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Representation

by Leonardo BOCCHI

In this thesis, we undertake the problem of 3D human reconstruction from monocu-
lar videos. We begin by analyzing the current state of the art regarding this vast field
of research and introducing the different variations of this problem. After introduc-
ing the necessary notions, we tackle the problem of 3D reconstruction through self-
supervised training via implicit neural representation. We adopt a reconstruction
module as our baseline and present a number of experiments, with the objective of
improving the quality of the reconstruction. Finally, we present the AGen model as
a generalizable solution. Leveraging a canonical implicit neural representation, the
model is trained in a self-supervised manner, using no additional 3D annotations on
the data, in order to be able to perform a faster reconstruction over previously un-
seen data. The proposed model is intended as a scalable solution that does not rely
on the need for precise 3D annotations, providing a fast and refinable 3D modeling
tool for several applications.
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Chapter 1

Introduction

3D modeling has been an area of great interest in Computer Science for years now,
resulting in a firm commitment from researchers to further optimize algorithms, in
terms of computational complexity as well as in terms of 3D representation capabil-
ities. Recently, 3D modeling has had an additional spike in interest, given the wide
range of applications in fast-growing fields such as virtual and augmented reality.
New requisites for the implemented methods have risen, such as higher resolution,
faster rendering times, and cheaper setup requirements. Alongside, novel tech-
niques have been developed, including implicit representations and neural deep-
learning-based reconstruction techniques, aiming for more accurate results with less
prior information.
In this work, we will focus on 3D avatar reconstruction from monocular videos, that
is the reconstruction of the 3D model of a clothed subject relying solely on a single
video without depth information. This task is by nature a very complex one since
the available information for the reconstruction is particularly limited, but it comes
with countless applications.

1.1 3D Rendering and 3D Reconstruction

At its core, 3D rendering is the process of converting three-dimensional data into
two-dimensional images, simulating the play of light and shadow to create visually
realistic or stylized representations of objects and scenes. It comprises of three main
elements: modeling and geometry, texturing and materials, lighting and shadows.
3D reconstruction is the inverse process, aiming to recreate the 3D models and ge-
ometry from a 2D scene.

1. Models and Geometry. 3D models can be represented in various ways. However,
regardless of the representation, the final result needs to be made discrete in
order to be processed. Hence, each model ultimately consists of vertices, edges,
and faces, defining the surface and volume of the object.

2. Textures and materials. Textures refer to surface details like skin, clothing pat-
terns, and environmental reflections applied to virtual models. Materials dic-
tate how these surfaces interact with light, crucial for achieving realism.

3. Lighting and shadows. Lighting involves simulating the illumination sources,
affecting how light falls on and interacts with surfaces. Realistic lighting con-
tributes to accurate color representation and depth perception. Shadows, a
natural outcome of lighting, enhance the perception of depth and spatial rela-
tionships within the virtual scene.
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1.2 Raycasting

Raycasting is a fundamental technique in computer graphics and 3D rendering that
involves tracing rays from the eye (or camera) to determine what objects or surfaces
they intersect with. It is one of many rendering techniques, each with its own ad-
vantages and costs, e.g. rasterization, ray tracing, path tracing.
A ray in the context of raycasting is a straight line defined by an origin point (usu-
ally the position of the camera) and a direction vector that specifies the path the ray
travels.

P(t) = O + tv

where P(t) is a point on the ray, O is the origin point, v is the direction vector, and t
is a scalar parameter determining a specific point along the ray.

FIGURE 1.1: Ray casting

When a ray is cast into a 3D scene, it may intersect with various objects or surfaces,
as depicted by figure 1.1. To find these intersections, algorithms are used to test
whether the ray intersects with objects in the scene. For simple geometric shapes,
the intersection can be calculated analytically. For more complex shapes, numerical
search methods and sampling methods are employed.

1.3 Neural Implicit Representations

Unlike traditional geometric representations, which rely on explicit surfaces defined
by vertices and polygons, neural implicit representations leverage deep learning al-
gorithms to define 3D shapes implicitly, offering a more versatile and expressive
approach to modeling intricate geometry and capturing detailed structures.
The idea is to use implicit functions to define surfaces, allowing for a smooth repre-
sentation virtually unlimited in terms of resolution. Furthermore, the implicit func-
tion can be obtained through the training of a deep learning model, allowing for the
definition of extremely complex functions.
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FIGURE 1.2: Neural Implicit Function

However, neural implicit functions also pose some problems and challenges, in par-
ticular, they require large amounts of evaluations in order to retrieve the represented
surface. For this reason, they also heavily rely on the optimization of sampling tech-
niques.

1.4 Methods and Work Environment

This work has been conducted in collaboration with the Human Pose Recovery and
Behavior Analysis group (HuPBA), whose support has been pivotal, both in terms
of resources, as well as counseling. The implementation of the study which will be
presented in the following chapters was developed on the HuPBA’s servers, rely-
ing on multiple GPUs that were made available. In particular, one or more NVIDIA
GeForce RTX 3090, 24GB were employed, and are necessary for the reproduction of
the results. The code produced is made available for consultation through a GitHub
repository, AGen. Also, in the repository we provide the Dockerfile used to create
and build the image and container, as it is the procedure adopted to develop the
code in the first place. The code is developed using PyTorch and additional related
libraries. To reproduce the results it is sufficient to run the AGen_test.py script, in-
dicating the correct checkpoint file, and to retrain the model use the AGen_train.py
script. All the parameters of the model, dataloader, videos, and configuration op-
tions are included in .yaml files in the ’confs’ folder, making use of the configuration
management library Hydra. Furthermore, the scripts make use of a Weights&Biases
API as a logging system, to record and keep track of the training. Additional indi-
cations to reproduce the results are given in the repository’s main README page.
Finally, for transparency, the work has been conducted using multiple repositories
to better divide the work through different stages, in particular IF3D has been used
to work on the video reconstruction module experiments, and AGen has been used
to work on the AGen model experiments. These are stored on HuggingFace and we
provide them for completeness, but they have been used simply as storage, they are
not meant to be presented to an end user. For consultation, the GitHub repository,
AGen, should be considered.

https://hupba.com/
https://github.com/leobcc/AGen
https://huggingface.co/spaces/leobcc/IF3D
https://huggingface.co/spaces/leobcc/AGen
https://github.com/leobcc/AGen
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Chapter 2

Background and SOTA

In this section, we provide an objective analysis of the background and state-of-
the-art research pertinent to our study. We examine the multifaceted aspects of the
problem, survey the methodologies explored in previous works, and discuss the
datasets and evaluation techniques commonly employed. This overview serves as
a pragmatic foundation, offering a clear context for our research within the existing
academic landscape.

2.1 Different Shades of the Problem

The 3D reconstruction of subjects has been tackled from different angles, attempt-
ing to compromise between necessary information in the data and the quality of the
results. Some have been focusing on the reconstruction from single-view or multi-
view images, obtaining reliable results at inference showing good generalization
over unseen data [[1], [2], [3]]. Others, to improve the quality of the reconstruction,
have aided the training of the models through the use of depth information, rely-
ing on depth cameras to create large enough datasets. Finally, some have been tack-
ling the problem with minimal information, considering only in-the-wild monocular
videos, and designing models to reconstruct the subject in a specific video as needed
[4]. Each one of these approaches has its advantages and presents its own challenges.
In particular, supervised trained models often reach good results and generalization,
but they require large 3D-labeled multi-view datasets, which are remarkably chal-
lenging to produce, given the required high-precision calibration of the measuring
equipment. For this reason, the creation of these datasets has recently seen a lot of
contributions [[4], [5], [6], [7], [8], [9]]. On the other hand, these models are subject to
generalization problems due to the fact that the datasets on which they are trained
are not comprehensive of the countless variations in garment types, body shapes,
body poses, and background environments. Therefore, models that are further op-
timizable and tunable at inference to improve the quality of the reconstruction have
been attracting more and more attention, pushing the reconstruction quality at the
cost of longer inference time. Some of these models adopt the use of physical-based
losses, regularization losses, and consistency losses to optimize the results even in
the absence of 3D annotations or ground-truth values.

2.2 Experimented Approaches and Techniques

In dealing with the above-mentioned challenges, different solutions have been pro-
posed, ranging from various model architectures to alternative topology representa-
tions, from different training techniques to alternative optimization and regulariza-
tion losses.
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Topology representation. To represent the reconstructed surfaces and volumes, the
choice falls mostly between meshes, point clouds, and implicit functions. While
meshes are broadly used and well-optimized, they lack the representative capabil-
ities for complex topologies. Point clouds, on the other hand, have higher degrees
of freedom to represent the challenging geometries of clothing, but they lack im-
plicit relative consistency, which needs to be imposed with other constraints [10].
Finally, implicit functions have the flexibility to represent complex topologies, while
maintaining inter-element consistency, and allow for a virtually unlimited scaling
in terms of resolutions, at the cost of being computationally more demanding [[10],
[11], [12], [13]].

Model architecture. The adopted model architectures heavily depend on the kind
of available data and chosen topology representation. To achieve generalization
through neural implicit functions leveraging supervised training, a pixel-aligned au-
toencoding approach is oftentimes favored [[1], [3]]. Also, body pose conditioning
has proven to be extremely valuable for the training of implicit neural networks in
general, frequently exploiting SMPL pre-processing estimates, both in supervised
and unsupervised training settings [4].

Training approaches. The available data annotations and adopted topology repre-
sentation also constrain and force the adaptation of training methods and optimiza-
tion functions. When possible, physical losses comparing surface normals, mesh
intersection, and vertices alignment have shown good optimization and general-
ization capabilities [[14], [15]]. In general, regardless of 3D annotations, rendering
losses, with their different forms depending on the geometry representation, are fre-
quently adopted, since they leverage the 2D image as ground truth. [[1], [3], [4]]
Moreover, another commonly implemented loss function is the Eikonal loss, as it
does not rely on additional information in the training data [16]. Finally, various
regularization losses, when cautiously selected, have shown considerable contribu-
tions to the training of the models [[4], [16]].

2.3 Datasets and Evaluation

Extensive work has been carried out to create exhaustive training datasets that would
be able to capture the extreme variability in terms of garments, body shapes, and
poses. Furthermore, a lot of effort has been put into producing these datasets with
the most amount of 3D information possible, to allow ground truth values and su-
pervised training [[5], [6], [7], [8], [9]]. However, all these solutions need to compro-
mise between being representative of a large variety of cases and the amount of 3D
annotations and precision.
Furthermore, evaluation of the results is not a straightforward process, as there is
not a systematically applicable data-agnostic metric or evaluation method to consis-
tently compare results. The possible measures of the quality of the reconstruction
rely first and foremost on the data’s 3D annotations, and there are numerous, yield-
ing oftentimes different and inconsistent results when applied for validation. Some
of the most frequently adopted in this area of research are

• Rendering quality metrics. Needless of 3D annotations, measure the quality of
the rendering image obtained from the 3D reconstruction projection. The two
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major ones are SSIM (Structural Similarity Index), and PSNR (Peak Signal-

to-Noise Ratio).

• 3D mesh accuracy metrics. Distance measures between the ground-truth mesh
and the reconstructed mesh, such as vertex-wise Euclidean distance, and Cham-

fer distance. They require 3D annotations.

• Surface normals metrics. Provide a measure of the similarity of the reconstructed
3D model with the actual one by comparing the orientation of its normals.
Such metrics are, for instance, angular error, and cosine similarity.

• Foreground rendering metrics. Focus on the evaluation of the accuracy in the
reconstruction of the foreground. They include foreground-background sep-

aration accuracy and foreground mask Intersection over Union (IoU).

• Subject mask accuracy metrics. Similarly to the previous metrics, they compute
the similarity of the reconstruction and the original image restricted on the
subject mask, such as pixel-wise accuracy and subject mask Intersection over

Union (IoU).

In this work, we will be making use of rendering quality metrics, as they do not
require 3D annotations. In particular, for our evaluation we adopt SSIM and PSNR

defined as

SSIM(GS1, GS2) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

PSNR(CI1, CI2) = 10 · log10

(

L2

MSE

)

where GS1, GS2 are the greyscale images, CI1, CI2 are the color images, and

µx, µy : average luminance values of images x and y,

σ2
x , σ2

y : variances of images x and y,

σxy : covariance between images x and y,

C1, C2 : constants to stabilize the division, chosen as C1 = (k1L)2, C2 = (k2L)2,

L : dynamic range of pixel values (e.g., 255 for 8-bit images),

k1, k2 : small positive constants,

MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

(CI1(i, j)− CI2(i, j))2

we also define them on the mask-conditioned images

m_SSIM(GS1, GS2) = SSIM(GS1|mask, GS2|mask)

m_PSNR(CI1, CI2) = PSNR(CI1|mask, CI2|mask)

It is important to note that these two metrics can differ in terms of computed val-
ues depending on the way they are defined. We choose to define them one on the
greyscale images and one on the colored images to have a slightly more comprehen-
sive evaluation, as the two metrics are oftentimes considerably correlated.
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2.4 Supervised vs Unsupervised

It is pivotal for this work the use of self-supervised learning for the training of the
models proposed. The reasons for doing so have already been pointed out, as choos-
ing this approach allows the training needlessly of 3D annotation. This gives access
to a much larger amount of data, invaluable for generalization, but at the same time,
it poses additional challenges in defining suitable objective functions and possibly
weakens the robustness of the model.
In this field of research, the 3D reconstruction of the subject is oftentimes performed
by optimizing the separation of the foreground from the background, either in 2 or
3 dimensions. In general, the reconstruction is performed employing different op-
timization functions. A form of rgb loss can be always used, as the rgb image is
available regardless of the annotations. However, apart from this contribution, if the
3D ground-truth information is not available, the remaining possibilities are phys-
ical and regularization losses. The former is useful for imposing strong physical
conditions to be satisfied on the reconstructed surface, at the cost of being computa-
tionally expensive and increasing the training time. The latter can be tailored easily
depending on the problem and they can be kept computationally not onerous, but
they do not necessarily improve the training and results of the overall model. This
type of loss constitutes one of the major challenges of unsupervised training, requir-
ing extensive experimenting and fine-tuning of the parameters.
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Chapter 3

Video Reconstruction Module
Baseline

In this chapter, we present the baseline we adopted for the video reconstruction
module. We begin our work from the research of [4], following their proposed ap-
proach to perform a self-supervised 3D reconstruction of the video through 3D scene
separation. In the following sections, we present the scope of the project, the reason-
ing behind this approach, and the architecture of the model.

3.1 Scope of the Project

With their work, [4], they propose a model that aims at reconstructing the 3D avatar
from a monocular video using self-supervised techniques. Their approach allows for
the model to learn the 3D properties of the scene, relying purely on the 2D frames of
the video.
While the suggested techniques obtain impressive results in terms of the quality of
the reconstruction, the limitations in terms of possible applications are not few. In
fact, the model needs to be trained on the specific video the user seeks to reconstruct,
for which the fitting time is considerable (~24h/48h) and the needed resources to
achieve this ’speed’ are significant (NVIDIA GeForce RTX 3090, 24GB).
On the other hand, the approach they propose relies on the lowest amount of in-
formation possible (monocular videos, absence of depth information), and it is in-
dependent of 3D annotations on the data, which are often inaccurate, due to the
numerous challenges in measurement calibration and consistency.

3.2 Operating Principles

This approach directly tackles the challenges of scene decomposition and surface
reconstruction in 3D. This is accomplished by implicitly modeling both the human
subject and the background within the scene. These components are parameterized
using distinct neural fields, which are learned concurrently from images to create
a unified representation of the entire scene. The adopted objectives aim to address
the inherent ambiguity between body and scene parts in contact and to enhance sur-
face delineation. These objectives leverage the dynamically evolving human shape
in canonical space to regularize the ray opacity, ensuring clearer distinction between
different surfaces.
Specifically, the 3D geometry and texture of clothed humans are represented as a
pose-conditioned implicit signed-distance field (SDF) and texture field in canonical
space. Simultaneously, the background is modeled using a separate neural radi-
ance field (NeRF). The human shape and appearance fields, in conjunction with the
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background field, are learned from images through differentiable composited neu-
ral volume rendering techniques. Additionally, the dynamically updated canonical
human shape is used to refine the ray opacities further. The training approach is for-
mulated as a global optimization process, where the dynamic foreground and static
background fields, along with the per-frame pose parameters are jointly optimized.

3.3 Dataset preprocessing

The model relies on a preprocessing of the data to obtain initial SMPL [17] body
shape and pose estimations. This is done through the use of a pretrained ROMP
model [18] in combination with OpenPose [19], [20], [21], [22]. Through these initial
estimates obtained on inference over the raw video frames, the video to be recon-
structed is provided with additional information regarding

• frame masks (the outline of the subject in each frame)

• camera intrinsics (estimates of the normalized 3D location, field of view etc.)

• SMPL parameters (parameters estimates of the SMPL rig), including:

1. joint’s position

2. joint’s rotation

3. mean shape

These estimates and parameters are used for sampling and projecting points in the
3D space, and are further refined during training, as described in the following sec-
tions.

3.4 Architecture of the Model

Following this approach, the process begins with a ray denoted as r emanating from
the camera center o with a direction v. Along this ray, points are densely sampled
(xd) and coarsely sampled (xb) within the spherical inner volume and outer volume
respectively. The points sampled within the foreground sphere are projected into a
canonical space using inverse warping. The Signed Distance Function (SDF) of these
canonical correspondences xc is evaluated using the canonical shape network f H

sd f .
The spatial gradient of the sampled points in the deformed space is computed and
concatenated with the canonical points xc, the pose parameters θ, and the extracted
geometry feature vectors z. This combined information serves as input for the canon-
ical texture network f H

rgb, which predicts color values for the canonical points xc.
Surface-based volume rendering is applied for the dynamic foreground, while stan-
dard volume rendering is used for the background. The resulting foreground and
background components are composited to obtain the final pixel color.
To train the model, a loss function L is minimized, which measures the discrep-
ancy between the predicted color values and the observed image data. Alongside
it, different scene decomposition objectives are incorporated into the optimization
process.
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FIGURE 3.1: vid2avatar model diagram (image from [4])

3.5 Self-Supervised Optimization

The optimization is handled by combining four different loss functions, each respon-
sible for different objectives. The full loss function is

L(Θ) =
F

∑
i=1

Li
rgb(Θ

H, ΘB) + λdecL
i
dec(Θ

H) + λeikL
i
eik(Θ

H) (3.1)

where, ΘH and ΘB represent the sets of optimized parameters for the human and
background models, respectively. ΘH encompasses the weights of the shape net-
work (ΘH

sd f ), the texture network (ΘH
rgb), and the per-frame pose parameters (θi). On

the other hand, ΘB comprises the weights of the background density and radiance
networks. These terms are divided into global optimization objectives and scene
decomposition objectives.

3.5.1 Global optimization objectives

Eikonal Loss. As proposed by [16], the term Li
eik is used to force the shape network

f H
sd f to satisfy the Eikonal equation in canonical space:

Li
eik = Exc(∥∇ f H

sd f (xc)∥ − 1)2 (3.2)

Reconstruction Loss. This loss forces f H
rgb to obtain corresponding rendering images

similar to each frame. It corresponds to the L1 distance between the pixel’s rendered
color C(r) and the pixel’s RGB color Ĉ(r)

Li
rgb =

1
|Ri| ∑

r∈Ri

|C(r)− Ĉ(r)| (3.3)

3.5.2 Scene decomposition objectives

Opacity Sparseness Regularization. To enforce regularization on ray opacity using
the dynamically updated human shape in canonical space, a technique is employed
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that involves warping sampled points into the canonical space and determining the
signed distance to the human shape. Subsequently, non-zero ray opacities for rays
that do not intersect with the subject are penalized. This specific set of rays is de-
noted as Ri

off for each frame i. This approach ensures that rays not intersecting with
the human subject have their opacities regulated, contributing to a more accurate
and coherent representation of the scene.

Li
sparse =

1
|Ri

off|
∑

r∈Ri
off

|αH(r)| (3.4)

A conservative approach in updating the Signed Distance Function (SDF) of the hu-
man shape consistently is adopted across the entire training process. This meticu-
lous updating strategy ensures a precise alignment of human and background rays,
contributing to the accuracy and reliability of the model’s representations.

Self-supervised Ray Classification. Despite the shape regularization introduced
in equation 3.4, the human fields tend to model portions of the background. This
behavior arises from the inherent flexibility and expressive power of Multi-Layer
Perceptrons (MLPs), particularly when the subject is in contact with the scene. To
address this issue and enhance the distinction between the dynamic foreground and
background, an additional loss term is incorporated. This term encourages ray dis-
tributions containing either fully transparent or fully opaque rays, further refining
the separation between the dynamic foreground and the background components.

Li
BCE = −

1
|Ri| ∑

r∈Ri

(αH(r) log(αH(r))) + (1 − αH(r)) log(1 − αH(r)) (3.5)

The introduced term penalizes deviations of ray opacities from a binary 0, 1 distri-
bution through the binary cross-entropy loss. Essentially, this encourages opacities
to be zero for rays hitting the background and one for those intersecting with the
human shape. This approach intuitively guides the model to distinguish clearly be-
tween foreground and background elements.
The final formulation of the scene decomposition loss, denoted as Ldec, is given by:

Li
dec = λBCELBCE + λsparseLsparse (3.6)
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Chapter 4

Video Reconstruction Module
Experiments and Evaluation

Starting from the Vid2Avatar model, we experiment with different modifications in
order to increase the quality of the reconstruction. In this phase, we remain focussed
on the video-specific reconstruction, in order to observe what changes can benefit
the reconstruction in terms of training objectives, surface regularization, time consis-
tency, and sampling techniques. In the following, we present some of the performed
experiments.

4.1 Experiments

Hyperparameter tuning. We dedicate some experiments to hyperparameter searches,
aiming at some tuning to obtain even so slight improvements in terms of training be-
havior and the quality of the reconstruction. Furthermore, we do so in order to ob-
serve how the training of the model is affected, considering the partial unpredictabil-
ity of unsupervised training with a composite loss. Most importantly, in hindsight,
different learning rates and the number of samples have a focal role.

Time consistency. We attempted to implement an additional regularization loss re-
sponsible for imposing time consistency on the canonical surface, through the dif-
ferent frames. To do so, we experimented with two approaches

• Displacement regularization. With this, we imposed as an objective to have small
values of the norm of the first differences between the canonical surface points’
coordinates

Ltime_cons = ∑
c∈C

min
c′∈C′

(d(c, c′))

where C and C′ are the sets of canonical surface points and previous canonical
surface points.

• Sdf values regularization. With in mind the idea of reducing the constraints on
the sampling of the model, while still imposing some consistency of the repre-
sentation over time, we imposed as an objective to have similar signed distance
values on the sampled points across frames

Lsdf_time_cons = MSE(S, S′) =
1
n ∑

i

(Si − S′
i)

2

where S and S′ are the sets of signed distance values of the sampled points,
and the previous signed distance values on those points.
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Incremental sampling. One of the limitations of models making use of implicit
neural networks is the demanding memory requirements for the sampling of the 3D
points and the inferring on the implicit network. There are two sampling processes
taking place, one that is responsible for shooting a number of rays Nrays, and one
that samples point on each ray Nsamples_x_ray. The latter makes use of the current
state of the signed distance function to error-adjust the sampling.
Hence, we leverage this by starting with a larger Nsamples_x_ray, and then reducing
it in favor of a broader set of rays, thus increasing Nrays and reducing accordingly
Nsamples_x_ray during training. We experiment with doing so by using two different
incremental profiles

• Linear. Nrays is incremented by 1024, while Nsamples_x_ray is reduced by 32, cor-
responding to a quarter of its initial value of 128. This is done to maintain
almost constant the required amount of memory during training.

• Squared. Nrays doubles, while Nsamples_x_ray halves. This does not necessarily
maintain constant the required amount of memory during training.

In the next section, we present the results obtained from the above-discussed exper-
iments.

4.2 Evaluation

We perform quantitative and qualitative evaluations on a video of the NeuMan
dataset. Since 3D annotations are not available, for the quantitative evaluation we
rely on SSIM and PSNR as metrics. Furthermore, we introduce the m_SSIM and
m_PSNR metrics, which are the SSIM and PSNR computed on the reconstructed
and original images, with the application of the subject mask. These two metrics are
introduced as the model is focussed on the reconstruction of the subject, and later in
this work, we will restrict the focus on the subject even more.
Here we include the tables with the quantitative evaluation as well as the qualitative
images for some of the frames. To draw conclusions, we also observe and analyze
the loss behavior through the use of a Weights&Biases API, and we analyze the evo-
lution of the reconstructed canonical representation during training.

4.2.1 Quantitative evaluation

Hyperparameter tuning. Starting with the customary hyperparameter searches, we
experiment with tuning a few of the hyperparameters to see how the training is
affected. In particular, here we include the results regarding the use of different
learning rates and numbers of samples.
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Experiment SSIM ↑ PSNR ↑ m_SSIM ↑ m_PSNR ↑

Baseline (pre-trained) 0.714 26.644 0.993 42.489
Baseline 0.708 26.310 0.994 44.232
Incremented sampling 0.711 26.437 0.995 46.373

Learning rate 1.0e-5 0.625 17.218 0.994 33.543
Learning rate 5.0e-5 0.669 21.935 0.987 38.912
Learning rate 1.0e-4 0.686 24.057 0.991 42.930
Learning rate 1.0e-3 0.716 26.703 0.996 46.636

Learning rate 5.0e-3 0.682 23.661 0.994 42.397

TABLE 4.1: Hyperparameters tuning - quantitative evaluation on NeuMan.

The results presented in table 4.1 show how an increased number of samples in terms
of the range of rays employed, Nrays from 512 (baseline) to 1024, results in a slight
improvement in the quality of the reconstruction. Experimenting with larger num-
bers posed some challenges in terms of available vram, for which we proposed the
use of incremental sampling. In terms of learning rate, we see that the best results
were achieved using a value of 1.0e-3, improving slightly on all the metrics.

Time consistency. We attempt to include an additional regularization loss term,
aiming at a more consistent surface representation by conditioning the value of the
implicit signed distance function on the ones obtained on previous frames.

Experiment SSIM ↑ PSNR ↑ m_SSIM ↑ m_PSNR ↑

Baseline (pre-trained) 0.714 26.644 0.993 42.489
Baseline 0.708 26.310 0.994 44.232
Displacement regularization 0.714 26.539 0.994 45.203

Sdf values regularization 11 0.703 25.795 0.989 38.814
Sdf values regularization 22 0.703 25.538 0.900 39.576

TABLE 4.2: Time consistency - quantitative evaluation on NeuMan.

From table 4.2 it is clear that the additional loss terms do not contribute particularly
to the training of the model. The use of the displacement regularization loss yielded
some improvements in the mask-conditioned psnr metric. However, considering
the slight increase in time per optimization step, this gain is not enough to justify its
adoption in future experiments.

Incremental sampling. We experiment with a broadening of the sampling during
training, as described in the previous section. In doing so, some attention has to
be given to the balancing of the number of epochs after which the model switches
to a broader number of samples, at the expense of the number of samples on each
ray. Here we include the results for 800 epochs. We chose such a number as, from
the training behavior of previous runs employing a lower number of epochs, we
observed that the model was not able to learn a good enough implicit representation
to aid the search for the sampling on each ray, while 800 epochs provide a more
stable training.

1constant loss regularization weight
2incremental loss regularization weight



16 Chapter 4. Video Reconstruction Module Experiments and Evaluation

Experiment SSIM ↑ PSNR ↑ m_SSIM ↑ m_PSNR ↑

Baseline (pre-trained) 0.714 26.644 0.993 42.489
Baseline 0.708 26.310 0.994 44.232
Squared IS profile (2x800epochs) 0.715 26.746 0.994 44.472
Linear IS profile (2x800epochs) 0.726 27.548 0.997 47.347

TABLE 4.3: Incremental sampling - quantitative evaluation on NeuMan.

As we can see from table 4.3, a squared increment profile seems to be a little ambi-
tious, while a linear increment profile results in a much smoother training curve, as
it can be observed from figure 4.1, and overall better reconstruction.

FIGURE 4.1: Incremental sampling loss charts

4.2.2 Qualitative evaluation

Qualitative results: reconstruction of a video in the Neumann dataset. Including the
original frame, the reconstructed rendering, and the computed normals.

FIGURE 4.2: Baseline using the provided pre-trained model checkpoint

FIGURE 4.3: Baseline trained from scratch
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FIGURE 4.4: Increased sampling Nrays

FIGURE 4.5: Learning rate 1.0e-5

FIGURE 4.6: Learning rate 5.0e-5

FIGURE 4.7: Learning rate 1.0e-4

FIGURE 4.8: Learning rate 1.0e-3
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FIGURE 4.9: Learning rate 5.0e-3

FIGURE 4.10: Time consistency loss: displacement regularization

FIGURE 4.11: Time consistency loss: sdf values soft regularization

FIGURE 4.12: Time consistency loss: sdf values soft regularization incremental weight

FIGURE 4.13: Incremental sampling squared profile
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FIGURE 4.14: Incremental sampling linear profile
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Chapter 5

AGen model baseline

In this chapter, we introduce our novel model, the AGen model. The model lever-
ages the previously introduced video reconstruction model to generalize the 3D re-
construction of monocular videos, and it does so via self-supervised learning, al-
lowing it to be scalable and independent of accurate, precise, and consistent 3D an-
notated datasets. It aims at providing a reliable inference-time reconstruction, with
the possibility of much faster optimization over never-seen videos to produce more
polished results.

5.1 Scope of the Project

The model is proposed as a solution to perform 3D reconstruction from monocular
videos at inference time. It aims at solving or improving the limitations pointed out
in section 3.1, in particular the time constraints. The training of the model is per-
formed via self-supervised learning to deal with the issues mentioned in section 2.3
and to provide a model that is extremely flexible in terms of scalability and general-
izability. We can state our objectives as

Definition 5.1.1. (Scope of the project) Given as input a series of frames from a monocular
video, the model shall be able to yield

1. Inference-time 3D avatar reconstruction

2. Short-time optimized 3D avatar reconstruction

It goes without saying that the first objective constitutes a much more difficult task,
as it seeks a reconstruction with minimal information and extreme time require-
ments. However, it should be considered as the most desirable result we aim to
obtain. For this reason, the second objective is included, as it is more achievable and
it still represents a valuable result in terms of applications.

5.2 Architecture of the Model

The model leverages the previously described approach to be trained in a self-supervised
manner over each video of the trainset. However, trying to generalize the 3D recon-
struction of any video as a whole would be, if not an ill-posed problem, for sure an
incredibly challenging one. For this reason, we initialize general models only for the
foreground, leaving the background models used during training as video-specific
models. These are trained in the 3D scene separation to aid the training of the fore-
ground networks.



22 Chapter 5. AGen model baseline

Hence, we have two sets of networks

generalizable networks: video-specific networks:
{

implicit network

rendering network

{

background implicit network

background rendering network

The generalizable models are trained over all the videos in the training dataset, while
for video-specific models different instances are used for each video, reloading their
previous states each epoch to aid the training.

FIGURE 5.1: AGen model diagram

To define our baseline, we consider the model without any particular additional
implementation with respect to the video reconstruction module. In other words,
the baseline essentially implements the training of different instances of the video
reconstruction module over each video, passing the generalizable networks, and
loading previous states of the video-specific networks.

Observation 5.2.1. It is important to note that, in principle, it would be more appropriate
to assemble all the frames of the different videos into one unique trainset. However, we choose
to maintain this distinction for experimental purposes, in order to be able to better analyze
the differences in the training process between different experiments.

5.3 Training

Training is performed on a multi-gpu setting, parallelizing the training of the in-
stances of the video reconstruction module over each video. To generalize the pro-
cess, and avoid unbalanced training over the trainset, the model is fit over each batch
for a time limit, as videos in the trainset can differ a lot in terms of the number of
frames.
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5.4 Leveraging the pretraining of the implicit network

Leveraging the training of the implicit network is not a trivial problem. By nature,
neural implicit networks are expensive at inference, since they require point search
algorithms to extrapolate the implicitly defined surface. To achieve this, there are
different options, each requiring a different amount of computational time. Each
one of these clearly heavily relies on the fact that the pre-learned implicit function is
representative enough of the not previously seen surface.

1. Pre-trained sdf for ErrorBoundSampling. This approach does not slow down in-
ference or the optimization step when adopted in the video reconstruction
module, as the implicit signed distance function is regularly used for sam-
pling. However, this is not optimal since the sampling is still performed from
the frame to the 3D canonical space, and not vice-versa, losing potentially valu-
able information carried by the pretrained implicit representation.

2. Canonical surface sampling. We perform the sampling from the canonical sur-
face, instead of the image, and perform an inverse warp to obtain the corre-
sponding 2D points. Such an inference step is computationally equivalent to
the surface reconstruction necessary for inference, and it is considerably de-
manding in terms of computational time. Even though it has the potential
to considerably speed up the optimization of the reconstruction, there is no
guarantee that dedicating that time to more reconstruction optimization steps
would yield much better results.

3. Uniform/Gaussian inference sampling. Another approach is to perform the sam-
pling starting from a faster search algorithm on the implicit representation,
reducing the computational time and allowing for more error in the distance
from the actual 0-surface. These estimates can be used as ’educated guesses’
for the sampling by scattering points around the estimates either uniformly or
including Gaussian noise.

5.5 Evaluation

In this setting, the evaluation is perhaps the most delicate matter. Since the training
is performed in a self-supervised manner, on the one hand, the optimization of the
loss functions is by itself an indicator of how well the model is training. On the other
hand, it is advisable to have some metrics to validate the quality of the reconstruc-
tion during training. At the same time, it is necessary to validate the results over
the validation dataset including never-seen data. However, we must keep in mind
the computational burden represented by these operations in this setting, which can
slow down training considerably. For these reasons, we define the following valida-
tion procedures.

Intra-training, data-agnostic validation: 2D metrics

For this kind of validation, we implement metrics that do not rely on having the
availability of 3D annotations in the data and can be computed for any selected
dataset. These metrics are structural similarity index measure (SSIM) and peak

signal-to-noise ratio (PSNR), along with their respective mask-conditioned values.

1. Trainset validation. After the fitting of the video reconstruction module over a
batch (video), we perform one validation step of the module.
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2. Validset inference-time validation. Every 5 epochs, over the whole trainset, we
perform a validation step of the AGen model, over the never-seen data of the
validset. We do so without any fitting of the reconstruction, meaning we im-
pose the shortest possible inference time.

3. Validset short-time validation. After training is finished, we perform a valida-
tion step of the AGen model, over the never-seen data of the validset. We do
so by fitting the reconstruction for a short time, to optimize and enhance the
reconstruction.

Test method validation: inference after training

In general, we propose our model so that it would be able to infer never-seen data
with the following methods

1. Inference time/short-time. Either perform inference without refinement or per-
form a short-time refinement of the networks on the video to be reconstructed.

2. Tiny/reduced/full. The ’tiny’ option is used to perform the reconstruction over
one of the frames; it is used for fast validation during training to supervise
the behavior of the model. The ’reduced’ option is used to evaluate the re-
construction and metrics over 42 uniformly sampled frames. The latter, the
’full’ option, is used to reconstruct all the frames, and it is for obvious reasons
considerably more demanding in terms of computational time.

3. Pretrained/non-pretrained. Either to use or not pre-trained networks. This is
intended for the experimental phase, to assert the improvements.

5.6 Dataset

Selecting one dataset is not a straightforward choice in this area, as other research is
not always consistent in the choice, oftentimes preferring the creation of a tailored
dataset for the training of their model. Also, it is not given that the most recent
datasets have been made available.
For our experimenting and proof of concept, we adopt a subset of the 3DPW dataset,
[6], which is comprised of videos of subjects in the wild from a single moving cam-
era. We select this dataset because of the variety of subjects, actions, and back-
grounds. However, we select a subset as a number of videos contained are out-
of-scope for our problem, for instance, they include multiple subjects in the scene.
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Chapter 6

AGen Model Experiments and
Evaluation

In this chapter we present the results of some experiments performed on the AGen
model, starting from the baseline, as defined in section 5.2, leading up to the in-
clusion of a geometry encoding network aiming at a better generalization for the
model. In this phase, we are mainly concerned about improving the generalization
capabilities of the model. We do so by comparing the qualitative and quantitative
evaluation of the reconstruction on previously unseen videos, as well as monitoring
the training of the model. The latter is an important indicator as the behavior of the
model right after the change of the video being reconstructed shows how the model
is able to leverage the training over previous data to quickly improve on the next
video.

6.1 Experiments

Agen model baseline. We begin our experimentation process by evaluating the re-
sults of our baseline model on never-seen data, compared with the results obtained
with the straightforward reconstruction using the reconstruction module.

Geometry encoding network. Secondly, we focus our effort on the implementation
of a geometry encoding network with the objective of improving the generalization
of the model. The task of this network is twofold:

1. Improve the overall reconstruction by picking up on garment details such as
wrinkles and fabric by leveraging the frame embedding.

2. Aid the training of the implicit sdf model on never-seen data by applying a
frame-conditioned 3D displacement to the sampled points.

This network is comprised of a first part, the encoder, which is trained to take as
input the image frame and output an embedding. The network then takes as input
the canonical points, meaning the sampled points warped into the canonical space,
it concatenates them to the frame embedding and passes them through some train-
able fully connected layers to output a new 3D point.
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FIGURE 6.1: Geometry encoding network diagram

This architecture, while being reasonable to achieve our task, immediately presents
one important inconvenience, as the initial point coordinates outputted by the net-
work will likely be outside the range of our normalization. To ensure this does not
happen while avoiding the loss of potential trainability of the network, we use the
outputted coordinates to perform a displacement of the canonical points, tempered
by a morphing factor µ.

x′ = xc + µ(x − xc)

This allows the initialization of the model with outputs close to the inputs while
leaving the freedom of increasing the displacement during training overcoming the
morphing factor if necessary to improve on the other losses.
Furthermore, we implement an optimization function as a regularization term to
avoid the explosion of some displacements, resulting in out-of-normalization bounds
points, and thus NaNs. We first experiment with a simple loss, aiming to contain all

the displacements
Lv1

geometry_morphing_loss = ∑
i∈S

∥x′i − xc,i∥

where S is the set of sampled canonical points. Then, we also experiment with con-
taining only the average displacement, thus allowing more for larger displacements
on specific points or regions

Lv2
geometry_morphing_loss =

1
Nsamples

∑
i∈S

∥x′i − xc,i∥

Now, to obtain the frame embedding we experiment with two different approaches,
using a pre-trained image classification model to extract a general frame embedding,
or training a Unet-like encoder to output a pixel-aligned embedding.

Pre-trained backbone. Using a pre-trained backbone, losing the last classification
layer, and possibly even a pooling layer, to obtain an embedding of the image. The
fact that the embedding is general for the whole frame is slightly reductive but al-
lows for faster computation time on the trainer step, as the embeddings can be ob-
tained during preprocessing. However, if the backbone has to be trained, then this is
a corner that cannot be cut and the computational cost is still considerable (making
it less efficient than the second approach).
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Unet encoder. Training an Unet encoder, from the frame image we obtain a pixel-
aligned embedding, of dimensions [image_height, image_width, embedding_dim].
This can be used to concatenate to each canonical point the embedding correspond-
ing to the pixel intersected by the ray on which the point was sampled.

FIGURE 6.2: Unet encoder diagram

6.2 Evaluation

6.2.1 Quantitative evaluation

Here we present the results obtained by experimenting with the short-time validation
using 10 refinement epochs. It is important to note that 10 epochs is an extremely
low number of epochs for the video reconstruction module to obtain good results,
as it was intended by the authors to be trained for around 6000 epochs. However,
we select such a low number of epochs for two main reasons. Firstly, we are partic-
ularly interested to see if the training over the reconstruction of other videos can be
leveraged by the model to speed up the training. Secondly, the amount of frames
included in the 3DPW sequences is much higher, and it thus requires a much longer
training time, making it more difficult to perform multiple experiments with longer-
time reconstructions.

AGen model baseline. Regarding the quantitative evaluation of the baseline against
the straightforward video reconstruction using the video reconstruction module we
obtain the results included in table 6.1.

Experiment SSIM ↑ PSNR ↑ m_SSIM ↑ m_PSNR ↑

Reconstruction module 0.293 14.889 0.974 27.204
AGen baseline 0.293 14.901 0.975 27.855

TABLE 6.1: AGen model baseline - quantitative evaluation on 3DPW.

As we see the baseline achieves ever so slightly better results on three of the four
metrics. However, we have a considerable increase in the quality of the reconstruc-
tion, as can be observed from the qualitative evaluation in figures 6.5 and 6.6. As
a matter of fact, the reconstruction presents different and persistent erroneous con-
structs, while the AGen model does not. This is due to the pretraining of the implicit
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network which is able to aid the reconstruction even in the first few epochs.

Geometry encoding network. Here we present some of the results obtained while
experimenting with the geometry encoding network. In particular, table 6.2 includes
the results for the network equipped with a trainable Unet encoder, using differ-
ent loss regularization weights and adopting the two different geometry morphing
losses. This experimenting phase has been extensive, but it presented multiple tech-
nicalities and issues related to the code implementation. For this reason, we only
include some of the more interesting results, also considering the training behavior
of each model. Furthermore, we choose not to include experiments made using a
non-pixel-aligned pretrained backbone as an encoder, as they did not yield particu-
larly interesting results, showing an almost unaffected training behavior.

Experiment SSIM ↑ PSNR ↑ m_SSIM ↑ m_PSNR ↑

Reconstruction module 0.293 14.889 0.974 27.204
AGen baseline 0.293 14.901 0.975 27.855

geometry encoding net v1 w:0.1 (0.316) (15.056) (0.976) (29.962)
geometry encoding net v1 w:10 0.291 14.911 0.973 27.315
geometry encoding net v2 w:10 0.293 14.921 0.974 27.549

TABLE 6.2: Geometry encoding network - quantitative evaluation on 3DPW.

From our experiments, the use of the geometry encoding network does not produce
better results in terms of our metrics. The second version of the regularization loss
with a large weight value produces slight improvements on the PSNR value, but not
enough to be conclusive, as the mask-conditioned value worsens. From the qualita-
tive results, we see the reconstruction is good, but it does not improve particularly.
Observing the qualitative results of the model using a regularization weight of 0.1 in
figure 6.7, we see the quality of the reconstruction suffers, showing multiple prob-
lems. This can be attributed to the use of a low regularization weight, leaving the
displacements on the canonical points too unconstrained. The optimization of the
geometry morphing loss, along with the rgb loss can be observed in figure 6.3, in
which case the 3D reconstruction suffers as the model focuses on the optimization
of the rendered image.

FIGURE 6.3: Geometry morphing loss

It is for this reason that we disregard the quantitative results obtained on the model
with a regularization weight of 0.1. Furthermore, the use of the geometry morphing
loss has proven to be necessary when the geometry encoding network is employed.
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In fact, using low values on the regularization weight, or not adopting such a loss
term at all, results in the network being unconstrained on the displacement of the
points. In such a case, the network can learn that it is able to better reconstruct the
subject in terms of different loss terms, in particular the rgb loss, if it projects the
points on a plane, parallel to the image plane. When this happens, the model loses
all capabilities of correctly training on the correct reconstruction of the surface and
produces results similar to the ones shown in figure 6.4.

FIGURE 6.4: Collateral cases with unconstrained geometry encoding network

Fine-tuning from previous results. Finally, we experiment with adopting a higher
learning rate and implementing the use of incremental sampling, as they had shown
improving results during the previous experiments.

Experiment SSIM ↑ PSNR ↑ m_SSIM ↑ m_PSNR ↑

Reconstruction module 0.293 14.889 0.974 27.204
AGen baseline 0.293 14.901 0.975 27.855

Incremental sampling 0.290 14.789 0.971 26.289
Geometry encoding1 0.291 14.779 0.973 27.297

TABLE 6.3: Fine tuning - quantitative evaluation on 3DPW.

1Geometry encoding network with incremental sampling and learning rate 1.0e-3
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As it is clear from table 6.3, the use of a higher learning rate, in this case, does not
aid the training of the model. While initially the training is faster, the learned rep-
resentation from previous videos is quickly overcome with the training on newer
data, resulting in a representation with poor generalization, as can be seen from the
qualitative evaluation in figure 6.10 and figure 6.11. Also, the incremental sampling
does not improve the results as it did for the video reconstruction module, as the
error-bound sampling algorithm cannot leverage the implicit function as it did in
the video-specific case.

6.2.2 Qualitative evaluation

Qualitative results: reconstruction of a video in the 3DPW testset. Including the
original frame, the reconstructed rendering, and the computed normals.

FIGURE 6.5: Reconstruction without pre-training

FIGURE 6.6: AGen model baseline

FIGURE 6.7: geometry encoding network with Unet encoder, morphing loss v1, weight 0.1

FIGURE 6.8: geometry encoding network with Unet encoder, morphing loss v1, weight 10
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FIGURE 6.9: geometry encoding network with Unet encoder, morphing loss v2, weight 10

FIGURE 6.10: incremental sampling, with learning rate 1.e-3

FIGURE 6.11: incremental sampling, geometry encoding network, with learning rate 1.e-3
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Chapter 7

Conclusions and Future Directions

To conclude, and summarize the above-presented contributions, let us denote some
results, considerations, and future efforts.

7.1 Considerations

The above-presented analysis shows the advantage of pretraining the implicit net-
work over a dataset to leverage it during the reconstruction of previously unseen
data, improving the quality of the reconstruction after a short refinement time. How-
ever, the generalization capabilities of the model are not exceptional. This can be
mainly attributed to the use of a non-representative enough dataset, and the condi-
tioning of the model.

• The former can be easily improved, as the data does not require 3D labeling.
Preprocessing a larger dataset might allow for a much better implicit represen-
tation to be learned, thus improving the increase in the quality of the results.
We chose to maintain the dataset more contained during this experimentation
phase due to the training time requirements, which would have not allowed
for a good number of experiments as the current state of the model already
requires a considerable training time.

• The implementation of additional networks to condition the implicit represen-
tation and the rendering network would allow for better generalization of the
model. The approach we proposed, making use of the geometry encoding net-
work, while it did not produce considerable improvements, leaves room for
enhancement. Different encoders, such as transformers, may be able to pro-
duce much better embeddings to aid the generalizability of the implicit repre-
sentation.

7.2 Future directions

As some of the results of the AGen model, in particular in terms of qualitative results
have been promising, there are a number of aspects that can be improved. To name
a few

• The current state of the code is extremely inefficient as it was developed for
research and proof of concept purposes. An effort to improve the code could
allow for computational optimization and thus better training and results.

• The dataset composition can be improved both in terms of number of videos
as well as quality. The adopted dataset includes videos that are particularly
challenging to reconstruct, and not necessarily the most consistent in terms of
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settings. While this is interesting to analyze the capabilities of the model, it
probably hinders the ability to learn a common implicit representation. Using
a more consistent and canonical dataset might improve the training consider-
ably.

• Also, for the training of the model, it could be advantageous to reduce the
number of frames in the included videos, to allow the model for a larger num-
ber of epochs and thus better training overall. The 3DPW dataset made use of
high frame-per-second cameras; for this reason, the data might be more redun-
dant than advisable for good training.

• Due to time constraints, we have not had the chance to experiment using other
sampling approaches that could leverage the pretrained implicit representa-
tion more, as described in section 5.4. The implementation of such sampling
techniques could allow for a faster refinement of the model on unseen data,
and thus a better quality of the reconstruction.

• The model would benefit from the training of a more generalizable implicit
representation. This could be achieved also by projecting to a higher dimen-
sional canonical space, obviously losing the possibility of interpretation of the
canonical representation.

7.3 Conclusions

Overall, we believe the model we have proposed shows capabilities of producing
high-quality 3D avatar reconstruction with no requirement for additional informa-
tion on the data and with faster times. A lot of improvements are still necessary to
obtain a large advantage over a straight-forward non-pretrained reconstruction, as
outlined in the previous section. However, considering the promising results, and
numerous applications brought by such a model, we believe more efforts will soon
bring forward an extremely interesting and valuable solution.
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