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Abstract

Transformers, with the self-attention mechanism on its core, have shown great
performance on several Machine Learning areas such as NLP or Computer Vision
since its appearance at 2017 [1]. However, its quadratic time and memory com-
plexity on the input length makes its application prohibitive when dealing with
large input sequences. This motivated the appearance of several self-attention
reformulations in order to lower its complexity and make its development less
costly.

We focus on three of these self-attention mechanisms applied to video clas-
sification: Cosformer [2], Nyströmformer [3] and Linformer [4]. Concretely, our
goal in this project is to suggest which of them is best suited for this task. To
evaluate each model performance, we design a personalizable Transformer with
interchangeable self attention mechanisms and train it using a simplified dataset
derived from EpicKitchens-100 [5]. We carefully describe the Transformer archi-
tecture, explaining the purpose of each of its modules, and provide and overall
description of how internally works. Preliminary results indicate that Nyström-
former is the best option, being the model which converged faster and achieved
the best trade off between computational cost and classification metrics. Linformer
obtained similar results and Cosformer apparently failed to perform the classifi-
cation.

The theoretical formalization of the aforementioned self-attention mechanisms
is essential for their results interpretation. Hence, we also provide an in-depth
mathematical description of both the original self-attention mechanism presented
by Vaswani [1] and the three efficient mechanisms. We realize a complexity analy-
sis of all mechanisms and expose its main properties, linking the theoretical basis
with the results.

All code is publicly available on GitHub.

2020 Mathematics Subject Classification. 68T45, 68T50
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Chapter 1

Introduction

Throughout the last years, Machine Learning has had an unprecedented growth,
increasing its efficiency and performance in several areas. Convolutional Neural
Networks (CNNs) [6] and Recurrent Neural Networks (RNNs) [7] were the way
to go in a large variety of tasks during the last decade until the proposal of a new
architecture in 2017 disrupted the paradigm: the Transformer [1]. Nowadays, it is
the core of famous Machine Learning models such as ChatGPT and has replaced
CNNs and RNNs on different areas such as NLP and computer vision. But before
going to further detail, we find it critical to comprehend what transformers are
and why its appearance had such influence.

The first Transformer [1] was designed to deal with NLP tasks. These tasks
handle language related problems, such as translation or summarizing [8], which
have a strong sequential behaviour. It has been found [9] that in order to effectively
solve NLP tasks, Machine Learning models must carefully consider the context of
words and sentences.

Traditional CNNs lack the ability to do that, motivating the appearance of
RNNs, which added inner connections among the different layers of a network
to provide previous information. In fact, recent works have found that the com-
bination of both CNNs and RNNs perform well, with CNNs focusing on feature
extraction and RNNs handling the sequentially of language [10]. However, two
main drawbacks hinder the performance of this approach.

On the one hand, CNNs have inductive biases of locality [11], meaning that
they exclusively rely on short range connections. For instance, a word at the beg-
ging of a text may be connected to a word in the last sentence, but a convolutional
layer would only focus on their surrounding words. Therefore, this bias restricts
long range connections and may impact the model performance. On the other
hand, RNNs behave sequentially providing information from previous inputs, but
are not able to access further inputs. Moreover, when inputs are large, RNNs tend
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2 Introduction

to ignore information distant from the current one. Hence, the model cannot fully
contextualize the whole text, degrading its performance.

The Transformer presented by Vaswani [1] surpassed the two aforementioned
drawbacks. By relying on self attention, it allowed to consider all the pair-wise
relations between words at once and removed recurrence.

But what is self attention? To illustrate the main idea behind it, we provide an
example. Suppose that we want to perform some NLP task with the text Trans-
formers are awesome. I love them! An estimation of how each word is related to the
others is our objective. A straightforward way to consider these relationships is
with a matrix:

Trans f ormers are awesome I love them
Trans f ormers 1 0.7 0.6 0.2 0.3 0.8

are 0.7 1 0.8 0.2 0.1 0.6
awesome 0.6 0.8 1 0.2 0.3 0.3

I 0.2 0.2 0.2 1 0.8 0.6
love 0.3 0.1 0.3 0.2 1 0.8
them 0.8 0.6 0.3 0.6 0.8 1

(1.1)

The matrix coefficients lay in a fixed range, [0,1] in this example, and estimate
how strong is the influence of a word with another. Notice how, for example,
Transformers and them have a large coefficient since they are highly correlated,
while love and are do not.

Transformers use self attention as their core mechanism to build this matrix
and perform a desired task. Regardless of being first contemplated for NLP tasks,
Transformers have been applied to other Machine Learning fields based on the
same idea: constructing a matrix expressing the relationship among the inputs.
Its effectiveness has been tested through last years and it has become the gold
standard for several tasks. Nevertheless, self attention has a large drawback. It
is computationally very expensive, yielding a quadratic complexity on the input
length, which becomes prohibitive in scenarios where the input size is in the order
of thousands.

In this work, an extensive overview of self attention is provided, focusing on
dealing with its complexity problem. Concretely, we provide both a theoretical
and experimental analysis to present and test several representative techniques
that attempt to overcome it.
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1.1 Objectives

The main goals of this project are two-fold:
The first consists on mathematically constructing and defining the self-attention

mechanism. A theoretical basis of the necessary concepts is provided, eventually
building up the self attention mechanism defined by [1]. Also, an analysis over
its computational cost is reported to expose its main drawback. Once we have
a deep understanding of self attention, we explain some of the main methods to
overcome its complexity issue. We carefully describe the ideas and concepts be-
hind them, and present three of the most common state of the art mechanisms:
the Cosformer [2], the Linformer [4] and the Nyströmformer [3]. A deep explana-
tion of the techniques used by this methods is presented together with an analysis
of their computational cost. All this is in Chpt. 2 and Chpt. 3, being the most
theoretical part of this work.

The second objective is to build up a Transformer from scratch to solve a real
task, and compare how the efficient methods presented at Chpt. 3 behave.

Concretely, we use self attention to classify videos according to [12], which
can be easily treated as large inputs and are well suited to analyze the complexity
problem, as described at Chpt. 4. Moreover, videos imply the additional difficulty
of handling long term dependencies, being an inherent consequence of videos
having a temporal dimension. Therefore, our objective is to answer the following
question: Which self attention mechanism has the best performance/computational cost
trade off for video classification?

To fulfill this objective, in Chpt. 5 we construct and train our model using Py-
Torch [13] and a dataset derived from EpicKicthens-100 [5]. The dataset consists
on first-person videos of kitchen activities and a simplified version is generated
from the original one in order to reduced our experiment complexity. Our classi-
fication task is to classify the verb of the action taking place in the video. We train
the model with the aforementioned dataset and the three chosen self attention
mechanisms, together with the original self attention as our baseline, and com-
pare them. The criteria we use to determine their efficiency is the computation of
the Matthews coefficient together with the number of FLOPs required to compute
self attention and the memory required during training. A graphic, available at
Fig. 5.2, shows the obtained results.

The results presented at Sect. 5.3 indicated that Nyströmformer is the most ef-
ficient mechanism. It is the only model that fully converged in our experiment and
achieved the highest Matthews coefficient. Moreover, its memory usage was the
lowest among all the tested mechanisms. Linformer achieved similar results and
its convergence was not fully achieved, suggesting that it may surpass Nyström-
former with larger training. On the other hand, Cosformer results were clearly
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inferior, probably due to a bad optimization. Nevertheless, we discuss some theo-
retical explanations which could justify its bad metrics.

The implementation of this project is publicly available on GitHub.

https://github.com/oriolmp/TFG


Chapter 2

Self-attention: a mathematical
construction

In this chapter a fully mathematical construction of self attention is presented.
The goal is to achieve a function that given an input set, produces a matrix similar
to (1.1), which expresses the relationships among the inputs.

The concept of kernel is the basis selected to construct it [14], and it is carefully
described. The theoretical basis of kernels, stating some of their properties, are
presented and used to generate the self attention function designed at [1]. To
conclude, self attention complexity is analyzed, exposing which calculations are
cumbersome and the implications that arise from them.

Notation: During all this chapter and the following ones, we recurrently work
with matrices. From now on, we consider all matrices to be real, and we denote
them as Mn×m, with n and m indicating the number of rows and columns respec-
tively.

2.1 Kernels

We begin by describing what kernels are and the properties that will be used
during all this work to treat self-attention. All kernels theory is extracted from
[15].

Let X = {x1, x2, . . . , xn} be any set, n ≤ ∞.

Definition 2.1. Given x, y ∈ X , a kernel is a function

k : X ×X −→ R

where k(x, y) is a real number characterizing their pairwise similarity.

5



6 Self-attention: a mathematical construction

Definition 2.2. Let k be a kernel of X .
Its Gram matrix, G, is defined as

G =


k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)
...

...
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (2.1)

We say that a kernel k is positive semidefinite if G is a positive semidefinite
matrix. I.e. if G satisfies one of theses conditions:

a) ∃M ∈ Mn×n such that G = M⊤M

b) x⊤Gx ≥ 0, ∀x ∈ Rn

c) The eigenvalues of G are non negative.

Until now, there is not any restriction on our set. In order to ensure that we
can define correctly a kernel, it is convenient to map our set to a suitable space
where computations can be calculated without problems.

Definition 2.3. Let H be a linear space equipped with an inner product ⟨·, ·⟩H. A
feature map is a function ϕ

ϕ : X −→ H

From now on, we choose H to be the Euclidean space, H = Rd, with the usual
inner product:

⟨x, y⟩Rd =
d

∑
i=1

xi · yi

where x, y ∈ Rd. Geometrically speaking, if x and y are normalized to 1, it gives
us the cosine of the angle between both vectors, which can be understood as a
similarity measure. This allows us to define a kernel after selecting a suitable
feature map for our set X .

k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩Rd (2.2)

for 1 ≤ i, j ≤ n. We denote ⟨·, ·⟩Rd as ⟨·, ·⟩ to soften notation.

Proposition 2.4. The kernel k : X ×X −→ R defined by (2.2) is positive semidefinite.

Proof. Let z ∈ Rn. Let’s check that it satisfies condition b) of Def. 2.2.

z⊤Gz =
n

∑
i=1

n

∑
j=1

zizj⟨ϕ(xi), ϕ(xj)⟩ =
n

∑
i=1

n

∑
j=1
⟨ziϕ(xi), zjϕ(xj)⟩ =∥

n

∑
i=1

ziϕ(xi) ∥2≥ 0

where ∥ · ∥ is the usual norm defined by ∥ · ∥= ⟨·, ·⟩1/2.
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At some point, we may want to combine different kernels to generate new
ones. However, we are interested in conserving the positive semidefiniteness of
their Gram matrices, since it warranties us some conditions that will be necessary
for further calculations. The next propositions ensures us which combinations can
be done without losing this property.

Proposition 2.5. Let A and B be two positive semidefinite matrices. Then, their element-
wise multiplication is positive semidefinite.

Proof. Suppose that A, B ∈ Mn×n. Let D ∈ Mn×n be a diagonal matrix generated
from the eigenvalues λi, 1 ≤ i ≤ n, of A. Since A is positive semidefinite, by def-
inition λi ≥ 0. Consider an orthogonal matrix U ∈ Mn×n whose column vectors,
Ui, are unit eigenvectors that are orthogonal to each other. We can express A as

A = UDU⊤ =
n

∑
i=1

λiUiU⊤i (2.3)

Analogously, if µi, vi, 1 ≤ i ≤ n, are the eigenvalues and eigenvectors of B, respec-
tively, then we can express B as

n

∑
i=1

µiViV⊤i (2.4)

We have(
UiU⊤i

)
·
(

VjV⊤j
)
=
(
ui,kui,l · vj,kvj,l

)
k,l =

(
ui,kvj,k · ui,lvj,l

)
k,l

=
(
Ui ·Vj

) (
Ui ·Vj

)⊤ 1 ≤ h, k ≤ n
(2.5)

Writing Ui · Vj = [y1, . . . , yn] ∈ Rn, then component (h, l) of
(
Ui ·Vj

) (
Ui ·Vj

)⊤ is
yhyl . Therefore,

n

∑
h=1

n

∑
l=1

zhzlyhyl =

(
n

∑
h=1

zhyh

)2

≥ 0, ∀z1 . . . zn (2.6)

We proofed that the matrix obtained at (2.5) is positive semidefinite. Since λi, µj ≥
0 ∀i, j by definition,

A · B =
n

∑
i=1

n

∑
j=1

λiµj

(
UiU⊤i

)
·
(

VjV⊤j
)
=

n

∑
i=1

n

∑
j=1

λiµj
(
Ui ·Vj

) (
Ui ·Vj

)⊤ (2.7)

is positive semidefinite.
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Proposition 2.6. Let k1, k2, . . . be positive semidefinite kernels of X . The following ker-
nels are also positive semidefinite:

1. ak1 + bk2, with a, b ∈ R+

2. k1k2 (multiplication)

Proof. For A, B ∈ Mn×n the Gram matrices of k1 and k2 respectively, the first prop-
erty follows from

x⊤Ax ≥ 0, x⊤Bx ≥ 0⇒ x⊤ (aA + bB) x ≥ 0, ∀x ∈ Rn (2.8)

The second is directly proof using Prop. 2.5.

2.2 Self-attention

We can now define the self-attention mechanism [1]. As before, let X =

{x1, x2, . . . , xn} be any set, n ≤ ∞. Our objective is to create a kernel which charac-
terize the similarity between the elements of X , and use it to perform a specified
task.

First, we define 3 different feature maps which send an element xi ∈ X to Rd:

WQ : X −→ Rd

xi 7→ xi
q

WK : X −→ Rd

xi 7→ xi
k

WV : X −→ Rd

xi 7→ xi
v

Notice that if X = Rn, then WQ, WK and WV are matrices which changes the
vectors dimensionality.

Now, we can apply WQ to all elements of X and put them together as a matrix:

Q =


(x1

q)1 (x1
q)2 . . . (x1

q)d

(x2
q)1 (x2

q)2 . . . (x2
q)d

...
...

...
(xn

q )1 (xn
q )2 . . . (xn

q )d


Analogously, we can do the same with WK and WV .

K =


(x1

k)1 (x1
k)2 . . . (x1

k)d

(x2
k)1 (x2

k)2 . . . (x2
k)d

...
...

...
(xn

k )1 (xn
k )2 . . . (xn

k )d

 V =


(x1

v)1 (x1
v)2 . . . (x1

v)d

(x2
v)1 (x2

v)2 . . . (x2
v)d

...
...

...
(xn

v)1 (xn
v)2 . . . (xn

v)d
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Definition 2.7. We denote query, key and value to the mn×d matrices Q, K and V
defined above. 1

The construction of the self-attention begins with the element wise multiplica-
tion of Q and K⊤:

QK⊤ =


⟨x1

q, x1
k⟩ ⟨x1

q, x2
k⟩ . . . ⟨x1

q, xn
k ⟩

⟨x2
q, x1

k⟩ ⟨x2
q, x2

k⟩ . . . ⟨x2
q, xn

k ⟩
...

...
...

⟨xn
q , x1

k⟩ ⟨xn
q , x2

k⟩ . . . ⟨xn
q , xn

k ⟩

 =


k(x1

q, x1
k) k(x1

q, x2
k) . . . k(x1

q, xn
k )

k(x2
q, x1

k) k(x2
q, x2

k) . . . k(x2
q, xn

k )
...

...
...

k(xn
q , x1

k) k(xn
q , x2

k) . . . k(xn
q , xn

k )


where we used (2.2). Therefore, QK⊤ gives us a first estimation of how similar the
queries and their corresponding keys are with each other, since its coefficients are
the output of a kernel function.

Definition 2.8. We refer to the coefficients of the matrix S = QK⊤ as scores, and
we denote each of its elements by sij.

Nevertheless, sij are real values that can range in a large interval and is de-
sirable to normalize them, since it boosts performance during training, avoiding
excessively small gradients [1]. Let’s focus on a single score sij. By definition, we
have that

sij =
d

∑
j=0

(xi
q)j · (xi

k)j (2.9)

We can consider that each entry of Q and K have a random distribution with mean
0 and variance 1. However, recall that both entries are independent of each other.
Now, using that for two independent and randomly distributed variables X and
Y:

• E[X + Y] = E[X] + E[Y]

• E[XY] = E[X]E[Y]

• Var(X + Y) = Var(X) + Var(Y)

• Var(XY) = (Var(X) + E[X]2) + (Var(Y) + E[Y]2) + E[X]2E[Y]2

We have that
Var((xi

q)j · (xi
k)j) = Var((xi

q)j)Var((xi
k)j) = 1 (2.10)

1It is common for V to life in Mn×dv , with dv ̸= d. In this work, however, for sake of simplicity
we fix dv = d.
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Therefore,

Var(sij) =
d

∑
j=0

Var((xi
q)j · (xi

k)j) = d (2.11)

Since variance gives us a sense of the spread between the scores, we use it to
normalize them dividing by

√
d. Until now, we have the n× n matrix

QK⊤√
d

(2.12)

which has normalized coefficients and gives us an idea of how related is each
input of the set X to the others. This normalization is desirable because it helps
to keep calculations smooth, but is not sufficient. The next step is to transform
the normalized scores to a probability distribution. For that, we use the Softmax
function 2.

Definition 2.9. Let z = (z1, . . . , zm) ∈ Rm. The function σ : Rm −→ [0, 1]m defined
by

σ(z)i =
exp zi

∑m
j=1 exp zj

1 ≤ i, j ≤ m (2.13)

is called the Softmax function. [17]

If we apply the Softmax function to each row, we can interpret the scores de-
fined before as probabilities drawn from a probability distribution for en element
xq ∈ Q to observe an element xk ∈ K. Essentially, the scores still preserve their
objective, to gives us an idea of how related is each element x of X to the others.
However, they are now in a more suitable formulation, stabilizing the training
process and providing a non-linear re-weighting mechanism to concentrate the
distribution of attention connections [18].

Up to this point, we have constructed a function that given the set X , it gives
us an estimation of how related are their elements among them:

S = So f tmax
(

QK⊤√
d

)
(2.14)

where So f tmax refers to the the transformation (2.13) applied to each row of the
matrix. Notice that this transformation ensures the positive semidefiniteness of
our matrix S , which avoids considering negatively-correlated information [2].

The next and final step is to use this information to extract the features that we
are interested in. This is done by multiplying the matrix V with (2.14).

2Softmax function is a popular choice for normalization, but there are alternatives. In fact, some
authors argue that there are better options when used with attention. Check [16] for more details.
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Definition 2.10. Given a set X and its Q, K and V matrices, we define the function

Sel f Attention(Q, K, V) = So f tmax
(

QK⊤√
d

)
V (2.15)

The output of this function is an n× d matrix which contains the desired in-
formation. In Chpt. 4 we will explain how we use it to perform a specific task.

2.2.1 Computational complexity of self-attention

The computational cost of self attention is its main drawback as we shall see
in this subsection, where we analyze the complexity of computing (2.15). Let’s
decompose the calculus of self attention step by step and analyze their computa-
tional cost.

• QK⊤: When computing each score via (2.9), we do d multiplications. There
are n2 scores, therefore the cost of this calculus is O(dn2).

• QK⊤√
d

: We divide n2 elements by
√

d. Hence, O(n2).

• So f tmax(QK⊤√
d
): Applying (2.13) implies doing the exponentiation of n2 num-

bers and afterwards n sums, which their results are used to do n2 division.
Therefore, O(n + 2n2).

• So f tmax(QK⊤√
d
)V: We do a matrix multiplication of a n× n matrix with n× d.

Hence, O(n2d)

Adding up all steps cost, we achieve a complexity of

O
(
(2d + 3)n2 + n

)
(2.16)

In the vast majority of tasks where self attention is applied, n tends to be very
large compared to d. Therefore, we obtain a complexity of O(n2). Recall that n
is the number of elements of the set X that we want to analyze, implying that
the cost of the self-attention scales quadratically with the large of the set. As we
have commented earlier, self attention was designed for NLP tasks. It is easy to
consider inputs texts with a large number of words. As an example, this work has
more than 9000 words, being 90002 of the order of 107. That is a huge drawback,
since this method will be prohibitive when we are dealing with large inputs.

Moreover, the memory to store Mn×n matrices also becomes cumbersome with
large values of n. In Chpt. 5 we shall see that is common practice to compute
(2.15) in parallel during training. Hence, it becomes problematic to store all self-
attention matrices when n is large.

In the following section, we present some approaches to overcome this issue.



Chapter 3

Efficient transformers

As seen in Sect. 2.2.1, the O(n2) complexity is a main limitation of self atten-
tion. There is a general interest on reducing this complexity to a lower order of
magnitude regarding n, allowing larger inputs to be handled. Commonly known
as linear attention mechanisms, different methods have been presented to achieve
a computational cost of O(n), where the quadratic complexity is suppressed. In
this regard, in this project we refer to the full taxonomy [19] to divide these meth-
ods into three main categories. Within them, we can extract three main groups:

• Sparse attention: they focus on reducing the number of elements of the set
X that each element attends to. In other words, it reduce the number of
scores, reducing the dimension of QK⊤ based on different criteria derived
from the task and input.

• Attention reformulations: their objective is to present computationally more
efficient alternatives to So f tmax

(
QK⊤√

d

)
V through the rearrangement of op-

erators.

• Low-rank methods: they assume that So f tmax
(

QK⊤√
d

)
contain redundancies

and is enough to compute an approximated version, which is dimensionally
smaller and thus reduce its computational cost.

Sparse attention mechanisms tend to be set dependant. The criteria used to
decide how to restrict the scores is determined by empirical comparison among
different methods and inputs, being out of scope of this work. Instead, we focus
on attention reformulations and low-rank methods.

The first relies exclusively on mathematical formulation and a straightforward
analysis can be derived. On the other hand, low-rank methods redundancies are
also task depending. Nonetheless, a strong mathematical reformulation to find ap-
proximation matrices is required, and we focus on describing this process. More-

12
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over, some of the most representative and popular implementations of attention
reformulation and low-rank methods are carefully described. During all this sec-
tion, we use Chpt. 2 notation and refer to So f tmax

(
QK⊤√

d

)
as S .

3.1 Attention reformulations

The idea behind these methods is to exploit mathematical properties of both
operators and matrices to rearrange the formulation of SV into a more efficient
calculation. The most common approach, denoted as right-to-left trick, is to com-
pute first K⊤V instead of QK⊤. Since K⊤ ∈ Md×n and V ∈ Mn×d, the complexity
is O(nd2) instead of O(n2d), achieving a linear complexity on n.

However, notice that with this method Softmax normalization can not be ap-
plied. We are discarding the main idea behind our construction, the calculation of
S matrix (2.14), which gave us the correlation among the inputs. Moreover, we are
losing the normalization of our scores, losing the positive semidefinite property
and the probabilistic approach. Therefore, it is necessary to reformulate the ker-
nel function providing this information, achieving a substitute probability scores
matrix S ′ for S . Concretely, a new decomposable formulation is the objective.
Suppose that ϕ is a function

ϕ : Mn×d −→ Mn×d (3.1)

that modifies Q and K in a way that a new matrix S ′ can be expressed as

S ′ = ϕ(Q)ϕ(K⊤) (3.2)

Then we are allowed to compute first the product ϕ(K⊤)V, reducing the self at-
tention complexity

Sel f Attention(Q, K, V) = S ′V =
(

ϕ(Q)ϕ(K⊤)
)

V = ϕ(Q)
(

ϕ(K⊤)V
)

(3.3)

The formulation of alternative scores matrix using a function ϕ is the main
topic of different recent transformers, where different proposes are done in order
to obtain a scores matrix allowing to compute self attention as explained at Sect.
3.3.

3.1.1 Cosformer

The Cosformer method [2] is based on the aforementioned approach, present-
ing a reformulation still based on dot-product but avoiding the use of the Softmax
function. Instead, it utilizes a ReLU function,
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Definition 3.1. A ReLU is a function defined as

ReLU : R −→ R

x 7−→ max(0, x)

We understand the application of the ReLU function to a matrix as applying the function
to all its coefficients.

First, the ReLU function is applied to Q and K to ensure positive semidefinite-
ness of our approximation matrix S ′

Q′ = ReLU(Q) K′ = ReLU(K) (3.4)

The dot product is computed among Q′ and K′, obtaining the scores matrix Q′K′⊤.
Next, a row wise normalization is applied instead of the Softmax normalization,
being the rows of S ′ defined as

S ′i =
∑n

j=1

(
Q′iK

′⊤
j

)
Vj

∑n
j=1

(
Q′iK

′⊤
j

) 1 ≤ i ≤ n (3.5)

Since we have avoided the Softmax, we can derive a decomposable formula-
tion. To do so, Cosformer adds weights based on the cosinus to the coefficients of
Q′iK

′⊤
j and applies the Ptolemy’s theorem [20] to obtain the desired formulation

of S ′. The modified coefficients are expressed as

S ‘ij = Q′iK
′⊤
j cos

(
π

2
× i− j

α

)
(3.6)

where α is a constant.
Applying Ptolemy’s theorem:

Q′iK
′⊤
j cos

(
π

2
× i− j

α

)
= Q′iK

′⊤
j

[
cos

(
πi
2α

)
cos

(
π j
2α

)
+ sin

(
πi
2α

)
sin
(

π j
2α

)]
=

(
Q′icos

(
πi
2α

))(
K′jcos

(
π j
2α

))⊤
+

(
Q′isin

(
πi
2α

))(
K′jsin

(
π j
2α

))⊤
= Qcos

i Kcos
j + Qsin

i Ksin
j

(3.7)
Therefore, we obtain our final S ′

S ′ = QcosKcos + QsinKsin (3.8)

with Prop. 2.6 ensuring its positive semidefiniteness. We can compute self atten-
tion using it:

Sel f Attention(Q, K, V) = S ′V =
(

QcosKcos + QsinKsin
)

= Qcos (KcosV) + Qsin
(

KsinV
) (3.9)
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With this approach, we avoid computing the QK⊤ product. Instead, we com-
pute KcosV and KsinV first. Hence, we computed the following steps with associ-
ated complexity:

• Calculate 2n cos
(

πi
2α

)
and 2n sin

(
πi
2α

)
. Therefore, O(4n)

• Product of Q and K rows coefficients with the sinus and cosinus. O(2nd)

• Kcos and Ksin product with V. O(2nd2)

• Qcos (KcosV) and Qsin (KsinV
)
. O

(
2nd2)

Summing up all steps, its total complexity is O(4n + 2nd + 4nd2). Therefore, con-
sidering d << n as stated in Sect. 2.2.1, a computational cost of O(n) is achieved.

3.2 Low-rank

Low-rank methods, as their name indicate, argue that S is low-rank. This can
be understood as data containing redundancies and that a reduced form of S is
enough to represent the meaningful scores information. If we are able to generate
a low-rank approximation matrix of S , S ′ ∈ Mk×d with k < n, we may use it
to efficiently compute the SV product. Therefore, the computational cost of this
matrix multiplication would be O(nkd) instead of the original O(n2d) complexity.
The existence of an approximation matrix is not trivial and needs to be proven.
In this section, we present an statistical demonstration of such existence and two
popular methods to build a low-rank approximation matrix: Nyströmformer [3]
and Linformer [4].

3.2.1 S is low rank

In this subsection we present a theorem [4] ensuring that the probability for a
low-rank approximation to exist is positive and converges to 1.

In order to do so, we first present two preliminary lemmas needed to proof the
final result. The first lemma states:

Lemma 3.2. [21] Let X be a probability drawn from a normal distribution N(0, σ). Then,
for any α < 1

2σ2 .

E[exp(αX2)] =
1√

1− 2ασ2
(3.10)
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Proof.

E[exp
(
αX2)] = ∫ −∞

∞
exp

(
αx2)N(0, σ)dx

=
∫ −∞

∞
exp

(
αx2) 1√

2πσ
exp

(
− x2

2σ2

)
dx

=
∫ −∞

∞

1√
2πσ

exp
(
− x2

2σ2 (1− 2ασ2)

)
dx

=
1√

1− 2πσ

∫ −∞

∞

√
1− 2πσ√

2πσ
exp

(
− x2

2σ2 (1− 2ασ2)

)
dx

(3.11)

Using that∫ −∞

∞

√
1− 2πσ√

2πσ
exp

(
− x2

2σ2 (1− 2ασ2)

)
dx =

∫ −∞

∞
N(0, σ/

√
1− 2πσ) = 1 (3.12)

We obtain our final result (3.10).

This result is just a relationship that allow us to proof the following lemma,
which is the core of the final theorem proof. Being a version of the Johnson -
Lindenstrauss lemma [22], it states:

Lemma 3.3. [21] Let R ∈ Mk×n, 1 ≤ k ≤ n, with independent and identically distributed
entries from a normal distribution N(0, 1/k). For any x, y ∈ Rn, any ϵ > 0, we have

Pr (∥Rx∥ ≤ (1 + ϵ)∥x∥) > 1− exp
(
−(ϵ2 − ϵ3)

k
4

)
,

Pr
(
∥xR⊤Ry⊤ − xy⊤∥ ≤ ϵ∥xy∥

)
> 1− 2 exp

(
−(ϵ2 − ϵ3)

k
4

) (3.13)

where Pr denotes the probability and ∥ · ∥ the Euclidean norm.

Proof. We proof the first inequality of the theorem. The second one is derived from
an analogous procedure.

Pr (∥Rx∥ ≤ (1 + ϵ)∥x∥) = Pr (∥R∥ ≤ (1 + ϵ))

= Pr (exp (∥R∥) ≤ exp (1 + ϵ))

(a) ≤ E [exp (α∥R∥)]
exp(1 + ϵ)

=
∏k

j=1 E
[
exp

(
αR2

j

)]
exp(1 + ϵ)

(b) =

(
E
[
exp

(
αR2

1

)]
exp(1 + ϵ)

)k

(3.14)
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where at (a) we have used Markov’s inequality1 and at (b) the independence of
the R rows. Now, for any α < k2

2 , using Lemma 3.10 we have

Pr (∥Rx∥ ≤ (1 + ϵ)∥x∥) ≤
(

exp(−2(1 + ϵ)α)√
1− 2α

) k
2

(3.15)

Selecting α = ϵ/2(1 + ϵ),

Pr (∥Rx∥ ≤ (1 + ϵ)∥x∥) ≤ ((1 + ϵ) exp(−ϵ))
k
2

≤ exp
(
−(ϵ2 − ϵ3)

k
4

) (3.16)

and we obtain our result.

With this result we have all necessary tools to present the main theorem of this
section.

Theorem 3.4. [4] For any Q, K, V ∈ Mn×d, for any column vector v ∈ Rn of V, there
exists a low-rank matrix S̃ ∈ Mn×n such that

Pr
(
∥S̃v⊤ − Sv⊤∥ < ϵ∥Sv⊤∥

)
> 1− o(1) (3.17)

and rank(S̃) = Θ(log n).

Proof. Let’s denote A = QK⊤√
d
∈ Mn×n and aij its coefficients. We can reformulate

S as
exp(A) · D−1

A (3.18)

where D−1
A is a Mn×n diagonal matrix satisfying

(dA)ii =
n

∑
j=1

exp aij (3.19)

and exp(A) is the matrix with coefficients exp(aij).
Consider R ∈ Mn×k a matrix with independent and identically distributed

entries from a normal distribution N(0, 1/k). We define

Ã = exp(A) · D−1
A R⊤R (3.20)

whose rank satisfies that
rank(Ã) ≤ rank(R) = k (3.21)

1If X is a random variable and a > 0, then Pr(X ≥ a) ≤ E(X)
a
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Now select any ϵ > 0, any row vector Ai ∈ Rn of A and any column vector v ∈ Rn

of V. Applying Lemma 3.3,

Pr
(
∥AiR⊤Rv⊤ − Aiv⊤∥ ≤ ϵ∥Aiv⊤∥

)
> 1− 2 exp

(
−(ϵ2 − ϵ3)

k
4

)
(3.22)

Hence, we have

Pr
(
∥Ãv⊤ − Av⊤∥ ≤ ϵ∥Av⊤∥

)
= Pr

(
∥AR⊤Rv⊤ − Av⊤∥ ≤ ϵ∥Av⊤∥

)
(a) ≥ 1−

n

∑
i

Pr
(
∥AiR⊤Rv⊤∥ < ϵ∥Aiv⊤∥

)
(b) > 1− 2n exp

(
−(ϵ2 − ϵ3)

k
4

) (3.23)

Where in (a) we applied the union bond and at (b) Lemma 3.3. Selecting k =

5 log(n)/(ϵ2 − ϵ3), the result is achieved.

With this result, we proved the existence of a low-rank approximation matrix
for S . In conclusion, self attention is actually low-rank and we are allowed to look
for S approximations. Nevertheless, there is no warranty that we can actually
learn it, and one may fail to find it.

In the following parts, two popular low rank methods are presented.

3.2.2 Linformer

Linformer [4] is the first low-rank method that we describe. Its paper [4] was
the first to present the above low-rank theorem and uses it to provide a straight-
forward approach to generate an approximation matrix S ′. The main idea behind
the Linformer is to map the K and V matrices to a lower dimensional space and
compute self-attention with their reduced dimension, therefore lowering the com-
plexity. The following theorem warranties that this approach can be done.

Theorem 3.5. For any Q, K, V ∈ Mn×d, if k = min{Θ(9d log(d)/ϵ2), 5Θ(log(n)/ϵ2)},
then there exists matrices E, F ∈ Mk×n, k < n, such that, for any row vector w of matrix
S , we have

Pr
(
∥σ
(

wE⊤
)

FV − σ(w)V ′∥ ≤ ϵ∥σ(w)∥∥V∥
)
> 1− o(1) (3.24)

where σ refers to the softmax operation defined at (2.13).

Proof. Proof at [4].
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Now we describe how the Linformer constructs S ′. Let E and F be two Mk×n

learnable matrices, k < d, and K′, V ′ a reduced version of K and V defined by

K′ = EK V ′ = FV, K′, V ′ ∈ Mk×d (3.25)

Linformer uses K′ instead of K to compute a reduced version of S ,

S ′ = So f tmax

(
QK′⊤√

d

)
(3.26)

which lives at Mn×k instead of Mn×d. Afterwards, it applies the SV product using
S ′ and V ′, obtaining

Sel f Attention(Q, K, V) = S ′V ′ (3.27)

If we analyze the computational cost of this approach, we have:

• Computation of K′ and V ′. O(2nkd),

• Apply Softmax. In this case, it implies doing the exponentiation of nk coeffi-
cients and afterwards k sums, which their results are used to do nk divisions.
Hence O(k + 2nk).

• S ′V product. O(ndk).

Summing up all steps, we obtain a complexity of O(3ndk + 3nk + k). Considering
d << n as usual, and also selecting a k such that k << n, the computational cost
of the linformer is O(n).

3.2.3 Nyströmformer

The second low rank method that we present is based on the Nyström approxi-
mation method, a common technique to find low rank approximations of a matrix
from a subset of its columns [23, 24]. First, we illustrate how this method can be
applied to our matrix S and discuss why a direct implementation does not work
for our situation. Afterwards, we describe the Nyström base model presented by
Xiong [3].

Consider that S ∈ Mn×n can be expressed in the following way,

S =

(
As Bs

Fs Cs

)
(3.28)

where As ∈ Mm×m, Bs ∈ Mm×(n−m), Fs ∈ M(n−m)×m and Cs ∈ M(n−m)×(n−m), with
m < n. The submatrix As is called the sample matrix and is the one used to derive
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an approximation matrix. Computing the singular value decomposition (SVD) of
As

As = UΛV⊤ U, V, Λ ∈ Mm×m (3.29)

where U, V are orthogonal and Λ is diagonal, Xiong defined the Nyström form of
S as

S̃ =

(
As

Fs

)
A+

s

(
As Bs

)
(3.30)

In the last equation, A+
s refers to the Moore-Penrose inverse of As, i.e. it satisfies:

• As A+
s As = As

• A+
s As A+

s = A+
s

• (As A+
s )
⊤ = As A+

s and (A+
s As)⊤ = A+

s As

Now, let’s see how the coefficients of S̃ can be computed. Consider a row
vector of Q, Qi, and a row vector of K, Kj. One defines

ψK(Qi) = So f tmax
(

QiK⊤√
d

)
ψQ(Kj) = So f tmax

(
QK⊤j√

d

)
(3.31)

where ψK(Qi), ψQ(Kj) ∈ Rn. This step is equivalent to selecting the columns and
rows of S respectively. Selecting m rows and m columns from them, denoted as
[·]m×1, we construct

ϕK(Qi) = Λ−
1
2 V⊤

[
ψ⊤K (Qi)

]
m×1

ϕQ(Kj) = Λ−
1
2 U⊤

[
ψQ(Kj)

]
m×1

(3.32)

With ϕK(Qi) and ϕQ(Kj) we compute the coefficients of S̃

S̃ = ϕ⊤K (Qi)ϕQ(Kj) 1 ≤ i, j ≤ n (3.33)

Expressed as a matrix equation,

S̃ =
[
So f tmax

(
QK⊤√

d

)]
n×m

A+
s

[
So f tmax

(
QK⊤√

d

)]
m×n

(3.34)

where [·]m×n notation means taking the m rows with n column values as before. If
we compare with equation (3.30),(

As

Fs

)
=
[
So f tmax

(
QK⊤√

d

)]
n×m

(
As Bs

)
=
[
So f tmax

(
QK⊤√

d

)]
m×n

(3.35)

At this point, one can multiply first the m× n matrix with V, as we explained
at Sect. 3.1 with the right-to-left trick. Doing so, the complexity of the product
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SV is reduced to O(nmd + m2d + nmd), each complexity term corresponding to
each matrix multiplication of (3.34). However, the method described before is not
effective for our case since it does need of the prior computation of S . Therefore,
as we have seen in Sect. 2.2.1, the O(n2) is still present.

Xiong modified the latter process in order to avoid the S computation before-
hand. First, it defines the concept of landmark.

Definition 3.6. For any matrix M ∈ Mn×d, any set of m vectors in Rd, m < n,
derived from the rows of M is named a landmark of M. The matrix generated
from this set of vectors is called the landmark matrix.

The main idea of the Nystömformer is to use Q and K landmarks to first
generate the As matrix and next compute the approximations.

Suppose we have selected a pair of landmarks from Q and K and created with
them their landmarks matrices, denoted as Q̃ and K̃. We can produce the matrix
As as

As = So f tmax
(

Q̃K̃⊤√
d

)
(3.36)

which accepts a SVD decomposition as (3.29).
Following an analogous process as before, we define

ψK̃(Qi) = So f tmax
(

QiK̃⊤√
d

)
ψQ̃(Kj) = So f tmax

(
Q̃K⊤j√

d

)
(3.37)

and from them,
ϕK̃(Qi) = Λ−

1
2 V⊤ [ψK̃⊤(Qi)]m×1

ϕQ̃(Kj) = Λ−
1
2 U⊤

[
ψQ̃(Kj)

]
m×1

(3.38)

which allow us to compute the coefficients of an approximated matrix

S ′ij = ϕ⊤K̃ (Qi)ϕQ̃(Kj) 1 ≤ i, j ≤ n (3.39)

Finally, we obtain our approximation matrix:

S ′ =
(

So f tmax
(

QK̃⊤√
d

)) (
So f tmax

(
Q̃K̃⊤√

d

))+ (
So f tmax

(
Q̃K⊤√

d

))
(3.40)

Therefore, we can now compute the S ′V in a less expensive way, as we previously
stated. However we still have to check if the O(n2) is avoided. To check this, we
must answer the following questions:

1. Which is the computational cost of the SVD of As?

2. How do we select the landmarks?
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The first is answered by the following lemma.

Lemma 3.7. [25] For As ∈ Rm×m, the sequence {Zj}
j=∞
j=0 generated by

Zj+1 =
1
4

Zj(13I − AsZj(15I − AsZj(7I − AsZj))) (3.41)

converges to the Moore-Penrose inverse A+
s in the third order with initial approximation

Z0 satisfying ∥As A+
s − AsZo∥ < 1.

Using the lemma, for each iteration the most expensive operation is the multi-
plication of m×m matrices. Considering that around 100 iterations are enough to
converge [3], the Moore-Penrose inverse computation has a complexity of O(m3).

Answering the second question, to compute the landmarks, the following for-
mulas derived from a NLP approach to compute local average pooling [26] are
presented:

Q̃j =
(j−1)×l+m

∑
i=(j−1)×l+1

Qi

m
K̃j =

(j−1)×l+m

∑
i=(j−1)×l+1

Ki

m
1 ≤ j ≤ m (3.42)

where l = n/m and Mi denotes the row of a matrix as usual. Using (3.42), we are
extracting m rows form Q and computing an average sum among them to produce
each row of the landmark matrix. For each row, we compute m sums. For each
sum, we do d divisions, since Qi, Ki ∈ Rd. Finally, the number of rows of Q̃ and K̃
is n. Hence, since d << n and assuming m << n, the computational cost of (3.42)
is O(n).

In conclusion, with all the steps considered, we have:

• Landmarks computation. O(2n)

• The 3 softmax of equation (3.40). With the same argument done previously
with other methods, they have a complexity of O(m + 2nm) for the Mn×m

and Mm×n matrices, and O(m + 2m2) for the Mm×m matrix.

• Moore-Penrose inverse of So f tmax
(

Q̃K⊤√
d

)
. O(m3)

• Multiplication of So f tmax
(

Q̃K⊤√
d

)
with V. O(nmd)

• Rest of the matrix multiplications. O(m2d + m2n)

Adding up all the steps, and , the Nystromformer method has a complexity of

O
(
2n + 3m + 4nm + 2m2 + m3 + nmd + m2d + m2n

)
=

O
(
n(2 + 4m + md + m2) + 3m + m2(2 + d) + m3) (3.43)

Assuming d << n and m << n, we obtain a complexity of O(n).



Chapter 4

Transformer architecture

In Sect. 2 we described in great detail the self-attention mechanism. In this
chapter we focus on presenting our Transformer model, inspired by [1, 27, 12], to
exploit the self-attention mechanism to perform video classification.

During all this section, we use repeatedly linear projections of matrices, which
are defined as follows:

Definition 4.1. A linear projection of a matrix M ∈ Mn×m1 into a space Mn×m2 is
defined as applying a function

f : Mn×m1 −→ Mn×m2

M 7−→ M ·W + B

where W ∈ Mm1×m2 and B ∈ Mn×m2 . W is called the projection matrix and B
the bias.

If not specified, the bias term will be considered as the zero matrix and ignored.
The coefficients of all the matrices W and B used in the transformer are called the
parameters of the model.

4.1 Input embedding

Assume that our input are videos of H ×W resolution, RGB encoding and
with a total of T frames, which can be represented as a vector x ∈ R3×H×W×T. The
set of this videos is the set X of Sect. 2, and the first step is to decide a feature map
which maps them to an Euclidean space where we can apply the dot product. The
elements generated with the feature map are called the tokens of the model.

Due to their nature, video classification can be understood as performing two
different tasks simultaneously:

23
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1. Understand the spatial relationships of the frames. In other words, learn
image reasoning.

2. Understand the temporal relationship among frames.

To do so, we must generate the tokens in a way that ensures that we handle the
two tasks.

The first task can be linked to an image classification task. Self attention has
been used in computer vision with remarkable success [27], and the most straight-
forward way to attack this problem is to generate patches from the images as
shown in Fig. 4.1a.

Each image is divided in patches, which are the set X that would be fed to the
self attention mechanism. As illustrated in Chpt. 1, we can link the NLP approach
to vision by treating each patch as the word of a sentence (the image). In this way,
self attention provides information on which image patches are most correlated.
This technique is called spatial tokenization.

Similarly, the second task can be also understood as an NLP task, associating
now the words with the whole image and the sentence with all the video. With
this approach, self attention can be applied in a direct way, as shown in Fig. 4.1b,
where the set X is formed by all the frames of the videos. Using this method, self
attention learns how each frame interacts with the others in a temporal sense. We
name this method temporal tokenization.

Combining both approaches, the simplest tokenization method to consider
temporal and spatial dimensions at the same time is achieved, as proposed by [12].
Each frame is divided in patches and afterwards these patches are considered as
the frames of the video and temporal tokenization is made, as illustrated in Fig.
4.1c. With this, we force self attention to learn both spatial and temporal features
of the video. This video tokenization is called spatial-temporal tokenization.

Now we formalize the procedure explained above. First, for each frame xt ∈
R3×H×W , 1 ≤ t ≤ T, we generate P patches of size Hp ×Wp, where P = H

HP
· W

WP
.

ϕ1 : R3×H×W −→ P× (R3×HP×WP)

xt 7−→ (x1
t , x2

t , . . . , xP
t )

Afterwards, we can project the patches to R3HPWP

ϕ2 : P× (R3×HP×WP) −→ P×R3HPWP

(x1
t , x2

t , . . . , xP
t ) 7−→ (z1

t , z2
t , . . . , zP

t )

Therefore, applying ϕ2 ◦ ϕ1 to each video, we obtain n = T · P patches repre-
sentations,

zi
t ∈ R3HpWp 1 ≤ t ≤ T, 1 ≤ i ≤ P (4.1)
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(a) Spatial tokenization for an image

(b) Temporal tokenization for a video

(c) Spatial-temporal tokenization for a video

Figure 4.1: Tokenization methods described at Sect. 4.1.

that we denote per simplicity as

zp, 1 ≤ p ≤ n

where p denote the patch number. Notice that they are defined in a desired Eu-
clidean space Rk, with k = 3HPWP. With this, we have a suitable definition of our
feature map, obtaining from our set what we call patch embeddings, which are
the tokens of our model. Their dimension is named the embedding dimension.

4.1.1 Positional encoding

The previous formulation generates the elements of our set X . However, by
construction, self attention is positional invariant given the inherent properties
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of the Euclidean product. For example, a video of a glass falling to the ground
played backwards would be seen as a video of a glass being reconstructed. Hence,
we must encode the positional information of each token in some way in order
to fully comprehend what is happening on the video. The most common way is
to slightly modify each token adding up a vector of the same dimension which
contains this information. We denote the modifier vector as positional encoding.
There are different ways to construct it, one of the most usual ones being using a
sinusoidal function, defined by [1] as follows:

PE(p,2i) = sin(p/010000
2i
k ) PE(p,2i+1) = cos(p/10000

2i
k )

where 1 ≤ i ≤ k and 1 ≤ p ≤ n.
These equations generates a vector of Rk for each token p, which its compo-

nents are unique. This vector is called sinusoidal positional encoding. Adding
this vector to each patch embedding (4.1)

xp = zp + PE(p)

we obtain our final input. The set X to which we will apply self attention is
formed by the elements xp, with 1 ≤ p ≤ n.

4.2 Attention Block

The next step is to apply self-attention. Suppose that we have computed the
n× d matrices Q, K and V as described in Sect. 2.2.

4.2.1 Multi-Head Attention

Usually, instead of performing a single attention step, it is common to project
the query, key and values matrices into smaller dimensions and perform multiple
times the self attention operation in parallel.

The intuition behind this is to allow the model to learn different properties
of the input. For instance, dealing with a summarizing NLP task, each head can
focus detecting different information, such as who is doing a certain action, where
it is happening, etc. Every parallel computation of self attention is called a head.

Suppose we have a fixed number of heads H. We split the matrices H times.
This means applying linear projections to generate n× d/H matrices

fi : Mn×d −→ Mn×(d/H)

Q 7−→ Qi

gi : Mn×d −→ Mn×(d/H)

K 7−→ Ki

hi : Mn×d −→ Mn×(d/H)

V 7−→ Vi
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Figure 4.2: Multi-Head attention diagram

with 1 ≤ i ≤ H. These linear projection are not fixed and their projection co-
efficients are learned by the model. The Qi, Ki and Vi matrices are applied
to the self attention function (2.15) and produce H outputs of size n × d/H,

So f tmax
(

QiKi⊤
√

d

)
∈ Mn×d/H. Afterwards they are concatenated to recover a sin-

gle matrix and linear projection projection to Mn×d is applied, obtaining the same
matrix size as the original (2.14).

S = So f tmax
(

QK⊤√
d

)
=

(
So f tmax

(
Q1K1⊤
√

d

)
. . . So f tmax

(
QHKH⊤
√

d

))
WO

(4.2)
The latter linear projection role is to mix the information from all attention

heads into a single output.

4.2.2 Feed forward

After performing the self attention, we have to transform the information ex-
tracted with self attention to a desirable format. This is done using two linear
projections, this time also computing the bias, together with a ReLU non-linearity,
defined at Def. 3.1.

ReLUs are commonly used in Machine Learning since it has been empirically
proven that they boost the performance of the model and reduce their convergence
time [28]. Moreover, for transformer models ReLU has an even more important
role: it assures that the transformer can be considered as an universal function
approximator for sequence-to-sequence functions [29]. In other words, they war-
ranty the success in performing NLP tasks given a suitable optimization process.
Even though we are not dealing specifically with sequence-to-sequence, this result
can be extrapolated to other tasks, and it is why we can assume that our model
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can learn how to retrieve the desired information.
Therefore, we use them and transform the self attention matrix (4.2) computed

before as follows
Sout = ReLU(0,S ·W1 + B1) ·W2 + B2

where here the ReLU is applied to each element of S individually. The projections
are chosen so that Sout lives in Mn×k. Hence, each row of Sout can be interpreted as
vector x ∈ Rk, which is the space where our self attention’s previous input lived.
In this way, we can repeat the process described at Sect. 4.2.1, and compute self
attention again. The number of times that one repeats the attention block is called
the depth of the model.

4.2.3 Linear Classifier

After applying the attention blocks, the model has extracted all the informa-
tion from the input and classification is the next and final step. Suppose that we
have C different classes. To classify them, a simple linear projection to Mn×C is
applied. Basically, the model is forced to produce an output for each class and for
each element x ∈ X . Afterwards, a Softmax is applied, giving us the probability
distribution of each element x is of each class. Finally, the highest probability will
be the class decided by the model.

g : Mn×k −→ Mn×C −→ Rn

Sout 7−→ Mscores 7−→ So f tmax(Mscores)

This yields to a model which can classify videos. A diagram of the full model
is represented at Fig. 4.3.

Figure 4.3: Our transformer architecture



Chapter 5

Experimental comparison between
self-attention mechanisms

One of the main goals of our work is to compare how the different self at-
tentions mechanisms described at Chpt. 3 perform on a video classification task.
Specifically, our objective is to answer the following question: Which self attention
mechanism has the best performance/computational cost trade off for video classification?
To fulfill this objective, we must translate the mathematical formulation of our
transformer architecture defined at Chpt. 4 to code and finetune its parameters,
meaning that the coefficients of our linear projections are suited to classify video.

In order to do so, we follow the standard procedure for Machine Learning
models based on backpropagation1. From a video dataset, we use three datasets
to train and evaluate our model: the training, validation and test sets. We feed the
model with a bunch of training set clips2, named batch, and evaluate how good
the model is performing with a loss function. Afterwards, a gradient descent
method is applied to update the parameters. This process is repeated for the
entire training set in an iterative way for a certain number of times, named epochs.
After each epoch is completed, the model classifies the validation set clips to track
how the model performs with unseen clips. The performance on the validation set
will be analyzed by a selected metric, indicating us when the model has converged
and the training is completed. Finally, once the training has finished, the model is
evaluated using the training set to evaluate its performance. The hardware used
to train our model is a Nvidia GeForce GTX 1080 Ti GPU.

In this section we present all elements related to the training, including both

1We assume that the main concepts of backpropagation and gradient descent are known by the
reader. Check [30] for further detail.

2Notice how we use clips instead of videos. Performing this task with full videos become pro-
hibitive due to their size. Hence, we use shorter clips derived from them.

29
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the dataset generation and the hyperparameters choice, explaining the motivations
behind them. Finally, we present our evaluation metrics and the results derived
from them.

5.1 Dataset

The first step is to decide the data that we are going to use. We are interested
in a dataset containing labelled videos, allowing us to classify them. Our choice
have been the Epic-Kitchens-100 dataset [5], consisting of nearly 100 hours of first-
person videos of daily kitchen activities.

Hours Videos Clips Verb Classes Noun Classes Action classes

Train 74.7 495 67217 97 289 4053
Validation 13.2 138 9668 78 211 1352

Test 12.1 67 13092 84 207 1487

Table 5.1: Epic-Kitchens-100 Dataset

All video is disclosed in its frames, with an annotations file indicating the start
and stop frame for each clip contained in the video, with its associated informa-
tion. The dataset is conceived in a way that can be used for learning different
tasks. For our concern, video classification, the dataset provides a verb, noun
and action label associated with each clip. Since our main objective is to compare
model performance, and not achieve state of the art results, we focus only on verb
classification. In this way, the classification task becomes easier and the training is
more straightforward.

The dataset is structured in the usual way as three main partitions: train set,
validation set and test set. However, we decided to generate a custom dataset de-
rived from the original one. There were two reasons that motivated this decision.
Firstly, test partition was not publicly available and to inference a trained model it
should be sent to the dataset owners. This procedure was not suitable for our case,
since we wanted to inference several times different models. Secondly, the dataset
was too big for our resources and time. We wanted to use 4 different self-attention
mechanisms, and the time needed to train them with enough epochs would have
been prohibitive. Therefore, we created custom train, validation and test sets in
the following way.

To begin with, we reduced the number of classes to 4. These 4 classes repre-
sented almost a 60% of the whole dataset, and its selection was motivated since
the original dataset was extremely unbalanced, as can be seen in Fig. 5.1a. If
we wanted to learn the marginal classes we would have required a more exten-
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(a) Original dataset labels frequency in log
scale.

(b) Used dataset labels frequency.

Figure 5.1: Dataset labels.

sive training and powerful model, demanding time and resources that were not
available.

From the 4 labels dataset, we randomly retrieved a 5% of the clips. Afterwards,
we generated our train and validation set by splitting this subset in a 85/15 par-
tition. In an analogous way, we selected the 4 main classes from the original
validation set and extract a 5%. In this case, we did not apply any partition and
this set served as our test set.

It may seem as we reduced our dataset too much. However, since we simplified
the problem to only 4 classes, the models had an enough quantity of clips to learn,
as we shall see in Sect. 5.3. The used dataset is described at Tab. 5.2.

Hours Videos Clips Verb Classes

Train 1.8 338 1648 4
Validation 0.3 168 291 4

Test 0.3 85 280 4

Table 5.2: Epic-Kitchens-100 modified dataset

5.1.1 Clips preprocessing

The dataset clips have a resolution of 1080× 1920 and an average number of
frames of 172. Feeding the model with the full clips becomes prohibitive since the
GPU memory is not enough to handle such amount of information. Therefore,
we crop the frames to 112× 112 and fix the number of frames to 100. To fix the
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number of frames we proceed as follows. Let T be the number of frames of a clip.
First, we obtain a 200 frames clip. If T < 200, we apply zero padding, i.e. we
add black frames to the end and beginning of the video. Otherwise, we randomly
select a frame from the first T − 200 frames and extract the following 200 frames.
Afterwards, we reduce the number of frames to the half by alternately selecting
one frame out of two for every consecutive pair of frames. In this way, we ensure
that we obtain enough temporal information.

5.2 Experimental Setup

We need a programming language and an experimental framework to build
up our Transformer described at Chpt. 4. The selected programming language is
Python and the specialized Machine Learning library PyTorch [13] is the selected
framework, providing all necessary tools to build and train our model. Using
them, we define all transformer modules and put them together to generate our
model, as described at Fig. 4.3. Moreover, the efficient transformers formulations
are also coded in a way that we can decide which mechanism the model uses. The
three of them are available together with the naive implementation of self attention
described at Chpt. 2.2, which from now on is referred to as Vanilla attention.

Nevertheless, two key architecture decisions remained to be made. How many
attention blocks L our model should contain and how many attention heads H each block
should have? More attention blocks and heads increase the capacity of our model
to learn, but also demand more computations and memory. We want to find an
optimal trade off between the batch size and L and H to not overload the memory
and also ensure that the computations do not become prohibitive in terms of time.
To select the best configuration, we performed a grid search with vanilla attention
and the best result without overloading the memory was the next:

Clip resolution Frames/clip Batch size Attentions heads Attention Blocks

112× 112 100 4 4 2

Table 5.3: Model and dataset final configuration

We also considered reducing the number of frames and their resolution, but lower
of either of the two parameters was not enough for the model to learn.

Now that the model is defined, the next step is to define the loss function and
the optimizer to fine-tune its parameters. The selected loss function is the cross
entropy loss, which is suitable for multi label classification and is a standard
choice for this scenario [31].
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Definition 5.1. Let x ∈ RC be the probabilities that the input is classified as the
i-th class, for 1 ≤ i ≤ C, and y the actual index class. Then, the cross entropy loss
of this prediction is defined as

C

∑
i=1
−wilog

exp(xi)

∑C
j=1 exp(xj)

1y(i) (5.1)

where wi is a weight associated to the i-th class and 1y(i) is the indicator function,
being 1 if and only if y = i, otherwise being 0.

In our dataset, the verb classes are unbalanced, as we can appreciate at Fig.
5.1b. Therefore, we used specific wi weights to handle this. If y is a label associated
to m clips on the training set, n is the total number of training samples and C the
number of classes, then its weight is computed as

wy =
n

m · C (5.2)

Notice how a class with little clips would have a small denominator, therefore
influencing the loss with more strength than a common class. This increases the
effect on the loss of minority classes and avoid the model to overfit to the main
class, i.e. classify all classes to the most common one.

The next decision is to choose an optimizer to minimize the loss. Our selection
was Adam [32], which is an algorithm for first-order gradient-based optimization
that usually performs well in very large datasets and is suitable for high dimen-
sional spaces [33]. The version used is described at Algo. 1.

Algorithm 1 Adam

Require: γ, β1, β2, θ0(parameters), f (θ)(objective)
m0 ← 0
v0 ← 0
for t = 1 to . . . do

gt ← ∇θ ft (θt−1)

mt ← β1mt−1 + (1− β1) gt

vt ← β2vt−1 + (1− β2) g2
t

m̂t ← mt/
(
1− βt

1

)
v̂t ← vt/

(
1− βt

2
)

θt ← θt−1 − γm̂t/
(√

v̂t + ϵ
)

end for
return θt

We used the default parameters for β1, β2 and empirically fine-tuned the learn-
ing rate, γ, by doing several brief trainings with Vanilla self attention mechanism.
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We tried learning rates of the order of 10−8 to 10−3 and achieved the best result
with a learning rate of 10−5. Experimentation with learning rate scheduler was
also realized but non significant improvements where appreciated.

Putting all together, we have our final training configuration:

Loss Optimizer γ β1 β2

Cross Entropy Loss Adam 10−5 0.9 0.999

Table 5.4: Training configuration

5.3 Results

We trained our models for 50 epochs, evaluating the model with the validation
set after each epoch as usual. We configured an early stopping, saving the model
parameters which achieved the best metric. The results and all consequent conclu-
sions derive from the early stopped models. The metric computed to evaluate the
model performance during training was an average recall among the classification,
being the recall defined as follows:

Definition 5.2. [34] Let tp be the number of true positives and fn the number of
false negatives for a class. We define the recall of the class as

R =
tp(

tp + fn
)

The obtained results for the training and validation set can be observed at Fig.
5.2, where the evolution of the loss and the average recall is shown. Some insights
about our model can be derived from them.

First, we directly appreciate from Fig. 5.2a and Fig. 5.2b that Cosformer fails
to learn. The loss stays horizontal and the average recall stays around 25%, which
is the same percentage a random classifier would provide. This can be motivated
for two reasons.

On the one hand, it could be that the model and training configurations do
not fit the Cosformer mechanism. We established a common framework, but the
different self attention mechanisms performance can be highly influenced by the
parameters used. In fact, the ideal situation would be to fine-tune the configura-
tion for each of the mechanisms. The configuration fine-tuning, however, is costly
and requires times, being out of scope for our work.

On the other hand, Cosformer authors empirically found that Cosformer can
punish far-away connections and enforce locality [2]. This behaviour on our task
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(a) Loss evolution for the training set (b) Average recall evolution for the training set

(c) Loss evolution for the validation set (d) Average recall evolution for the validation set

Figure 5.2: Metrics evolution during all training for the training and validation
sets. For the validation set, we omitted the Cosformer results since the model
failed to learn. For better visualization, an Exponential Moving Average smooth-
ing was applied to the validation results.

might be critical, since the temporal dimension of videos requires of long term
dependencies. Moreover, enforcing locality could be counterproductive. By how
videos are tokenized, enforcing locality would imply paying attention to close
patches. That could punish the temporal feature extraction, being detrimental to
its performance.

On conclusion, from this results about Cosformer, one should first look for a
more in depth training configuration, to check whether the negatives results are
derived from a wrong set up. After this, an interesting path for further work
would be to train larger models to actually inspect if enforcing locality on videos
has a negative impact on their performance.

Now we analyse the behaviour of Nyströmformer and Linformer versus Vanilla,
since both efficient self attention mechanisms succeed on training. At first glance,
one can appreciate that Vanilla’s metrics vary slowly, with both the loss and av-
erage recall evolving at low rate. On the contrary, Nyströmformer and Linformer
loss for the training set decreases faster, consequently increasing the average re-
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call also with a higher rate. However, the loss decreasing is not reflected at the
validation set. For the Nyströmformer, we appreciate how the loss starts increas-
ing on an early stage for the validation set, which indicates rapid overfitting of
the training set. On the other hand, Linformer loss for the validation set remains
almost horizontal. Nonetheless, for both mechanisms the average recall increases
and achieve values similar to the Vanilla attention.

To fully comprehend and analyze how the models perform, we must use the
test set to compare how well the models classify them. We first define some of the
metrics used to evaluate our model.

Definition 5.3. The accuracy is defined as the number of correct predictions di-
vided by the number of total samples.

Accuracy score does not take into account data unbalancing. For instance,
with an unbalanced dataset with 80% of the class labels being 0, a model which
assigned all labels to 0 would achieve a 80% accuracy, even though its capacity to
solve the problem is clearly not good. In any case, accuracy is the most popular
metric for classification tasks and we consider appropriate to present it.

To overcome accuracy weaknesses, we used the average of the recall defined at
Def. 5.2, which was label sensitive and gave us a more suitable metric to monitor
the training. Despite this, we would like further analysis for each class, to detect
specifically how the model perform with each one. With this objective in mind,
we use confusion matrices.

Definition 5.4. From a classification task of C classes, we define the confusion
matrix as the MC×C matrix with coefficients cij equal to the number of observations
known to be in group i and predicted to be in group j.

Confusion matrices give us insights of which labels are more difficult to learn,
and whether there is an over classification for a singular class. For a perfect model
that classifies all clips perfectly, its confusion matrix would be a diagonal matrix
with ones on its diagonal. The confusion matrices for our models are shown at
Fig. 5.4.

Nonetheless, we need a metric which can quantify how good this predictions
are, extracting the information from confusion matrices and that serves as a gen-
eral indicator of the model performance. The metric used with this objective is the
Matthews correlation coefficient.

Definition 5.5. [35] Let cij be the coefficients of a confusion matrix. Consider

• tk = ∑K
i cik the number of times class k occurred

• pk = ∑K
i cki the number of times class k was predicted
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• c = ∑K
k ckk the total number of samples correctly predicted

• s = ∑K
i cij the total number of samples

We define the Matthews correlation coefficient as

Matthews =
c · s−∑K

k pk · tk√(
s2 −∑K

k p2
k

)
·
(

s2 −∑K
k t2

k

) (5.3)

The Matthews coefficient lays in the range [x, 1] with −1 < x < 0, being x deter-
mined by the number and distribution of ground true labels. A value of 1 indicates
perfect prediction.

Using these metrics, being the Matthews coefficient our main criteria, and an-
alyzing the computational cost of our models once trained, we can determine
which model is the most efficient. The computational parameters computed are
the number of floating points operations (FLOPs) performed inside the attention
blocks during evaluation and the memory occupied while training. We compute
only the FLOPs related to the attention blocks since they are the only variation
inside our model when permuting the different self attention mechanisms. Re-
garding the memory, the one used during training is the analyzed in order to
take into account both the memory dedicated to store the model parameters and
their gradients. Therefore, computing the aforementioned metrics, we obtain the
following results:

Model Accuracy Avg. recall Matthews Memory (MB) FLOPs (×109)

Vanilla [1] 0.40 0.41 0.22 9707 148.05
Nyströmformer [3] 0.41 0.39 0.19 2215 0.98

Linformer [4] 0.41 0.34 0.16 2354 1.45
Cosformer [2] 0.16 0.25 0.0 3512 23.14

Table 5.5: Metrics derived from the test set.

We can plot the Matthews coefficient versus the FLOPs and perform an effi-
ciency comparison, assigning to our models points a size proportional to the mem-
ory required. The obtained graphic can be observed at Fig. 5.2. The ideal efficient
mechanism would be on the top left corner, achieving the highest performance
metrics and the lowest number of FLOPs, and it would also have the smallest
point, representing a minimal memory occupation. From this graphic, we observe
how Nyströmformer achieves the best results, closely followed by Linformer. The
graphic also empathizes how Vanilla achieves the highest Matthews coefficient but
implies the highest cost, also demanding the largest amount of memory. Besides,
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Figure 5.3: Performance vs FLOPs plotting. The FLOPs axis is in log scale. The
size of the models circles is proportional to their required memory.

it indicates how Cosformer indeed fails to learn, achieving worse metrics than
the other models. In conclusion, the results indicate that, empirically, the most
effective model was Nyströmformer.

Now we combine the empirical results with the theoretical basis of our models
to derive further conclusions. Before going into detail, we must emphasize two
facts. First, Nyströmformer actually converged, since loss increased during the
validations, and further training would not lead to better results. Regarding Lin-
former, its horizontal behaviour does not confirm that neither the model has fully
converged or that it may become better with more epochs. Both possibilities are
present and a larger training should be realized to determine whether it would
surpass Nytsrömformer.

Secondly, our model is quite limited due to the number of attentions blocks
and heads, and the training configuration may not be the ideal. The same rea-
soning applied to Cosformer regarding the configuration set up can be applied
to Nyströmformer and Linformer, meaning that its configuration can impact their
results. In any case, from now on we ignore the possibly derived consequences of
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a non optimal configuration and work with the obtained results.
We hypothesize some fundamental reasons behind the Nyströmformer and

Linformer reformulations to justify the results obtained. On the one hand, Lin-
former uses two extra projection matrices to reduce the dimension of the K and
V matrices. This implies an extra layer, which increases the number of learnable
parameters and may increase the capacity of the model to extract some specific
features. Actually, it has been found that the usage of convolutionals layers prior
to the self attention block on vision transformers can boost their performance [36].
Even though we are only considering linear projection, these extra parameters
could boost the learning capacity of our model with a role similar to the convolu-
tional layers, also delaying the convergence of the model. Exploiting this charac-
teristic, it may be possible to further fine-tune the model, eventually surprassing
Nyströmformer.

On the other hand, for Nyströmformer we suggest that the results obtained
are a consequence of the landmark selection. This procedure may act as a sparse
attention mechanism, reducing the number of attention scores computed and thus
focusing on specific parts of the video. Since the video frames taken into account
have no specific motive, we may be losing important information and the model
capacity to learn may be affected. But the risk of hindering the capacity of the
model implies a faster convergence. Therefore, in our experiment, Nytsrömformer
was the only model that could be considered as fully trained.

With all this information, we can answer the considered question Which self
attention mechanism has the best performance/computational cost trade off for video clas-
sification? The results indicate that Nyströmformer is the best candidate. The
hightest Matthews coefficient is obtained from it and its memory requirements
are the lowest. Nevertheless, we should consider the potential of Linformer. The
theory suggests that Linformer may be a suitable mechanism for computer vision
tasks, and larger experiments to test our hypothesis might be realized. Contrar-
ily, we would directly discard Cosformer, since the argued locality enforcement
seems to prevent the model from learning temporal dependencies. Moreover, it
also presents higher memory requirements, being the less attractive choice.

We suggest the reproduction of this experiment with an appropriate Trans-
former configuration and training hyperparameter search together with a more
powerful hardware to confirm our results. Also, an interesting path of research
would be to test the usage of Linformer to less expensive computer vision tasks,
such as Image classification. In this way, our hypothesis of the additional pro-
jection matrices functioning in an analogous way as suggested in [36] would be
tested.
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(a) Vanilla (b) Cosformer

(c) Linformer (d) Nytsrömformer

Figure 5.4: Confusion matrices for the different attention mechanisms. We observe
how Cosformer fails to learn, predicting always the minority class. Nystömformer
and Linformer obtain similar results, with a tendency to overfit the main class (i.e.
the 0 class).
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Conclusions

With this work, we have satisfied both the theoretical and experimental con-
templated objectives at Sect. 1.1. To begin with, we constructed a theoretical
basis based on kernels and presented some of the properties crucial for the con-
struction of self attention. The construction itself was carefully performed from
scratch, giving great detail in both the conceptual concepts behind self attention
and its mathematical formulation. The latter allowed us to realize a computational
analysis of self attention and shed light to its main drawback, its quadratic depen-
dence on the input length. Different approaches to overcome it were presented,
discussing in great detail their respective reformulations. With all the aforemen-
tioned work, we fulfilled our theoretical objective of constructing self attention,
learning its fundamentals and beyond along the process.

For the experimental part, we realized a large and complex work to develop
our experiment. We made an important investment of time to learn the specific
libraries and techniques necessary to carry out a model development of this type.
The code demanded us a high implication and we realized several tryouts until
the experimental setup was fully built up. Nevertheless, at the end, we were able
to realize a simple yet insightful comparison among the efficient attention mech-
anisms presented at Chpt. 3. Nyströmformer obtained the best results, closely
followed by the Linformer, and the theoretical reasons behind these behaviours
were discussed. In any case, we are conscious of the limitations of our work and
that the conclusions derived from it would need further confirmation. Our goal
was ambitious and our resources modest, and more complete experimentation
would be needed to extract decisive conclusions. Despite this, we hope our work
may be a good baseline and could provide some hints for future research.
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