcodes
can alternatively be represented as persistence diagrams, which are defined next.

Definition 2.6. ([9, Definition 1.6]) The persistence diagram of a pointwise finite-dimensional persis-
tence module V ∼=

⊕
J∈J IJ is the multiset

Dgm(V) = {(inf J, sup J) : J ∈ J } \∆∞, (2)

where ∆∞ is a multiset containing countably many copies of the diagonal

∆ = {(x , x) : x ∈ R ∪ {−∞, +∞}}.

We denote the set of all persistence diagrams as Bar. For points (b, d) ∈ Dgm(V), we denote the
coordinates b and d by birth and death of the point (a, b), respectively. The multisets of all these
births and deaths for all the points in a persistence diagram are called simply births and deaths of the
persistence diagram, respectively.

Although it is not needed to develop the theory of persistence modules as in [9], it is usual in the
topological data analysis community to consider persistence diagrams to also contain ∆∞. In the
context of our work, adding the diagonal simplifies some proofs.

Definition 2.7. The extended persistence diagram of a persistence module V is the multiset

Dgm∆(V) = Dgm(V) ∪∆∞. (3)

We denote the set of all extended persistence diagrams by Bar∆.

2.1.2 Simplicial complexes and simplicial homology

The following definitions are central to our work.

Definition 2.8. ([13, Section III.1]) An abstract simplicial complex is a finite collection of sets K such
that if α ∈ K and β ⊆ α then β ∈ K . The sets of an abstract simplicial complex are called simplices.
A subset of an abstract simplicial complex that is also an abstract simplicial complex is called a
subcomplex.

We will be using the terms simplicial complex and abstract simplicial complex indistinctly to refer
to the same notion 2.8.

Definition 2.9. ([26, Definition 2.7]) Let K be an abstract simplicial complex. A filter function on K is
a function f : K → R that is monotonous with respect to inclusions of faces in K , i.e.,

∀σ,σ′ ∈ K , σ ⊆ σ′ =⇒ f (σ) ≤ f (σ′). (4)

We denote the set of filter functions on a given simplicial complex K as RK .
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Definition 2.10. Let K be a simplicial complex and f ∈ RK a filter function on K . The sublevel set at
level t is the set K t = {σ ∈ K : f (σ) ≤ t}. By monotonicity of filter functions, K t is a subcomplex of
the simplicial complex K and also of every other sublevel set K s with t ≤ s.

Inclusions between sublevel sets will be denoted as

i st : K
t → K s , t ≤ s.

These inclusions satisfy that
i st ◦ i tr = i sr

whenever r ≤ t ≤ s, and i tt = IdK t . For a simplicial complex K and a filter function f ∈ RK , the
category of all sublevel sets and inclusion maps is called the sublevel set filtration of the pair (K , f ),
and it is denoted Ksub or K f

sub.
From a sublevel set filtration we obtain a persistence module by applying any functor from sim-

plicial complexes to vector spaces. Let Hp,K be the functor that assigns to each simplicial complex
its p-dimensional simplicial homology group with coefficient field K, and to each inclusion map the
induced homomorphism on p-dimensional homology, as in [13]. We will work with the field Z2 of two
elements unless otherwise specified, and we will omit the symbol K in our notation from now on.

Since we are considering finite simplicial complexes, the vector spaces spanned by their simplices
are finitely generated, and thus their homology groups are finitely generated too. This implies the
following fact.

Proposition 2.11. For every simplicial complex K , the persistence module Hp(K
f
sub) is pointwise

finite-dimensional for all f ∈ RK and p ≥ 0.

It follows that the structure of our persistence modules Hp(K
f
sub) is uniquely determined by The-

orem 2.5. From now on we will focus only on this kind of persistence modules. We will denote the
persistence diagram Dgm(Hp(K

f
sub)) as Dgmp(K

f
sub) to make visible the homology dimension in which

we work. Also, when referring to extended persistence diagrams we will use Dgmp,∆(K
f
sub) to denote

Dgm∆(Hp(K
f
sub)).

2.1.3 Vietoris-Rips, point clouds and distance matrices

There are many ways to construct simplicial complexes and filter functions. In real-world applications,
practitioners focus especially on building simplicial complexes and filter functions from point clouds
equipped with a similarity function, where usually each point of the point cloud represents a measure
from an entity in a system which they want to know about. For this purpose, there are several
canonical constructions such as Čech complexes, Delaunay complexes or alpha complexes, to name
a few [13]. However, Vietoris-Rips complexes and their filter functions are the most used ones in
practice due to the availability of efficient algorithms [2, 17, 36] to compute persistence diagrams
coming from their persistence modules.

Definition 2.12. A finite ordered set (P, o) is a set P of cardinality n equipped with a bijective map
o : {1, ... , n} → P called ordering. We denote pi = o(i) for all i ∈ {1, ... , n}.

Definition 2.13. A point cloud is a finite ordered set P equipped with a function d : P × P → R such
that d(a, b) = d(b, a) for all a, b.

9
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In most cases, but not necessarily, the function d will satisfy the distance axioms. We use the
same symbol d to denote the function {1, ... , n} × {1, ... , n} : (i , j) 7→ d (pi , pj) ∈ R induced by d . We
denote by P({1, ... , n}) the set of all subsets of {1, ... , n}.
Definition 2.14. Let (P, d) be a point cloud with |P| = n and K = P({1, ... , n})∖ {∅}. Let r ∈ R. The
Vietoris-Rips complex of P of radius r is the simplicial complex K r (P) given by

K r (P) = {σ ⊆ {1, ... , n} | diamσ ≤ r , σ ̸= ∅} , (5)

where diamσ = maxi ,j∈σ d(i , j).

The simplicial complex K r (P) can be seen as a sublevel set of the filter function f : K → R that
assigns to each simplex of K its diameter, i.e.,

f (σ) = diamσ = maxi ,j∈σ d(i , j). (6)

This function f is monotone under simplex inclusions, since if σ ⊆ σ′ then maxi ,j∈σ d(i , j) ≤
maxi ,j∈σ′ d(i , j).

Definition 2.15. The Vietoris-Rips filtration of the point cloud (P, d) with |P| = n is the sublevel set
filtration given by the simplicial complex K = P ({1, ... , n}) ∖ {∅} and the filter function f defined in
Definition 2.14.

We will denote this sublevel set filtration as VRd(P) and its persistence diagrams of a given di-
mension p as Dgmp(VRd(P)) and Dgmp,∆(VRd(P)) for the usual and extended ones, respectively.

2.1.4 Classical stability results

Some of the most important results about persistence modules coming from point clouds and per-
sistence diagrams are the called stability theorems. These theorems guarantee that, under small
perturbations of the input data, the resulting persistence diagrams are near. This is somewhat sim-
ilar to continuity in ordinary functions, and it is needed to guarantee, for example, that the methods
are robust when the input is altered by little quantities of noise, among others. There are many results
of this kind of stability, among which we will be using the ones in Chazal et al. articles [8, 9].

Stability is usually proven for metric spaces —in our case, point clouds (P, d) where d is a metric
on P. These results can be extended and proved in several ways, as in [8]. On one hand, some
methods use persistence diagrams and partial matchings to prove stability. On the other hand, other
methods rely on having extended persistence diagrams and bijections between them. For our pur-
poses, both ways yield equivalent results, although the ones involving only persistence diagrams are
usually more sophisticated, as the ones in [9]. In our case, as we will be using the differentiability
results of the article [26] where authors use extended persistence diagrams, we will also take this
approach.

First we need to define when two persistence diagrams are close. To do this, we use the classical
metric between persistence diagrams, the bottleneck distance, that is a particularisation of a more
general concept called Wasserstein distance [13].

Definition 2.16. ([26, Definition 2.10]) Given two barcodes D,D ′ ∈ Bar∆, viewed as multi-sets, a
matching is a bijection γ : D → D ′. The cost of γ is

c(γ) = supx∈D∥x − γ(x)∥∞ ∈ R ∪ {+∞}, (7)

and the set of all matchings between D and D ′ is denoted by Γ(D,D ′).
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Definition 2.17. ([26, Definition 2.11]) The bottleneck distance between two barcodes D,D ′ ∈ Bar∆
is defined as

d∞(D,D ′) = infγ∈Γ(D,D′)c(γ). (8)

We want to bound this bottleneck distance between two persistence diagrams D and D ′ from the
distance between the point clouds we used to generate them. However, the point clouds may be
completely different in terms of their ambient spaces (metrics, definitions, etc). A classical way to
compare such point clouds is to use the Gromov-Hausdorff distance, as in [8]. Although the original
definition of the Gromov-Hausdorff distance [28]

dGH(X ,Y ) = infZ ,f ,gd
Z
H (f (X ), g(Y )), dZ

H = max (supa∈Ainfb∈Bd(a, b), supb∈B infa∈Ad(a, b)) ,

where f : X → Z , g : Y → Z are isometric embeddings into the metric space (Z , d), is not the one
we are going to work with here, it can be proved that both notions are equivalent in metric spaces [4].

Definition 2.18. ([8, Definition 4.1]) A correspondence C : X ⇒ Y is a surjective multivalued map
from X to Y , that is, a subset C ⊆ X × Y where for all x0 ∈ X there is some (x0, y) ∈ C and for all
y0 ∈ Y there is some (x , y0) ∈ C .

Definition 2.19. Let (X , dX ), (Y , dY ) be metric spaces. The Gromov-Hausdorff distance between
them is

dGH(X ,Y ) =
1

2
inf {dis(C ) : C is a correspondence X ⇒ Y } , (9)

where
dis(C ) = sup

{∣∣dX (x , x ′)− dY (y , y
′)
∣∣ : (x , y), (x ′, y ′) ∈ C

}
(10)

is called the distortion of the correspondence C .

Note that if the function d defining our point cloud is a metric, then (P, d) is a finite metric space (a
metric space whose set has finite cardinality). Therefore, the following classical stability result holds
on our point clouds.

Theorem 2.20. ([8, Theorem 5.2]) If (X , dX ) and (Y , dY ) are finite metric spaces, then

d∞(Dgmp(VRdX(X)), Dgmp(VRdY(Y))) ≤ 2 dGH(X, Y). (11)

Note that we have been working so far with metric spaces. Recall that in real data applications
we often use similarity measures that do not satisfy the distance axioms, but are useful to gain
insights about how close two arbitrary elements in a domain of interest are. We will be analysing this
phenomenon in Subsection 2.2.1.

2.1.5 Differentiability of functions on persistence diagrams

Persistence diagrams usually give useful information about the data we are handling. Being able to
impose a certain persistence diagram structure on our data would imply that we also would be able
to require some topological properties on these data. If persistence diagrams, in some way, were
differentiable with respect to our point clouds, then we would be able to impose these structures by
minimising/maximising functions with the points of the persistence diagram as input. This is pre-
cisely what we define in this section: a framework for differential calculus on persistence diagrams

11
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developed by Leygonie et al. [26] that will be the first step to minimise/maximise some functions that
indicate how well a neural network generalise.

Throughout this section, M denotes a smooth finite-dimensional manifold without boundary,
which may or may not be compact. We will base the differentiability of a function M → Bar∆ on
the factorisation of this function through an space of ordered persistence diagrams.

Definition 2.21. For each choice of m, n ∈ Z≥0, the space of ordered barcodes with m finite points
and n infinite ones is R2m × Rn equipped with the Euclidean norm and the usual smooth structure.

Each finite point in the space of ordered barcodes represents a point in an extended persistence
diagram whose origin is a bounded interval in R. On the other hand, each infinite point in R represents
a point whose origin is an interval only bounded by below. By definition of extended persistence
diagrams, there are four types of points:

1. Totally bounded points: (a, b) with −∞ < a ≤ b < +∞.

2. Lower bounded points: (a, +∞) with a < +∞.

3. Upper bounded points: (−∞, b) with −∞ < b.

4. Unbounded points: (−∞, +∞).

We restrict ourselves to persistence diagrams that only have lower bounded points ((1) and (2)),
which are the ones yielded by the majority of classical sublevel set filtrations, including Vietoris-Rips
filtrations of point clouds as they generate finite type persistence modules 2.47.Intuitively, our vectors
in R2m ×Rn represent the important points (most of them off-diagonal) of a persistence diagram and
give them an order to work with.

Our first objective is to differentiate representatives of persistence diagrams in the space of or-
dered barcodes. To do so, we need a projection from our space of ordered barcodes that yields
persistence diagrams in Bar∆.

Definition 2.22. ([26, Definition 3.1]) Let D̄ = (b1, d1, ... , am, dm, v1, ... , vn) ∈ R2m × Rn be an ordered
barcode. The quotient map Qm,n : R2m×Rn → Bar∆ is a map that projects D̄ to the space of extended
persistence diagrams, forgetting the order of the points, that is

Qm,n

(
D̄
)
= {(bi , di )}mi=1 ∪ {(vj , +∞)}nj=1 ∪∆∞. (12)

With these two new tools in hand, we can define when a functionM→ Bar∆ is differentiable.

Definition 2.23. ([26, Definition 3.3]) Let B : M → Bar∆ be a persistence diagram valued map.
Let x ∈ M and r ∈ Z≥0 ∪ {+∞}. We say that B is r -differentiable at x if there exists an open
neighbourhood U of x , integers m, n ∈ Z≥0 and a map B̄ : U → R2m × Rn of class Cr such that
B = Qm,n ◦ B̄ on U. For an integer d ∈ Z≥0, a function B :M→ Bard+1

∆ is r -differentiable at x ∈M if
each of its d + 1 components is r -differentiable. B̄ is called a local lift of B. We have

R2m × Rn

M Bar∆

Qm,n

B

∃m,n and B̄

12



If a map B :M→ Bar∆ is r -differentiable with r ≥ 1 we can also define its differential.

Definition 2.24. ([26, Definition 3.6]) Let B : M → Bar∆ be 1-differentiable at some x ∈ M. Let
B̄ : U → R2m × Rn be a C1 lift of B defined on an open neighbourhood U of x . The differential dx ,B̄B
of B at x with respect to B̄ is the differential of B̄ at x

TxM−→
dx B̄

R2m × Rn. (13)

We are not only interested in the differentiability of persistence diagrams but also in the differen-
tiability of functions coming from it, like the classical total persistence function defined as

T (D) =
∑

(b,d)∈D\∆∞ s.t. b,d ̸∈{−∞,+∞}

d − b.

Let us now define the differentiability of functions the other way around, from our space of persistence
diagrams to any smooth finite-dimensional manifold without boundary N .

Definition 2.25. ([26, Definition 3.10]) Let V : Bar∆ → N be a map on persistence diagrams. Let
D ∈ Bar∆ and r ∈ Z≥0 ∪ {+∞}. V is said to be r -differentiable at D if for all integers m, n ∈ Z≥0 and
all vectors D̄ ∈ R2m×Rn such that Qm,n

(
D̄
)
= D, the map V ◦Qm,n : R2m×Rn → N is Cr on an open

neighbourhood of D̄.

Again, we define the differential of a r -differentiable function V : Bar∆ → N for r ≥ 1.

Definition 2.26. ([26, Definition 3.13]) Let V : Bar∆ → N be 1-differentiable at D ∈ Bar∆ and D̄ ∈
R2m × Rn be a pre-image of D via Qm,n. The differential of V at D with respect to D̄ is the map

dD,D̄V : R2m × Rn −−−−−−−→
dD̄(V ◦Qm,n)

TV (D)N .

We can combine the previous definitions to give results about differentiability for functionsM→N
that factor through Bar∆, i.e., functionsM→ Bar∆ → N .

Proposition 2.27. ([26, Proposition 3.14]) Let B : M → Bar∆ be r -differentiable at x ∈ M and
V : Bar∆ → N be r-differentiable at B(x). Then:

1. V ◦ B :M→N is Cr at x as a map between smooth manifolds.

2. If r ≥ 1, then for any local C1 lift B̄ : U → R2m × Rn of B around x we have:

dx (V ◦ B) = dB(x),B̄(x)V ◦ dx ,B̄B. (14)

The relation (14) shows that even though the differentials of B and V may depend on the choice of
the lift B̄, their composition does not, and they work together as a usual differential between smooth
manifolds.
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2.1.6 Differentiability through Vietoris-Rips filtrations

Let us now analyse the differentiability of persistence diagrams coming from Vietoris-Rips subleve
set filtrations. The proofs of this section require many technical details that we will not use through
the thesis. For this reason, we only state the fundamental results that we need and we refer the
interested reader to the source of this differential framework [26].

We are going to state the results for Vietoris-Rips sublevel set filtrations coming from point clouds
(P, d) whose ambient space is the usual Euclidean space

(
Rd ,m(x , y) = ∥x − y∥2

)
with its usual

smooth structure. For our purposes, we need also to fix the cardinality of the point clouds to a number
n, i.e., |P| = n. Therefore, we can see our point clouds as points P such that P = (p1, ... , pn) ∈ Rnd

also with its usual smooth structure.
In our case, we will define functions B of the form

Bp :M = Rnd F−→ RK
Dgmp,∆−−−−→ Bar∆, (15)

where p denotes the homology dimension, K = P ({1, ... , n}) \ {∅} and F (P)(σ) = maxi ,j∈σ∥pi − pj∥2
as in Section 2.1.3. Now, we state that there exists a generic set of points P̄ ⊆ Rnd where the maps
Bp are∞-differentiable for all p.

Definition 2.28. ([26, Definition 5.6]) A point cloud P = (p1, ... , pn) ∈ Rnd is in general position if the
following two conditions hold:

1. For all i ̸= j ∈ {1, ... , n} we have pi ̸= pj .

2. For all {i , j} ≠ {k, l} where i , j , k , l ∈ {1, ... , n}, ∥pi − pj∥2 ̸= ∥pk − pl∥2.

We denote the set of point clouds in general position by P̄ ⊆ Rnd .

Proposition 2.29. ([26, Proposition 5.7]) P̄ is generic in Rnd .

Proposition 2.30. ([26, Proposition 5.8]) The parametrization F : Rnd → RK is C∞ over P̄.

Finally, we state the key result for differentiability of Vietoris-Rips filtrations coming from point
clouds.

Corollary 2.31. ([26, Corollary 5.9]) The barcode valued map Bp : P ∈ Rnd 7→ Dgmp,∆(F(P)) ∈ Bar∆
is∞-differentiable in P̄.

2.2 Beyond metric spaces

2.2.1 Stability with symmetric functions

In Section 2.1.4 we stated a stability result for point clouds equipped with a distance function. How-
ever, in many scenarios, the distances between objects we care about do not satisfy all the necessary
properties to be true distances. In these cases, there is no general classical result that can be ap-
plied everywhere. For some specific kinds of filter functions, there are known results that generalise
the stability theorems we have seen so far, as [8, Lemma 4.9], that generalises stability results for
Dowker filtrations Dow(Λ), a very general way of building sublevel set filtrations based on the Dowker
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complexes Dow (Λ, a) defined by σ ∈ Dow (Λ, a) ⇐⇒ ∃w ∈ W such that Λ(l ,w) ≤ a for all l ∈ σ,
where L,W are two non-empty, arbitrary sets and Λ: L×W → R is any function.

In this section we prove stability results based on mild assumptions about a symmetric function of
a point cloud (P, d ′). In particular, we are interested in stability results for point clouds with P ⊂ Rm,
with m a fixed constant, and d ′ : (x , y) ∈ Rm × Rm 7→ 1 − |Corr(x , y)| ∈ R, that was proven to
give useful information about the generalisation capacity of a neural network using TDA techniques

in [1]. Unfortunately, it was proved in [34] that, although d(x , y) =
√
1− Corr2(x , y) is a distance,

d ′(x , y) = 1−|Corr(x , y)| is not. However, note that d and d ′ are closely related. In particular, we can
show the following result.

Lemma 2.32. Let f : P × P → R be any function. Define d : (x , y) ∈ P × P →
√
1− f 2(x , y) ∈ R,

d ′ : (x , y) ∈ P × P → 1− |f (x , y)| ∈ R, and γ(x) : x ∈ R→ 1−
√
1− x2 ∈ R. Then d ′ = γ ◦ d .

Proof.

(γ ◦ d) (x , y) = 1−

√
1−

(√
1− f 2(x , y)

)2

= 1−
√
1− (1− f 2(x , y)) = 1− |f (x , y)| = d ′(x , y).

This means that if we substitute f (x , y) by our correlation function we obtain a transformation from
one true distance function to our symmetric function. We know that in fact, for our distance function
d , the stability result 2.20 holds. However, our symmetric function d ′ is only a transformation of this
distance. We will see that under reasonable regularity assumptions on γ, we can prove our desired
stability result for functions γ ◦ d where d is any distance function.

The main property that functions γ must satisfy to state our new stability results is the Hölder
continuity condition.

Definition 2.33. Let C ,α ∈ R>0. A function f : Dom (f ) ⊆ R→ R is (C ,α)-Hölder continuous if

|f (x)− f (y)| ≤ C |x − y |α (16)

for all x , y ∈ Dom(f ).

From now on, let X and Y be two finite sets in a metric space (M, d) and let d ′ be a symmetric
function d ′ :M×M→ R. Let γ : Im(d) ⊆ R≥0 −→ R a strictly increasing, (C ,α)-Hölder continuous
function for some C ,α > 0, such that d ′ = γ ◦ d . These are our conditions of regularity for the
function γ.

During the whole section we introduce new notations to ease the reading of the proofs. Denote
Dp(X ) = Dgmp(VRd(X )), Dp,∆(X ) = Dgmp,∆(VRd(X )), D ′

p(X ) = Dgmp(VRd ′(X )) and D ′
p,∆(X ) =

Dgmp,∆(VRd ′(X )). We write D(X ),D ′(X ),D∆(X ) and D ′
∆(X ) to refer to Dp(X ), D ′

p(X ), Dp,∆(X ) and
D ′
p,∆(X ) respectively when the dimension of persistence diagrams do not influence the discussion,

i.e., the results hold for any dimension.
The first result that we prove is that persistence modules yielded by the Vietoris-Rips sublevel set

filtrations for point clouds with common set P and distances d and d ′ are the same but shifted, i.e.,
K t
d = {σ ∈ K : fd(σ) ≤ t} = K

γ(t)
d ′ = {σ ∈ K : fd ′(σ) ≤ γ(t)} with fd , fd ′ the filter functions for the

Vietoris-Rips filtrations with distances d and d ′, respectively and K = P ({1, ... , |X |}) \ ∅. To prove
this result, we need an easy lemma.
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Lemma 2.34. γ(a) ≤ γ(b) ⇐⇒ a ≤ b.

Proof.

• =⇒ ]: Suppose not. Then, there exists a > b such that γ(a) ≤ γ(b). However, γ is strictly
increasing, so we get γ(a) > γ(b), that is a contradiction.

• ⇐= ]: If a = b then γ(a) = γ(b) because γ is a function. If a < b then, as γ is strictly increasing,
we have γ(a) < γ(b).

Proposition 2.35. Let fd , fd ′ be the Vietoris-Rips filter functions given by the functions d , d ′ : X ×X →
R respectively as in 2.14. Then, fd ′(σ) = γ (fd(σ)) and K t

d = K
γ(t)
d ′ where K = P ({1, ... , |X |}) \ ∅.

Proof. In particular, we have by definition that fd(σ) = maxi ,j∈σd(i , j) and fd ′(σ) = maxi ,j∈σd ′(i , j) and
that fd , fd ′ ∈ RK . The first part of the proposition follows because γ is an increasing function so we
have

fd ′(σ) = maxi ,j∈σd ′(i , j) = maxi ,j∈σ (γ ◦ d) (i , j) =︸︷︷︸
γ increasing

γ (maxi ,j∈σd(i , j)) = γ (fd(σ)) . (17)

Let’s see now that K t
d = K

γ(t)
d ′ .

• ⊆]: If σ ∈ K t
d then fd(σ) ≤ t. By Equation (17) we have fd ′(σ) = γ(fd(σ)︸ ︷︷ ︸

≤t

) ≤︸︷︷︸
γ increasing

γ(t).

Therefore, σ ∈ K
γ(t)
d ′ .

• ⊇]: If σ ∈ K
γ(t)
d ′ then fd ′(σ) ≤ γ(t). On one hand, we have by Equation (17) that fd ′(σ) =

γ (fd(σ)). On the other hand, as fd ′(σ) ≤ γ(t) we get

fd ′(σ) = γ (fd(σ)) ≤ γ(t) =⇒︸ ︷︷ ︸
Lemma 2.34

fd(σ) ≤ t.

The previous result is a form of reindexing an original filtration by a function γ, and it is used by
Ripser [2] to compute persistence diagrams from point clouds efficiently. Reindexings are defined
using filtrations, an abstraction of the sublevel set filtration concept.

Definition 2.36. ([2, Section 2]) Given a finite simplicial complex K , a filtration of K is a collection
of subcomplexes F =

(
K i
)
i∈I of K where I is a totally ordered indexing set such that i ≤ j implies

K i ⊆ K j . We can see a filtration as a functor F • : I → Simp from I as a poset category to Simp, the
category of simplicial complexes where the arrows i < j are sent to the inclusion maps Ki ⊆ Kj .

Note that our sublevel set filtrations are general filtrations indexed by (R,≤). We use this more
general concept to build special, generally discrete, filtrations that allow us to give a characterisation
of persistence diagrams of sublevel set filtrations.
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Definition 2.37. ([2, Section 2]) A filtration is essential if i ̸= j implies Ki ̸= Kj . A simplexwise filtration
of K is a filtration such that, for all i ∈ I with Ki ̸= ∅ there is some simplex σi ∈ K and some index
j < i ∈ I such that Ki \Kj = {σi}. In an essential simplexwise filtration, the index j is the predecessor
of i in I .

Definition 2.38. ([2, Section 2]) A reindexing of a filtration F • : R → Simp indexed over some totally
ordered set R is another filtration K • : I → Simp such that Ft = Kr(t) for some monotonic map
r : R → I called reindexing map. If there is a complex Ki that does not occur in the filtration F •, we
say that K • refines F •.

The following proposition gives a characterisation of persistence diagrams of a filtration in terms
of essential simplexwise refinements of sublevel set filtrations.

Proposition 2.39. ([2, Proposition 2.1]) Let f : K → R be a filter function on a simplicial complex
K and let K • : I → Simp be an essential simplexwise refinement of the sublevel set filtration F • =
f −1(−∞, •] with Ki = {σk | k ∈ I , k ≤ i}. Denote by Hp (F

•) the persistence module generated by
applying the homology functor Hp,K from simplicial complexes to vector spaces for any fixed field
K as in Section 2.1.2. The barcode, as in 2.5, of K •, J (Hp(F

•)), determines the barcode of F •,
J (Hp(K

•)), i.e.,
J (Hp(F

•)) =
{
r−1[i , j) ̸= ∅ | [i , j) ∈ J (Hp(K

•))
}
, (18)

with r−1[i , j) = [f (σi ), f (σj)) and r−1[i , +∞) = [f (σi ), +∞).

The existence of essential simplexwise refinements of the sublevel set filtrations yielded by Vietoris-
Rips filtrations of point clouds is given in [2].

With Proposition 2.39 we are able to prove a fundamental relation of the persistence diagrams
yielded by Vietoris-Rips filtrations with functions d and d ′.

Corollary 2.40. D ′
p(X ) = {(γ(a), γ(b)) : (a, b) ∈ Dp(x)} with γ(+∞) = +∞ for any homology dimen-

sion p.

Proof. Take an essential simplexwise refinement K • : I → Simp of the sublevel set filtration VRd(X )
with reindexing map r as in Proposition 2.39. This is also an essential simplexwise refinement of the
sublevel set filtration VRd ′(X ) by taking r ◦ γ−1 as reindexing map because K t

d = K
γ(t)
d ′ by Proposi-

tion 2.35. The reindexing map is well-defined because γ−1 is well-defined in Dom d ′ and also because
γ−1 is strictly increasing because it is the inverse of a strictly increasing function, so r ◦ γ−1 is mono-
tone from (R,≤) to (I ,≤) by composition of monotone functions. Recall from Definition 2.14 that
diamd(σ) = maxi ,j∈σd(i , j). Therefore, we have

J (VRd ′(X )) =
{(

r ◦ γ−1
)−1

[i , j) ̸= ∅ | [i , j) ∈ J (Hp(K
•))
}

=
{(

γ ◦ r−1
)
[i , j) ̸= ∅ | [i , j) ∈ J (Hp(K

•))
}

=
{
γ
(
r−1 ([i , j))

)
̸= ∅ | [i , j) ∈ J (Hp(K

•))
}

= {[γ (diamd(σi )) , γ (diamd(σj))) : [i , j) ∈ J (Hp(K
•)) ∧ i , j < +∞}

∪ {[γ (diamd(σi )) ,+∞) : [i , +∞) ∈ J (Hp(K
•)) ∧ i < +∞} ,

with

J (VRd(X )) =
{
r−1[i , j) ̸= ∅ | [i , j) ∈ J (Hp(K

•))
}

= {[diamd(σi ),diamd(σj)) : [i , j) ∈ J (Hp(K
•)) ∧ i , j < +∞}

∪ {[diamd(σi ), +∞) : [i , +∞) ∈ J (Hp(K
•)) ∧ i < +∞} .
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As γ is bijective, we have
[a, b) ̸= ∅ ⇐⇒ [γ(a), γ(b)) ̸= ∅.

Then, we have a one-to-one correspondence between points in J (VRd(X )) and in J (VRd ′(X )). In
particular, from the previous three equations we obtain

J (VRd ′(X )) =
⋃

[a,b)∈J (VRd (X ))

[γ(a), γ(b)).

Note that (inf[a, b), sup[a, b)) = (a, b) for all intervals [a, b) ⊆ R. Therefore, by definition of persistence
diagram 2.6, we get the desired result, D ′

p(X ) = {(γ(a), γ(b)) : (a, b) ∈ Dp(x)}.

By definition of extended persistence diagram 2.7 and the previous Corollary 2.40 the following
corollary follows immediately.

Corollary 2.41. D ′
∆(X ) = {(γ(a), γ(b)) : (a, b) ∈ D(x)} ∪∆∞.

Now we are going to use bijections from D∆(X ) to D∆(Y ) to bound the bottleneck distance be-
tween D ′

∆(X ) and D ′
∆(Y ). We are interested only in bijections with low cost in the bottleneck dis-

tance between D∆(X ) and D∆(Y ) as in 2.16. For this reason, we will work only with matchings
ι : D(X ) → D(Y ) such that (a, b) 7→

(
a+b
2 , a+b

2

)
if (a, b) is sent by ι to a point in the diagonal. This is

because they get always lower costs than matchings not satisfying this property.

Lemma 2.42. For any matching ι : D∆(X )→ D∆(Y ) not satisfying (a, b) 7→
(
a+b
2 , a+b

2

)
if ι(a, b) ∈ ∆∞,

we can find another matching ι′ : D∆(X )→ D∆(Y ) satisfying the previous property such that

sup(a,b)∈D∆(X)

∥∥(a, b)− ι′(a, b)
∥∥
∞ ≤ sup(a,b)∈D∆(X)∥(a, b)− ι(a, b)∥∞.

Proof. It is easy to see that

arg mind∈R∪{+∞}∥(a, b)− (d , d)∥∞ =
a+ b

2
, (19)

for a, b < +∞. If a <∞ and b = +∞, then

∥(a, b)− (d , d)∥∞ = max(|a− d |, |+∞− d |).

If d < +∞ then,
∥(a, b)− (d , d)∥∞ = max(|a− d |, +∞) = +∞,

whereas if d = +∞
∥(a, b)− (d , d)∥∞ = max(+∞, 0) = +∞,

so the norm is infinite for each choice of d and in particular

a+ b

2
= +∞ ∈ args mind∈R∪{+∞}∥(a, b)− (d , d)∥∞. (20)

Now let us suppose that there exists (a, b) such that ι(a, b) = (d , d) with d ̸= a+b
2 . Define ι′ such that

ι′(α,β) = ι(α,β) if (α,β) ̸= (a, b), ι′(a, b) =
(
a+b
2 , a+b

2

)
. Also, as there are infinitely many points in the

diagonal we can set ι′−1(ι(a, b)) = ι′−1(d , d) = (d , d) ∈ ∆∞. Therefore, ι′ is a matching and we get

sup(a,b)∈D∆(X )

∥∥(a, b)− ι′(a, b)
∥∥
∞ ≤ sup(a,b)∈D∆(X )∥(a, b)− ι(a, b)∥∞,

because ∥(α,β)− ι′(α,β)∥∞ = ∥(α,β)− ι(α,β)∥∞ if (α,β) ̸= (a, b) and, by Equations (19) and (20),
∥(a, b)− ι′(a, b)∥∞ ≤ ∥(a, b)− ι(a, b)∥∞.
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Note that if ι : D → D ′ is a matching then ι−1 : D ′ → D is a matching too so we can apply
Corollary 2.42 to have equivalent matchings ι′ : D → D ′ such that all the off-diagonal and diagonal
points (a, b) sent to diagonal points of the other persistence diagram are especifically sent to points(
a+b
2 , a+b

2

)
. The following lemma is the main tool we need to define our stability result for d ′.

Lemma 2.43. Let D∆(X ) and D∆(Y ) be two extended persistence diagrams. For any matching
ι : D∆(X )→ D∆(Y ) such that ι(a, b) ∈ ∆∞ implies ι(a, b) =

(
a+b
2 , a+b

2

)
and such that ι−1(a, b) ∈ ∆∞

implies ι−1(a, b) =
(
a+b
2 , a+b

2

)
, there exists a matching ῑ : D ′

∆(X )→ D ′
∆(Y ) with

sup(a,b)∈D∆(X)∥(a, b)− ῑ((a, b))∥∞ ≤ β · supα(a,b)∈D′
∆(X)∥(a, b)− ι((a, b))∥∞,

where β = max
(
C, C · 2α−1

)
.

Proof. We prove this lemma by means of partial matchings. A partial matching is a map m between
multisets Dom(m) ⊆ D ′(X )

m7−→ D ′(Y ). Our matching ῑ is defined such that ῑ(a, b) = m(a, b) if m is
defined in (a, b) and ι(a, b) = ι−1(a, b) =

(
a+b
2 , a+b

2

)
otherwise. Note that all points in D ′

∆(X ) and
D ′
∆(Y ) are matched with points of the contrary diagram, including diagonal points, due to we have

inifinitely many points in the diagonals to map unmatched points by m. Adjusting the matches with
the diagonal points to have one-to-one correspondences we get a bijective matching between D ′

∆(X )
and D ′

∆(Y ). Define then
m(a, b) =

(
γ(ι(γ−1(a))), γ(ι(γ−1(b)))

)
,

for points (a, b) ∈ D ′(X ) such that
(
γ(ι(γ−1(a))), γ(ι(γ−1(b)))

)
∈ D ′(Y ). What we are doing here is to

transform matches (a, b) ∈ D(X )
ι7−→ (c , d) ∈ D(Y ) to matches (γ(a), γ(b)) ∈ D ′(X )

ι′7−→ (γ(c), γ(d)) ∈
D ′(Y ) by means of m. We claim that ῑ satisfies the desired property.

Define (ι(a), ι(b)) = ι(a, b). Suppose (a, b) ∈ Dom(m) and thus ῑ(a, b) = m(a, b). Then, we have
four possibilities for ῑ.

1. (a, b) 7→ (ῑ(a), ῑ(b)) with −∞ < a, b, ῑ(a), ῑ(b) < +∞. By Corollary 2.40, we have −∞ <
γ−1(a), γ−1(b), ι(γ−1(a)), ι(γ−1(b)) < +∞. Therefore, we have:

∥(a, b)− ῑ(a, b)∥∞ =
∥∥(a, b)− (γ(ι(γ−1(a))), γ(ι(γ−1(b)))

)∥∥
∞

= max
(∣∣a− γ(ι(γ−1(a)))

∣∣ , ∣∣b − γ(ι(γ−1(b)))
∣∣)

= max
(∣∣γ(γ−1(a))− γ(ι(γ−1(a)))

∣∣ , ∣∣γ(γ−1(b))− γ(ι(γ−1(b)))
∣∣)

≤︸︷︷︸
(C ,α)-Hölder

max
(
C ·
∣∣γ−1(a)− ι(γ−1(a))

∣∣α ,C · ∣∣γ−1(b)− ι(γ−1(b))
∣∣α)

=︸︷︷︸
C ,α>0

C ·maxα
(∣∣γ−1(a)− ι(γ−1(a))

∣∣ , ∣∣γ−1(b)− ι(γ−1(b))
∣∣)

= C ·
∥∥(γ−1(a), γ−1(b)

)
− ι
(
γ−1(a), γ−1(b)

)∥∥α
∞.

2. (a, b) 7→ (ῑ(a), ῑ(b) = +∞) with −∞ < a, b, ῑ(a) < +∞. By Corollary 2.40, we have ι(γ−1(b)) =
+∞ and −∞ < γ−1(a), γ−1(b), ι(γ−1(a)) < +∞. Therefore, we have∥∥(γ−1(a), γ−1(b)

)
−
(
ι
(
γ−1(a)

)
, +∞

)∥∥
∞ = max

(
|γ−1(a)− ι

(
γ−1(a)

)
|, |γ−1(b)−∞|

)
= max

(
|γ−1(a)− ι

(
γ−1(a)

)
|, +∞

)
= +∞,

that implies

∥(a, b)− (ῑ(a), +∞)∥∞ ≤ C ·
∥∥(γ−1(a), γ−1(b)

)
−
(
ι
(
γ−1(a)

)
, +∞

)∥∥α
∞ = +∞.
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3. (a, b = +∞) 7→ (ῑ(a), ῑ(b)) with −∞ < a, ῑ(a), ῑ(b) < +∞. By Corollary 2.40, we have
γ−1(b) =︸︷︷︸

b=+∞

+∞ and −∞ < γ−1(a), ι(γ−1(a)), ι(γ−1(b)) < +∞. Therefore, we have

∥∥(γ−1(a), γ−1(b))− ι(γ−1(a), γ−1(b))
∥∥
∞ =

∥∥(γ−1(a), +∞)− (ι(γ−1(a)), ι(γ−1(b)))
∥∥
∞

= max
(
|γ−1(a)− ι(γ−1(a))|, |∞ − ι(γ−1(b))|

)
= max

(
|γ−1(a)− ι(γ−1(a))|, +∞

)
= +∞,

that implies

∥(a, b)− ῑ(a, b)∥∞ ≤ C ·
∥∥(γ−1(a), γ−1(b))− ι(γ−1(a), γ−1(b))

∥∥α
∞ = +∞.

4. (a, b = +∞) 7→ (ῑ(a), ῑ(b) = +∞) with −∞ < a, ῑ(a) < +∞. By Corollary 2.40, we have
γ−1(b) =︸︷︷︸

b=+∞

+∞ =︸︷︷︸
ῑ(b)=+∞

ι(γ−1(b)) = +∞ and −∞ < γ−1(a), ι(γ−1(a)) < +∞. Then,

∥(a, b)− (ῑ(a), ῑ(b))∥∞ =
∥∥(a, +∞)−

(
γ(ι(γ−1(a))), +∞

)∥∥
∞

= max
(
|a− γ(ι(γ−1(a)))|, 0

)
= |a− γ(ι(γ−1(a)))|
=
∣∣γ (γ−1(a)

)
− γ(ι(γ−1(a)))

∣∣ ≤ C ·
∣∣γ−1(a)− ι(γ−1(a))

∣∣α
= C ·

∥∥(γ−1(a), γ−1(b)
)
−
(
ι
(
γ−1(a)

)
, ι
(
γ−1(b)

))∥∥α
∞.

Suppose now (a, b) ̸∈ Dom(m). Therefore we have the following possibilities for points (a, b) ∈
D ′
∆(X ).

1. (a, b) ∈ D ′(X ) \ Dom(m). This means that (a, b) is a point
(
γ−1(a), γ−1(b)

)
∈ D(X ) paired to a

point in the diagonal of D(Y ). We have two cases:

• a, b such that a < +∞ and b = +∞. By Corollary 2.40 we have γ−1(a) < +∞ and
γ−1(b) = +∞. Also, by hypothesis

(
γ−1(a), γ−1(b)

)
7→
(
γ−1(a) + γ−1(b)

2
,
γ−1(a) + γ−1(b)

2

)
= (+∞, +∞) .

We get∥∥(γ−1(a), γ−1(b)
)
− ι
(
γ−1(a), γ−1(b)

)∥∥
∞ = max

(∣∣γ−1(a)−∞
∣∣ , ∣∣γ−1(b)−∞

∣∣)
= max (+∞, 0) = +∞.

(21)

Therefore,

∥(a, b)− ῑ(a, b)∥∞ ≤ C ·
∥∥(γ−1(a), γ−1(b)

)
− ι
(
γ−1(a), γ−1(b)

)∥∥α
∞ = +∞.

• a, b < +∞. By Corollary 2.40 we have γ−1(a), γ−1(b) < +∞ and by hypothesis

(
γ−1(a), γ−1(b)

)
7→
(
γ−1(a) + γ−1(b)

2
,
γ−1(a) + γ−1(b)

2

)
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We get∥∥∥∥(γ−1(a), γ−1(b)
)
−
(
γ−1(a) + γ−1(b)

2
,
γ−1(a) + γ−1(b)

2

)∥∥∥∥
∞

=
|γ−1(b)− γ−1(a)|

2
. (22)

On the other hand, with ῑ, we pair (a, b) 7→
(
a+b
2 , a+b

2

)
, yielding

∥(a, b)− ῑ(a, b)∥∞ =

∥∥∥∥(a, b)− (a+ b

2
,
a+ b

2

)∥∥∥∥
∞

=
|b − a|

2
=

∣∣γ(γ−1(b))− γ(γ−1(a))
∣∣

2

≤ C ·
∣∣γ−1(b)− γ−1(a)

∣∣α
2

= C · 2α−1 ·

(∣∣γ−1(b)− γ−1(a)
∣∣

2

)α

=︸︷︷︸
Eq. 22

C · 2α−1 ·
∥∥∥∥(γ−1(a), γ−1(b)

)
−
(
γ−1(a) + γ−1(b)

2
,
γ−1(a) + γ−1(b)

2

)∥∥∥∥α
∞

= C · 2α−1 ·
∥∥(γ−1(a), γ−1(b)

)
− ι
(
γ−1(a), γ−1(b)

)∥∥α
∞.

2. (a, b) ̸∈ D ′(X ). Then, we have two possibilities.

(a) (a, b) ∈ ∆∞ diagonal point of D ′
∆(X ) paired with a point (c , d) ∈ D ′(Y ). This means that(

γ−1(c), γ−1(d)
)
∈ D(Y ) is paired with the diagonal in D∆(X ). By symmetry with the

previous case 1 we have

∥(a, b)− ῑ(a, b)∥∞ ≤ max
(
C ,C · 2α−1

)
·
∥∥ι−1

(
γ−1(c), γ−1(d)

)
−
(
γ−1(c), γ−1(d)

)∥∥α
∞

= max
(
C ,C · 2α−1

)
·
∥∥(ι−1

(
γ−1(c)

)
, ι−1

(
γ−1(d)

))
− ι
(
ι−1
(
γ−1(c)

)
, ι−1

(
γ−1(d)

))∥∥α
∞.

(b) (a, b) ∈ ∆∞ diagonal point paired with itself in the other diagram (a+b
2 = 2a

2 = a for
a = b < +∞ or a = b = +∞ and a+b

2 = +∞), yielding

∥(a, b)− ῑ(a, b)∥∞ = 0. (23)

Take β = max
(
C ,C · 2α−1

)
. Note that sup (Aα) ≤ (sup A)α because xα is a continuous and

strictly increasing function for α > 0. Therefore, by the previous inequalities, we get

sup(a,b)∥(a, b)− ῑ((a, b))∥∞ ≤ β · supα
(a,b)∥(a, b)− ι((a, b))∥∞,

From now on take β = max
(
C ,C · 2α−1

)
. Note that β only depends on α, that is fixed when γ is

given. Before stating the main result of this section, we need to see that the infimum of Definition 2.17
can be replaced by a minimum.

Corollary 2.44. Let D,D ′ ∈ Bar two persistence diagrams with |D| , |D ′| < +∞. Let D∆ = D ∪
∆∞,D ′

∆ = D ′ ∪∆∞ in Bar∆ be their extended versions. Define

Γ′
(
D∆,D

′
∆

)
=

{
ι ∈ Γ

(
D∆,D

′
∆

)
: ι(a, b) ∈ ∆∞ =⇒ ι(a, b) =

(
a+ b

2
,
a+ b

2

)
∧

ι−1(a, b) ∈ ∆∞ =⇒ ι−1(a, b) =

(
a+ b

2
,
a+ b

2

)}
⊆ Γ

(
D∆,D

′
∆

)
.
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The bottleneck distance for D∆ and D ′
∆ satisfies

d∞
(
D∆,D

′
∆

)
= minι∈Γ′(D∆,D′

∆)
c(ι).

Proof. Set Γ = Γ (D∆,D
′
∆) and Γ′ = Γ′ (D∆,D

′
∆). We have Γ′ ⊆ Γ. By Corollary 2.42 we get that

infι∈Γ′c(ι) = infι∈Γc(ι). However, notice that D and D ′ have finite cardinality and also there is a finite
number of diagonal points that can be matched to points in D,D ′ for matchings ι ∈ Γ′. Notice also
that all diagonal points of D∆ and D ′

∆ not matched with points in D ′ and D respectively are matched
to themselves in the other diagram and thus have cost zero. Therefore, there is a finite number of
possible costs c(ι) for ι ∈ Γ′, i.e. |{c(ι) : ι ∈ Γ′}| < +∞ and therefore the infimum is reached in Γ′ so

d∞
(
D∆,D

′
∆

)
= infι∈Γ(D∆,D′

∆)
c(ι) = infι∈Γ′(D∆,D′

∆)
c(ι) = minι∈Γ′(D∆,D′

∆)
c(ι).

Vietoris-Rips persistence diagrams have finite cardinality because Vietoris-Rips persistence mod-
ules are of finite type.

Definition 2.45. ([5, Section 5.1]) We say that a persistence module V over a field K is of finite type
if it consists of a finite number of finite-dimensional vector spaces.

Lemma 2.46. Let (P, d) be a point cloud and p ∈ N. Vietoris-Rips persistence modules VRd(P) are
of finite type.

Proof. We need to show that we have a finite number of different vector spaces of finite dimension.
The second property, having vector spaces with finite dimension, holds for all persistence modules
coming from sublevel set filtrations and the homology functor by Proposition 2.11, so it holds also in
our particular case. It remains to be shown that we only generate a finite number of different vector
spaces. However, this comes directly from our definition of Vietoris-Rips sublevel set filtration, as we
apply the homology functor on subsets of K = P ({1, ... , n}) \ {∅} and there are a finite number of
subsets of K , that yield a finite number of possible different vector spaces.

Finite type persistence modules have finite decompositions as in Theorem 2.5.

Proposition 2.47. ([5, Proposition 3]) A finite type persistence module V over a field K has a unique
decomposition

V ∼=
⊕
J∈J

IJ , (24)

as in Theorem 2.5 such that |J | < +∞ and such that every interval J ∈ J is bounded from below.

A direct consequence is that persistence diagrams of finite type have finite cardinality.

Corollary 2.48. For a finite type persistence module V we have |Dgm(V)| < +∞.

Proof. By definition, we have Dgm(V) = {(inf J, sup J) : J ∈ J } \∆∞ and by Proposition 2.47, |J | <
+∞ so |Dgm(V)| < +∞.

The following is the main result of this section.
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Corollary 2.49. d∞ (D ′
∆(X ),D ′

∆(Y )) ≤ β · dα
∞ (D∆(X ),D∆(Y )).

Proof. By Lemma 2.46, Corollary 2.48 and Corollary 2.44 we have that the bottleneck distances for
the persistence diagrams D ′

∆(X ) and D ′
∆(Y ), and D∆(X ) and D∆(Y ), satisfy

d∞
(
D ′
∆(X ),D ′

∆(Y )
)
= minι∈Γ′(D′

∆(X ),D′
∆(Y ))c(ι),

d∞ (D∆(X ),D∆(Y )) = minι∈Γ′(D∆(X ),D∆(Y ))c(ι).

Note that any matching ι ∈ Γ′ (D∆(X ),D∆(Y )) satisfies the assumptions of Lemma 2.43. Also, the
resulting matching ῑ given by Lemma 2.43 satisfies ῑ ∈ Γ′ (D ′

∆(X ),D ′
∆(Y )) and

c (ῑ) = sup(a,b)∈D′
∆(X )∥(a, b)− ῑ((a, b))∥∞ ≤ β · supα

(a,b)∈D∆(X )∥(a, b)− ι((a, b))∥∞ = β · cα(ι). (25)

Take ι′ ∈ Γ′ (D∆(X ),D∆(Y )) attaining the minimum of the bottleneck distance, i.e., d∞ (D∆(X ),D∆(Y )) =
c(ι′). Therefore, by Equation (25) we have

c
(
ῑ′
)
≤ β · cα

(
ι′
)
= β · dα

∞ (D∆(X ),D∆(Y )) . (26)

Finally, as ῑ′ ∈ Γ′ (D ′
∆(X ),D ′

∆(Y )), we have

d∞
(
D ′
∆(X ),D ′

∆(Y )
)
= minι∈Γ′(D′

∆(X ),D′
∆(Y ))c(ι) ≤ c

(
ῑ′
)
≤︸︷︷︸

(26)

β · dα
∞ (D∆(X ),D∆(Y )) .

Now, we are able to state our stability theorem for functions d ′ = γ ◦ d .

Theorem 2.50. Let X ,Y be two finite sets in a metric space (M, d). Let d ′ : M×M → R be a
symmetric function and γ : Im(d) ⊆ R≥0 −→ R be a strictly increasing, (C ,α)-Hölder continuous
function for some C ,α > 0, such that d ′ = γ ◦ d . Then it is satisfied

d∞
(
D ′
∆(X ),D ′

∆(Y )
)
≤ 2αβ ·

(
dd
GH(X ,Y )

)α
,

where β = max
(
C, C · 2α−1

)
and D ′

∆(X ),D ′
∆(Y ) ∈ Bar∆ are the extended persistence diagrams

Dgmp,∆(VRd′(X)), Dgmp,∆(VRd′(Y)) for any dimension p ∈ Z≥0, respectively.

Proof. By the stability theorem 2.20 we have

d∞ (D∆(X ),D∆(Y )) ≤ 2dd
GH(X ,Y ),

that implies
dα
∞ (D∆(X ),D∆(Y )) ≤ 2α

(
dd
GH(X ,Y )

)α
.

We have by Corollary 2.49 that

d∞
(
D ′
∆(X ),D ′

∆(Y )
)
≤ β · dα

∞ (D∆(X ),D∆(Y )) .

Therefore,
d∞
(
D ′
∆(X ),D ′

∆(Y )
)
≤ 2αβ

(
dd
GH(X ,Y )

)α
.
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We can extend the previous result if the function γ−1 is also (D, η)-Hölder continuous.

Lemma 2.51. If γ−1 is (D, η)-Hölder continuous, then

dd
GH(X ,Y ) ≤ 2η−1D ·

(
dd ′
GH(X ,Y )

)η
. (27)

Proof. Note that if d ′ = γ ◦ d then d = γ−1 ◦ d ′. By definition of distortion 2.19 we have for all
correspondences C : X ⇒ Y

disd(C ) = sup
{∣∣d(x , x ′)− d(y , y ′)

∣∣ : (x , y), (x ′, y ′) ∈ C : X ⇒ Y
}

= sup
{∣∣(γ−1 ◦ d ′)(x , x ′)− (γ−1 ◦ d ′)(y , y ′)

∣∣ : (x , y), (x ′, y ′) ∈ C : X ⇒ Y
}

≤ sup
{
D ·
∣∣d ′(x , x ′)− d ′(y , y ′)

∣∣η : (x , y), (x ′, y ′) ∈ C : X ⇒ Y
}

≤ D · supη
{∣∣d ′(x , x ′)− d ′(y , y ′)

∣∣ : (x , y), (x ′, y ′) ∈ C : X ⇒ Y
}
= D ·

(
disd

′
(C )
)η

.

(28)

By definition of Gromov-Hausdorff distance, we have

dGH(X ,Y ) =
1

2
inf {dis(C ) : C is a correspondence X ⇒ Y } . (29)

Note that the set {C : C is a correspondence X ⇒ Y } is finite as X and Y are finite sets by definition
of correspondence 2.18. Thus, the infimum of the Gromov-Hausdorff distance is attained in the set
{dis(C ) : C is a correspondence X ⇒ Y } and thus Equation (29) is equivalent to

dGH(X ,Y ) =
1

2
min {dis(C ) : C is a correspondence X ⇒ Y } . (30)

Take C ′ the correspondence attaining the minimum in dd ′
GH(X ,Y ), that is dd ′

GH(X ,Y ) = 1
2disd

′
(C ′). We

have by Equation (28) that

disd(C ′) ≤ D ·
(

disd
′
(C ′)

)η
= D ·

(
2dd ′

GH(X ,Y )
)η

= 2ηD
(
dd ′
GH(X ,Y )

)η
. (31)

Note that dd
GH(X ,Y ) ≤ 1

2disd(C ′) by definition of (30). Using this identity and multiplying both sides
of Equation (31) by 1

2 we get

dd
GH(X ,Y ) ≤ 1

2
disd(C ′) ≤ 2η−1D

(
dd ′
GH(X ,Y )

)η
. (32)

Now we are ready to prove our stability theorem for d ′(x , y) = 1 − |Corr(x , y)|. Let us first define
what is the correlation coefficient of two vectors of the same length.

Definition 2.52. Define the average of a vector x = (x1, ... , xm) ∈ Rm as

x̄ =
1

m

m∑
i=1

xi . (33)

Define the variance of a vector x = (x1, ... , xm) ∈ Rm as

Var(x) =
1

m

m∑
i=1

(xi − x̄)2. (34)
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Define also the covariance between vectors x = (x1, ... , xm), y = (y1, ... , ym) ∈ Rm as

Cov(x , y) =
1

m

m∑
i=1

(xi − x̄)(yi − ȳ). (35)

Then, the sample Pearson correlation coefficient between two finite vectors x , y ∈ Rm is

Corr(x , y) =
Cov(x , y)√
Var(x)Var(y)

=

∑m
i=1 (xi − x̄)(yi − ȳ)√∑m

i=1 (xi − x̄)2
√∑m

i=1 (yi − ȳ)2
. (36)

In particular, the correlation coefficient is well defined for all vectors x , y such that Var(x) ̸= 0 ̸=
Var(y).

Lemma 2.53. Let γ : x ∈ [0, 1]→ 1−
√
1− x2 ∈ [0, 1]. Then γ is

(√
2, 12
)
-Hölder continuous.

Proof.

|γ(x)− γ(y)| =
∣∣∣√1− y2 −

√
1− x2

∣∣∣
≤︸︷︷︸√

x (1,1/2)-Hölder

∣∣1− y2 −
(
1− x2

)∣∣1/2 = ∣∣x2 − y2
∣∣1/2

≤︸︷︷︸
x2 is 2−Lipschitz in [0,1]

(2 · |x − y |)1/2 =
√
2 · |x − y |1/2 .

Lemma 2.54. Let γ : x ∈ [0, 1]→ 1−
√
1− x2 ∈ [0, 1]. Then γ−1 : y ∈ [0, 1]→

√
1− (1− y)2 ∈ [0, 1]

is the inverse of γ.

Proof. We have (
γ−1 ◦ γ

)
(x) = γ−1

(
1−

√
1− x2

)
=

√
1−

(
1−

(
1−

√
1− x2

))2
=
√
x2 = x .

Lemma 2.55. Let γ−1 : x ∈ [0, 1]→
√

1− (1− x)2 ∈ [0, 1]. Then γ−1 is
(√

2, 12
)
-Hölder continuous.

Proof. ∣∣γ−1(x)− γ−1(y)
∣∣ = ∣∣∣∣√1− (1− x)2 −

√
1− (1− y)2

∣∣∣∣
≤︸︷︷︸√

x (1,1/2)-Hölder

∣∣∣1− (1− x)2 −
(
1− (1− y)2

)∣∣∣1/2
=
∣∣∣(1− y)2 − (1− x)2

∣∣∣1/2
≤︸︷︷︸

x2 is 2−Lipschitz in [0,1]

(2 · |(1− y)− (1− x)|)1/2 =
√
2 · |x − y |1/2 .
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Corollary 2.56. Let be X ,Y ⊆ Rm sets of vectors with Var(X) ̸= 0 ̸= Var(Y). Let d ′(x , y) = 1 −
|Corr(x, y)| and d(x , y) =

√
1− Corr2(x, y). Let γ : x ∈ [0, 1]→ 1−

√
1− x2 ∈ [0, 1]. Then,

d∞
(
D ′
∆(X ),D ′

∆(Y )
)
≤ 2 ·

(
dd
GH(X ,Y )

)1/2
≤ 2 ·

(
dd ′
GH(X ,Y )

)1/4
.

Proof. Note that γ is strictly increasing,
(√

2, 12
)
-Hölder continuous by Proposition 2.53 with inverse

γ−1 also
(√

2, 12
)
-Hölder continuous by Proposition 2.55.

Therefore, by Theorem 2.50, noting that β = max
(√

2, 1
)
=
√
2, we have

d∞
(
D ′
∆(X ),D ′

∆(Y )
)
≤ 2 ·

(
dd
GH(X ,Y )

)1/2
.

Also, by Lemma 2.51 we have

dd
GH(X ,Y ) ≤

(
dd ′
GH(X ,Y )

)1/2
.

Joining both equations, we get

d∞
(
D ′
∆(X ),D ′

∆(Y )
)
≤ 2 ·

(
dd
GH(X ,Y )

)1/2
≤ 2 ·

((
dd ′
GH(X ,Y )

)1/2)1/2

= 2 ·
(
dd ′
GH(X ,Y )

)1/4
.

2.2.2 Differentiability with symmetric functions

Our objective in this section is to prove that we can also differentiate persistence diagrams coming
from arbitrary Vietoris-Rips sublevel set filtrations given a symmetric function. From now on, let
X ,Y ⊆ Rd be two finite sets of cardinality n with ambient space Rd equipped with its usual smooth
structure and let d ′ be a symmetric function d ′ : Rd × Rd → R that is Cr (U) where U is an open set.
As |X | = |Y | = n, we can see our sets X , Y simply as points (p1, ... , pn) ∈ Rnd where Rnd is also
equipped with its usual smooth structure.

As in 2.1.5, we work with functions

Bp :M = Rnd F−→ RK
Dgmp,∆−−−−→ Bar , (37)

where K = P ({1, ... , n}) \ {∅} and F (p) : σ ∈ K → maxi ,j∈σd ′(pi , pj) ∈ RK . From now on, we will
see our filter functions f ∈ RK as points (f (σ1) , ... , f (σ2n−1)) ∈ R2n−1 where σ1, ... ,σ2n−1 are the
simplices of K in any order (we will not use this ordering explicitly so it is not relevant) equipped with
the usual euclidean distance ∥·∥2 in R2n−1. Our objective is to find the requirements for F such that
Dgmp,∆ ◦ F is r -differentiable. The following two definitions are central to our work.

Definition 2.57. ([26, Definition 4.2]) Given a filter function f ∈ RK , the increasing order of its values
induce a pre-order on the simplices of K . Two filter functions f , g ∈ RK are said to be ordering
equivalent, written f ∼ g , if they induce the same pre-order on K .
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Definition 2.58. ([26, Definition 4.3]) Given a filter function f ∈ RK and a homology degree 0 ≤ p ≤
d , a barcode template (Pp,Up) is composed of a multiset Pp of pairs of simplices in K , together with
a multiset Up of simplices in K , such that:

Dgmp,∆

(
K f
sub

)
=
{(

f (σ), f (σ′)
)}

(σ,σ′)∈Pp
∪ {(f (σ), +∞)}σ∈Up

∪∆∞.

Here is the main theorem for local differentiability of filter functions.

Theorem 2.59. ([26, Theorem 4.7]) LetM be a smooth finite-dimensional manifold without boundary
(not necessarily Rnd ). Let θ ∈M. Suppose the parametrisation F :M→ RK is of class Cr , r ≥ 0, on
some open neighbourhood U of θ, and that F (θ) ∼ F (θ′) for all θ′ ∈ U. Then Bp is r -differentiable.

The following one is the global result.

Theorem 2.60. ([26, Theorem 4.9]) LetM be a smooth finite-dimensional manifold without boundary
(not necessarily Rnd ). Suppose the parametrization F :M→ RK is continuous overM and of class
Cr , r ≥ 0, on some open subset U ofM. Then Bp is r -differentiable on the set U ∩ M̄ where

M̄ =
{
θ ∈M|∃ open neighborhood Uθ of θ s.t. F (θ) ∼ F (θ′) for all θ′ ∈ Uθ

}
,

which is generic (open and dense) inM. In particular, if F is Cr on some generic subset ofM in the
first place, then so is Bp (on some possibly smaller generic subset).

Now suppose again thatM = Rnd . Define the C∞ projections

πi ,j : (p1, ..., pn) ∈ Rnd → (pi , pj) ∈ Rd × Rd ,

for all 1 ≤ i , j ≤ n.
The following result characterises differentiability of persistence diagrams computed using Vietoris-

Rips sublevel set filtrations with arbitrary symmetric functions d ′ that are Cr on an open subset U
of Rnd .

Proposition 2.61. Let d ′ : Rd × Rd → R be a Cr symmetric function, r ≥ 0, on an open set U ⊆
Dom(d). Let P = (p1, ... , pn) ∈ Rnd . Suppose that

1. ∀{i , j} ≠ {k , l} where i , j , k , l ∈ {1, ... , n}, d ′(pi , pj) ̸= d ′(pk , pl);

2. ∀i , j ∈ {1, ... , n}, P ∈ π−1
i ,j (U).

Then Bp = Dgmp,∆ ◦ F is C r at P, where F : Rnd → RK is as in (37).

Proof. By Property 1 of P, the distances d ′(pi , pj) for 1 ≤ i ̸= j ≤ n are strictly ordered. By the
property that projections πi ,j are C∞ on all their domain and d ′ is Cr on U, with πi ,j(P) ∈ U by
Property 2 of P, then d ′ ◦ πi ,j is C r in P. In particular r ≥ 0, d ′ ◦ πi ,j is a continuous function on P.
Therefore, there exists a neighbourhood U ′ of P where the order of the distances remains the same.
Define now

{v̄(σ), w̄(σ)} = arg maxi ,j∈σd(pi , pj).
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Therefore, for every P ′ = (p′1, ... p
′
n) ∈ U ′ we have F (P ′) (σ) = d ′

(
p′v̄(σ), p

′
w̄(σ)

)
for all σ ∈ K . Take the

non-empty open set

Ū = U ′ ∩
i ̸=j⋂

i ,j∈{1,...,n}

π−1
i ,j (U).

We have for all P ′ ∈ Ū,

F (P ′) = (f (σ1) , ... , f (σ2n−1))

=
(
maxi ,j∈σ1d

′(p′i , p
′
j), ... ,maxi ,j∈σ2n−1

d ′(p′i , p
′
j)
)

=
(
maxi ,j∈σ1d

′(πi ,j(P
′)), ... ,maxi ,j∈σ2n−1

d ′(πi ,j(P
′))
)

=
((

d ′ ◦ πv̄(σ1),w̄(σ1)

)
(P ′), ... ,

(
d ′ ◦ πv̄(σ2n−1),w̄(σ2n−1)

)
(P ′)

)
,

where,
(
d ′ ◦ πv̄(σi ),w̄(σi )

)
(P ′) is Cr in Ū by composition of C r functions for all 1 ≤ i ≤ 2n − 1. Also, by

definition of Ū, the order of the distances is preserved (intersection with U ′) so we obtain that F (P) ∼
F (P ′) for all P ′ ∈ Ū. Finally, the hypotheses of Theorem 2.59 hold and then Bp is r -differentiable
in P.

With this new generality, we can state the differentiability conditions for our function d ′(x , y) =
1− |Corr(x , y)|.

Lemma 2.62. Let

Z =
{
P = (p1, ... , pn) ∈ Rnd : Var(pi ) ̸= 0∀ i ∈ {1, ... , n}

}
.

Then, Z is an open set of Rnd .

Proof. Recall that, by Definition 2.52 the variance of pi = (pi ,1, ... , pi ,d) ∈ Rd is defined as

Var(pi ) =
1

d

d∑
i=1

(pi ,j − p̄i )
2.

Take a point P = (p1, ... , pn) ∈ Z. Var(·) is continuous at each pi because it is C∞ on all Rd . Also,
Var(pi ) ̸= 0 for all i ∈ {1, ... , n} by definition of Z. Therefore, there exists a neighbourhood U ⊆ Rnd

of P such that for all P ′ = (p′1, ... , p
′
n) ∈ U, Var(p′i ) ̸= 0 for all i ∈ {1, ... , n}. Therefore, U ⊆ Z so Z is

an open set in Rnd .

Corollary 2.63. Let Z ⊆ Rnd be as in Lemma 2.62. Let d ′ : Rd × Rd : (x , y) 7→ 1 − |Corr(x, y)| ∈ R.
Then the function Bp given by the function F : P ∈ Rnd → (σ 7→ maxi,j∈σd

′(pi, pj)) ∈ RK composed
with Dgmp,∆, is C∞ in the set

Z̄ =

{
P = (p1, ... , pn) ∈ Z : Cov(pi, pj) ̸= 0∀ i, j ∈ {1, ... , n}∧

d ′(pi , pj) ̸= d ′(pk , pl) ∀ {i , j} ≠ {k , l} where i , j , k , l ∈ {1, ... , n}
}
⊆ Z.
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Proof. By definition of correlation 2.52 we have

Corr(x , y) =
Cov(x , y)√
Var(x)Var(y)

.

Note that 1 − y is C∞ on all its domain whereas the correlation coefficient Corr(x , y) is a rational
function C∞ on all the projections πi ,j(P) with P ∈ Z̄ because variances of pi and pj are different
from zero for all i , j ∈ {1, ... , n} by definition of Z in 2.62. The only problem for d ′ to be C∞ in the
projections πi ,j(P) is given by the absolute value function | · | that is C∞ everywhere except on zero.
Therefore, d ′(x , y) is C∞ whenever Corr(x , y) ̸= 0 that is equivalent to have Cov(x , y) ̸= 0. Note that
for all P ∈ Z̄ we have Cov(pi , pj) ̸= 0 for all i , j ∈ {1, ... , n}. This is by assumption for i ̸= j and by
noting that Cov(pi , pi ) is zero if and only if Var(pi ) = 0 because

Cov(pi , pi ) =
1

n

m∑
i=1

(xi − x̄)2 = Var(pi ),

that does not happen by hypothesis of P being in Z. Then, d ′ is C∞ on πi ,j(P) for all P ∈ Z̄ and
i , j ∈ {1, ... , n}. Also, for all P ∈ Z̄ we have different d ′(pi , pj) by definition of Z̄. Therefore, the
conditions of 2.61 hold and thus Bp is C∞ on Z̄.

Lemma 2.64. Z̄ ⊆ Z is an open set in Rnd .

Proof. Take P = (p1, ... , pn) ∈ Z̄. We have that Cov(pi , pj) ̸= 0 for all i , j ∈ {1, ... , n} as we saw in
the proof of Corollary 2.63. Therefore, by continuity of the covariance Cov(x , y) we have that there
exists an open neighbourhood U1 ⊆ Rnd of P such that Cov(pi , pj) ̸= 0 for all i , j ∈ {1, ... , n}. Also,
d ′(x , y) = 1 − |Corr(x , y)| is a C∞ function in the projections πi ,j(P) of points P =∈ Z̄ as we saw in
the proof of Corollary 2.63. Then, by continuity of d ′ ◦ πi ,j in P, there exists an open neighbourhood
U2 ⊆ Rnd of P such that d ′(pi , pj) ̸= d ′(pk , pl) ∀ {i , j} ̸= {k , l} where i , j , k , l ∈ {1, ... , n}. Therefore,
the set Ū = U1 ∩U2 ∩Z ⊆ Z is open as intersection of open sets in Rnd and satisfies Ū ⊆ Z̄, so Z̄ is
an open set of Rnd .

The next proposition gives us closed formulas to compute the gradients of our function Bp.

Proposition 2.65. ([26, Proposition 4.14]) Let M be a smooth finite-dimensional manifold without
boundary (not necessarily Rnd ). Let F :M→ RK continuous of class Cr on some open set U ⊆ M
with r ≥ 1. Given θ ∈ U ∩ M̄ with M̄ defined as in 2.60 and a barcode template (Pp,Up) of F (θ), for
any choice of ordering (σ1,σ

′
1) , ... , (σm,σ

′
m) , τ1, ... , τn of (Pp,Up), the map

B̄p : θ′ 7→
[(
F (θ′)(σi ),F (θ

′)(σ′
i )
)m
i=1

,
(
F (θ′)(τj)

)n
j=1

]
,

is a local C1 lift of Bp around θ, and the corresponding differential for Bp at θ is:

dθ,B̄p
Bp(θ

′) =
[(
dθF (θ

′)(σi ), dθF (θ
′)(σ′

i )
)m
i=1

,
(
dθF (θ

′)(τj)
)n
j=1

]
.

As Z̄ is an open set of the smooth manifold Rnd , then Z̄ is a smooth submanifold without bound-
ary with the inherited smooth structure. Now take F ′ = F |Z̄ : Z̄ ⊆ Rnd → RK . With the previous
Proposition 2.65 we can give explicit formulas for the differentials of B ′

p given by the function F ′.
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Corollary 2.66. Let d ′(x , y) = 1 − |Corr(x, y)|, F : P ∈ Rnd → (σ 7→ maxi,j∈σd
′(pi, pj)) ∈ RK and

F ′ = F |Z̄ : Z̄ ⊆ Rnd → RK . Given P ∈ Z̄ and a barcode template (Pp,Up) of F ′(P), for any choice of
ordering (σ1,σ

′
1) , ... , (σm,σ

′
m), τ1, ... , τn of (Pp,Up), the map

B̄p : P ′ 7→
[(
F ′(P ′)(σi ),F

′(P ′)(σ′
i )
)m
i=1

,
(
F ′(P ′)(τj)

)n
j=1

]
,

is a local C1 lift of Bp around P, and the corresponding differential for Bp at P is:

dP,B̄p
Bp(P

′) =

[((
∇pd

′ (pv̄(σi ), pw̄(σi )

)) (
p′v̄(σi )

, p′w̄(σi )

)
,
(
∇pd

′
(
pv̄(σ′

i )
, pw̄(σ′

i )

))(
p′v̄(σ′

i )
, p′w̄(σ′

i )

))m
i=1

,

((
∇pd

′
(
pv̄(τj ), pw̄(τj )

))(
p′v̄(τj ), p

′
w̄(τj )

))n
j=1

]
,

where
{v̄(σ), w̄(σ)} = argmaxi,j∈σd

′(pi, pj).

Proof. Z̄ is an open submanifold without boundary of Rnd because Z̄ is open in Rnd by Lemma 2.64.
Also, by Corollary 2.63, points P ∈ Z̄ satisfy the conditions for points in Proposition 2.61, where we
saw that there existed neighborhoods ŪP of points P such that F was Cr in it. In our case, again
by Corollary 2.63 and Proposition 2.61, r = ∞. As this happens for all P ∈ Z̄ then F ′ is C∞ in all
Z̄. Therefore we can apply Proposition 2.65 to obtain our local lifts B̄p at a neighbourhood UP of P.
Note that also, this lift is also valid in the open set U = UP ∩ ŪP ∩ Z̄. By Proposition 2.61, in the
neighborhood ŪP we had

F (P ′) =
((

d ′ ◦ πv̄(σ1),w̄(σ1)

)
(P ′), ... ,

(
d ′ ◦ πv̄(σ2n−1),w̄(σ2n−1)

)
(P ′)

)
=
(
d ′
(
p′v̄(σ1)

, p′w̄(σ1)

)
, ... , d ′

(
p′v̄(σ2n−1)

, p′w̄(σ2n−1)

))
,

for all P ′ ∈ U ⊆ ŪP . Also, as U ⊆ Z̄, we have F ′(P ′) = F (P) for all P ′ ∈ U . By applying now the
formula for differentials of Proposition 2.65 on this neighbourhood U we obtain directly the desired
formula.

3. Deep learning

3.1 Computational graphs

The objective of this work is to analyse the dynamics of neural networks in presence of input data
and to use the insights obtained in improving neural networks during the training phase. A neural
network is a particular type of a more general concept called computational graph.

Definition 3.1. ([11, Definition 1]) A computational graph G is a 6-tuple(
n, l ,E ,

(
ui
)
i∈{1,...,n}⊆N ,

(
d i
)
i∈{1,...,n}⊆N ,

(
f i
)
i∈{l+1,...,n}⊆N

)
, (38)

where G = ({1, ... , n},E ) is a directed graph and where
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1. vertices {1, ... , l} are sources (the only ones) in the directed graph (vertices with indegree zero)
called input vertices with l satisfying 1 ≤ l < n;

2. E is the set of directed edges of the computational graph and satisfies that ∀(i , j) ∈ E , i < j ;

3. each ui ∈ Rd i
, i ∈ {1, ... , n}, is the variable with dimension d i associated with vertex i in the

graph;

4. each f i is a function f i : Rd̄ i → Rd i
where d̄ i =

∑
(j ,i)∈E d j defined on all its domain for all

i ∈ {l + 1, ... , n} called the local function for vertex i in the graph.

Write Nin(i) = {j : (j , i) ∈ E}. By convention, we write αi for the vector consisting of vectors uj

concatenated for (j , i) ∈ E given a fixed i ∈ {l + 1, ... , n}, i.e., αi =
(
uj1 , ... , u

j|Nin(i)|
)
∈ Rd̄ i where

j i ∈ Nin(i) for all i ∈ {1, ... , |Nin(i)|} and where j s < j t iff s < t. Note that by 1 and 2 we have for
all (i , j) ∈ E that i ∈ {1, ... , n − 1} and j ∈ {l + 1, ..., n}. Also, 2 implies that the graph G is acyclic
and topologically ordered. When we refer to the computational graph G as a (directed) graph, we will
be talking about the induced graph G instead. We will abuse our notation unless it is required by the
context to stress the difference between both concepts.

Computational graphs define a clear way to obtain values for each non-input vertex variable ui

given specific instances of the input vertex variables u1e , ... , u
l
e . The algorithm is very simple: for

each non-input vertex ni , we can compute a possible value for ui by evaluating f (αi ). Starting from
the vertices connected with the input vertices and updating at each step the vertices pointed by the
vertices with updated values, we end up obtaining values for all the vertices in the computational
graph. The previous algorithm is called the forward algorithm for computational graphs, and it is
defined formally in Algorithm 1.

Algorithm 1: The forward algorithm for computational graphs

input : A computational graph
(
n, l ,E ,

(
ui
)
i∈{1,...,n}⊆N ,

(
d i
)
i∈{1,...,n}⊆N ,

(
f i
)
i∈{l+1,...,n}⊆N

)
and values for the input vertices’ variables u1e ∈ Rd1

, ... , ule ∈ Rd l
.

output: The same computational graph with the variables
(
ui
)
i∈{1,...,n}⊆N updated.

for i ← 1 to l do
ui = uie

end
for i ← (l + 1) to n do

ui = f i (αi )
end

Definition 3.2. An evaluation of a computational graph G at the input u1e , ... , ule is the indexed family
of values

(
ui
)
i∈{1,...,n}⊆N obtained by applying the forward algorithm with input values u1e , ... , u

l
e .

Remark 3.3. Denote by o the number of sink vertices (outdegree zero vertices) of a computational
graph G and let no1 , ... , n

o
o be these vertices, ordered by their vertex numbers, with associated vari-

ables uo1 ∈ Rdo
1 , ... , uoo ∈ Rdo

o . From now on, we denote these sink vertices by output vertices. Note
that the forward algorithm defines a function G : Rd1 × · · · × Rd l → Rdo

1 × · · · × Rdo
o that sends input

variable values u1e , ... , u
l
e to the variable values of the output vertices of the evaluation of these input

variable values in G .
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Definition 3.4. Let G =
(
n, l ,E ,

(
ui
)
i∈{1,...,n}⊆N ,

(
d i
)
i∈{1,...,n}⊆N ,

(
f i
)
i∈{l+1,...,n}⊆N

)
be a computa-

tional graph. The function of G is the function G : Rd1 × · · · × Rd l → Rdo
1 × · · · × Rdo

o defined in
Remark 3.3. We do not distinguish between the computational graph and its function when it is clear
from the context.

3.2 Neural networks

There are many ways to define neural networks. In fact, neural networks models are so rich that the
previous definition is not enough to properly describe all of them. However, several neural networks
architectures can be described with the previous framework.

Definition 3.5. A neural network N is a 4-tuple(
NG ,

(
f iθ
)
i∈{l+1,...,n} , (mi )i∈{l+1,...,n} , (θi )i∈{l+1,...,n}

)
(39)

such that

1. NG is a computational graph with d i = 1 for all i ;

2. mi ∈ N>0, θi ∈ Rmi and f iθ (x , θ) : Rd̄i × Rmi → R such that f i = f iθ |θ=θi ;

3. f iθ is Cr , r ≥ 1, in Rd̄i × Rmi .

The variables θ in the functions f iθ are the trainable parameters and the values θi are the
current parameters of the neural network. Sometimes, we denote the vertices (and its associ-
ated variables) by neurons. We use both terms interchangeably. We abuse our notation and we
write the function of the computational graph NG defined in 3.4 also as N : Rd1 × · · · × Rd l →
Rdo

1 × · · · × Rdo
o . We denote by Nets the set of all neural networks. We denote by Nets (Rn) the set

{N : N ∈ Nets such that N has n input vertices} and by Nets (Rn,Ro) and CNets (Rn,Y) the sets
{N : N ∈ Nets (Rn) such that N has o output vertices} and {(N , τ) : N ∈ Nets (Rn) ,Codom(τ) =
Y such that τ ◦ N : Rn → Y is well defined} respectively.

Definition 3.6. The extended neural network function N̄ of a neural network N is the Cr function
N̄ : Rl × (Rml+1 × · · · × Rmn) → Rn with N̄ (x1, ... , xl , θ

′
1, ... , θ

′
n−l) =

(
e1, ... , en

)
where

(
e i
)
i∈{1,...,n} is

the evaluation 3.2 of the computational graph N ′
G on the input variable values x1, ... , xl where N ′ is

the neural network N but with parameters given by the inputs
(
θ′i−l

)
i∈{l+1,...,n}.

Remark 3.7. The function N̄ is Cr because each output value given by the forward algorithm is yielded
by a composition of Cr functions f iθ or by the identity function for the output variable values associated
to input vertices. Sometimes we also consider the function N̄o : Rl × (Rml+1 × · · · × Rmn)→ Ro given
by N̄ projected to the o output vertices of NG ordered increasingly by vertex numbers.

During the whole project we work with the most simple type of neural network structure: the
multilayer perceptron. This model is simple enough to make easily interpretable experiments while
being powerful enough to adapt to almost any task. However, all of our constructs can be generalised
easily for more involved networks.
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Definition 3.8. A multilayer perceptron is a neural network N defined by the 8-tuple(
i , h,

(
s j
)
j∈{1,...,h} , o,E ,

(
ui
)
i∈{1,...,i+hn+o} ,

(
f jθ

)
j∈{i+1,...,i+hn+o}

, (θi )i∈{i+1,...,i+hn+o}

)
, (40)

where hn =
∑h

j=1 s
j if h > 0 and hn = 0 otherwise and where

1. i ∈ N>0 is the number of input vertices in the computational graph;

2. h ∈ N is the number of hidden layers (sets of vertices that are not input nor output);

3. s j ∈ N>0 is the number of vertices in each hidden layer. If h = 0 then {s j} = ∅;

4. o ∈ N>0 is the number of output vertices. Recall that output vertices are vertices with outdegree
zero;

5. E is the set of edges of the computational graph associated to the neural network. The set E
must satisfy some properties that we will state below;

6.
(
ui
)
i∈{1,...,i+hn+o} are the variable values of the neural network computational graph and they

satisfy ui ∈ R for all i ;

7. The functions f jθ are the functions of the neural network and have the form f jθ : Rd̄ j × Rmj → R
where mj = d̄ j + 1 and θj ∈ Rmj for all j . These functions must satisfy some properties that we
will state below.

The computational graph NG for the neural network is built as follows:

1. We add vertices I = {1, ... , i} and O = {i + hn + 1, ... , i + hn + o} for the input and output
vertices, respectively.

2. In case that h > 0, for each hidden layer 1 ≤ j ≤ h, we add vertices Hj = {i+hj +1, ... , i+hj+1}
where hj =

∑j−1
i=1 sj if j > 1 and h0 = 0.

Let H =
⋃h

j=1Hj if h > 0 and H = ∅ otherwise. The set of vertices is then given by V = I ∪ H ∪ O.
The set of edges E = {(i , j) | i < j} between these vertices must satisfy

1. The output values O can only be pointed by edges coming from vertices in the (last) hidden
layer Hh if h > 0 or coming from vertices in the input set I if h = 0.

2. The vertices of the j-hidden layer Hj can only be pointed by neurons in the j − 1-hidden layer
Hj−1 for j ≥ 2.

3. The vertices of the (first) 1-hidden layer H1, can be pointed only by the input vertices I .

The functions f jθ : Rd̄ j × Rmj → R must have the form

f jθ

(
x1, ... , xd̄ j , θj ,1, ... , θj ,d̄ j+1,

)
= σ

 d̄ j∑
k=1

θj ,kxk + θj ,d̄ j+1

 , (41)

33



Improving neural networks using topological data analysis

where σ : R→ R is a non-linear Cr function in R with r ≥ 1.
With these constraints and defining n = i + hn + o, the computational graph NG of the neural

network is given by the 6-tuple(
n, i ,E ,

(
ui
)
i∈{1,...,i+hn+o} , (1)i∈{1,...,n} ,

(
f jθ |θ=θj

)
j∈{i+1,...,n}

)
, (42)

and the multilayer perceptron is the neural network N given by(
NG ,

(
f jθ

)
j∈{i+1,...,n}

,
(
d̄ j + 1

)
j∈{i+1,...,n}

, (θj)j∈{i+1,...,n}

)
. (43)

Neural networks are usually used to approximate functions that are unknown but from which we
know some information. Usually this information comes in the form of a dataset.

Definition 3.9. A dataset is a non-empty finite set of pairs{
(xi , yi ) ∈ X × Y ⊆ Rn × Rt

}
i∈{1,...,m} .

We usually assume that there exists a (usually unknown) function f : X → Y such that f (xi ) = yi
for all i ∈ {1, ... ,m} and that is of our interest in some way. This is the function that we want to
approximate with neural networks. Depending on the form of this function, we say that we solve a
problem of classification or a problem of regression. Therefore, it is convenient to define two different
types of tasks in deep learning.

Definition 3.10. A regression dataset is a dataset D ⊆ X × Y ⊆ Rn × Rt such that there exists a
function fD : X → Y satisfying f (x) = y for all (x , y) ∈ D. A regression neural network for a regression
dataset D is a neural network N ∈ Nets (Rn,Rt).

Definition 3.11. A classification dataset is a dataset D ⊆ X × Y ⊆ Rn × N such that there exists
a function fD : X → Y satisfying f (x) = y for all (x , y) ∈ D. A classification neural network for a
classification dataset D is a tuple (N , τ) ∈ CNets (Rn,Y).

A regression problem consists of finding a regression neural network N that best approximates a
specific function fD in a regression dataset D. A classification problem consists of finding a classifica-
tion neural network (N , τ) such that τ ◦N best approximates a specific function fD in a classification
dataset D. The definition of a good approximation of the desired function fD by a neural network N
depends on the metric used to compare them. We denote this metric by loss function.

Definition 3.12. Let HomD(X ,Y) = {f ∈ Hom (X ,Y) : f (x) = y for all (x , y) ∈ D}. A loss function L
for a dataset D ⊆ X ×Y ⊆ Rn×Rt is a function L(N, f ,D) : Nets (Rn)×HomD(X ,Y)×P (Rn × Rt)→
R. Note that the same function L can be a loss function for several datasets.

Definition 3.13. Let D ⊆ X × Y ⊆ Rn × Rt be a dataset, L a loss function for the dataset D and
fD : X → Y the desired function to approximate. A targeted regression problem consists of the
problem of finding

arg minN∈Nets(Rn,Rt) (L|f=fD,D=D(N )) ,

where D is a regression dataset. A targeted classification problem consists of the problem of finding

arg min(N ,τ)∈CNets(Rn,Y) (L|f=fD,D=D(N )) ,

where D is a classification dataset.
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Functions fD usually are not unique in regression and classification datasets, so it is not always
clear how we find the specific function fD that we want to approximate. Generally, a dataset is made
from observations in the real world that respond to some natural laws whose models are unknown
to us. In this kind of situations, the goal is to approximate specifically these models. MNIST [25] is
one example of these kind of datasets. MNIST is a classification dataset that contains thousands of
images of handwritten digits and the usual objective with this dataset is to learn a mathematical model
fD : R28×28 → {0, ... , 9} that is capable of identifying handwritten numbers in the range {0, ... , 9} in
any 28× 28 pixels image containing them. In this case, there are some unknown natural laws related
to vision that allow humans to discern between the different digits. However, with the previous loose
definition, there may be several models fD that do the task of modelling the vision system for this
concrete task. This is the case in the majority of deep learning problems. The usual solution is to
relax the problem of finding an specific function fD to approximate and just require that the selected
loss function depends only on the values of the dataset D and the neural network N . Therefore, from
now on we use loss functions for datasets D ⊆ X ×Y ⊆ Rn×Rt depending only on the parameters N
and D, i.e., in functions L(N, f ,D) = L(N,D) : Nets (Rn)×P (Rn × Rt)→ R. With these new losses,
we can define the general regression and classification problems.

Definition 3.14. Let D ⊆ X ×Y ⊆ Rn ×Rt be a dataset and L(N,D) : Nets (Rn)×P (Rn × Rt)→ R
a loss function for the dataset D. A regression problem consists of the problem of finding

arg minN∈Nets(Rn) (L|D=D(N )) ,

where D is a regression dataset. A classification problem consists of the problem of finding

arg min(N ,τ)∈CNets(Rn,Y) (L|D=D(N )) ,

where D is a classification dataset.

The previous problems are too difficult to solve directly due to the enormous quantity of configura-
tions we can use to build neural networks, as we saw in the previous sections. The usual approach is
to select a first neural network N =

(
NG ,

(
f iθ
)
i∈{l+1,...,n} , (mi )i∈{l+1,...,n} , (θi )i∈{l+1,...,n}

)
and then to

select optimal parameters (θi )i∈{l+1,...,n} for N by minimising the function L̄ : Rml+1 × · · · × Rmn →
R given by L̄

(
θ′1, ... , θ

′
n−l

)
= L (N ′,D) where N ′ is the neural network N but with parameters(

θ′i−l

)
i∈{l+1,...,n}. Notice that when we fix a first neural network N and we try to obtain its optimal

parameters (θi ) we can give more precise loss function definitions depending on the shape of N .

Definition 3.15. A loss function for a dataset D ⊆ X × Y ⊆ Rn × Rt and a neural network N =(
NG ,

(
f iθ
)
i∈{l+1,...,n} , (mi )i∈{l+1,...,n} , (θi )i∈{l+1,...,n}

)
∈ Nets (Rn,Rt) is a function

L(θ′1, ... , θ′n−l ,D) : Rml+1 × · · · × Rmn × P
(
Rn × Rt

)
→ R.

Definition 3.16. Let D ⊆ X ×Y ⊆ Rn×Rt be a dataset andN a neural network. An iterative process
that obtains parameters (θi )i∈{l+1,...,n} using a loss function for the dataset D and the neural network
N as defined in 3.15 is called a training process of the neural network N .

Training processes for losses L usually fix a a subset D′ ⊆ D (that can be the complete set
D) at each iteration and then perform a gradient descent step (or any other iterative optimisation
procedure) in the function L|D=D′ , with the hope of minimising L|D=D. Notice that we do not require
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that iterative processes of training processes use the whole dataset D at each iteration. This is
simply because some training algorithms work better this way, like Stochastic Gradient Descent or
Adam. Computational graph functions are usually complex functions that induce complex losses
with many local minimum in which training algorithms often get stuck before arriving to a global
minimum. Choosing a good training algorithm is one of the most relevant decisions for machine
learning practitioners to be successful when training neural models. For our experiments, we will fix
Adam [24] to be our training algorithm. We will give more details in Section 4.

There are many loss functions and training methods to obtain the optimal values for parameters
of a neural network N . Most of them relies on being able to compute the partial derivatives of
the extended neural network function N̄ defined in 3.6 restricted to the values given by the output
vertices. To obtain its Jacobian in an specific point x1, ... , xl , θ′1, ... , θ

′
n−l we apply the chain rule in

an efficient algorithm called backpropagation, specified in Algorithm 2, with input a computational
graph N ′

G and values x1, ... , xl , θ
′
1, ... , θ

′
n−l where N ′

G is the computational graph derived from NG

by changing the functions f jθ |θ=θj for the functions f jθ and by adding input vertices representing the
parameters of each function pointing only to their respective function vertices. The backpropagation
algorithm for computational graphs and its use to obtain partial derivatives is extensively explained in
the notes [11] by Michael Collins.
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Algorithm 2: The backpropagation algorithm for computational graphs
input : A computational graph

G =
(
n, l ,E ,

(
ui
)
i∈{1,...,n}⊆N ,

(
d i
)
i∈{1,...,n}⊆N ,

(
f i
)
i∈{l+1,...,n}⊆N

)
and values for the

input vertices’ variables u1e ∈ Rd1
, ... , ule ∈ Rd l

such that ∂f i

∂uj
is well defined for all

Dom(f i ) for all (i , j) ∈ E .
output: For j ∈ {1, ... , l} and s ∈ {i : i is a sink vertex of G} output the Jacobians

P j
s =

∂us

∂uj
|u1e ,...,ule

G ← Forward Algorithm(G , u1e , ... , ule)
S ← {} // List of sink vertices.
for j ← n to 1 do

if vertex j is a sink then
S ← S ∪ {j}
for s ∈ S do

if s = j then
P j
s ← I (d j) where I (d j) is the identity matrix of dimension d j × d j .

else
P j
s ← 0(d s × d j) where 0(d s × d j) is the zero matrix of dimension d s × d j .

Ps
j ← 0(d j × d s)

end
end

else
Compute J j→i

(
αi
)

where J j→i
(
αi
)
= ∂f i

∂uj

(
αi
)

for s ∈ S do
P j
s︸︷︷︸

d s×d j

=
∑

i :(j ,i)∈E P i
s︸︷︷︸

d s×d i

× J j→i
(
αi
)︸ ︷︷ ︸

d i×d j

end
end

end

When we perform a training process given a first neural network N and a dataset D, we usually
expect that the trained neural networkN performs properly in presence of new data sampled from the
same source. However, it is usual that, after training, the neural network have memorised data from
the dataset used during training, performing properly there but generalising badly to unseen data.
One extreme example of this behaviour are polynomial interpolations in regression problems, where
points in the dataset are predicted without errors but predictions outside the dataset make no sense.
To avoid that, it is usual to split the complete datasetD into two disjoints datasetsDtrain,Dtest ⊊ D such
that D = Dtrain ∪ Dtest. The training is then performed in the dataset Dtrain and then the performance
of the training is tested in the unseen dataset Dtest. There are several ways to test the performance of
a trained network on an unseen dataset Dtest. The easiest one is to compute also the loss for the test
set and interpret the result. However, loss functions are usually hard to interpret and other metrics
are used. The accuracy of a network is one of the most used metrics to test if a neural network is
generalising properly outside the training dataset Dtrain in classification problems. It measures the
percentage of inputs classified correctly.

Definition 3.17. Let D a classification dataset. Let (N , τ) a classification neural network for the
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dataset D. The accuracy of N in D is defined as

1

|D|
|{(x , y) ∈ D : (τ ◦ N ) (x) = y}| .

Selecting appropriate loss functions is crucial to achieve good accuracies. There are several
classical loss functions used in classification and regression problems, like the categorical cross-
entropy loss implemented in Tensorflow [27], derived from the cross-entropy measure defined in [16,
Equation 3.51]. To use this loss function for a a classification dataset D ⊆ X ×Y ⊆ Rn ×N ⊆ Rn ×R
and a classification neural network (N , τ), we require that Y = {1, ... ,m} for 1 ≤ m < +∞, that
N ∈ Nets (Rn,Rm) and that τ : x = (x1, ... , xm) ∈ Rm → arg maxi∈{1,...,m}xi ∈ Y = {1, ... ,m}.

Definition 3.18. The categorical cross-entropy loss function for the classification dataset D ⊆ X ×
{1, ... ,m} ⊆ Rk×R and the neural networkN =

(
NG ,

(
f iθ
)
i∈{l+1,...,n} , (mi )i∈{l+1,...,n} , (θi )i∈{l+1,...,n}

)
∈

Nets
(
Rk ,Rm

)
is the function CCRN : Rml+1 × · · · × Rmn × P (Rn × R)→ R defined as

CCRN (θ′1, ... , θ
′
n−l ,D) 7→ −

∑
(x ,y)∈D

1
⌊y⌋ · ln

(
SoftMax(N̄o(x , θ

′
1, ... , θ

′
n−l))

)
,

where N̄o is defined as in Remark 3.7, ln : x = (x1, ... , xm) ∈ Rm → (ln(x1), ... , ln(xm)) ∈ Rm, 1α,
α ∈ N, is the vector of m elements such that 1αj = 1 if α = j and 1

α
j = 0 otherwise, · is the usual

euclidean dot product and SoftMax : Rm → Rm is the function such that SoftMax(x)i = exi/
∑m

j=1 e
xj .

Many times loss functions by themselves are not enough to achieve high generalisation on neural
networks trained with these losses. Also, it is usual that loss functions only take into account a
small group of desired properties to optimise during the training. However, there are many desired
neural network properties that, when taken into account during the training process, improve the
generalisation of the resulting neural networks. To take into account these other properties, it is
usual to add terms to loss functions that capture how well a neural network is performing on these
properties. These terms added to the main loss function are called regularisation terms.

Definition 3.19. Let L a loss function defined as in one of the previous Definitions 3.12 or 3.15 for the
dataset D. A regularisation term T is a loss function T of the same type as L which we use together
in a training procedure.

3.2.1 Network functional graph and equivalent networks

When we train neural networks, our ideal objective would be to learn the maximum quantity of in-
formation of as possible, avoiding knowledge redundancy. This can be translated to having vertices
whose functions have different outputs for each input fed to the network. In this section, we will
discuss how studying correlations between activations of computational graph variables of neural
networks allows us to define some kind of redundancy degree metric in a given neural network N for
a given dataset D. To do that, we will use the concept introduced in [1] of network functional graph.

Definition 3.20. Let D = {(xi , yi )}i∈{1,...,m} ⊆ X × Y be a dataset and G a computational graph with
d j = 1 for all j ∈ {l + 1, ... , n} whose function satisfies X ⊆ Dom(G ) . Let v ∈ V (G ) be a non-input
vertex of the computational graph and let uv be its associated variable. The activation vector of the
vertex v in presence of D is defined as the vector av = (av ,i )i∈{1,...,m} ∈ Rm such that av ,i = uv after
applying the forward algorithm 1 with input values defined by xi .
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Note that this definition can be generalised easily to arbitrary computational graphs. However, as
we work only with neural networks, we will use this simpler definition. Note that, fixing a dataset D of
cardinality m, we have for each non-input vertex v a vector av ∈ Rm. This will allow us to compare
neurons easily in terms of their activation vectors.

Definition 3.21. Let D be a dataset with |D| = m and G a computational graph with d j = 1 for all
j ∈ {l + 1, ... , n}. The network functional graph of G in presence of D is the undirected weighted
complete graph F(G ,D) = (V (F(G ,D)) ,E (F(G ,D)) ,wF ) where

• wF is a symmetric function, i.e., if (x , y) ∈ Dom (wF ) then (y , x) ∈ Dom (wF ) and w(x , y) =
w(y , x) for all (x , y) ∈ Rm × Rm;

• V (F(G ,D)) = {ai}i∈{l+1,...,n} are the activation vectors of the non-input vertices of G in pres-
ence of D;

• E (F(G ,D)) = {(a, b) : a, b ∈ V (F(G ,D)) with a ̸= b and (a, b) ∈ Dom (wF )} such that the
weight of each edge (a, b) ∈ E is wF (a, b).

From now on, we will use the symmetric function d(x , y) = 1 − |Corr(x , y)| where Corr(x , y) is
defined as in 2.52.

Proposition 3.22. Let x , y ∈ Rm such that m ≥ 1 and Var(x) ̸= 0 ̸= Var(y). Let d(x , y) = 1 −
|Corr(x, y)|. Then d(x , y) = 0 if and only if there exist a, b ∈ R with a ̸= 0 such that y = ax + b1m
where 1m = (1, ... , 1) ∈ Rm.

To prove this proposition, we need the following results.

Lemma 3.23. ([37]) Let a, b ∈ R. Then Var(ax + by) = a2Var(x) + b2Var(y) + 2abCov(x, y).

Lemma 3.24. Let x , y ∈ Rm, m ≥ 1, and a ∈ R. There exists b ∈ R such that y = ax + b1m if and
only if Var(y − ax) = 0.

Proof. =⇒ ]: Note that

y − ax =
1

m

m∑
i=1

yi − axi =
1

m

m∑
i=1

(axi + b − axi ) = b. (44)

Therefore, we obtain

Var(y − ax) =

∑m
i=1(yi − axi − y − ax)2

m
=

∑m
i=1 (axi + b − axi − b)2

m
= 0. (45)

⇐= ]: We have

0 = Var(y − ax) =

∑m
i=1(yi − axi − y − ax)2

m
=⇒ 0 =

m∑
i=1

(yi − axi − y − ax)2. (46)

As each of the terms of the sum is positive or zero and the sum is zero, then each term must be zero
so we get:

0 = (yi − axi − y − ax)2 =⇒ 0 = yi − axi − y − ax =⇒ yi = axi + y − ax ∀i ∈ {1, ... ,m}. (47)

Thus, we get y = ax + b1m with b = y − ax , as we wanted to prove.
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Lemma 3.25. Let x , y ∈ Rm such that Var(x) ̸= 0 ̸= Var(y). Then |Corr(x, y)| = 1 implies that there
exists a ∈ R \ {0} such that Var(y − ax) = 0.

Proof. We know by lemma 3.23 that Var(y − ax) = Var(y) + a2Var(x)− 2aCov(x , y) for any a ∈ R. By
definition we have

Corr(x , y) =
Cov(x , y)√
Var(x)Var(y)

, (48)

Therefore, assuming |Corr(x , y)| = 1 then Cov(x , y) ∈
{
±
√

Var(x)Var(y)
}

. Substituting we get

Var(y − ax) = Var(y) + a2Var(x)± 2a
√

Var(x)Var(y) =
(√

Var(y)± a
√

Var(x)
)2

. (49)

Solving the previous Expression (49) equal to zero we obtain

0 =
(√

Var(y)± a
√

Var(x)
)2

=⇒ 0 =
(√

Var(y)± a
√

Var(x)
)

=⇒ a = ±
√

Var(y)√
Var(x)

̸= 0, (50)

that is well defined as Var(x) ̸= 0. Taking this a, we obtain Var(y−ax) = 0, as we wanted to prove.

Proof of Proposition 3.22. =⇒ ]: By applying Lemma 3.25 first and Lemma 3.24 secondly, we obtain
the desired result.
⇐= ]: Suppose that there exist a, b ∈ R, with a ̸= 0 such that y = ax + b1m. First note that

ȳ =
1

m

m∑
i=1

yi =
1

m

m∑
i=1

(axi + b) =
1

m

(
m∑
i=1

axi +
m∑
i=1

b

)
=

a

m

m∑
i=1

xi + b = ax̄ + b. (51)

Therefore, we have:

Corr(x , y) =
∑m

i=1 (xi − x̄)(yi − ȳ)√∑m
i=1 (xi − x̄)2

√∑m
i=1 (yi − ȳ)2

=

∑m
i=1 (xi − x̄)(axi + b − (ax̄ + b))√∑m

i=1 (xi − x̄)2
√∑m

i=1 (axi + b − (ax̄ + b))2

=

∑m
i=1 (xi − x̄)(axi − ax̄)√∑m

i=1 (xi − x̄)2
√∑m

i=1 (axi − ax̄)2

=
a
∑m

i=1 (xi − x̄)2∑m
i=1

√
a2(xi − x̄)2

=
a

|a|
= ±1.

(52)

Definition 3.26. We say that two classification neural networks (N1, τ1) and (N2, τ2) are equivalent
in a classification dataset D if for all (x , y) ∈ D we have that (τ1 ◦ N1) (x) = (τ2 ◦ N2) (x).

Take a dataset D = {(xi , yi )}i∈{1,...,m} and a neural network N . Let F (NG ,D) be the network
functional graph of the neural network computational graph NG in presence of D. Take the subgraph
G (NG ,D) = (V (G (NG ,D)) ,E (G (NG ,D))) ⊆ F(NG ,D) such that V (G (NG ,D)) = V (F(NG ,D))
and (u, v) ∈ E (G (NG ,D)) if and only if (u, v) ∈ E (F(NG ,D)) and wF (u, v) = 0 where wF (u, v) =
d(u, v) = 1− |Corr(u, v)|.

40



Lemma 3.27. For any connected component C = {ai}i∈I of G (NG ,D) we have that, for any i , j ∈ I ,
there exist α,β ∈ R such that aj = αai + β1m.

Proof. As C is a connected component of G (NG ,D) there exists a path aσ(1), aσ(2), ..., aσ(k) where
aσ(i) ∈ C and aσ(1) = ai , aσ(k) = aj . By definition of G (NG ,D), any two connected vertices
aσ(s), aσ(s+1) have

∣∣Corr (aσ(s), aσ(s+1)

)∣∣ = 1 for s ∈ {1, ... , k − 1}. Therefore, by Lemma 3.22 we
have that there exists αs ,βs ∈ R such that aσ(s+1) = αsaσ(s) + β1m for all s ∈ {1, ... , k − 1}. We claim
that for all t ∈ {2, ... , k} there exists α,β ∈ R such that aσ(t) = αaσ(1)+β1m. We prove it by induction.
The case t = 2 follows by applying the previous paragraph for s = 1. Suppose then for t. Again, by
the previous paragraph, we have:

aσ(t+1) = αtaσ(t) + βt1m =︸︷︷︸
I .H.

αt(αaσ(1) + β1m) + βt1m = αtαaσ(1) + (αtβ + βt)1m. (53)

The following proposition builds a neural networkNr from a neural networkN that gives the same
outputs for all the inputs defined by the dataset D but with less neurons. In particular, we keep only
one vertex ji for all the connected components Ci of G (NG ,D) \O where O is the set of sink vertices
by substituting all the occurrences of the other neurons ζ ∈ Ci by a linear combination involving only
ji , as all the variable values uζ given by the forward algorithm for the inputs defined by the dataset D
are linearly dependent for the same connected component Ci .

Proposition 3.28. Let D = {(xi , yi )}i∈{1,...,m} ⊆ X × Y be a classification dataset and (N , τ) a
classification multilayer perceptron. Let {Ci}i∈I the connected components of G (NG ,D) \ O where
O is the set of sink (output) vertices of the neural network N . Let Vi = {j : aj ∈ Ci} be the set of
vertices in Ci for i ∈ I . There exists an equivalent classification neural network (Nr , τ) induced by a
directed graph G ′ with V (G ′) ⊆ V (NG ) containing the input and output vertices of NG and at most
one vertex for each Vi for i ∈ I .

Proof. Take a connected component Ci with vertices Vi of G (NG ,D) \ O. Take ji = min (Vi ). For
s ̸= ji , s ∈ Vi , the values of us are not used in the computation of uji by the forward algorithm 1.
Suppose the contrary. Then, there exists s ∈ Vi such that us is used in the computation of uji . This
means that there exist a path in the graph NG starting at s and ending at ji . Then, we have s < ji .
However, ji = min (Vi ) by definition and s ∈ Vi so s ≥ ji , arriving at a contradiction.

By Lemma 3.27 we have that there exist αji
s ,β

ji
s ∈ R such that as = αji

s aji + βji
s 1m for all s ∈ Vi . Let

G ′
V =

⋃
i∈I
{ji} ∪ (Vin ∪ Vout) ,

where Vin and Vout are the input and output vertices of the computational graph NG respectively, and

G ′
E =

⋃
i∈I

⋃
s∈Vi\{ji}

{(ji , t) : (s, t) ∈ E (NG )} ∪
{
(a, b) ∈ E (NG ) : a, b ∈ G ′

V

}
.

We define the graph G ′ = (V (G ′) ,E (G ′)) as the graph with V (G ′) = {s : s ∈ G ′
V such that ∃(s, t) ∈

G ′
E} and E (G ′) = {(s, t) ∈ G ′

E and s, t ∈ V (G ′)}.
Let N ′

in(v) = {u′ : (u′, v) ∈ E (G ′)} and Nin(v) = {u : (u, v) ∈ E (NG )}. Let u′1, ... , u
′
|N′

in(v)|
and

u1, ... , u|Nin(v)| be the ordered vertices of N ′
in(v) and Nin(v) respectively, i.e., u′i < u′j ⇐⇒ i < j
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and ui < uj ⇐⇒ i < j for valid values of i , j . Let γv : Nin(v) → {1, ... , |Nin(v)|} be a bijection
assigning a vertex of Nin(v) its position in the order, i.e., u = uγv (u) for u ∈ Nin(v). Let C : V (NG ) →
{Ci}i∈I ∪ {∅} be a function such that C (v) = Ci if there exists i ∈ I such that v ∈ Ci and C (v) = ∅
otherwise. This function is well defined as having correlation equal to one in absolute value defines
an equivalence relation (reflexivity and symmetry come directly from the definition while transitivity
comes from Lemma 3.27). Let S(s) = {t : t ∈ C (s) and s = min (C (s))}. Note that S(s) = ∅ if
s ̸= min (C (s)). Let l the number of input vertices of NG . For each vertex v ∈ V (G ′) \ {1, ... , l} let
g v
θ : Rδ̄v × Rδ̄v+1 → R where δ̄v =

∑
(u,v)∈E(G ′) d

u be the function defined as

g v
θ

(
x1, ... , xd̄v , θ′v ,1, ... , θ

′
v ,δ̄v+1

,
)
= σ

 δ̄v∑
k=1

θ′v ,kxk + θ′
v ,δ̄v+1

 ,

where

θ′v ,k =

{
θγv(u′k)

+ θ̄′v ,k , if u′k ∈ Nin(v)

θ̄′v ,k , otherwise,
and θ̄′v ,k =

∑
ζ∈S(u′k)∩Nin(v)

θγv (ζ)α
u′k
ζ ,

and

θ′
v ,δ̄v+1

= θv ,d̄v+1 +
δ̄v∑
k=1

∑
ζ∈S(u′k)∩Nin(v)

θγv (ζ)β
u′k
ζ .

The previous graph G ′ and the functions and parameters defined before induce a neural network Nr

by reindexing appropriately the vertices in such a way the original order of the vertices given by NG

is conserved. Now, to see that (N , τ) and (Nr , τ) are equivalent in the dataset D we need only to
see that output vertices of N and Nr yield the same variable values given the same inputs defined
by the elements in the dataset D after applying the forward algorithm. In particular, we will prove that
vertices of G ′, V (G ′) ⊆ V (NG ), get the same variable values when applying the forward algorithm.
Let σ(1), ... ,σ (|V (G ′)|) the vertices of V (G ′) ordered in ascending order. Instead of working directly
with Nr , we will apply forward algorithm 1 to the graph G ′ but iterating only on the vertices of G ′

in ascending order, this is, changing the lines of the forward algorithm for i ← (l + 1) to n do
ui = f i (αi ) to for i ← (l + 1) to |V (G ′)| do uσ(i) = f σ(i)(ασ(i)).

We use complete induction on the values 1, ... , |V (G ′)|. The case i = 1 is trivial as we have
included in G ′ the input vertices so uσ(1) = u1 and both obtain the same values using the forward
algorithm. Suppose now that it is satisfied for the indices 1, ... , n − 1. We prove it for n. We have two
cases, when n ∈ {1, ... , l}, and then uσ(n) = un, getting both uσ(n) and un the same values using the
forward algorithm and when n ∈ {l + 1, ... , |V (G ′)|}. Assume the second case. Take the function

f
σ(n)
θ

(
x1, ... , x ¯dσ(n) , θσ(n),1, ... , θσ(n), ¯dσ(n)+1

,
)
= σ

 ¯dσ(n)∑
k=1

θσ(n),kxk + θ
σ(n), ¯dσ(n)+1

 .

Let Γ : v ∈ V (NG ) 7→ min (C (v)) ∈ V (NG ). We can write the function f
σ(n)
θ defined in Equation 3.2.1

also as

σ

θ
σ(n), ¯dσ(n)+1

+

¯dσ(n)∑
k=1,

Γ
(
γ−1
σ(n)

(k)
)
=γ−1

σ(n)
(k)

θσ(n),kxk +

¯dσ(n)∑
k=1,

Γ
(
γ−1
σ(n)

(k)
)
̸=γ−1

σ(n)
(k)

θσ(n),kxk

 . (54)
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Let Xσ(n) =
{
Γ
(
γ−1
σ(n)(k)

)
: k ∈

{
1, ... , ¯dσ(n)

}
and Γ

(
γ−1
σ(n)(k)

)
̸= γ−1

σ(n)(k)
}

. Define the variables x ′ζ

for ζ ∈ Xσ(n) and add them to the function f
σ(n)
θ . Assume these variables get the variable values

uζ in the forward algorithm. Therefore, for the dataset D we have that xk = α
γ−1(k)

Γ
(
γ−1
σ(n)

(k)
)x ′

Γ
(
γ−1
σ(n)

(k)
) +

β
γ−1(k)

Γ
(
γ−1
σ(n)

(k)
) for k ∈

{
1, ... , ¯dσ(n)

}
such that Γ

(
γ−1
σ(n)(k)

)
̸= γ−1

σ(n)(k). Substituting in Equation 54 we get

σ

(
θ
σ(n), ¯dσ(n)+1

+

¯dσ(n)∑
k=1,

Γ
(
γ−1
σ(n)

(k)
)
=γ−1

σ(n)
(k)

θσ(n),kxk+

¯dσ(n)∑
k=1,

Γ
(
γ−1
σ(n)

(k)
)
̸=γ−1

σ(n)
(k)

θσ(n),k

(
α
γ−1
σ(n)

(k)

Γ
(
γ−1
σ(n)

(k)
)x ′

Γ
(
γ−1
σ(n)

(k)
) + β

γ−1
σ(n)

(k)

Γ
(
γ−1
σ(n)

(k)
)
))

.

(55)

Developing and rearranging the expression inside the function σ in the previous Equation 55, remov-
ing the unused input variables of f σ(n)θ in Equation 55 and with a proper permutation of the position
of the input variables we obtain the function g

σ(n)
θ defined before. As by inductive hypothesis all the

variable values feed to the input variables of gσ(n)
θ are the same as their equivalent variable values

uj in NG after the application of the forward algorithm for all the inputs given by the dataset D, we

get that f σ(n)θ (ασ(n)) = g
σ(n)
θ (α′σ(n)) with α′σ(n) =

(
uj1 , ... , u

j|N′
in(σ(n))|

)
where uj1 , ... , u

j|N′
in(σ(n))| are the

ordered (ascending) vertices of N ′
in(σ(n)) as we wanted to prove.

Note that the reduced neural network is not a multilayer perceptron, but a generalisation. The
more neurons we remove to create Nr , the more redundant is the network N , as we get the exact
same outputs for both networks. Proposition 3.28 can also be generalised to a broader set of neural
network configurations, so comparing original and reduced versions of neural networks, N and Nr

respectively, could be used to assess the quality of a trained neural network.
However, pairwise correlations in absolute value between neurons of a neural network will be dif-

ferent to one in most cases. This implies that when approximating linearly one neuron with another as
before, we introduce an error term that modifies the subsequent activations in the forward algorithm,
modifying ultimately the values of the output neurons. In general, we expect that little perturbations
on the activation values of some neurons produce little perturbations on the output values as our
neural network function is a composition of Cr functions. Therefore, if we substitute one neuron ni by
another neuron nj as in the previous Proposition 3.28 such that their activations for a dataset D, ai
and aj respectively, are almost in a linear dependence (high correlation coefficient) then we expect
that the output neuron variable values do not change too much. This is especially useful in classifi-
cation, where we return one class for a range of output values of the computational graph where little
perturbations in the output neurons usually do not change the label y ∈ Y predicted.

In particular if we want to substitute ni by nj , a function of our distance 1 − |Corr(x , y)| give us a
lower bound on the distance between ai and the best linear approximation of ai ∈ Rm in terms of our
activations aj ∈ Rm with respect to their Euclidean distance.

To give the best linear approximation of ai in terms of aj we use the least squares method in
a simple linear regression, as in [33]. In this method, we approximate ai by the best linear model
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depending on aj according to the least squares method, i.e. obtaining âi = (ai ,1, ... , ai ,m) ∈ Rm such
that âi ,k = αaj ,k + β for k ∈ {1, ... ,m}. Write

SSR =
m∑

k=1

(âi ,k − āi )
2 , SST =

m∑
k=1

(ai ,k − āi )
2 and SSE =

m∑
k=1

(âi ,k − ai ,k)
2 = ∥âi − ai∥2.

The coefficient of determination is r2 = SSR
SST . It can be proved [33] that SST = SSR + SSE and that

r2 = Corr2(ai , aj). From this, we can prove the following lemma.

Lemma 3.29.
√
SSE = ∥âi − ai∥ ≥

√
SST · (1− |Corr(ai, aj)|).

Proof. We have that the codomain of the correlation is [−1, 1]. Therefore, the codomain of the coeffi-
cient of determination is [0, 1] (it is the square of the sample Pearson correlation). Also, we know that√
x ≥ x for 0 ≤ x ≤ 1. All together, this implies that |Corr(ai , aj)| =

√
r2 ≥ r2. Therefore, we get

SSR
SST

=
SST− SSE

SST
= 1− SSE

SST
= r2 ≤ |Corr(ai , aj)| ⇐⇒ 1− |Corr(ai , aj)| ≤

SSE
SST

⇐⇒

SST (1− |Corr(ai , aj)|) ≤ SSE ⇐⇒
√

SST (1− |Corr(ai , aj)|) ≤
√

SSE = ∥âi − ai∥.

This directly implies the following corollary.

Corollary 3.30. There exists k ∈ {1, ...,m} such that |ai ,k − âi ,k | ≥
√

SST
m · (1− |Corr(ai , aj)|).

Proof. Suppose not. Then we have |ai ,k − âi ,k | <
√

SST
m · (1− |Corr(ai , aj)|) for all k ∈ {1, ...,m}.

Then,

∥âi − ai∥ =

√√√√ m∑
k=1

(ai ,k − âi ,k)
2 =

√√√√ m∑
k=1

|ai ,k − âi ,k |2 <

√√√√ m∑
k=1

(√
SST
m
· (1− |Corr(ai , aj)|)

)2

=
√

SST · (1− |Corr(ai , aj)|),

that is a contradiction with the previous Lemma 3.29.

The previous Corollary 3.30 gives a lower bound on the noise (perturbation) added when changing
the neuron activations ai by the best linear approximation of ai , âi , using aj . This lower bound is tightly
connected with the coefficient correlation: the highest it is, the lower bound on the error produced.

Therefore, from now on, our heuristic will be that, the higher the correlations between the neurons,
the more probability of having redundant neurons in our neural network. Vietoris-Rips filtrations
and their persistence diagrams keep track of these correlations between neurons. In particular, in
dimension zero, deaths of points in persistence diagrams indicate merging of connected components
in the network functional graph by adding at least one edge with weight equal to the death value.
These weights, as defined before, are the function values 1 − |Corr(ai , aj)|. Note that 1 − d , where
d is a death value, gives the absolute value of the correlation between two unspecified neurons.
Therefore, the higher the values 1 − d are, the higher the probability of having redundant neurons.
We summarise this information in the following score.
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Definition 3.31. Let d ′(x , y) = 1 − |Corr(x , y)|. The topological redundancy of a neural network N
with respect to the dataset D = {(xi , yi )}i∈{1,...,m} is

R0(N ,D) =
∑

(0,d)∈Dgm0(VRd′ (V (G ′)))

1− d , (56)

where G ′ is the network functional graph of the neural network N with dataset D and symmetric
function 1− |Corr(x , y)|.

4. Experimental results

4.1 Regularisation terms

Our objective in this section is to find regularisation terms T that improve the neural network obtained
from a regular classification training procedure using the categorical cross-entropy loss function L
defined in 3.18. For our experiments, we use two different regularisation terms given a fixed neural
networkN =

(
NG ,

(
f iθ
)
i∈{l+1,...,n} , (mi )i∈{l+1,...,n} , (θi )i∈{l+1,...,n}

)
. Recall that we denote by F (N ,D)

the network functional graph of a neural network N given a symmetric function d ′(x , y), in our case
1− |Corr(x , y)|. The regularisation terms are

1. The standard deviation of dimension zero deaths in a network functional graph. Let

Dgm<∞
0 (N ,D) = {(b, d) ∈ Dgm0(VRd ′(V (F (N ,D)))) : d < +∞} ,

and denote its cardinality by C =
∣∣Dgm<∞

0 (N ,D)
∣∣. Give any order of the points (b, d) ∈

Dgm<∞
0 (N ,D) by decreasing value d − b, i.e., Dgm<∞

0 (N ,D) = {(b1, d1), ... , (bC , dC )} such
that di − bi > dj − bj if and only if i < j for i , j ∈ {1, ... ,C}. Finally, fix S ≤ C and let
Dgm(N ,D) = {(b1, d1), ... , (bS , dS)}. The standard deviation of dimension zero deaths in a
network functional graph is a function Tstd : Rml+1 × · · · × Rmn × P (Rn × R)→ R defined as

Tstd(θ
′
1, ... , θ

′
n−l ,D) =

√√√√ ∑
(0,d)∈Dgm(N ′,D)

d − d̄

|Dgm (N ′,D)|
, with d̄ =

1

|Dgm (N ′,D)|
∑

(0,d)∈
Dgm(N ′,D)

d ,

(57)
where N ′ =

(
NG ,

(
f iθ
)
i∈{l+1,...,n} , (mi )i∈{l+1,...,n} ,

(
θ′i−l

)
i∈{l+1,...,n}

)
. We use this regularisation

term due to it was shown in [1] that there existed a high correlation between the standard devia-
tion and averages of deaths of Vietoris-Rips persistence diagrams of dimension zero computed
with the symmetric function 1−|Corr(x , y)| and the generalisation gap. In particular, we observe
in [1, Figure 4.3] that the lower the standard deviation is, the lower (the better) the generalisation
gap is.

2. The sampled topological redundancy. It is a function Tred : Rml+1 × · · · ×Rmn ×P (Rn × R)→ R
defined as

Tred(θ
′
1, ... , θ

′
n−l ,D) =

∑
(0,d)∈

Dgm(N ′,D)

1− d , (58)
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Let σ(1), ... ,σ (|V (F (N ,D))|) any fixed order of the vertices whose activations are in the network
functional graph F (N ,D). Let aσ(i) their associated activation vectors. Note that F (N ′,D) contains
activation vectors for the same set of vertices ofNG for any neural networkN ′ coming from the neural
network N but with different parameters. We have regularisation terms that factorise as

T : Rml+1 × · · · × Rmn × P (Rn × R) G−→ Rmd F−→ RK Dgm0,∆−−−−→︸ ︷︷ ︸
B0

Bar
O−→ R,

where m = |V (F (N ,D))|, d = |Dtrain|, G is the function that builds the network functional graph
F (N ′,D) and outputs

(
aσ(1), ... aσ(m)

)
∈ Rmd , F is the Vietoris-Rips filter function given by d ′ =

1− |Corr(x , y)| as in 2.2.2 and O is a function that depends on the regularisation term.
Fix a set D ′ ⊆ P (Rn × R). We want to prove that Tstd|D=D′ and Tred|D=D′ are Cr functions with

r ≥ 1. Assume B0 is∞-differentiable. Under this assumption, if we prove that G|D=D′ is Cr with r ≥ 1
andO is r -differentiable with r ≥ 1 then, by the chain rule and by Proposition 2.27, we get that T |D=D′

is Cr with r ≥ 1. First note that G is automatically Cr with r ≥ 1 because its output is the concatenation
of Cr , r ≥ 1, extended neural network functions N̄ (x , θ′1, ... , θ

′
n−l)|x=x ′ projected to the output values

given by the indices associated with the vertices in the graph G ′ defined in 1 for (x ′, y ′) ∈ D ′.
Now let UDS = {D ∈ Bar∆ : d2 − b2 ̸= d1 − b1 ∀(b1, d1), (b2, d2) ∈ D \ ∆∞ and |D \∆∞| ≥ S}.

For any D ∈ UD, let DS the set of points (b, d) ∈ D \∆∞ with the S highest d − b values. Note that
the set is well defined because D ∈ UDS . Note that for the regularisation terms, if B0 ◦ G ∈ UDS the
functions Ostd and Ored are

Ostd(D) =

√√√√ ∑
(0,d)∈DS

d − d̄

|Ds |
and Ored(D) =

∑
(0,d)∈DS

1− d ,

respectively.
Take now D ∈ UDS , arbitrary m, n ∈ Z≥0 and a vector D̄ = (b1, d1, ... , bm, dm, b

′
1, ... , b

′
l) ∈ R2m×Rn

such that Qm,n

(
D̄
)
= D. Let σb(1),σd(1), ...σb(S),σd(S) the indices of the vector D̄ corresponding

to the points in DS = {(b1, d1), ... , (bS , dS)} where di − bi > dj − bj for i < j for all i , j ∈ {1, ... , S}.
Note also that for all (b, d) ∈ D \ ∆∞ we have d − b > 0 and for all the points (b, d) ∈ ∆∞ we
have d − b = 0. By the strict order for points in D \ ∆∞ and the previous property there exists a
neighbourhood UD̄ such that for all D̄ ′ ∈ UD̄

(
Qm,n

(
D̄ ′
))

S
is well defined and the indices of the vector

D̄ ′ corresponding to the points in
(
Qm,n

(
D̄ ′
))

S
= {(b′1, d ′

1), ... , (b
′
S , d

′
S)} are the same as the ones for

D̄, i.e., σb(1),σd(1), ...σb(S),σd(S). Therefore, the functions Ostd ◦ Qm,n, Ored ◦ Qm,n are defined as

Ostd ◦ Qm,n

(
b1, d1, ... , bm, dm, b

′
1, ... , b

′
l

)
=

√√√√ S∑
i=1

dσd (i) − d̄

S
with d̄ =

1

S

S∑
i=1

dσd (i)

and

Ostd ◦ Qm,n

(
b1, d1, ... , bm, dm, b

′
1, ... , b

′
l

)
=

S∑
i=1

1− dσd (i),

for all D̄ ′ ∈ UD̄ . These functions are Cr with r ≥ 1 so Ostd and Ored are r -differentiable with r ≥ 1 and
thus Tred and Tstd are Cr whenever the proposed assumptions hold.
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In our case we only add the regularisation terms whenever they can be computed, this is, given
values θ′1, ... , θ

′
n−l , D ′, and S ∈ N, the value G|D=D′(θ′1, ... , θ

′
n−l) is in the set Z̄ defined in Corol-

lary 2.63 and the value B0 ◦ G|D=D′ is in the set UDS defined before. In practice, this has happened
every time during our experiments due to the difficulty in getting correlations between activation vec-
tors that are pairwise equal or that have covariance equal to zero. This also means that we can fix
our S to have a value less or equal to |NG | − l − 1 where l is the number of input vertices of NG . This
is true because for all D ′ we have |F (N ,D ′)| − 1 = |NG | − l − 1 and because if we have different
pairwise distances for all the activation vectors then we have that for dimension zero persistence dia-
grams we will have at least |F (N ,D ′)| − 1 points as at most two activation values will be connected
in the simplicial complex generated by the Vietoris-Rips sublevel set filtration at distance zero. In our
case, we selected S = |NG | − l − 10 due to we started the experiments before developing the theory
and we did not know how was the structure of the set Z̄.

4.2 Dropout

Dropout is a regularisation technique introduced in [35] that is used during a training procedure to
improve the generalisation capacity of a neural network. It consists of ignoring the output of a certain
set of vertices selected randomly among the vertices of a neural network in each step of a training
procedure. Note that the set of discarded vertices is different in each training iteration. In particular,
we drop the edges coming out from the ignored vertices during the feedforward and backpropagation
algorithms. In our case, we set a constant percentage to each vertex that fixes the probability of this
neuron to be ignored during the training iteration.

4.3 Density functions of persistence diagrams

Persistence diagrams coming from dimension zero Vietoris-Rips persistence diagrams usually have
the same birth for all their points. This implies that a direct plot of the persistence diagram is not
usually useful and the statistics about the distribution of the deaths are hard to distinguish visually.
For this reason, instead of plotting directly the persistence diagrams, we build a density estimation
function for the set MD = {d : (b, d) ∈ D and d < +∞} and then we plot this function.

Definition 4.1. Let D ⊆ R be any finite set. The kernel density estimation function of the set D and
the kernel K is the function

ρK (y , h) =
∑
d∈Md

K (y − d , h),

where K is a positive-defined kernel for R × R, i.e., K is a symmetric function K : R × R → R such
that

∑n
i=1

∑n
j=1 cicjK (xi , xj) ≥ 0 for any x1, ... , xn ∈ R given n ∈ N and c1, ... , cn ∈ R.

In our case, we use the kernel K (x , h) = e−
x2

2h2 with h = h′ = n−
1
5 . In particular, we denote by

DensityFunction(D) any plot of the kernel density estimation function for a set D estimated with the
previous K and h = h′ where the x-axis is used for the density function and the y -axis is used for
the values of D. It can be proved that the function ρK (y , h)|h=h′

is actually a density function in the
probabilistic sense. See [38] an implementation and documentation of seaborn.kdeplot for more
details.
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4.4 Experiments

The dataset D we use in our experiments is a reduced version of the classical MNIST [25], that
contains 28 × 28 pixels grayscale images. Our dataset is split into two disjoint datasets, the training
dataset Dtrain, containing 24, 000 images and the test dataset Dtest, containing 6, 000 images. To do
that, we simply select the first 24, 000 and 6, 000 images from the original training dataset with 60, 000
images, as the original dataset is already sampled. We also split the dataset Dtrain into 48 disjoint
subdatasets Dit1 , ... ,Dit48 containing 500 examples each.

We build 10 different multilayer perceptrons NN = {N1, ... ,N10} for the experiments using the
Algorithm 3 with the inputs n = 10, hmin = 50, hmax = 500, M = 1000, o = 10 and σ = ReLU : x ∈ R 7→
max(0, x) ∈ R. Note that the ReLU function is Cr everywhere except on zero. Although it does not fit
directly in our definition of neural network, it is the most used non-linear activation in deep learning
and it usually outperforms other well-suited activation functions. The only problem of not having Cr
functions f jθ in neural networks is that the gradient cannot be computed in certain points using the
backpropagation algorithm 2. Most deep learning frameworks set ReLU′(0) = 0 [3] and then compute
gradients by using the usual backpropagation scheme. In general, doing this does not affect to the
training process, as the derivative of ReLU in zero is hardly ever used and also the numerical errors
introduced by this substitution are not so big to affect the training process.

We generate 14 different experiments, summarised in Table 1. Each experiment trains the 10
neural networks generated previously during 15 epochs. Each epoch executes 48 training iterations,
each trained with a different dataset Diti , i ∈ {1, ... , 48}, to compute the loss and the whole dataset
Dtrain to compute the regularisation term. Also, we save all the accuracies computed in the datasets
Dtrain and Dtest in each iteration. Finally, each five iterations, starting from the initial neural networkN ,
we save the zero dimension persistence diagram density functions of the network functional graph
computed with the whole dataset Dtrain. The training procedure for a neural networkNi , i ∈ {1, ... , 10}
and an experiment i is overviewed in Algorithm 4. Note that in our training procedure we use Adam
as an updater of the neural network. The function Adam receives a neural network N , a function L′
whose inputs are the parameters of the neural network N , and a dropout percentage R. The function
applies the Adam algorithm implemented in the signature tf.keras.optimizers.Adam of the
package Tensorflow [27], introduced for the first time in [24]. Note that if the dropout percentage R is
greater than zero, the dropout method explained in 4.2 is applied to the neural network to compute the
value L|D=Diti

(θ) in L′(θ), not affecting the part of the regularisation term during the Adam algorithm.

4.5 Results

Tables 2 contain the best validation and train accuracies obtained in each experiment during the
training procedures together with the average accuracy per experiment. We can observe that the
average training and validation accuracies for all the experiments performed with the standard de-
viation regularisation term (57) (experiments 3 to 8) are higher than the average accuracies of the
experiments 1 and 2, that were trained only with the classical loss and either without dropout or with
dropout generalisation respectively. This happens in general for every particular network: experi-
ments trained with the standard deviation regularisation term consistently improve the results yielded
by experiments trained only with a classical loss (with and without dropout), where only few examples
behave differently. In particular, experiment 8, trained with a 10% of dropout and 30% of topological
regulariser in the final loss was the experiment with best accuracies both in training and validation
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Algorithm 3: Construction of neural networks
input : A number n ∈ N representing the number of neural networks to generate. Numbers

hmin, hmax ∈ N representing the minimum and maximum number of vertices per
hidden layer (both included). A number M representing the maximum number of
neurons. A number i ∈ N representing the number of input vertices in the
computational graph. A number o ∈ N representing the number of output vertices in
the computational graph. A non-linear Cr function σ : R→ R.

output: A set NN = {N1, ... ,Nn} of fully connected multilayer perceptrons.

NN← {}
for j ← 1 to n do

h← 0, S ← {}, r ← M − o
while r > 0 and r ≥ hmin do

h← h + 1
S ← S ∪ {min(r, randint (hmin, min (r, hmax)))} /* randint(a, b) samples
uniformly a random integer in [a, b]. */

end
for w ← i + 1 to i + hn + o do

θw ← rand () /* rand() generates a random vector θw ∈ Rd̄w+1. It
depends on the implementation of Tensorflow [27]. */

f wθ ← σ
(∑d̄w

k=1 θw ,kxk + θw ,d̄w+1

)
end

Nj ←
(
i , h,S , o,E , (0)i∈{1,...,i+hn+o} ,

(
f jθ

)
j∈{1,...,i+hn+o}

, (θj)j∈{1,...,i+hn+o}

)
.

NN← NN ∪ {Nj}
end
return NN
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Algorithm 4: Training procedure for each neural network in each experiment
input : A neural network N and a number of experiment i .
output: An updated neural network N with optimal parameters and, two lists of accuracies

Acctrain, Acctest per training iteration and a set PPDD of zero dimension persistence
diagrams density functions.

Acctrain,Acctest,PPDD← {}, {}, {}
j ← 0 /* Counts the number of iterations. */
R ← r where r is the dropout percentage of the experiment i in 1.
for e ← 1 to 15 do

for i ← 1 to 48 do
L′ ← (1− (w/10))L|D=Diti

+ (w/10)T|D=Dtrain
the final loss function of the experiment i

as explained in 1.
if j = 0 mod 5 then

PPDD← PPDD ∪ {DensityFunction ({d : (b, d) ∈ Dgm(N ,Dtrain))})} where
Dgm(N ,Dtrain) is as in 4.1.

end
N ← Adam(N ,L′,R)
Acctrain ← Acctrain ∪ {Accuracy(N ,Dtrain)}
Acctest ← Acctest ∪ {Accuracy(N ,Dtest)}
j ← j + 1

end
end
return (N , Acctrain, Acctest, PPDD)
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Experiment Dropout (%) Topological regulariser (%) Topological regulariser T
1 0 0 -
2 10 0 -
3 0 10 Tstd
4 10 10 Tstd
5 0 20 Tstd
6 10 20 Tstd
7 0 30 Tstd
8 10 30 Tstd
9 0 10 Tred
10 10 10 Tred
11 0 20 Tred
12 10 20 Tred
13 0 30 Tred
14 10 30 Tred

Table 1: Table summarising the most important differences between experiments. The Dropout
(%) column indicates the chances (in percentage) we assign to each vertex to be ignored during
an iteration of the training procedure, as explained in 4.2. The Topological regulariser (%) column
indicates how much the topological regulariser affects the loss used in the experiment. The column
Topological regulariser T indicates the topological regulariser used in the experiment. The value “-”
in this column indicates that no topological regulariser is used in the experiment. More details of the
specific training procedure for each experiment can be found in 4.

datasets. This means that both regularisers are not exclusive and when used together can improve
further the results yielded by either of them individually. However, note that in both, validation and
training, experiments trained with the standard deviation regularisers and without dropout performs
almost as well as experiment 8, as experiments 5 and 7, well ahead of the accuracies of experiments
0 and 1, making this topological regulariser useful individually.

The sampled topological redundancy generalisation term 58 worked in a detrimental way, yielding
accuracies approaching to 0.1 (10%), the expected accuracy for random guesses in classification
problems with 10 classes. This could be interpreted by observing Plots 1, where density functions of
dimension zero persistence diagrams are plotted for each experiment in the iterations with best and
worse accuracies in validation. Here, we can observe that well-trained networks have two different
clusters regarding neuron correlation, one where activation vectors are highly correlated and another
one where activation vectors are loosely correlated. In the graphic, this seems to be an invariant of
a well trained network and it is not true for the plots of the worse validation accuracies. Minimising
topological redundancy implies removing one of these clusters (the one with high correlations in
absolute value) and this may be causing the detriment of neural network accuracies when training
with this regularisation term.
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5. Conclusions
We proved that classical stability and differentiability results can be extended to more general cases of
symmetric functions when building persistence diagrams of Vietoris-Rips sublevel set filtrations. This
is important because in real scenarios similarities of interest between objects may not be captured
by real distance functions. This is the case of the symmetric function d ′(x , y) = 1 − |Corr(x , y)|,
used in [1] to build persistence diagrams that, under some transformations, are able to assess the
generalisation capacity of neural networks.

As suggested in [1], we saw that standard deviations of persistence diagrams are directly related
to the generalisation capacity of neural networks. In particular, we saw that minimising the stan-
dard deviation of deaths of zero dimension persistence diagrams together with a usual loss function
consistently yielded better results than minimising only the loss function. In some examples, this reg-
ulariser outperformed the dropout method, considered one of the fundamentals regularisers when
training neural networks.

Topological redundancy did not work as expected. Although it is based on a theoretical result, it is
probable that error propagation affects more than supposed initially. Also, Plots 1 show us that trained
neural networks tend to generate two opposed clusters in the density function of zero dimension
persistence diagrams of network functional graphs, one with high values of deaths and another with
low ones. Minimising the topological redundancy results in the elimination of one of these clusters
and thus the modification of one of the observed invariants of well-trained neural networks.

Regarding these two clusters in the persistence diagrams of network functional graphs, they were
consistently generated in all the neural network training processes we executed. This is probably not
a coincidence and further study of its meaning is of interest to the deep learning research community
to develop stronger generalisation measures.

In general, we showed that topological data analysis is useful to build a framework for neural
network interpretability that can be integrated into the training processes to improve neural network
generalisation capacities. To the best of our knowledge, this is the first work in which the structure of
activation vectors of neural networks is used to add a generalisation measure as a loss term in the
literature.

5.1 Future work

Several aspects of this master thesis can be improved and further studied. As an example, the
stability results for symmetric functions coming from a distance presented in Subsection 2.2.1 are
limited to functions d ′ that are Hölder transformations of true distances d . However, we showed in
Subsection 2.2.2 that differentiability is not limited to this kind of transformations and we conjecture
that more general results depending only on the continuity of functions γ can be given.

Automatic differentiation (AD) is a key of the computational part of the thesis. AD is used to com-
pute the gradients in each step of the training process and its use is the usual approach to compute
gradients of loss functions coming from persistence diagrams. However, automatic differentiation
can introduce problems that are difficult to debug. An specific persistence diagram differentiation
codebase that takes advantage of the closed formulas for the differentials of r -differentiable functions
M→ Bar∆ and Bar∆ → N would be especially useful for the topological data analysis community.

We proposed topological redundancy as a topological regularisation term based on the redun-
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dancy of neurons having correlation in absolute value equal to one. However, we did not compute
the error in the predictions introduced when removing neurons that have correlation in absolute value
different to one. Knowing these values would help us to design better topological redundancy regu-
larisation terms based on these errors.

In the thesis we analysed only two regularisation terms based on very specific settings of Vietoris-
Rips sublevel set filtrations. However, there are many distances (symmetric functions) that we can
use to build our Vietoris-Rips filtrations. It seems that Information Geometry could be key in this case,
as it is being used satisfactorily to build manifolds of neural networks with metrics given by some
symmetric functions called divergences, that are in the core of this discipline. With new approaches
we could get nearer to the fundamental geometrical properties that define robust neural networks
and build regularisation terms accordingly.

Finally, there is a lot of work optimising our methods to work on a larger class of neural networks.
Currently, the thesis is focused on multilayer perceptrons, although the notions introduced in the
thesis can be extended to the majority of neural networks. The problem is given by the number of
vertices the algorithm can handle for a specific neural network. Currently, networks with more than
5000 vertices cannot be handled properly by the methods presented here due to the high complexity
of the algorithm that computes persistence diagrams, that isO(n3) in time and memory where n is the
number of vertices of the neural network. A good approach would be to use the sampling strategies
used in [1]. Also, being able to work with GPUs, as in Ripser++ [39], would improve the speed of our
algorithms, and therefore its usefulness.

In general much work remains to be done. However, we have developed a theoretical framework
that could allow deep learning practitioners to analyse further their neural network implementations,
with the hope that more precise and robust generalisation metrics will be developed in the future
inspired from this work.
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A. Full results of experiments

Figure 1: Density functions 4.3 of zero dimension persistence diagrams of network activation graphs
of the 10 generated neural networks during the experiment 0 training in the closest iteration to the
iteration where they obtained its highest and lowest validation accuracies, respectively.
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