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Human motion, a complex phenomenon studied for decades, has witnessed a signifi-
cant surge in research with the advent of deep learning. Applications span from human-
computer interaction to robotics, emphasizing the need for intelligent agents capable of nat-
ural interaction with humans. A crucial aspect in this development is Human Motion Gen-
eration from a text prompt, enabling users to synthesize motion sequences without technical
expertise. While recent approaches leverage deep generative models like Diffusion Models
and Vector Quantized Variational Autoencoders, challenges persist, such as resource over-
consumption and the assumption that human motion intricacies can be represented by a
limited set of codebook vectors. This thesis explores the foundations of diffusion mod-
els and variational autoencoders, examines the state-of-the-art in text-to-motion generation,
and introduces a novel approach to motion representation and generation through binary la-
tent spaces. The Motion Binary Variational Autoencoder is proposed, learning bidirectional
mappings between motion sequences and binary tensors. Additionally, the Motion Binary
Latent Diffusion model extends the concept of Bernoulli diffusion to the binary latent space
of motion data. The thesis concludes with experimental evaluations of the proposed models,
offering insights into their performance and suggestions for future research.
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1 Introduction and Motivation

1.1 Human Motion Generation

As humans, our capacity for natural interaction with the surrounding world encompasses
intricate, coordinated, and precise bodily movements, as well as communication through
speech, gestures, and subtle body language. Despite its apparent simplicity, replicating such
behavior in machines is a highly intricate challenge (Barquero et al., 2022), constituting an
active and multidisciplinary research field spanning computer vision (Guo et al., 2022, Kim
et al., 2022), computer graphics (Alexanderson et al., 2023, Ao, Zhang, and Liu, 2023), mul-
timedia (Gao et al., 2022, Yoon et al., 2022), robotics (Nishimura, Nakamura, and Ishiguro,
2020, Gulletta, Erlhagen, and Bicho, 2020), and human-machine interaction (Kucherenko
et al., 2019, Yin et al., 2022). The resolution of the task of human motion synthesis holds
the potential to facilitate the creation of more natural, intuitive, and reliable movements in
machines. This breakthrough could significantly enhance the interaction between humans
and computers, with far-reaching implications across a diverse array of applications, partic-
ularly in the domains of robotics, virtual and augmented reality, animation, video games,
autonomous driving, healthcare, and possibly introducing novel solutions (Zhu et al., 2023).

The task of human motion synthesis can be approached from various perspectives, tai-
lored to the specific nature of the problem at hand. Motion forecasting, for example, in-
volves utilizing past motion data to predict future steps in a movement (Barquero, Escalera,
and Palmero, 2023, Lucas et al., 2022). Models that translate between text to motion, and
vice versa, estimate the mappings between natural language and human movement. These
models can synthesize motion based on a given text prompt (Chen et al., 2023a, Zhang et al.,
2023b) or provide a textual description and "discuss" about a given movement (Jiang et al.,
2023). Similarly, action to motion models label movement sequences with a corresponding
action category, which is usually a one-hot vector representing a verb like "walking" or "run-
ning" (Lucas et al., 2022). Other approaches include utilizing music audio files to generate a
dancing human figure (Qi et al., 2023b), or motion editing, which employs control-to-motion
models to adjust movement based on a provided control signal, such as a pose or fixed joint
(Zhang et al., 2021). Human Motion Generation (HMG) encapsulates seemingly disparate
tasks, such as 3D-avatar reconstruction, aiming to rebuild a human mesh with or without
texture from a given video of a person (Zhang et al., 2023c). Also, it includes motion retar-
geting, which transfers the motion of one person to another being (Tu et al., 2023), hand and
facial motion synthesis (Kirschstein, Giebenhain, and Nießner, 2023), and behavior analysis
(Palmero et al., 2022). Each of these facets contributes to the comprehensive exploration of
human motion synthesis from diverse angles.

1.1.1 Motion Data and Motion Representation

An effective approach for representing motion data involves organizing a sequence of hu-
man body poses along a temporal dimension. However, poses can be represented using
various methods. Two conventional approaches are through keypoints and rotations. The-
oretically, both methods are considered equivalent, as it is feasible to transition between
them and vice versa using forward and inverse kinematics. On one side, inverse kinematics
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is a mathematical process which calculates the variable joint parameters needed to place the
end of a kinematic chain, such as an animation character skeleton to a given position and
orientation based relative to the start of the chain. On the other side, forward kinematics
calculates the character skeleton based on given joint parameters.

A keypoint-based representation employs designated points corresponding to anatomical
parts within a model, including joints, face, and other noteworthy locations. Consequently,
a pose is characterized by an array of triads (or tuples) representing the 3D (or 2D) spatial
coordinates for each keypoint. Motion data, in this context, constitutes a sequential arrange-
ment of these poses over time. Despite this natural representation of human shapes demon-
strates significant interpretability and can be directly derived from motion capture systems,
they lack of applicability in some cases. Usually for animation or robotics, keypoint-based
representation need to be transformed into rotations via the IK problem (Zhang, Black, and
Tang, 2021).

Human pose can also be represented by joint angles, that is, the rotation of the body
parts or segments, relative to their parents in a hierarchical structure. These rotations can be
parameterized using a variety of formats, like axis angles and quaternions. Skinned Multi-
Person Linear (SMPL) model is a widely used method to estimate human-shaped meshes
from such rotations (Loper et al., 2015). Other models such as SMPL-X extend this to a more
comprehensive model where body, face and hand are represented jointly (Pavlakos et al.,
2019a). The SMPL and SMPL-x models are defined by a set of pose and shape parameters.
In these models, each joint is characterized by the parameters of the relative 3D rotations
relative to a standard skeletal kinematic tree.

Motion data collection adopts distinct approaches tailored to diverse scenarios. One
prevalent method involves the use of markers, strategically placed on a subject and tracked
within a controlled environment. Conversely, markerless techniques rely solely on syn-
chronized cameras and computer vision algorithms. While offering versatility, these meth-
ods may sacrifice some precision compared to marker-based alternatives (Ye et al., 2022).
Pseudo-labelling represents an approach suited for in-the-wild captures, utilizing human
pose estimators algorithms to annotate keypoints or fitting body models based on available
image evidence, albeit often resulting in less accurate motion representation (Pavlakos et al.,
2019b, Cao et al., 2017). A contrasting methodology entails manual annotation, where a team
of skilled artists meticulously crafts human motion using animation engines. While capable
of producing high-quality movements, this method is resource-intensive, time-consuming,
and lacks scalability.

1.2 Generative Models

Assume we want to generate new samples similar to a set D ⊂ RD, of a particular data
domain, where D is the dimensionality of the specific data. For instance, the domain of
RGB-colored images of size w × h has dimension D = w × h × 3. Then, for any element
in this set, x ∈ D, a generative model addressing this problem would be designed to learn
the underlyining data distribution pdata(x) within the domain, and then be used to generate
unseen samples.

Recent advancements in deep learning generative techniques, including Generative Ad-
versarial Networks (GANs) (Goodfellow et al., 2014), Diffusion Models (DMs) (Ho, Jain, and
Abbeel, 2020, Song and Ermon, 2020, Karras et al., 2022), and attention-based models like
Large Language Models (Vaswani et al., 2023, Guo et al., 2023), have provided versatile so-
lutions for estimating the data distribution pdata(x) from various perspectives. Over the past
months, these models have undergone significant improvements, leading to a wide array of
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applications (Yang et al., 2023). Notably, DMs have shown remarkable success in image gen-
eration (Podell et al., 2023) and across diverse modalities such as video (Yang, Srivastava,
and Mandt, 2022), audio (Zhang et al., 2023a), and text (Han, Kumar, and Tsvetkov, 2023,
Gong et al., 2023, Yuan et al., 2023). The emergence of Large Multimodal Models (Li, 2023)
has further enhanced capabilities by leveraging diffusion models and attention mechanisms
to generate comprehensive images based on a given text prompt and to "discuss" over them
(Liu et al., 2023).

This recent evolution in generative models addresses the multimodality problem, in-
volving the generation of samples from different data modalities (e.g., images, text, and
audio) within a single model. Multimodal models typically aim to estimate partial con-
ditioned distributions qdata(x|c), where c represents the conditioning data. When x and c
pertain to different data modalities, the model deals with multimodality. This intriguing
problem opens avenues for addressing more complex tasks, such as text-to-image (Liu et
al., 2023, Zhang, Rao, and Agrawala, 2023), text-to-3D (Xu et al., 2023), or conditioned video
generation, where the goal is to generate temporally coherent images, often accompanied
by audio, in response to a given text prompt (Ho et al., 2022, Qi et al., 2023a).

The synthesis of human motion, which is the main focus of this thesis, is another such
complex task. In particular, we explore the generation of human motion based on a given
text prompt, see figure 1.1. Developing models for synthesizing motion from natural lan-
guage empowers users without expertise in motion capture and animation, democratizing
access to otherwise expensive technologies. However, conditioning the synthesis on text
introduces additional challenges to the already complex field of HMG.

FIGURE 1.1: Extract of human motion with description "on hands and feet a
person crawls four paces on an angle to the left, turns and crawls back, and

then stands".

1.3 Challenges for Motion Generation

While one of the uses of HMG aims to be able to generate high-quality human motion syn-
thetic data, it inherits the drawbacks of motion capture systems from the datasets. Hence,
one of the major flaws is the lack of high-quality and diverse available datasets, since the pre-
dominant data collection techniques already mentioned are either expensive, not diverse or
not accurate enough. A widely referenced dataset is AMASS, which is an amalgamation of
different motion captured datasets, recorded using a variety of techniques, and standarised
to a common motion representation based on SMPL (Mahmood et al., 2019). However, this
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dataset is still limited in the number of subjects and the variety of motions with only 300 sub-
jects and 40 hours of motion capture data. Other popular datasets are even much smaller.
For instance, Human3.6M displays only the actions of 11 subjects (Ionescu et al., 2014). The
lack of high-quality and diverse datasets is a major drawback for the development of HMG
models, since it is difficult to train a model to generate a wide variety of motions without a
large and diverse dataset.

Furthermore, synthesizing human motion from scratch extends beyond the mere ap-
plication of deep generative models to human motion datasets. Human motion is highly
non-linear and articulated, and subject to a wide variety of constraints, such as the laws
of physics, the human anatomy, and purpose of the movement. Not only does the model
need to generate temporally coherent human poses, it also needs to generate a smooth and
plausible motion that is consistent with those constraints and the signal controls provided.

In the case of text-to-motion generation, the signal controls provided are the text prompts.
They are usually short sentences describing the movement, such as "a person walking for-
ward", and pose extra challenges. The model also needs to understand the semantics of the
text prompt in order to generate the according motion. Moreover, labelling the data is prob-
lematical as the same movement can be described in several different ways, for instance, a
motion showing a person "kicking something with the right leg" can be also described as
"hitting something with the right foot". Another challenge is the lack of a clear and well-
defined evaluation metric, which makes it difficult to compare the performance of different
models, specially when trying to asses how well the model has understood the semantics
of the text prompt. Additionally, a single sentence can be used to describe semantically dif-
ferent behaviors, that is "kicking something with the right leg" can refer to a soccer player
kicking a ball, or a person kicking a door, and both motions are very different while sharing
the same underlying pattern. Hence, a text conditioned HMG model should be able to deal
with this many-to-many problem and generate a wide diversity of motions given a single
text prompt, in order to be useful in the aforementioned applications.

In this thesis we explore a novel method to tackle the aforementioned semantical prob-
lem. We introduce a Binary Latent Diffusion Model (BLD) (Wang et al., 2023), that leverages
the power of diffusion models and binary latent representations to generate high-quality
samples from a compact yet expressive latent space. The thesis is divided in five chapters.

Within the first part we introduce the diffusion models and how they work, provid-
ing detailed and comprehensive explanations of the main concepts of Denoising Diffusion
Probabilistic Models (DDPM) (Ho, Jain, and Abbeel, 2020), Latent Diffusion Models (LDM)
(Rombach et al., 2021) and Vector Quantized Variational Autoencoders (VQ-VAE) (Oord,
Vinyals, and Kavukcuoglu, 2018). We will also introduce the main concepts of the BLD
model, which reinvents the LDM model to work with binary latents and is the main model
used in this thesis. In the next chapter, we further discuss the topic of text-to-motion genera-
tion, the main challenges of this task, reviewing the state of the art and introducing the main
contributions of this thesis. The following part, provides a detailed explanation of our pro-
posed methodology and how the BLD model approaches the problem of motion generation,
how it is implemented and a comparison with a classical Gaussian-based LDM model. The
fourth chapter defines the datasets used for the experiments, the evaluation metrics, and
details the expertimental setup. Then, it showcases the results obtained by the tested itera-
tions of our proposed motion BLD model, and the binary autoencoders. Finally, within the
concluding chapter, we summarize the main contributions of this thesis, and extract insights
from the experimental outcomes. We also discuss the limitations of our proposed method
and provide some ideas for future work.
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2 Diffusion Models

2.1 Fundation of Diffusion Models

Diffusion models, a category of probabilistic generative models, were initially introduced
by Sohl-Dickstein et al., 2015, and later gained prominence through the work of Ho, Jain,
and Abbeel, 2020, demonstrating notable achievements in the domain of image generation.
The foundational concept of diffusion models can be traced back to the principles of statis-
tical physics and non-equilibrium thermodynamics (Jarzynski, 1997, Neal, 1998), where a
Markov chain progressively transforms one probability distribution into another.

Since their introduction, academical and industrial communities have made a huge im-
provement in the field showcasing outstanding results in a diversity of applications. In this
chapter we will focus on the foundations of such models, review in detail the diffusion al-
gorithm, the latent diffusion models and different ways to represent data in a latent space,
and finally introduce the Binary Latent Diffusion model, which is the algorithm of interest
in this thesis.

2.1.1 Diffusion Process

The goal of the algorithm is to define a forward diffusion process that begins with a complex
distribution qdata(x) and ends with a simple and tractable distribution π(y), which is usually
a Gaussian or a Binomial. Then, a model fθ(x) is trained to learn the reverse process bringing
the simple distribution to an approximation of the complex one, where θ are the parameters
to be tunned. To this end, the diffusion process, will be divided in two steps.

• Forward Trajectory: Consider the data domain D whose elements x ∈ D can be any
data type. Consider also the data distribution of the elements in this domain and de-
note it qdata(x). From here we define a forward trajectory to be a Markov chain that
perturbs qdata(x) by repeatedly applying a Markov diffusion kernel Tπ(x|x′; β), where
π(y) is a tractable distribution and β is a diffusion step parameter. Hence, if we start
with q(x(0)) = qdata(x), the probability of the next step within the Markov chain will
require the multiplication q(x(0,1)) = q(x(0))Tπ(x(1)|x(0); β). Then, the forward trajec-
tory after T steps of diffusion is given by

q(x(0...T)) := q(x(0))
T

∏
t=1

q(x(t)|x(t−1))

where q(x(t)|x(t−1)) = Tπ(x(t)|x(t−1); β). Notice that this procedure allows us to trans-
form any-to-any distribution, depending on the choice of the kernel T. However, since
the aim of this procedure is to get to a tractable distribution π(y), for the Gaussian we
will choose the kernel to be

q(x(t)|x(t−1)) = N (x(t); x(t−1)
√

1 − βt, Iβt), (2.1)
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and for the binomial we will choose the kernel to be

q(x(t)|x(t−1)) = B(x(t); x(t−1)(1 − βt) + 0.5βt). (2.2)

The choice of βt’s is crucial for the success of the model. They can be learned by fixing
β1 or they can be defined to follow a schedule as a function of t. If the target function
is tractable q(x(t)|x(t−1)) can be computed in a closed form given x(0), for instance, in
the Gaussian case we have

q(x(t)|x(0)) = N (x(t); x(t−1)√ᾱt, (1 − ᾱt)I) (2.3)

with ᾱt = ∏t
i=1(1 − βi).

• Reverse Trajectory: Given the above procedure, if we were able to find a reverse trajec-
tory q(x(T...0)) we would be able to define a Markov chain that transforms π(y) into the
generative model we are looking for. However, computing q(x(t−1)|x(t)) is intractable,
so we need to find an approximation. Therefore, we will train a model pθ(x(t−1)|x(t))
to learn the reverse process:

p(x(T)) = π(x(T))

p(x(0...T)) = p(x(T))
T

∏
t=1

q(x(t−1)|x(t))

= p(x(T))
T

∏
t=1

pθ(x(t−1)|x(t)).

Given small enough diffusion steps, (Sohl-Dickstein et al., 2015) guarantees that if the
forward diffusion kernel is a Gaussian or a Binomial then the reverse diffusion kernel
will also be Gaussian or Binomial respectively. Therefore, our model will be trained to
learn the mean and covariance matrix,

pθ(x(t−1)|x(t)) = N (x(t−1); µθ(x(t), t), Σθ(x(t), t)), (2.4)

or the bit flip probability,

pθ(x(t−1)|x(t)) = B(x(t − 1); bθ(x(t), t)).

At the end of the process, the generative model approximates the data distribution by

pθ(x(0)) =
∫

pθ(x(0...T))dx(1...T) =

=
∫

q(x(1...T)|x(0))p(x(T))
T

∏
t=1

p(x(t−1)|x(t))
q(x(t)|x(t−1))

dx(1...T).

2.1.2 Training Objective

Observe that if we treat x(0) as an observed variable, and x(1...T) as latent variables, then the
diffusion process can be seen as a Variational Autoencoder (VAE) (Bank, Koenigstein, and
Giryes, 2021). The forward and reverse trajectories would be equivalent to the encoder and
decoder respectively, going from data to latent space and from latent back to the data.



Chapter 2. Diffusion Models 7

Training is done by minimizing the negative log-likelihood of the model’s data distribu-
tion,

L := −E[logpθ(x(0))] = −
∫

dx(0)q(x(0))logpθ(x(0)).

However, this is intractable, so the usual approach is to minimize instead the variational
lower bound inspired from VAE’s (Kingma and Welling, 2022, Sohl-Dickstein et al., 2015),
which is given by

L ≤ Lvlb := L0 +
T−1

∑
t=1

Lt + LT, (2.5)

where

L0 := − log pθ(x(0)|x(1))
Lt := DKL(q(x(t)|x(t+1), (0))||pθ(x(t)|x(t+1)))

LT := DKL(q(x(T)|x(0))||p(x(T))).

Note that q(x(t)|x(t+1), (0)) can be computed using the Baye’s rule, which implies that Lt’s can
be computed in a closed form since we are comparing two Gaussians (or Binomials). Also,
observe LT is constant, so we can ignore it during training. Thus, the task of estimating the
data distribution has been reduced to finding the mean and covariance matrix of a sequence
of Gaussians (or the bit flip probability of a sequence of Binomials) that minimize Lvlb.

2.1.3 Denoising Diffusion Probabilistic Models

Since the introduction of diffusion models, several improvements have been made to sim-
plify the diffusion process and improve the performance of the model. In particular, it is
worth mentioning the work of Ho, Jain, and Abbeel, 2020 who introduced the Denoising
Diffusion Probabilistic Models (DDPM). They focused on working with Gaussian distribu-
tions and posed empirical evidence for reparameterizing the model and learning a much
simpler version of the Lvlb. The idea is reducing the amount of learnable variables to be the
noise between steps.

During the reverse process 2.4, the covariance matrix is predefined as a diagonal matrix
σθ(x(t), t) = σ2

t I. Recall that from the Baye’s rule we can compute

q(x(t)|x(t+1), x(0)) = N (x(t); µ̃θ(x(t), t), Σ̃θ(x(t), t)).

Then, to represent the mean µθ(x(t), t) they reparameterize 2.3 as

x(t)(x(0), ϵ) =
√

ᾱtx(0) +
√

1 − ᾱtϵ, for ϵ ∼ N (0, I).

This leads to

µθ(x(t), t) = µ̃t

(
x(t),

1√
ᾱt
(x(t) −

√
1 − ᾱtϵθ(x(t)))

)
=

1√
ᾱt

(
x(t) − βt√

1 − ᾱt
ϵθ(x(t))

)
.

Therefore, it is enough to learn the denoising function ϵθ between steps, with a simpler Lvlb
given by

Lsimple(θ) := Et,x(0),ϵ

[
||ϵ − ϵθ(

√
ᾱtx(0) +

√
1 − ᾱtϵ, t)||22

]
. (2.6)

This new formulation of the training objective can be shown to be equivalent to the loss
weighting used NCSN denoising score matching model (Song and Ermon, 2020), which is
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a score-based generative modeling method that estimates the gradients of the data distri-
butions at different levels of added noise. Therefore DDPMS can be seen as a connection
between score-based and diffusion-based generative models. Their proposal also include
fixing the βt’s to a given schedule.

2.1.4 Conditioning and Guidance Techniques

The wide flexiblity of diffusion models allows them to be used in several different scenarios
and adopt different properties. One of which is conditional generation. It is possible to con-
dition the model to generate samples given a particular piece of information. For instance,
text-to-image generation using diffusion models has been shown to be even more powerful
than other methods such as GANs (Dhariwal and Nichol, 2021). There are different ways of
approaching this can be summarized into three techniques:

• Explicit Conditioning: Conditinal sampling can be considered as training a model to
learn the conditional distribution pθ(x(0)|c). Here c is the conditioning information,
which can be a text prompt, an image, or any other source of information. This ap-
proach is the most straightforward one, usually implemented by concatenating the
conditioning information to the input of the model or by using an attention mecha-
nism.

• Classifier Guidance: Another approach is to train a classifier to predict the condition-
ing information from the generated samples. Baye’s rule allows us to use the gradient
of the conditional distribution pθ(c|x(t)), which comes from the classifier, to guide the
model towards the desired output pθ(x(0)|c).

• Classifier-free Guidance: By using the Baye’s rule again we can get an implicit clas-
sifier by jointly training a conditional and an unconditional diffusion model (Nichol
et al., 2022). In practice, both models are trained together by randomly sampling the
condition of the diffusion model at a certain chance. Hence, we want to compute

(1 + ω) log pθ(xt|c)− ω log pθ(xt).

The difference to explicit conditioning is that this approach additionally accentuates
the distance between the conditional and unconditional distributions, by means of the
implicit classifier.

There are also other techniques that can be used to improve the performance of the dif-
fusion models, some of which involve data augmentation techniques (Dhariwal and Nichol,
2021), or changing the schedule of the diffusion steps (Nichol and Dhariwal, 2021). How-
ever, when working with high resolution images, or large amounts of data, managing DDPMs
can be computationally expensive. Therefore, in the next section we will briefly recall the
definition of VAE, which will be used to reduce the dimensionality of the data in order to
make the diffusion process more efficient. In particular we will focus this introduction on
Vector Quantized Variational Autoencoders (VQ-VAE) (Oord, Vinyals, and Kavukcuoglu,
2018).

2.2 Latent Representations

Learning useful representations of the data without supervision is a key challenge in ma-
chine learning. The first models that provided a non-supervised solution for an efficent
data representation are the so called Autoencoders (Bank, Koenigstein, and Giryes, 2021).
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They consist of and Encoder Eθ′ , which is the first part of the model and maps the data x
to a lower-dimensional representation z. Then, a Decoder Dθ′′ reconstructs the original data
sample from z to x. The training objective of the model consists of the reconstruction loss
which usually is done by means of the Mean Squared Error. That is, if fθ = {Eθ′ , Dθ′′} is the
autoencoder and x̂ = fθ(x) = Dθ′′(Eθ′(x)) is the reconstruction, then Lrec = MSE(x, x̂).

Although they provide a feasible solution for dimensionality reduction and data com-
pression, autoencoders suffer from a lack on diversity and provide a narrow latent space,
due to their deterministic nature. They fail specially for generation related problems, where
we not only want to represent an element of the data, but a distribution of its features in the
latent space. Thus, the goal is to estimate a latent distribution were we can sample a latent
element and then reconstruct a never-seen element.

Another approach to this issue comes trom the hand of GANs (Goodfellow et al., 2014),
where latent representations play a crucial role. GANs are a type of generative model that
consists of two parts, a generator Gθ and a discriminator Dϕ. The former is trained to gen-
erate samples from a latent space z, the latter learns to distinguish between real and fake
samples.

Once trained, the latent space can be used to generate new elements by sampling from
a latent distribution pz and feeding the samples to the generator. GANs excel at generating
high quality samples and are able to generate novel outputs. However, they are known to be
unstable and hard to train, and they suffer from mode collapse, where the generator learns
to produce limited outputs, failing to capture the diversity of the data distribution.

As an alternative to GANs, and extending the latent space of the Autoencoders to a
stochastic one, we find the Variational Autoencoders (Kingma and Welling, 2019, Kingma
and Welling, 2022). Recent advances in generative modelling rely on the use of a type of
VAE to work on a better representation of the raw data (Rombach et al., 2021)). Funda-
mentaly, VAEs are also composed of two parts, an encoder and a decoder. The difference
is that it learns stochastic mappings between the observed space x ∈ D ⊂ RD, whose em-
pirical distribution is qdata(x) is typically complicated, and a latent space z ∈ Rd, whose
distribution can be relatively simple – and usually d < D. They are considered as a type of
generative model whose intricate training objective can be reduced to the minimization of
the Variational Lower Bound 2.5.

VAE models can be divided into two categories, regarding the type of the latent space.
On the one hand, we have the continuous representations, that follow the above mentioned
approach and the latent variables live in a continuous space. Sampling from a latent distri-
bution that is not restricted by an adversarial, contrary to GANs, permits generating highly
diverse and feasible samples. Despite their huge success, such models suffer from large
variance, which makes them hard to train and unstable. On the other hand, we have the
discrete representations, where an extra step is added to the encoder to quantize the latent
space. Quantization is usually done by means of a technique called Vector Quantization
(VQ), which does not suffer from large variance, while also avoids the "mode collapse" prob-
lem (Kingma and Welling, 2019). We will focus on the latter, since it is closely related to the
topic of this thesis.

2.2.1 Vector Quantized Variational Autoencoders

Introduced by Oord, Vinyals, and Kavukcuoglu, 2018 VQ-VAEs are a type of VAE that uses
VQ to discretize the latent space. The key idea is to define a set VK of K vectors of dimension
d, VK = {ei}i∈[1,...,K], namely a codebook. Then, for each row x of x, the output of the encoder
zE(x) is projected to the nearest vector in the codebook, namely, zq(x), see Figure 2.1.

Two things can be observed from this definition. First, now each z can be represented by
a sequence of integers k1, k2, ..., kn, where ki ∈ {1, ..., K}. Second, there is no real gradient to
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FIGURE 2.1: VQVAE architecture. A sample is encoded into a sequence of
tokens, which are then decoded back to the original.

be computed, so the authors propose to use the Straight-Through Estimator (STE) technique,
and skip the quantization by copying the gradients from the decoder input to the encoder
output. With this, the quantization is only used during the forward pass of the optimization
algorithm, and the gradients remain unaltered between the encoder and the decoder when
backpropagating. This makes sense since the latents before and after quantization live in
the same space, so the gradients contain useful information for the encoder to lower the
reconstruction loss. The training objective adds a codebook loss and a commitment loss to
the reconstruction loss. The former updates just the codebook vectors, and the latter updates
just the encoder output. This is done to make sure that the encoder commits to a codebook
and the encoder’s output does not drift away from it. The total loss is

L = log p(x|zq(x)) + ||sg[ze(x)] + e||+ β||ze(x) + sg[e]||, (2.7)

where sg is the stop gradient operator, which is the identity during the forward pass and has
partial derivatives of zero during the backward pass to avoid updating the gradient, and β
is a hyperparameter that controls the strength of the commitment loss.

This model has been shown to be very powerful in the field of image generation, for
instance in Esser, Rombach, and Ommer, 2021, they use a VQVAE to encode images into
sequences of integers (or tokens) and employ a transformer to generate high resolution im-
ages. However, the model is not limited to images, and it can be used to encode any type of
data. In particular, in this thesis we will follow a similiar approach to encode motion into a
sequence of binary tokens.

2.3 Latent Diffusion Models

The first work on latent diffusion models was introduced by Rombach et al., 2021. Similar to
Ho, Jain, and Abbeel, 2020, they proposed to use a diffusion model to generate images, but
running the diffusion process after a VAE, in the latent space, instead of the raw data space.
This approach cuts down dramatically the training cost of high resolution generators and
makes the inference speed faster. It is motivated by the fact that the semantic information
of the data (an image in this case) remains after a compression of the image. There are two
important things to notice from their proposed method.

First, the Autoencoder is specifically designed in such a way that the latent space has
a perceptual correlation with the data space. This is done by choosing a well suited ar-
chitecture for the encoder and the decoder which use convolutional layers to capture local
correlations. It is also done by minimizing the perceptual loss (Zhang et al., 2018) between
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FIGURE 2.2: Architecture of the latent diffusion model. A sample is encoded
to to latent space, and a U-Net is used to learn the reverse process of the dif-

fusion model, given a condition. Then, the denoised sample is decoded.

the data and the reconstructed data, and adding an adversarial loss (Yu et al., 2022) that dis-
criminates where a patch of the reconstructed image comes from the original image or from
the generator. This makes the latent space to be a good representation of the data space, and
it allows the diffusion model to generate high quality fine grained samples.

Second, by reducing to a perceptually simplified space, they exploit a property of the
inductive bias in diffusion models which makes them particularly well suited for long-range
signal generation. That is, the diffusion process deals with the compostition and semantic
structure of the data, and leave the details to the decoder.

The training phase can be divided into two parts, where the VAE is trained to encode
the data and then the diffusion model is trained over the latent space, or both models can be
trained jointly. Also, any of the already discussed guiding techniques can be added to gen-
erate specific samples. In particular, they propose using a U-Net feeded with cross attention
layers to embed the conditioning as a denoising function.

2.4 Binary Latent Diffusion Models

Since their introduction, latent diffusion models have been improved in several ways un-
til achieving outstanding results in diverse fields and increasing the inference speed to the
point of being able to generate high resolution images in almost real time (Sauer et al., 2023).
However, although the leading research path has been on improving the Gaussian side of
the diffusion model, there are other lines of research that explore the use of other distribu-
tions. This can be beneficial for several reasons. For instance, the nature of the data might
be better represented by a different latent space, or the diffusion process might be more ef-
ficient in a different context. In particular, in this thesis we will focus on the recent work of
Wang et al., 2023, where they propose to use a binary latent space instead of a continuous
one and build a diffusion model on top of it, introducing the Binary Latent Diffusion Model
(BLD).

The main idea of the paper is inspired by Esser, Rombach, and Ommer, 2021, where they
propose to use a VQVAE to encode images into sequences of integer tokens, which can be
seen as one-hot vectors. Then, a transformer is trained to predict the next element of the
sequence to generate high resolution images. This approach is very powerful, but it suffers
from a lack of expressivity in the latent space. On the other side, latent diffusion models
do not face that problem but relay on a very intensive training process which is computa-
tionally expensive. The BLD model combines the best of both worlds by representing a data
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point as a sequence of tokens, where each token is a binary vector instead of a one-hot or a
continuous vector. This allows the model to provide compact yet expressive representations
of the data. Also, they show that by means of a Bernoulli diffusion process it is more efficient
to train the model, and it is possible to achieve similar results to the ones obtained by LDM,
with 16 times less inference steps, without using any test-time acceleration techniques. This
puts the BLD model in a promising position to be used in real applications and test it in
different data modalities. Furthermore, using a compact yet expresive representation can be
particularly useful when working with motion data, as we will see in the next chapter.

2.4.1 Binary Representations

Given a data point x ∈ D ⊂ RD, the goal is to learn a bidirectional mapping between itself
and its binary representation, that is an autoencoder. Since they introduce their method
with images, we will focus on that data modality, but the model can be extended to any
other source of data, as we will see in the fore coming chapters. Therefore, we will consider
x ∈ Rh×w×3 to be an image of height h, width w and three RGB channels.

The first step is to train an image encoder Eθ , which uses 2D convolutional layers and
a ResNet architecture together with a downsampling factor of k to encode the image into a
real-valued latent tensor y = Eθ(x) ∈ Rh/k×w/k×d, where d is the latent dimension. Then,
before quantization, a sigmoid σ is applied to normalize the output of the encoder to the
range [0, 1].

The quantization into binary vectors can be done in two ways, deterministically or stochas-
tically. In the former, the encoder output is thresholded

z = (σ(Eθ(x)) > 0.5).

In the latter, we sample from a Bernoulli distribution and get

z ∼ Bernoulli(σ(Eθ(x))).

Note that in both cases the method does not permit gradient propagation so the STE tech-
nique is used to copy the gradients from the decoder input to the encoder output,

z̃ = STE(z) = sg[z] + y − sg[y].

Finally, the decoder Dθ′ is given z̃, which is binary an identical to z and is trained to
reconstruct the image from the binary representation, x̂ = Dθ′(z̃).

FIGURE 2.3: Binary VAE. The encoder maps the image to a latent space where
Bernoulli vectors are sampled. Then the decoder reconstructs the image from

the binary representation.

The training objective is different from the VAE model, since there is no need to esti-
mate the posterior data distribution. Instead, the goal is to minimize the reconstruction
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loss between the original image and the reconstructed image, which is given by a weighted
combination of the Mean Squared Error, the Perception Loss and the Adversarial Loss, as in
LDM,

L = ωMSEMSE(x̂, x) + ωPLP(x̂, x) + ωALA(x̂, x).

Once trained, on the one hand, the autoencoder is able to encode any image in a much
expressive way than a one-hot vector, for instance, a 32-bit binary vector can represent 232

different values, which is much more than the 32 values that a one-hot vector can represent.
On the other hand, the image information is compacted over less bits compared to a real-
valued, authors showed that an 8k-bit binary representation compares to a 131k-bit real-
valued representation.

FIGURE 2.4: Heuristic comparison of model expressivity between the binary,
continuous and quantized latent spaces.

2.4.2 Bernoulli Diffusion Process

Designing a diffusion process specifically tailored to model binomial like distributions is
key for the efficiency of the model. As already discussed in the beginning of this chapter, a
diffusion process is defined by a Markov chain that gradually transforms a distribution into
another. This time, since we are working with binary tensors, the target simple distribution
is a binomial, thus the diffusion kernel is similar to 2.2. The procedure is the same but taking
into account that now the input of the diffusion model is the distribution of the latent codes
q(z(0)) = qlatent(z), hence the diffusion process becomes

q(z(0...T)) :=
T

∏
t=1

q(z(t)|z(t−1)), where (2.8)

q(z(t)|z(t−1)) = B(z(t); z(t−1)(1 − βt) + 0.5βt). (2.9)
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With a large enough T, the diffusion process will transform the complex distribution into
B(z(T); 0.5). Parting from a sample z(0) and with 2.9, we can compute the posterior distribu-
tion of the latent codes in a closed form given an arbitrary step t,

q(z(t)|z(0), z(T)) = B(z(t); ᾱtz(0) + bt), where
ᾱt = ∏t

i=1(1 − βi),
bt = (1 − βt)bt−1 + 0.5βt, and b1 = 0.5β1.

(2.10)

The next step is to define the reverse diffusion process, which is done by training a model fθ

to estimate the kernel p(z(t−1)|z(t)), so we obtain

pθ(z(t−1)|z(t)) = B(z(t−1); fθ(z(t), t)).

However, training fθ to model the kernel can be challenging as it needs to accurately regress
the sophisticated interpolations between z(0) and z(T). Therefore, the authors propose two
different approaches, either to predict z(0) directly at each step, or to predict the residual
similar to the DDPM model.

• Direct Prediction: In this case, the model estimates directly the denoised sample at
eacht step t,

ẑ(0) = fθ(z(t), t).

In practice, fθ is implemented as a transformer that takes as input the binary sequence
z(t) and predicts the logits of ˆz(0) at each step. Then, during inference, we can recover
the denoising kernel by the factorization property of a conditional Bernoulli distribu-
tion,

pθ(z(t−1)|z(t)) =q(z(t−1)|z(t), z(0) = 0)pθ(z(0) = 0|z(t))
+ q(z(t−1)|z(t), z(0) = 1)pθ(z(0) = 1|z(t)),

and the Baye’s rule,

q(z(t−1)|z(t), z(0)) =
q(z(t)|z(t−1), z(0))q(z(t−1)|z(0))

q(z(t)|z(0))
.

Finally, by following the schedule given by 2.10, we have

pθ(z(t−1)|z(t)) = B(z(t−1)| [(1 − βt)z(t) + 0.5βt]⊙ [ᾱ fθ(z(t), t) + 0.5bt]

Z
), (2.11)

where

Z =[(1 − βt)z(t) + 0.5βt]⊙ [ᾱ fθ(z(t), t) + 0.5bt]

+ [(1 − βt)(1 − z(t)) + 0.5βt]⊙ [ᾱ(1 − fθ(z(t), t)) + 0.5bt],

and ⊙ is the element-wise product. The authors provide empirical evidence to show
that this approach is more efficient than the naïve one since the target at each step is
the same, z(0), which is strictly binary.

• Residual Prediction: In this case, the model fθ is trained to predict the residual be-
tween the input sample z(0) and the noisy sample z(t). Therefore, the target variable is
z(0) ⊕ z(t), where ⊕ is the XOR operator. Then the original sample can be recovered
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FIGURE 2.5: Bernoulli Diffusion Process.

by
ẑ(0) = (1 − z(t))⊙ fθ(z(t), t) + z(t) ⊙ (1 − fθ(z(t), t)),

and the same reasoning as in direct prediction can be applied to recover the denoising
kernel for inference.

The training objective is simplified in a similar fashion to DDPM, by minimizing the
Binary Cross Entropy (BCE) between the target (either z(0) or z(0) ⊕ z(t)), and the prediction.
Through experimentation, they also propose to use a small λ-weighted regularization term,
which consist on adding a penalty to the prediction of the model based on the Lvlb 2.5. The
total loss for the diffusion process is given by

L = Et,z(0)BCE( fθ(z(t), t), target) + λLvlb. (2.12)

The competitive results obtained after experimentation suggest that their approach to
diffusion models is a promising one. In particular, one of the main advantages is that the
model efficiently generates high quality samples with a small number of inference steps.
Their study shows good results with as few as 8 denoising steps, which in turn DDPM
would require 100 to perform comparatively well (Wang et al., 2023). Also, the expressive
and compact binary representations seem to be a good choice to better represent other types
of data besides images. Based on this we propose to use the BLD model to efficiently gener-
ate high quality samples of motion.
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3 Text-to-Motion Models

As previously discussed in the introductory chapter, text-promoted human motion synthe-
sis encounters several critical challenges. Firstly, the scarcity of large-scale motion datasets
and the inherent complexity of non-linear and articulated human motion, pose common
obstacles in the realm of Human Motion Generation. Secondly, the absence of a clear and
well-defined mapping between text and motion necessitates models to learn intricate map-
pings capable of capturing the semantic nuances of text and generating diverse, plausible,
and realistic sequences of movements. Thirdly, the absence of a clear and well-defined eval-
uation metric complicates the comparison of different models’ performance. In this chapter,
we delve into a review of the main contributions from state-of-the-art models, categorizing
them into two primary paradigms: diffusion-based models and transformer-based models.

State-of-the-art Review

Using a text description to create from scratch a sequence of human motion is somewhat
related to the task of action-to-motion generation, which usually uses a one-hot vector to
synthesize a movement. A text sentence, however, is a more complex representation of an
action, and it is not clear how to map it to a vector useful for motion generation. Several
natural language processing techniques can be used to extract a vector representation from
a text sentence, such as word embeddings, sentence embeddings, or learned transformers.
Besides, the first models that were proposed to the tackle text-to-motion (T2M) problem
were based on the use of GANs and word embeddings (Sohl-Dickstein et al., 2015, Ahn et
al., 2017). The standard has shifted towards the use of foundational models. For instance,
CLIP (Radford et al., 2021), which is a pre-trained vision-language model that represents
images and text in a common space, is used in most of the recent T2M models to align the
text and motion representations. A relevant work that implemented CLIP successfully, as
a guide for text-promting motion generation, is MotionCLIP (Tevet et al., 2022). Another
example is the use of a pre-trained transformer-based model, such as GPT or BERT (Jiang
et al., 2023, Zhang et al., 2023b), which can be fine-tuned to encode the text description into
a sequence of tokens that can be used as input to a text conditioning layer.

The raise of diffusion-based models and VQ-VAEs has been a key factor in the devel-
opment of the subsequent models, increasing the performance of the models and reaching
higher levels of state-of-the-art. In this section we will review the main contributions of last
years regarding both paradigms. In particular, we will focus on the models that apply dif-
fusion in a continuous motion domain, and the models that use a VQ-VAE to encode the
motion in a discrete fashion.

3.1 Diffusion Models for Text-to-Motion Generation

Inspired by the success of diffusion models in the field of image generation, efforts have
been made to apply these models to HMG. Two of the worth mentioning attempts are Zhu
et al., 2023 and Chen et al., 2023a, presenting Motion Diffusion Models (MDM) and Motion
Latent Diffusion (MLD) respectively. Since one of the goals of this thesis is to explore the
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use of diffusion models for T2M generation, we will delve in detail the main contributions
of both models.

Consider D to be a dataset of pairs (x, c), where x ∈ RDxL is a sequence of L frames of
dimension D, according to the type of motion representation used, and c is a text prompt
describing the movement in x. The goal of diffusion models is to learn the conditional distri-
bution q(x|c), by tunning the parameters θ ∈ RN of the model fθ(x, c), being N the number
of parameters.

• MDM’s (Zhu et al., 2023) authors propose using a diffusion model over the human
motion data domain. They show remarkable results and provide empirical evidence
of the capacity of diffusion models to solve the many-to-many problem intrinsic to
HMG. Their model’s backbone differs from the standard U-net architecture. Instead, a
lightweighted transformer-based architecture is used, since it better fits the temporal
and non-spatial nature of the data. The T2M is implemented by encoding the text
description with CLIP and freezing its parameters, τ(c). The motion sequence x(0)

goes through a series of T diffusion steps in a forward manner. Then the model instead
of predicting the noise ϵt ∼ N (0, σ2), at each step, it reconstructs the original sequence
x̂(0) = fθ(x(t), τ(c), t). The simple training objective is modified to this end,

Lsimple = Ex(0)∼q(x(0)|τ(c)),t∼[1,T]

[
∥x(0) − fθ(x(t), τ(c), t)∥2

2

]
.

The total loss is complemented with geometric losses common in the motion domain,
that enforce physical properties and prevent artifacts. These regularization terms are
the velocity loss, the foot contact loss, and the joint position loss (in case f predicts
angles instead). The model is ilustrated in figure 3.1.

During training, each noised sequence x(t) goes through a linear embedding layer and
the CLIP encoding as well as the timestep is concatenated to the sequence. Then, ev-
erything is inputed to a positional encoding layer, and a transformer encoder. Finally,
the first element of the resulting sequence is discarded, and the rest is the reconstruc-
tion x̂(0). Since the transformer uses a self-attention mechanism, the model is time-
aware and able to capture the long-term dependencies of the motion sequence.

At inference time, as the model predicts x̂(0) given x(t), instead of the noise ϵt, the
prediction is noised back to x(t−1). This procedure goes from t = T until t = 1, and the
final sequence is the generated denoised motion.

FIGURE 3.1: On the left, the training procedure. On the right the sampling of
new motions.

Although MDM’s approach is simple and effective, it has some limitations. Diffusion
on raw motion sequences is inefficient and is resource demanding. Besides, the data
coming from motion capture systems usually contain high-frequency noise, which
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might interfere with the performance of the model. One effort to overcome these lim-
itations is to use a VAE to encode the motion sequence into a low-dimensional latent
space.

• MLD (Chen et al., 2023a) draws inspiration from the success of latent diffusion mod-
els. The authors propose a novel framework for T2M generation, where the motion is
encoded into a latent space, previous to the diffusion process, then they sample from
the latent space a sequence of latent vectors, and finally decode it to a sequence of
motion frames.

To this end, they build a transformer-based VAE. The encoder receives the motion
sequence x and learnable distribution tokens as inputs, the encoded tokens are em-
ployed as Gaussian parametes µx and σx to sample a latent vector z ∈ Rn×d. Here n
is the number of layers and d is the dimension of the latent space. Then, the decoder
is trained to reconstruct the original sequence x̂, only by means of the Mean Squared
Error (MSE) loss and the Kullback-Leibler (KL) divergence. To do so, a sequence of
zero motion tokens 0, with the same length as x is used as input and the latent vector
z is added via cross-attention. Thus, z ∼ N (µx, σx) = N (Eφ′(x)), x̂ = Dφ′′(0, z), and

LVAE = MSE(x, x̂)) + ωKLDKL(N (0, 1)||N (µx, σx)), (3.1)

where ωKL is a hyperparameter that leverages the importance of the KL divergence.
Their proposed VAE presents stronger motion reconstruction capabilities and richer
diversity than previous similar models (Petrovich, Black, and Varol, 2022).

The second step of the model is the diffusion process. Similar to MDM, they use a
transformer-based model with long skip connections to better fit the sequential data.
They follow the same diffusion process as in DDPM (2.1.3), where the noise is added
to the latent vector z(0) and the model predicts the random noise ϵ ∼ N (0, 1) at each
step. The conditioning of the text prompt is done in the same way as in MDM, by
encoding the text description with CLIP and freezing its parameters. However, they
also experiment with other learnable transformer-based text embeddings, τϕ. As they
follow the DDPM diffusion process, their simple training objective is the same as in
2.6.

At inference time, random noise is sampled from N (0, 1) and a text prompt c is given
to the model. Both, c and timestep t are embedded and concadenated to the latent
vector z(t), to predict ϵt = fθ(z(t), τϕ(c), t). Then, the latent vector is denoised to z(t−1)

and the process is repeated until t = 1. Finally, the latent vector z(0) is used as memory
in the decoder’s cross-attention, together with the zero motion tokens 0, to generate a
new motion sequence. Figure 3.2 ilustrates the MLD model architecture and training
procedure. Experiments show that the model’s ability to generate diverse and realistic
motions is highly dependent on the quality of the latent space. Empirical evidence
shows that a smaller latent space leads to better results, which lead to choose a latent
dimension of size n = 1 and d = 256. In this manner, the entire motion is encoded into
a single latent vector.

Both approches, MDM and MLD, implement classifier-free guidance 2.1.4, to align the
text and motion representations. During training, the conditioning dropped out, c = ∅ with
10% of probability, forcing the model to learn unconditional motion generation. Durin sam-
pling, the model receives a text prompt and generates a motion with a linear combination
of the unconditional and conditional predictions.

Within the two approaches, MLD present better results than MDM. However, both mod-
els demonstrate that diffusion-based techniques are able to properly harness the low-frequency
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FIGURE 3.2: MLD model architecture. On the left, the training procedure,
the model receives the noised sequence x(t) and the text description c, then it
predicts the reconstruction x̂(0). On the right, the sampling of new motions,

given T and random noise.

signals of human motion and generate realistic and diverse motions. Despite of this, there
are still some limitations that need to be addressed. First, the diffusion process is still slow
and resource demanding. Second, the models are not able to generate long sequences of
motion. The forth coming models tackle the problem from a different perspective, aiming
to avoid those limitations.

3.2 Discrete representations for Motion Generation

Auto regressive models have been the natural candidates to handle sequence to sequence
problems, and T2M can be seen as such. By factorizing distributions over the time dimen-
sion, predictions can be conditioned on past sequences of arbitrary length. However, the
main drawback of these models is that they are costly and inefficient to train. Additionally,
when applied to motion data, the models lead to unstable training and unrealistic predic-
tion. Furthermore, during inference, the models accumulate errors over time, which leads to
drifts and artifacts (Fragkiadaki et al., 2015, Martinez, Black, and Romero, 2017). Inspired by
the success of quantization techniques in the field of image generation, several works have
proposed the use of discrete representations for motion generation: PoseGPT (Lucas et al.,
2022), T2M-GPT (Zhang et al., 2023b), and MotionGPT (Jiang et al., 2023). Using a VQ-VAE
to encode the motion allows to train a model in a lower-dimensional discrete space. Thus,
an auto regressive learns to generate the motion by predicting a discrete sequence of tokens,
rather than regressing the motion directly. Heuristically, quantizing motion data into dis-
crete tokens can be seen as a way to reduce a complex and high-dimensional problem into
a sequence of "words", which can be handled by a language model, i.e. a transformer. We
will review in detail these models, since they are closely related to the work of this thesis.

As before, if D is a dataset of pairs (x, c), where x ∈ RDxL is a sequence of L frames of
dimension D, and c is a text prompt describing the movement in x, the goal of these models
is to estimate the conditional distribution q(x|c), by tunning the parameters θ ∈ RN of the
model fθ(x, c).

• Pose-GPT (Lucas et al., 2022) is the first model that uses a VQ-VAE to encode the
motion into a discrete latent space, and a transformer-based model to generate the
motion. Similar to 2.2.1, the motion x of length L is first encoded into a sequence
of latent vectors z = Eφ′(x) of length L′ ≤ L. In order to maintain the temporal
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structure of the movement, the encoder consists of a transformer encoder with causal
self attention.

Once encoded, the vectors are projected into a codebook of size K. The decoder is
also a transformer with causal self-attention, which receives the latent vectors zq and
outputs a sequence of motion x̂. Recall that, since quantization is not differentiable,
the gradients are replaced by the straight-through estimator and they use the standard
training objective for the VQ-VAE (2.7).

The next step consists in training the transformer-based auto-regressive model fθ(x, c)
After quantization, the latent vectors zq are represented by a sequence of integers k
of length L′, corresponding to the indicies of the codebook vectors. Then, given the
first j tokens k1:j, the transformer is trained to maximize the log-likelihood of the next
token kj+1. Contrary to diffusion models, human motion is generated sequentially by
sampling from the model, and feeding the generated token back to the input sequence.
The latent vectors can be recovered by projecting to the codebook vectors ei. It is
important to notice that expetimentally they tested the model on action-to-motion,
hence, c is a one-hot vector that indicates the action to be performed. However, as we
will see in the next studies, this can be easily extended.

• T2M-GPT (Zhang et al., 2023b) also proposes a VQ-VAE to encode the motion into
a discrete latent space, and a transformer-based model to learn the latent motion se-
quence. However, they use a slightly different approach.

First, the training objective of the VQ-VAE is enhenced with a reconstruction loss.

Second, the quantization strategy is different. Instead of a naïve quantization that
suffers from codebook collapse (Razavi, Oord, and Vinyals, 2019), they implement a
soft quantization strategy, and code reset, to improve the performance and avoid the is-
sue. The major change relies in the architecture of the encoder and decoder, where the
transformer is replaced by a series of one-dimensional convolutional layers, residual
blocks, and ReLu, similar to Esser, Rombach, and Ommer, 2021. Downsampling and
upsampling is performed by strided 1D-convolutions along the time dimension, to
harness the local temporal structure of the motion data into the latent variables. The
outcome of the encoder has length L′ = L/2l where l is the number of downsampling
layers. The decoder uses nearest inter for upsampling.

Predicting the next token is done similarly to the previous model. However, they
enable the use of a text prompt c, by embedding it via a frozen CLIP model. When
sampling, the model starts from the embedded text token and generates the motion
sequentially.

The method achieved state-of-the-art results, proving to be a competitive alternative
to the diffusion-based models. However it has a main drawback. Authors observed a
slight jitter on the legs and hands movement, they claim that this is due to the VQ-VAE
architecture, and proposed that with a better design could it be solved. Furthermore,
common to all the models seen until now, the models might miss some details of the
motion when given a long description. This is due to the problems inherited from the
text embedding layer, that is not able to capture the entire semantics of a long text and
encode it into a fixed length vector. The following approach aims to solve this issue by
tackling the task from a different perspective, that is understanding motion data as a
proper language.

• Motion-GPT (Jiang et al., 2023), similar to T2M-GPT, uses a VQ-VAE to encode the
motion into a discrete latent space, and a transformer-based model to generate the
motion. However the procedure is different. They note that human motion exhibits a
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semantic coupling similar to natural language, which is interpreted as body language.
Upon this observation, they propose to treat motion as a foreign language. In this
manner, the motion and language data are integrated together into the same vocab-
ulary. Their proposed framework uses exactly the same VQ-VAE architecture as the
previous model to create a "motion vocabulary". Thus, a sequence of motion x is en-
coded into a sequence of integers k, which are treated as words. Then, a model is
trained to jointly learn descriptions and movement combining the data into a single
vocabulary V = {Vt, Vm}. Following this reasoning, the training strategy is similar to
other text-to-text models, where the model predicts the next token from V given the
previous ones.

Despite the promising results obtained by MotionGPT, one limitation of the model
is that they assume that motion can be represented as a sequence of words. While
this assumption seems plausible, in practice the codebook is very limited to K vectors,
which might not be enough to represent the entire motion vocabulary. Based on this,
we propose using a Binary Latent Diffusion model, with a quantization strategy that
permits encoding motion token in a wider vocabulary. Recall that in the previous
chapter 2.4, we saw that the integers of the codebook can be seen as one-hot vectors of
size K, allowing only K different tokens. However, a binary latent vector of the same
size can represent 2K different tokens, a much higher degree of information.

These methods claim that motion data is highly redundant, specially when recorded at
high FPS. This redundancy can be exploited by a VAE and further compressed into a dis-
crete latent space with a VQ-VAE. We propose a similar approach, but using a compact yet
expressive latent space, given by a binary VAE 2.3. In other to achieve T2M, we propose
adapting the Bernoulli diffusion process to the binarized motion data, exploiting the diffu-
sion model’s generation capabilities.
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4 Methodology: Motion Binary Latent
Diffusion

Chapter 3 highlighted that current state-of-the-art models in HMG predominantly employ
either Diffusion Models or VQ-VAEs with a transformer architecture. The former models
showcase the effectiveness of a diffusion process in destroying motion data through the
addition of noise, followed by successful reconstruction. Chen et al., 2023b outperforms Zhu
et al., 2023 in both performance and cost-efficiency. In alignment with these findings, we
propose incorporating a VAE as a precursor to the diffusion model. Despite the remarkable
outcomes achieved by these models, diffusion models for motion data generation have been
surpassed by models that use a discrete representation for motion data.

Radically different to motion diffusion models, Jiang et al., 2023, Zhang et al., 2023b and
Lucas et al., 2022, introduced the use a VQ-VAE. Paraphrasing the authors of MotionGPT,
the intrinsic semantics within a human movement have a correspondance with natural lan-
guage, which we call body language. In this sense, the three models are deeply related.
Adding a vector quantization to the VAE, which uses a finite codebook to encode motion
data into tokens, translates sequences of poses into "words". A tokenized movement is noth-
ing else but a sentence written in an imaginary language, in which one can either look for
the likemost probable subsequent word based in a text conditioning, or merge text and mo-
tion and learn both languages at the same time. These models effectively generate plausible
and diverse sequences of movement, outperforming the existent diffusion models. Despite
of that, such models are very sensitive to a proper training of the VQ-VAE as Zhang et al.,
2023b point out. We observe that although there exists a semantic coupling between human
motion and natural language, body language can be more subtle, intricate and diverse than
mare "words". Therefore, we require a quantization method that allows for a wider expres-
sivity. Note that an action can be performed in several ways and each pose may require the
semantic meaning of many words to be properly represented. For instance, running can be
fast or slow, can have an intention and be a happy run or an agressive one, can be in a specific
place, or interacting with another entity in a scene. Hence, the latent poses of the movement
may not be well represented in a single word, they may require from the vocabulary of the
codebook the "words" with semantic meaning, "run", "slow", "happy", "mountain", besides
other words describing physical posture, behaviour or purpose of the motion. Furthermore,
at every step, the meaning of the pose can change, at least the physical posture itself, lead-
ing to a different representation. With this in mind, after quantization we do not want a
one-hot representation, which would be picking one word of the dictionary, but a binary
vector representation, that is vector of zeros and ones indicating which are the useful words
within the codebook that properly represents the encoded motion. The codebook size ot the
above methods is K = 1024, thus there are only 1024 possible motion tokens or latent pose
representations. However, as discussed in 2.4.1, a codebook of size K = 32 allow for 232 dif-
ferent token representations. We claim that by means of binary quantization, human motion
can be encoded in a much expressive manner leading to a richer generative model able to
synthesize high-quality motion data. To this end, inspired by the huge success of diffusion
models as generative priors in other data domains, we propose adapting the Binary Latent
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Diffusion model. In this section we will discuss different ways of motion binarization, dis-
cuss the adaptation of the BLD and detail the implementation of the Motion Binary Latent
Diffusion model.

4.1 Motion Binary Variational Autoencoder

Let the data domain D be a human motion dataset, x1:L ∈ D a motion sequence of length
L, and cx a text prompt describing the movement. Each frame of the movement consists
of a human pose represented by a vector of rotations of dimension J, thus xi ∈ RJ , for
i = 1, ..., L. Our goal is to define a Motion Binary VAE (MBVAE) similar to 2.3, that encodes
the motion sequence into a binary latent and reconstructs the original motion from it. Within
this section we provide a discussion on how to define the MBVAE and test different versions
inspired from the VQ-VAEs of the models from chapter 3. We will experiment with three
different types of latent space. First, we encode the motion frame-wise, that is, each frame
is encoded into a binary vector. Second, chunks of frames are encoded into a single binary
vector, reducing the length of the latent motion. Third, the whole sequence is encoded into
a single binary vector. We will refer to these three types of latent space as frame-wise, some-
frames and full-sequence respectively.

4.1.1 Frame-wise binary quantization

Directly applying the binary VAE from 2.3 to the motion sequence requires to encode each
frame into a binary vector. To this purpose, the convolutional layers of the original model
are replaced by 1-dimensional convolutional layers. Thus, if xi ∈ RJ is the i-th frame of
the sequence, the encoder extracts the local relation between the rotations of the pose and
encodes it into a binary vector of reduced dimension. To be more precise, a linear embedding
layer is applied to the input pose, reducing its dimension to J′ < J. Then, a 1D convolutional
layer with kernel size 3 and stride 1 is applied to the embedded pose. We use c′ of such
filters, thus the output after the convolutional step is a tensor of dimension c′ × J′. Then
a block of 2 residual layers, an attention layer and a final convolutional layer with kernel
size 3 and stride 2 are applied to the output tensor. The stride of the last CNN reduces
the dimension of the latent joints by a factor of 2, performing as a downsampling layer.
Repeating this process l times leads to a latent representation of dimension c× J′/2l . Finally,
another convolution with c filters kernel size 3 and stride 1 outputs a real-valued tensor of
dimension c × J′/2l . The latent space is then obtained by applying a sigmoid function to
the output tensor, and then a binary quantization. The decoder is the inverse of the encoder,
with nearest neighbor interpolation layers as upsamplers.

We propose two different ways of quantizing the motion latent space.

• Binary: As a first approach, we apply the binary quantization straightforwardly to
the latent space. This is, sampling from a Bernoulli distribution with probability of
success equal to the latent value, as in 2.4.1. Therefore, for any x1:L, and given the
encoder Eθ′ , for i = 1, ..., L, the latent representation of the i-th frame is zi = Eθ′(xi),
and the binary latent representation is bi ∼ Bernoulli(zi). The latent motion sequence
is then b1:L = (b1, ..., bL). The decoder Dθ′′ reconstructs the original motion from b1:L.

• BinaryVQ: The second approach is to apply the binary quantization prior to the VQ-
VAE. That is, we define a VQ-VAE as in 2.1, with codebook of size K, and then apply
the binary quantization to the latent space. Thus, for any x1:L, given the encoder Eθ′ ,
and the codebook CK, for i = 1, ..., L, the latent representation of the i-th frame is
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zi = Eθ′(xi), and the binary latent representation is bi = bin(zi). The binary quan-
tization function bin(·) is composed by a projection layer that maps zi ∈ Rc×J′/2l

to
bi ∈ {0, 1}K×J′/2l

, and a Bernoulli sampling layer. The resulting binary tensor bi is
then passed to the vector quantization layer, where the binary tensor is multiplied by
the codebook CK to obtain the quantized tensor qi. Heuristically, in this approach,
each column of the tensor bi is a binary vector of length K, with ones in the positions
of the vectors of the codebook that best represent the latent joint of the pose. The de-
coder Dθ′′ reconstructs the original motion from q1:L. Observe that both approaches
are equivalent, since the decoder Dθ′′ is the same in both cases, and in the first method
it could learn an implicit codebook inside its convolutional and residual layers. Figure
4.1 shows a comparison between both of them.

FIGURE 4.1: Top: MBVAE with BinaryVQ. Bottom: MBVAE with Binary. The
latter is equivalent to the former, since the decoder could learn an implicit
codebook inside its convolutional and residual layers. As input, a pose in

your favourite motion representation format. As output, its reconstruction.

4.1.2 Some-frames binary quantization

Although the frame-wise representation successfully encodes the motion sequence into a
robust binary latent space, it has a drawback. Poses in movement data are highly corre-
lated and redundant, specially when recorded at high frame rates. Therefore, encoding each
frame into a binary vector can be inefficient. To overcome this problem, in spirit of the
VQ-VAE from Zhang et al., 2023b and Jiang et al., 2023, we propose applying the 1D convo-
lutional layers along the temporal dimension, and then binarize the latent space. Therefore,
model is the same as the frame-wise binary quantization, but x1:L is processed sequentially,
that is, the kernel of the 1D CNNs moves along the L-dimensional temporal sequence, com-
bining the frames the kernel size permits. With the same notation as before, and the new di-
rection of the convolutional layers, the encoder extracts the local temporal relation between
the rotations of the pose and outputs z ∈ Rc′×L/2l

. Here, c′ can be seen as the latent joints
and L/2l as the number of latent frames. Binary quantization and decoding also remain the
same, only considering the new dimensions of the latent space.

When applying the binary quantization, each of the binary columns of length K of b =
bin(z) represents a latent frame. Therefore, the ones in the binary vector indicate which are
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the elements of the codebook that best represent the entire latent frame. Observe that this
representation is more compact than the frame-wise one, since it encodes the whole latent
frame into a single binary vector 4.2.

FIGURE 4.2: MBVAE with BinaryVQ and some-frames binary quantization.
As input, a sequence of the entire motion.

4.1.3 Full-sequence binary quantization

The semantic meaning of a movement is not only encoded in the poses, but also in the tem-
poral relation between them. In this sense, the frame-wise and some-frames binary quanti-
zation methods may not be able to capture the whole significance of the motion. Therefore,
we propose using the full-sequence binary quantization, that is, as in 3.2, the encoder pro-
cesses the whole sequence at once, and then binarizes the latent space. Then a transformer
decoder manages the latent representation as cross-attention context, and reconstructs the
original motion given a sequence of zero-motion tokens 0, as in MLD. Thus, x1:L is pro-
cessed all at once by the transformer encoder Eθ′ , and outputs the mean µx and variance σx
of a Gaussian distribution N (µx, σx) = N (Eθ′(x)). The binary quantization is done after the
sampling step, z ∼ N (µx, σx), thus b = bin(z). The decoder Dθ′′ reconstructs the original
motion from b and 0, leading to a sequence of poses x̂1:L = Dθ′′(b, 0). From the binary vector
quantized perspective this can be seen as choosing the best words from the codebook that
better represent the entire sequence, see Figure 4.3.

FIGURE 4.3: MBVAE with BinaryVQ and full-sequence binary quantization.
Input is also a sequence of the entire motion.

4.1.4 Training objective

As a simple training objective for the three methods, we propose to minimize a reconstruc-
tion loss between x = x1:L and x̂ = x̂1:L = Dθ′′(q1:L), that is, a weighted sum of the mean
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squared error and the smooth L1 loss. Observe that for the sake of simplicity, we do not
consider velocities and other features of the pose, but only the rotations,

Lrec(x, x̂) = ωMSEMSE(x, x̂) + ω1L1(x, x̂),

where ωMSE and ω1 are hyperparameters that weight the contribution of each loss. In
case of the full-sequence binary quantization, a further regularization term is added to the
training objective. Similar to the MLD variational autoencoder 3.1, the KL divergence be-
tween the prior distribution and the posterior distribution of the latent space is also consid-
ered, leading to the following training objective,

L(x, x̂) = Lrec(x, x̂) + ωKLDKL(N (0, 1)||N (Eθ′(x))).

Besides the reconstruction loss and the KL regularization, whenever we use a codebook,
we add a commitment loss to the training objective, as in 2.7. Additionally, recall that the bi-
nary quantization is non-differentiable, thus we use the straight-through estimator to back-
propagate the gradients.

4.2 Motion Binary Latent Diffusion Model

With a learned binary latent space, we propose adapting the Binary Latent Diffusion model
to motion data, introducing the Motion Binary Latent Diffusion (MBLD) model. The main
difference with the original model relies within the architecture of the denoising function.
In the original model, they use a transformer decoder with 2-dimensional attention layers.
However, in our case, the latent space is a binary vector, hence we propose using a similar
denoising function as in 3.1. That is, a transformer decoder with 1-dimensional self-attention
layers along the temporal axis that we denote by fθ . The reason why we use the same
architecture as in the MDM model is because it already has been proven to work well for
motion data in the raw motion domain, and we expect it to work well in the binary latent
domain, since the binary latent representation b1:L′ can be seen as a motion sequence of
length L′. Notice that b1:L′ has latent frames and latent joints or rotations, in concordance
with the input from the original model of the MDM.

We explore the performance of the model with the frame-wise binary quantization. In
this case, the sequence x1:L with textual description c is encoded to b1:L, and the Bernoulli
Diffusion Process 2.4.2 is applied. The denoising function fθ is trained to predict the flip
probability of each bit at each step of the diffusion process, given the text contidion. Recall
that the procedure begins with b(0)

1:L, where the superindex indicates the step of the diffusion
Markov chain. Then, at each step t, fθ estimates the binary tensor b(0)

1:L ⊕ b(t)
1:L, where ⊕ is

the element-wise XOR operation, or the original sample b(0)
1:L, as in BLD. When training, a

random step t is sampled from a uniform distribution t ∼ U (0, T), where T is the number of
diffusion steps. Adding noise to the binary latent space is done by the schedule 2.10 defined
in chapter 2, with a linear distribution of the βt. Additionally, the text c is embedded into a
vector of dimension d, projected to fit the dimension of the latent space by means of a linear
layer, and concatenated to the binary tensor. Classifier-free guidance is used to condition
the diffusion process with the text prompt 2.1.4, that is, at inference time, the denoising step
is computed by the following equation,

(1 + ω) fθ(xt, c, t)− ω fθ(xt, ∅, t).

Therefore, fθ must learn both, the conditional and unconditional denoising steps. Figure 4.4
ilustrates the diffusion process and sampling procedure.
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FIGURE 4.4: MBLD with frame-wise binary quantization. When training b(0)
1:L

is a sequence of binarized poses, encoded from the target motion. When sam-
pling, input is b(0)

1:L, a random binary tensor, and the models denoise it in
T = 256 steps.

4.2.1 Training objective

The training objective minimizes a weighted combination of the Binary Cross Entropy be-
tween the predicted and the true binary tensor from the XOR operation, and the KL diver-
gence between the prior and the posterior distribution of the latent space, as in 2.12, leading
to the following training objective,

L = Et,z(0)BCE
(

fθ

(
b(t)

1:L, c, t
)
, b(0)

1:L ⊕ b(t)
1:L

)
+ λLvlb, (4.1)

where Lvlb is the variational lower bound, i.e. the KL divergence 2.5, and λ is a hyperparam-
eter that weights the contribution of each loss. During training, we reconstruct the original
binary latent at each step with

b̂
(0)
1:L = (1 − b(t)

1:L)⊙ fθ(b
(t)
1:L, t) + b(t)

1:L ⊙ (1 − fθ(b
(t)
1:L, t)),

and keep track of an accuracy metric, which measures the percentage of bits that are cor-
rectly predicted by the denoising function.

4.2.2 Sampling

In order to generate new motion sequences from c, we start from a random binary tensor
b(t)

1:L sampled from a Bernoulli distribution with probability of success 0.5. Then, we run the
denoising process. At each step t we estimate fθ

(
b(t)

1:L, c, t
)

and fθ

(
b(t)

1:L, 0, t
)
, to compute the

classifier-free guidance. Then, from 2.11 we can compute the transition kernel pθ(b
(t−1)
1:L |b(t)

1:L)

and sample the next binary tensor b(t−1)
1:L from it. Repeating this process T = 256 times,

we obtain a sequence of binary tensors b(0)
1:L. Finally, we reconstruct the original motion

sequence by means of the decoder Dθ′′ , that is, x̂1:L = Dθ′′(b
(0)
1:L).



28

5 Experiments

The experimental results are presented in the following sections. The first part of the chapter
entails a discussion of the implementation details, evaluation metrics, and datasets. Subse-
quently, we delve into the results obtained by the MBVAE, offering a detailed analysis of
its performance across various experiments, emphasizing metrics such as reconstruction
loss. The last section focuses on the outcomes derived from the MBLD model, exploring
the influence of the diffusion process on the binary latent space and assessing its denoising
capabilities.

5.1 Experimental Setup

5.1.1 Text-to-Motion Datasets

Common human motion datasets that include text descriptions are scarce. The most rel-
evants are include KIT (Plappert, Mandery, and Asfour, 2016) and the recently released
HumanML3D (Guo et al., 2022). Since the latter is bigger and common to all state-of-the-
art models, we have decided to use HumanML3D. It is a large-scale dataset that contains
14, 616 motion sequences, along with 44, 970 sentences describing the motion. The motion
data comes from HumanAct12 and AMASS (Mahmood et al., 2019), which are collections
of several smaller motion captured datasets. Authors of HumanML3D have standarized the
motion sequences to 20FPS and to a default human skeletal template. Motion sequences
longer than 200 frames have been randomly cropped to fit this restriction. As a result each
motion clip is of minimum and maximum length of 40 and 200 frames, respectively. Each
pose xi of the motion x1:L, is defined as a 263-dimensional vector, which includes positions,
rotations and orientations of 22 joints, and a global root position.

5.1.2 Evaluation Metrics

Although assessing the quality of synthesized human movement is not a trivial task, sev-
eral metrics have been proposed to measure the performance of the models from different
perspectives. They can be summarized in three categories fidelity, diversity and condition
consistency (Zhu et al., 2023, Chen et al., 2023b). Following the autors of MLD and T2M-
GPT, we will focus on the following metrics; MSE, FID, DIV, MM, R-Precision and MMD,
each of them measuring a different aspect of the model’s performance.

Fidelity metrics aim to evaluate the overall quality of the generated motion.

1. Mean Squared Error (MSE): measures the average of the squared differences between
the prediction and the real motion. Relying solely on comparison to the ground truth
joints and rotations is not enough to assess the quality of the generated motion, since
countless of alternative sequences could be equally valid, but not similar to the ground
truth.

2. Fréchet Inception Distance (FID): estimates the distance between the distribution of
a feature space of the generated motion and the ground truth. The metric leverages
well-designed motion feature extractors, and uses the Fréchet distance between two
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multivariate Gaussians. To this end, given a generative model fθ and real data D, one
can synthesize an artificial dataset D′, to then fit N (µ, σ) and N (µ′, σ′), respectively.
Then, the FID is computed as follows,

FID = dF(N (µ, σ),N (µ′, σ′))2 = ∥µ − µ′∥2
2 + tr

(
σ + σ′ − 2(σσ′)

1
2
)
.

Diversity metrics aim to measure the model’s ability to generate different motions.

1. Diversity (DIV): measures the global diversity of the model by randomly splitting the
generated dataset into two sets of the same size S. Then

DIV =
1
S

S

∑
i=1

∥x̂i − x̂j∥2
2,

where x̂i and x̂j are two random samples from the two sets, respectively. In our exper-
iments we set S = 300.

2. MultiModality (MM): measures the diversity but conditioning to a set C of size C,
of different text prompts. To this end, consider the generated motion sequences that
satisfy a condition c ∈ C, i.e. D′

c := {x̂ ∈ D′ | c is a description of x̂}. Then, split D′
c

into two sets of the same size S′, and compute the diversity as before,

MM =
1

C · S′ ∑
c∈C

S′

∑
i=1

∥x̂c,i − x̂c,j∥2
2,

where x̂c,i and x̂c,j are two random samples from the splits of D′
c, respectively.

Condition Consistency metrics aim to measure the accuracy of the model to generate
motions that satisfy a given condition.

1. R-Precision: measures the accuracy of the model to generate motions that satisfy a
given condition. It ranks the Euclidean distances among the features of the generated
motion and the features of the ground truth, and averages the accuracy of the top-k
results.

5.1.3 Implementation details

Throughout the training process, the models leverage the HumanML3D dataset, and akin
to other methodologies, we employ CLIP ViT-B/16 as a text encoding prior. Such CLIP ver-
sion, encodes text into a vector of dimension d = 512. This standardized approach ensures
consistency and facilitates seamless integration with existing frameworks and datasets, con-
tributing to the reproducibility and transparency of the research outcomes. The models are
trained with the Adam optimizer and a learning rate of 10−4. The hyperparameters of the
training objective are set to ωMSE = 1, ω1 = 1, ωKL = 0.1. All versions run for 400 over the
training set of 1528 motion samples from HumanML3D, which are no longer than L = 196,
to avoid selecting randomly cropped clips, and no shorter than 150. We remain with 1528
different motion samples, with 4 descriptions each. Sequences are padded with zeros until
reaching the maximum length. The linear projection fits the J = 263 joints and rotations of
the motion poses into a J′ = 256-dimensional vector. The codebook size is set to K = 32
for the binary vector quantized models. For frame-wise models, the downsampling factor is
set to l = 4 and the inner channels of the encoder are c′ = 16, which leads to a latent space
of size 16 × 16. The some-frames models have downsampling factor l = 2 and a latens di-
mension 16 × L′, where L′ = 196/22 = 49. This is different in the case of the full-sequence
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models, where K = 256 and the latent space for the entire motion is reduced to size 256, as
MLD authors suggest (Chen et al., 2023b). The guidance weight for the Classifier-free Guid-
ance is set to ω = 0.5. Finally, the steps for the diffusion process and the sampling process
are set to T = 256, as in the BLD (Wang et al., 2023).

All the implemented models are developed using PyTorch and trained efficiently on a
single NVIDIA GeForce RTX 3090 GPU. The complete source code is accessible on GitHub
at motion-binary-latent-diffusion.

5.2 Comparisons on MBVAE

Experiments were undertaken to evaluate the performance of the MBVAE across various
models. The comparison involved assessing the capabilities of straightforward binary quan-
tization, binary vector quantization, and models without quantization. The goal of this
comparison was to determine the most effective approach for representing motion in a bi-
nary latent space. Noticeably, the latent space dimensions for frame-wise are the largest, at
16 × 16 × 196 for the complete motion, while the some-frames models have a latent space
of size 16 × 49, and the full-sequence models have a latent space of size 256. Therefore, the
frame-wise models have the most information about the motion at pose level. Consider also
that the binary latent space of the vector quantized models is a bit larger, since it is prior
to the codebook projection, thus, the binary latent spaces are of size 16 × 32 × 196, 32 × 49
and 256, respectively. The latent space of no quantized models is the default 32-bit float,
therefore we achieve up to a factor of 32 higher compresion rate. The table 5.1 summarizes
the memory footprint of a single motion sequence for each model embedded into the latent
space.

Model Binary Binary-VQ No-Quant
Frame-wise 50,176bits ≃ 6.3kB 100,352bits ≃ 12.6kB 1,605,632bits ≃ 200.7kB

Some-frames 784bits ≃ 0.1kB 1,568bits ≃ 0.2kB 25,088bits ≃ 3.1kB
Full-sequence 256bits ≃ 0.03kB 256bits ≃ 0.03kB 8,192bits ≃ 1.02kB

TABLE 5.1: Memory footprint of the different models for a latent representa-
tion of a motion sequence of 196 frames and 263 joints and rotations per pose.

The plots 5.1 indicate that frame-wise models exhibit superior fitting to the reconstruc-
tion loss, primarily owing to their richer information content about motion at the pose level.
Closely following are the some-frame models, which achieve a lower reconstruction loss
than the full-sequence models. In terms of MSE and L1 losses, the Binary and Binary-VQ
models perform similarly, while the no-quantized models achieve a lower loss. This dif-
ference is accentuated in the total loss, in the case of the VQ models, due to the codebook
loss 5.2. However, we can observe that if the binary space is large enough, i.e two times
bigger in our case, the frame-wise Binary can overcome the No-Quant some-frames model.
This is due to the fact that the binary latent space is able to capture the motion information.
Therefore, with this simple training objective, the binary latent space is able to achive com-
paratively similar results to the No-Quant models, despite the need of a similar memory
footprint in the latent space. This is a remarkable result, since it indicates that the binary
latent space is able to represent motion information, but it needs further regularization to
reduce the memory footprint effectively.

Regarding the codebook loss 5.2, we can observe that all models with Biinary-VQ achieved
a similar codebook even with different latent spaces and codebook sizes, 32 (frame-wise and
some-frames) and 256 (full-sequence). The codebook loss ensures the binary latent space is
as sparse as possible, choosing the minimum number of codewords to represent a binary

https://github.com/alex-pv01/motion-binary-latent-diffusion
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FIGURE 5.1: Comparison of the training losses between frame-wise, some-
frames and full-sequence.

vector. Therefore, it will never drop to zero, unless the model collapses. Thus, the fact that
all models achieve similar codebook losses indicates that the proportion of codewords used
to represent the binary latent space is comparable.

FIGURE 5.2: Codebook loss of Binary-VQ versions of the models at training
stage.

Full-sequence models face a trade-off between reconstruction loss and KL divergence,
which hampers the training process. Interestingly, even when removing KL regularization,
full-sequence models fail to achieve a lower reconstruction loss compared to frame-wise and
some-frames models 5.3. This discrepancy arises from their reduced ability to capture pose
information, resulting in a latent space that inadequately represents motion.

5.3 Exploration on MBLD

Since we observe that the binary latent space is able to represent motion information, we
proceed to test the performance of the MBLD through a two-pronged approach.

Experiment 1: Frame-wise diffusion. Initially, a diffusion model is trained on the la-
tent space of the frame-wise MBVAE, utilizing a codebook of size K = 32 for the BinaryVQ
versions. Notably, we observed a pronounced sensitivity to hyperparameter tuning, particu-
larly concerning the balancing weights of the losses. Remarkably, the model exhibits greater
stability when estimating the original poses b(0)

1:L instead of the flip probability—contrary to
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FIGURE 5.3: Left: KL regularization of full-sequence models. Right: Compar-
ison between models with and without KL regularization.

the suggestion of the BLD authors for image generation (Wang et al., 2023), see figure 5.4.
This is not surprising, since it is equivalent to predicting the original motion x(0)1:L, which is
the aim of the diffusion process in other relevant works, such as MDM (Zhu et al., 2023) or
BeLfusion (Barquero, Escalera, and Palmero, 2023). As we can see in figure 5.4, the model
struggles to minimize the BCE loss when predicting the flip probability. We can also ob-
serve that the VLB regularization term is not able to minimize and bounces back an forth
during the training process, depending on the level of noise of the sampled noise b(t)

1:L of
the Bernoulli diffusion process. Furthermore, if we take a closer look at the accuracy of the
model, we can see that the overall trend is to increase, although also done in a very unstable
manner. These results indicate that the model is able to recover the motion for the very first
steps of the diffusion process, but encounters challenges when denoising the motion for the
inherently noisy steps of the diffusion process.

Despite struggling to achieve complete denoising and resulting in a somewhat shaky
movement at inference time, the model successfully recovers the pose of the motion. This
implies that pose information encoded in the binary latent space can be effectively recon-
structed given a text prompt through a conditioned Bernoulli diffusion process, as depicted
in Figure 5.5.

FIGURE 5.4: Comparison between models with different prediction target:
flip probability and original pose.
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FIGURE 5.5: Sampled motion: "A person walks forward and slightly to the
left".

Experiment 2: Full-sequence diffusion. The initial experiment led us to the realization
that the binary latent space derived from the frame-wise MBVAE lacks sufficient regular-
ization for a denoising model to effectively approximate the reverse process of a Bernoulli
diffusion. Consequently, in a subsequent iteration, a diffusion model was trained on the la-
tent space of the full-sequence MBVAE. Despite yielding suboptimal results when compared
with the other autoencoders, this model is subject to additional regularization through the
inclusion of the KL loss, inherited from MLD (4.1.3).

In this second run, both the diffusion model and the MBLD model undergo training
on identical datasets, employing identical hyperparameters and completing the same num-
ber of epochs (2000). Notably, both latent spaces maintain a consistent size, constituting a
256-dimensional vector —one continuous (8,192bits) and the other binary (256bits). Evalu-
ation of the joint-level reconstruction loss, as depicted in Figure 5.6, reveals that the MLD
model achieves a lower reconstruction loss compared to the Motion Binary Latent Diffu-
sion (MBLD) model. It is noteworthy that the MBLD model exhibits signs of overfitting, as
evidenced by the increasing reconstruction loss on the validation set. This indicates that a
256-bit binary latent space rapidly harnesses the information of the training set, and begins
to memorize the training data without generalizing to the validation set. This may indicate
that the training set is not sufficiently large to achieve a more robust binary latent space.

For a comprehensive comparison of metrics, refer to Table 5.2. Firstly, it is important to
note that the MLD model does not achive the good results reported by the authors (Chen
et al., 2023b). In order to fit the computational demands, we have reduced the number
of layers of the diffusion model, used a smaller version on CLIP, used a smaller subset of
HumanML3D, and reduced the number of epochs. However, we are interested in compar-
ing the results of the MLD and MBLD models, which are trained on the same conditions.
The FID metric indicates what we have already seen in the plots; the MBLD, despite being
able to recover the pose of the motion during training, does not generalize well to the test
set increasing higher the FID. The other metrics, MM and DIV, indicate that both models
achieve a similar degree of diversity, which is remarable since the MBLD latent is 32 times
smaller. This suggests that the binary latent space is able to capture the motion information
into a compact yet expressive representation. Furthermore, regarding the top-k accuracies
of R-precision, both models behave similarly in terms of conditioning to a text prompt. The
reason why there is a large gap between in FID, but not in the other metrics, is due to the
fact that the FID, as well as the MSE and L1 losses, are fidelity metrics. Therefore, it is not
surprising that if MSE and L1 overfit, the FID will also overfit. However, the other metrics
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FIGURE 5.6: Reconstruction loss at joint level obtained by the MLD and MBLD
models. The MLD model is able to achieve a lower reconstruction loss than

the MBLD model.

measure different aspects of the motion, and remain similar. In light of these results, we
can conclude that the binary latent space is able to harness the motion information, rapidly
overfitting the training set, but not generalizing well to the test set. Hence, the binary la-
tent space may still require further regularization and a larger training set to achieve a more
robust representation of motion.

Model FID MM DIV Top-1 Top-2 Top-3
GT - - 9.5 0.514 0.705 0.797

MLD 17.504 4.744 5.284 0.03 0.062 0.093
MBLD 31.49 4.041 4.292 0.034 0.067 0.1

TABLE 5.2: Metrics obtained by the MLD and MBLD models on the test set.
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6 Conclusion

In this thesis we have explored the feasibility of representing motion through binary latent
spaces. To this end, we first reviewed the theoretical foundations of the Diffusion Models
and Variational Autoencoders, gaining insight into the inner working of these models. We
then discussed the Binary Latent Diffusion model, which introduces a Bernoulli diffusion
process to the binary latent space of a VAE.

Then, we curatioulsy examined the state-of-the-art in text-to-motion generation. We ob-
served that diffusion models have been successfully applied to the task of motion genera-
tion, but were surpassed by the more recent Vector Quantized-based models. Such models,
however, assume that motion can be represented as a small set of codebook vectors. We
claimed that this assumption is not always valid, and that binary latent spaces could be a
more suitable representation for motion.

We then proposed the Motion Binary Variational Autoencoder, a VAE that learns a bidi-
rectional mapping between motion sequences and binary latent spaces. We also introduced
the Motion Binary Latent Diffusion model, which extends the BLD model to the binary la-
tent space of the MBVAE.

Finally, we conducted experiments to assess the performance of the proposed models.
We observed that various iterations of the MBVAE successfully acquire a binary latent space
that accurately captures motion dynamics. However, upon introducing noise into the bi-
nary latent space, it becomes evident that the MBLD model, while capable of pose recovery
with meticulously fine-tuned hyperparameters, struggles with effective motion denoising.
The observed erratic movement stems from the diffusion model’s limitation in generalizing
motion, underscoring the need for additional regularization.

As a prospective course of action, we recommend incorporating an adversarial loss into
the latent space, aligning with the approach suggested by the authors of the LDM (Rombach
et al., 2021). To further enhance regularization, one could consider computing the recon-
struction loss of velocities and joint positions following forward kinematics. Additionally,
we propose leveraging the recently released MotionX dataset, renowned for its extensive
collection of motion sequences and detailed descriptions. We believe that greater improve-
ments can be achieved by training on this larger dataset, specially after realizing that the
model easily overfits the training data. Despite the models being trained on a relatively
small dataset and for a limited number of epochs, the outcomes obtained exhibit promise.
The results affirm that binary latent spaces, derived through a MBVAE, can effectively repre-
sent motion while concurrently posing the alternative of minimizing the memory footprint
of the models. Furthermore, the MBLD model’s proficiency in pose recovery implies that the
binary latent space could be effectively managed by a Bernoulli diffusion model if subjected
to further regularization.
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