
GRAU DE MATEMÀTIQUES

Treball final de grau

TOPOGEN:
TOPOLOGY-INFORMED
GENERATIVE MODELS

Autor: Jack Benarroch Jedlicki

Directors: Dr. Sergio Escalera

Dr. Carles Casacuberta

Realitzat a: Departament de Matemàtiques

i Informàtica

Barcelona, 10 de juny de 2024

Contents

Introduction v
Structure of the thesis . vii
Contributions . viii

1 Persistent homology 1
1.1 Simplicial homology . 1
1.2 Point clouds and filtrations . 4
1.3 Persistent homology . 6
1.4 Persistence modules . 7
1.5 Persistence diagrams and barcode space . 10
1.6 Stability . 10
1.7 Computation of persistent homology . 13

2 Differentiability through barcode space 14
2.1 Framework of differentiability through barcode space 14
2.2 Differentiability of barcode generators . 17
2.3 Differentiability of topological regularizers 21

2.3.1 Push functions . 22
2.3.2 Reininghaus dissimilarity . 23
2.3.3 Scaled Gaussian density estimators 24
2.3.4 Persistent entropy . 26
2.3.5 Bottleneck distance to a fixed diagram 27
2.3.6 Conditions for smoothness of the bottleneck distance 32

2.4 Selective regularizers . 35

3 Topology-informed generative models 38
3.1 Topological regularizers . 38
3.2 Environment for the experiments . 39
3.3 Synthetic experiments . 40
3.4 Topology-informed generative models . 41

3.4.1 Generative models . 41
3.4.2 Variational autoencoders . 41
3.4.3 TopoVAEs . 43

3.5 Experiments and results . 44
3.5.1 VAE structure . 44
3.5.2 Qualitative comparison . 45

3.5.3 Quantitative comparison . 45
3.5.4 Consistency across different VAE structures 47
3.5.5 Topogical regularizers in latent space 48

Conclusions and future work 50
Future work . 50
Conclusion . 51

Bibliography 52

A Experiments and results 54
A.1 Working principle of topology-informed VAEs 54
A.2 Scaled Gaussian density functions . 55
A.3 Synthetic experiments . 57
A.4 TopoVAE experiments . 59

A.4.1 Hyperparameters . 59
A.4.2 TopoVAEs and VAE0: qualitative comparison 59
A.4.3 Comparison across different VAE structures 64
A.4.4 Topological regularization in latent space 66
A.4.5 Summary of results . 69

A.5 Structure of VAE.B . 70
A.6 Algorithms and code . 71

A.6.1 Main algorithms . 71
A.6.2 Code . 71

B Supplementary material 73
B.1 Additional proofs . 73
B.2 Variational autoencoders: full derivation of the loss 76
B.3 Neural networks . 79
B.4 Information about image quality and diversity 80

B.4.1 Analysis 1: image quality . 80
B.4.2 Analysis 2: image diversity . 83

Abstract

The main goal of generative models is to learn an unknown distribution of data points
in a high-dimensional space. However, generative models often face challenges such as
mode collapse and time-extensive training processes. In order to address these problems,
we propose a new way of training generative models, which relies on the implementation of
topological regularizers extracting information from persistence diagrams. These topologi-
cal loss terms inform about meaningful features of the spaces formed by the true data and
the generated data, such as the presence of clusters, loops or higher-dimensional holes. We
provide original proofs showing that the functions used are stable with respect to the data
and generically differentiable, allowing their gradient descent based optimization. Some of
the results obtained in this thesis are new results extending the current knowledge of differ-
entiability through barcode space to more general classes of functions. As a consequence,
this work expands the current possibilities of differentiable topological regularization. The
developed topological regularizers are first tested in synthetic datasets, demonstrating their
ability to continuously deform point clouds in order to obtain ground truth topological fea-
tures. Then, the regularizers are tested in variational autoencoders in the FashionMNIST
dataset, and we observe that they provide an improved performance compared to their
non-regularized counterparts. Furthermore, these loss terms can be applied at any layer of
the generative models, opening new ways of controlling the performance of inner layers and
the spatial distribution of data codes in the latent space. We thus explore this possible line
of application, and the striking effects observed suggest that topological regularization may
be a useful ingredient for training generative models.

2020 Mathematics Subject Classification. 55N31, 62R40, 68T01, 68T07.

iii

Resum

L’objectiu principal dels models generatius és aprendre una distribució desconeguda de
punts de dades en un espai de dimensió alta. Tanmateix, aquests models sovint es troben
amb reptes com el col·lapse de modes i processos d’entrenament que requereixen extensos
períodes de temps. Per resoldre aquests problemes, proposem una nova manera d’entrenar
models generatius, que es basa en la implementació de regularitzadors topológics que ex-
treuen informació de diagrames de persistència. Aquests nous termes topológics de pèrdua
informen sobre característiques significatives dels espais formats per les dades reals i les
generades, com la presència de clústers, llaços o forats de dimensions superiors. Donem
demostracions originals del fet que els regularitzadors utilitzats són estables respecte a les
dades i genèricament diferenciables, permetent la seva optimització basada en el descens de
gradient. Alguns dels resultats obtinguts en aquesta tesi són nous resultats que amplien el
coneixement actual de la diferenciabilitat a través de l’espai de codis de barres a classes més
generals de funcions. Com a conseqüència, aquest treball amplia les possibilitats actuals
de la regularització topològica diferenciable. Els regularitzadors topològics desenvolupats
són provats primer en conjunts de dades sintètics, demostrant la seva capacitat per defor-
mar contínuament núvols de punts per obtenir característiques topològiques de referència.
Després, provem els regularitzadors en autoencoders variacionals en el conjunt de dades Fas-
hionMNIST i mostrem que proporcionen un rendiment notablement millorat en comparació
amb els seus homòlegs no regularitzats. A més, aquests termes de pèrdua es poden aplicar
en qualsevol capa dels models generatius, obrint noves maneres de controlar el rendiment de
les capes interiors i la distribució espacial dels codis de dades en l’espai latent. Així doncs,
explorem aquesta possible línia d’aplicació, i els efectes sorprenents observats suggereixen
que la regularització topològica pot ser un ingredient útil per a l’entrenament de models
generatius.

iv

Acknowledgements

I would like to to express my most sincere gratitude to Sergio Escalera, Carles Casacu-
berta, and Rubén Ballester.

I would like to thank Sergio for giving me the unique opportunity to conduct the Math-
ematics Bachelor Thesis under his co-supervision, for arranging such an amazing team, and
for the invaluable support, guidance, and advice. I would also like to thank Carles for the
invaluable advice and detailed explanations. And a special thanks to Rubén, this work
would have not been possible without your persistent support.

I would also like to thank all the previous mathematicians and scientists whose ground-
breaking contributions paved the way for this thesis, such as Carlsson, Zomorodian, Edels-
brunner, Cohen, Bauer, Leygonie, Kingma, Welling, and many others. This thesis is but a
humble grain of salt amidst the vast mountain of knowledge they have been building.

Introduction

This work merges two different realms of Mathematics and Artificial Intelligence: per-
sistent homology and generative models. We begin with brief overviews of each concept,
before delving into the details of our proposed methodologies.

Generative models are a class of machine learning models capable of generating new data
instances that resemble a given dataset. These models learn the probability distribution
of inputs, which allows them to sample from the distribution and generate new instances
consistent with the learned data distribution. Generative models can be used for data com-
pression, image generation, denoising, unsupervised feature learning, and so on. In general,
these models learn to reconstruct the distribution of the data using an intermediate step
where the data is encoded in a lower-dimensional space, the so-called latent space. However,
a problem most generative models face is the difficulty to learn the original distribution of
the data. For instance, generative adversarial models are prone to mode-collapse, i.e., the
generation of only a subset of the data; diffusion models require time-expensive training
processes, and variational autoencoders may learn a data distribution in the latent space
incompatible with the true data distribution, making them unable to generate realistic new
data [1].

On the other hand, persistent homology emerges from the field of computational alge-
braic topology as a tool providing topological features describing the "shape" of complex
data sets. For instance, given a point cloud in a (high-dimensional) metric space, persistent
homology can be used to estimate the number of clusters, the number and rough size of loops
formed by the data points, and the number of higher-dimensional holes. The information
captured by persistent homology can be summarized in so-called persistence diagrams or
barcodes. These objects can be seen as fingerprints of point clouds providing a description of
their shape, even when the concept of shape is something we cannot visually grasp. Given
the apparent usefulness of persistent homology, one could thus consider its use in generative
models. In fact, in 2018 Khrulkov and Oseledets merged these two concepts with the devel-
opment of the Geometry Score [2], a measure of the performance of generative adversarial
networks based on the comparison of persistence diagrams of the true and the generated
data. However, the method was created as an evaluation tool used outside of the training
process, only useful for comparison of models and hyperparameter tuning. Similarly, in
2019 Charlier et al. [3] developed PHom-GeM, a measure based on persistence diagrams
for comparing the nature of the true and the generated distributions by generative models,
and Schiff et al. [4] used in 2020 persistent homology for measuring and understanding how
information is encoded in the latent space of variational autoencoders (VAEs), when being
trained for predicting 3D molecular structures. But again, these metrics were used only for
evaluating the performance after training, and not as loss terms.

v

vi Introduction

In this work, we use persistent homology inside the training process. In particular, we
introduce a family of topological regularizers of generative models employing persistence di-
agrams arising from the true and the generated data. These regularizers are both stable with
respect to perturbations of the data and differentiable under mild conditions —two results
we prove in this work. The idea is that the minimization of these new loss terms can help
ensure that both the true and generated data point clouds have similar shapes. Hence, this
union seeks to enhance generative models with previously unexplored information related
to the shape of data.

Previous work on this idea is very recent and not extended [5, 6, 7, 8]. Chen et al. devel-
oped TopoGAN in 2020 [5], a generative adversarial network (GAN) that used information
from the persistence diagrams of individual images for generating images preserving topo-
logical properties such as connectedness and loopy-ness. However, this approach is limited
to very specific datasets (e.g., images of neurons or road networks) and can be extremely
time-expensive when working with large datasets, since an individual persistence diagram
has to be computed for each image. Similarly, Mezghanni et al. [8] developed in 2021 a dif-
ferentiable loss term based on persistence diagrams obtained from cubical complexes, with
the goal of introducing physical and topological information (such as connectivity) about
the shape of objects. The regularizer was applied on a GAN for generating 3D objects, and
the results were promising in terms of reconstruction quality. However, their method relied
on computing a persistence diagram for each 3D object, which can be time-consuming in
large datasets, and the scope of application of the method proposed is restricted to a very
specific type of problem. On the other hand, Moor et al. [6] developed in 2020 a topological
regularizer applied on the latent batches of an autoencoder and proved its differentiability
under weak theoretical assumptions. However, their study was limited to a single regu-
larizer, which remained untested on the output data. Moreover, while their experiments
managed to modulate latent vector distributions for two-dimensional latent spaces, they did
not enhance the quality or diversity of the generated images. It is also important to note
that, by the time of conducting this work, a new work was published [7] focusing on the use
of persistent homology for learning disentanglement. The authors developed a topological
loss term applied on VAEs and GANs relying on the Representation Topology Divergence
measure [9] for unsupervised learning of disentangled representations. Their method did
enhance disentangling according to several metrics; however its effect on the reconstruction
quality and diversity of generated images was not a focus of the paper.

Building upon these findings, this thesis expands the scope of topology-informed gener-
ative models by presenting a diverse set of topological regularizers and applying them on
generative models. The implementation of topological regularizers for training a variational
autoencoder is illustrated in Figure A.1, and can be summarized as follows. Take a gener-
ative model that produces images, songs, or any type of data that can be represented as
an array of real numbers, such as a variational autoencoder or a diffusion model, and view
each data element as a point in Euclidean space Rd for some value d. For instance, 32× 32

grayscale images are viewed as points in R1024. During each training iteration, a batch of N
data points is given to the model and N new points are generated as output. Then, some
measure of dissimilarity between the true and the generated data (e.g., binary cross-entropy
(BCE) loss) is computed and used as a loss function. When implementing our regularizers,
in each training iteration we compute the persistence diagram of the batch of N true data

Introduction vii

points, and the persistence diagram of the N generated points, both viewed as point clouds
in Rd. The two resulting persistence diagrams are then compared using some measure of
dissimilarity, and the regularizer captures this measure. As a consequence, the modification
of the weights of the generative model through backpropagation aims to produce data with
a spatial distribution that looks like the distribution of the true data. Furthermore, there
is also an extension of this method, illustrated in Figure A.1 and described in more detail
in Section 3.5.5, which relies on applying the topological regularizers on the batch of latent
vectors instead of the final outputs of the model, in order to control the distribution in the
latent space.

Structure of the thesis

In Chapter 1, we recall the mathematical foundations of simplicial homology and per-
sistent homology. We begin with an introduction to simplicial homology in Section 1.1.
In particular, we make an emphasis in the physical meaning of homology groups, which
justifies their use. Then, in Sections 1.2 and 1.3, we describe how to obtain the persistent
homology of a point cloud embedded in a metric space. In Sections 1.4 and 1.5 we follow
a sequence of transformations from persistent homology to persistence diagrams. We finish
the chapter with an essential property of persistence diagrams: their stability under small
perturbations of the initial point cloud. In particular, we provide in Section 1.6 a theoretical
bound of the stability of persistence diagrams with respect to perturbations of point clouds.

Chapter 2 delves into the differentiability of functions through barcode space, with the
goal of giving conditions for smoothness of the proposed topological regularizers. In fact,
the (generic) differentiability of these functions is the key ingredient for their gradient
descent based optimization with neural networks, making it an essential property for their
efficient implementation in generative models. However, topological regularizers are maps
of the form M→ Bar→ R, where M is a smooth manifold —which in practical scenarios
will often be some Euclidean space Rd—, and Bar is the space of barcodes. Due to the
structure of these functions, the proof of their smoothness is not straightforward. As a
consequence, we follow the differentiability framework defined in [10]. The idea, roughly
speaking, relies on decomposing a function M → Bar → R into maps M → Bar and
maps Bar → R, followed by proving, if possible, the differentiability of both maps, where
the concept of "differentiability" is a concept adapted to the structure of Bar. Then,
using a result analogous to the chain rule, one can show that the composition map is
actually differentiable with the usual definition of differentiability, i.e., as a map between
smooth manifolds. We thus begin in Section 2.1 with an introduction to the framework
of differentiability through Bar, and a proof of the chain rule in barcode space. Then, in
Section 2.2 we prove the generic smoothness of the barcode generator of degree p (via the
Rips filtration) Bp, with respect to the coordinates of the point cloud. Finally, in Section
2.3, which is original work except for Subsection 2.3.5, we prove the differentiability, under
certain conditions, of five different types of functions from the space of point clouds to
R, factoring through barcode space. In Section 2.4, we prove another new result, which
allows us to apply topological regularizers, which according to previous work would not
be differentiable, in a differentiable manner. This opens the possibility of applying new
topological regularizers in a differentiable way, such as persistent entropy-based regularizers.

viii Introduction

Finally, we experimentally test the effect of these loss terms in Chapter 3. We first prop-
erly define in Definition 3.1 five types of topological regularizers, and unify and summarize
their differentiability properties in Theorem 3.2, which stem directly from the work in the
previous chapter. We then begin with a set of synthetic experiments with deformable point
clouds in the plane in Section 3.3. Next, we apply the regularizers in variational autoen-
coders in Sections 3.4 and 3.5. We begin with a description of the working principle of
VAEs and of topology-informed VAEs, so-called TopoVAEs. Then, we conduct a series of
qualitative and quantitative tests comparing VAEs to TopoVAEs. The promising results
confirm that the regularizers have a positive effect on the learning process of generative
models, paving the way to the exploration of their use in other scenarios.

Contributions

The main theoretical contributions of this work are the following.

1. A stability bound for persistence diagrams arising from a point cloud embedded in a
Euclidean space (in Section 1.6).

2. Original proofs of several differentiability results from [10] (in Sections 2.1 and 2.2).
In general, unless stated otherwise, all proofs written down in this work rely on the
author’s own arguments.

3. The construction, in Sections 2.3 and 2.4, of six types of functions factoring through
barcode space that can be used as regularizers in generative models or as loss functions
in other machine learning problems. These functions are 1) push functions of any
degree; 2) the squared Reininghaus dissimilarity between two persistence diagrams;
3) the difference between the scaled Gaussian density estimators of two persistence
diagrams; 4) the squared difference between the 0-degree persistent entropy of two
diagrams; 5) the bottleneck distance to a fixed persistence diagram, and 6) selective
regularizers, which include, as a particular case, p-entropy regularizers. In addition,
function 3) is a new description of the density of points in a 0-degree persistence
diagram. Taking particular cases of these functions, we obtain five main topological
regularizers that are then used experimentally in Chapter 3: the p-push regularizer,
the p-Reininghaus regularizer, the 4SGDE regularizer, the p-bottleneck regularizer, and
the p-entropy regularizer. These regularizers are properly defined in Definition 3.1.

4. The proof of the generic differentiability in the space of point clouds (i.e., the dif-
ferentiability in an open and dense subset of the space of point clouds) of functions
1), 2), 3) and 4) (the latter only for homology in degree 0) in Section 2.3. Proofs of
the generic differentiability of selective regularizers in Section 2.4, and of the generic
differentiability of selective p-persistent entropy generators in Section 2.4. In partic-
ular, the results involving functions 2), 3), 4), selective regularizers, and p-persistent
entropy generators are, to the best of our knowledge, new results.

5. The proof of the differentiability of function 5) under computationally mild assump-
tions, which is also a new result, in Section 2.3.

Introduction ix

6. These differentiability results are unified in Theorem 3.2, where we state that from the
five topological regularizers developed, four are generically differentiable in the space
of point clouds, and one is differentiable when the point cloud lies in a generic subspace
of the space of point clouds and its persistence diagram satisfies computationally mild
conditions.

In the experimental part, the main contributions are the following.

1. Implementation of p-bottleneck regularizers, p-Reininghaus regularizers, 4SGDE regu-
larizers, and p-entropy regularizers in VAEs, and qualitative and quantitative analysis
of their effect on the training process. The functions corresponding to these regular-
izers are given in Definition 3.1. Among the tests, we include experiments where the
regularizers are applied directly on the latent vectors, allowing to control the distri-
bution of the latent space and showing remarkable modifications of their distribution.
Although the page limit has not allowed us to delve deeper into a formal analysis of
the latter behaviour, we believe that the experiments presented show the promising
potential of topological regularization and possible future avenues of research.

2. The code for implementing these loss terms and conducting all experiments mentioned
in this work, which has been made available in the GitHub repository
https://github.com/JackBJ23/TopoGEN.

https://github.com/JackBJ23/TopoGEN

Chapter 1

Persistent homology

This chapter mainly relies on existing literature in the field of persistent homology [10,
11, 12, 13, 14], textbooks on algebraic topology [15] and topological data analysis [16], and
lecture notes on simplicial homology [17].

1.1 Simplicial homology

Simplicial homology is an algebraic characteristic of a specific type of objects, known as
abstract simplicial complexes, which are defined as follows.

Definition 1.1. An abstract simplicial complex is a pair (K,S), where K is a set and S is
a collection of subsets of K, such that for all v ∈ K we have {v} ∈ S, and for all σ ∈ S, if
τ ⊆ σ then τ ∈ S.

We name each element σ ∈ S a k-simplex, where k := |σ| − 1 is its dimension, and a
simplex of the form {v} is called a vertex. More in general, we may refer to any element of
S as a simplex. In the following, we denote an abstract simplicial complex as K, and specify
the set of simplices S only when required. A subcomplex of K is a subset J ⊆ K that is
also an abstract simplicial complex. In the following we will refer to abstract simplicial
complexes simply as simplicial complexes. We next define an orientation on simplices as
follows [16].

Definition 1.2. Given a simplicial complex K and a k-simplex σ = {v0, v1, . . . , vk}, an
orientation of σ is an equivalence class of orderings of the vertices of σ, where two orderings
are equivalent if they differ by an even permutation. An oriented simplex is denoted as
σ = [v0, v1, . . . , vk].

Using this definition, an oriented simplicial complex is an abstract simplicial complex
whose simplices have been given an orientation. Note that a simplex can have only two
orientations; for instance, in a 1-simplex (i.e., a segment connecting two vertices) the ori-
entation represents the direction in which the simplex points.

Definition 1.3. Consider an abstract simplicial complex K and a field F . The k-chain
group of K with coefficients in F , denoted Ck(K,F) or simply Ck, is the F -vector space
with basis the oriented k-simplices of K, with the relation [σ] = −[τ] if σ = τ and they
have different orientation. In other words, Ck is composed of all the finite sums of the form

1

2 Persistent homology

∑
i ni[σi], where σi are k-simplices of K and ni ∈ F . We refer to the elements of Ck as

k-chains.

From now on, we assume that simplicial complexes are oriented, and thus we do not use
a specific notation for representing the orientation —oriented simplices are still denoted as
σ and oriented simplicial complexes are still denoted as K.

Definition 1.4. Consider an abstract simplicial complex K and a field F . Let Ck be
the k-chain group of K with coefficients in F . The k-th boundary operator ∂k is the map
∂k : Ck → Ck−1 defined on the generators of Ck (i.e., the oriented k-simplices of K) as

∂k([v0, v1, . . . , vk]) =
∑
i

(−1)i[v0, v1, . . . , v̂i, . . . , vk], (1.1)

where v̂i means that vi is deleted from the simplex. The map ∂k is extended linearly to
all Ck, making it a homomorphism of F -vector spaces. The elements of Ker(∂k) are called
k-cycles.

In other words, the boundary operator maps a k-simplex to the alternating sum of
faces that make up its boundary. In addition, ∂k connects the chain groups into a unified
structure, the chain complex C∗:

. . .→ Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1 → (1.2)

Lemma 1.5. For any abstract simplicial complex K and k ∈ N, we have ∂k ◦ ∂k+1 = 0.

Proof. Let σ = [v0, v1, . . . , vk+1] ∈ Ck+1 be an oriented simplex. Then,

(∂k ◦ ∂k+1)(σ) = ∂k
∑
i

(−1)i[v0, . . . , v̂i, . . . , vk+1] =
∑
i

(−1)i∂k[v0, . . . , v̂i, . . . , vk+1] (1.3)

where the last equality comes from the linearity of ∂k. In addition, we have:

∂k([v0, . . . , v̂i, . . . , vk+1]) =
∑
j<i

(−1)j [v0, . . . v̂j , . . . , v̂i, . . . , vk+1]

+
∑
j>i

(−1)j−1[v0, . . . v̂i, . . . , v̂j , . . . , vk+1]
(1.4)

where the separation into two summations comes from the fact that the sign corresponding
to the deleted term in the n-th position (n = 0, 1, 2 . . .) is (−1)n, and when j > i, the
position of the deleted term vj is not j, but j− 1 (since the term vi appearing before vj has
been deleted). Replacing equation (1.4) into equation (1.3) we obtain:

(∂k ◦ ∂k+1)(σ) =
∑
i,j<i

(−1)i+j [v0, . . . v̂j , . . . , v̂i, . . . , vk+1]

+
∑
i,j>i

(−1)i+j−1[v0, . . . v̂i, . . . , v̂j , . . . , vk+1]
(1.5)

and the terms from each summation cancel each other out —the terms with vi and vj
deleted, with j < i without loss of generality, appear once in each summation with opposite
signs, thus canceling each other out. Therefore, (∂k ◦ ∂k+1)(σ) = 0, and from the linearity
of ∂k and ∂k+1, we have (∂k ◦ ∂k+1)(c) = 0 for all c ∈ Ck+1.

1.1 Simplicial homology 3

In other words, Lemma 1.5 states that the boundary of a boundary is always 0. Using
this result, we can define homology groups as follows.

Definition 1.6. Consider an abstract simplicial complex K and a field F . The k-th ho-
mology group of K with F -coefficients, denoted by Hk, is the quotient group

Hk = Ker(∂k)/Im(∂k+1). (1.6)

The classes of Hk are made of homologous cycles and we refer to them as k-homology classes.

Homology groups are well-defined due to the fact that the inclusion Im(∂k+1) ⊆ Ker(∂k)
always holds: if σ ∈ Im(∂k+1), then σ = ∂k+1(τ) for some τ ∈ Ck+1, and from Lemma 1.5,
∂k(∂k+1(τ)) = 0, i.e., ∂k(σ) = 0, and therefore σ ∈ Ker(∂k). In addition, since F is a field,
Hk is a vector space fully described by its dimension.

We briefly explain the meaning of Definition 1.6. When we take the quotient with respect
to Im(∂k+1), we send all k-cycles that are also the image of some k-chain via ∂k+1 to the zero
class. Now, recall that the image of a (k+1)-chain via the boundary operator is its boundary.
Hence, Hk is the group formed by the k-cycles that are not the boundary of a (k+1)-chain.
A particular property illustrating its meaning in the case k = 0 is given by the following
proposition. Note that we use the concept of connected component and connection between
vertices in an abstract simplicial complex. Simply put, two vertices v, w are connected
if there is a sequence of 1-simplices of the form [v, v1], [v1, v2], . . . , [vl−1, vl], [vl, w], and a
connected component is a subcomplex S ⊆ K of connected vertices such that if v /∈ S, then
no vertex of S is connected to v.

Proposition 1.7. Consider a finite abstract simplicial complex K, and let F be a field. Let
C0 be the 0-chain group of K and H0 the 0-th homology group of K, with coefficients in
F . Denote by S1, . . . , Sn the connected components of K, and let {pi}ni=1 be a collection of
n vertices where pi ∈ Si for i = 1, . . . , n. Then, the homology classes of p1, . . . , pn form a
basis of H0.

Proof. First, we note that C0, which is in particular an F -vector space, decomposes as
the direct sum of the 0-chain groups of the connected components S1, . . . , Sn of K, i.e.,
C0 = C0(S1) ⊕ . . . ⊕ C0(Sn). This comes directly from the fact that a basis of C0 is
{p10, . . . , p1k1 , . . . , p

n
0 , . . . , p

n
kn
}, where {pi0, . . . , piki} is the set of vertices of Si for i = 1, . . . , n,

so a basis of C0 can be expressed as a union of the bases {pi0, . . . , piki}. Similarly, the 1-chain
group of K is a direct sum of the 1-chain groups of S1, . . . , Sn, i.e., C1 = C1(S1) ⊕ . . . ⊕
C1(Sn). Furthermore, the boundary operator ∂1 maps each C1(Si) onto C0(Si), so from
the definition of the k-th homology groups, the 0-th homology group H0 is the direct sum
of the 0-th homology groups of each Si: H0 = H0(S1) ⊕ . . . ⊕H0(Sn) —where we denote
by H0(Si) the 0-th homology group of Si. Hence, in order to find a basis of H0, we need to
find a basis of each H0(Si). We will now see that for each connected simplicial complex Si,
H0(Si) is generated by an arbitrary vertex of Si. First, note that Ker(∂0) is an F -vector
space with basis the vertices of Si, since the image of a vertex by ∂0 is 0. In addition, all
the vertices of Si are in the same homology class (recall the definition of the 0-th homology
group; H0(S1) = Ker(∂0)/Im(∂1)). To see this, let p be any vertex in Si and q any other
vertex in Si. Then, since Si is connected, there exists a sequence of 1-simplices of the form
[p, p1], [p1, p2], . . . , [pl−1, pl], [pl, q] in Si, and in particular, [p, p1] + [p1, p2] + . . .+ [pl, q] is a

4 Persistent homology

1-chain, with ∂1([p, p1]+ [p1, p2]+ . . .+[pl, q]) = q− p, so p and q are in the same homology
class; p̄ = q̄ for any q in Si. As a consequence, H0(Si) is generated by p. Now, if we take an
arbitrary point pi in Si for each i = 1, . . . , n, then a basis of H0(Si) is the homology class
p̄i of pi for each i, and since H0 = H0(S1) ⊕ . . . ⊕H0(Sn), it follows that {p̄1, . . . , p̄n} is a
basis of H0.

As a consequence, the dimension of H0 is equal to the number of connected components
of K. For higher homology degrees, there is also a relation between the "shape" of the
simplicial complex and the dimension of the homology spaces. We illustrate this relation
in the case of a simplicial complex K where the vertices of K are points v0, . . . , vn in
Rd, and Rd is equipped with the Euclidean metric. We also impose that the vertices
are affinely independent, i.e., the vectors issuing from an arbitrarily chosen vertex to the
rest of the points are linearly independent —for instance, we can assume d ≥ n + 1 and
let vi be the unit point of the i-th coordinate axis of Rd. In this situation, we can use an
alternative representation of an abstract simplicial complex: a geometric simplicial complex.
The geometric simplicial complex KG associated with K is a subspace of Rd formed by the
convex hulls of all sets of points {vi0 , vi1 , . . . , vik} where [vi0 , vi1 , . . . , vik] is any k-simplex
of K. Recalling that the convex hull of a set of points is the smallest convex set containing
it, we can deduce that for a 0-simplex, it is simply the vertex; for a 1-simplex, it is the
line segment connecting the two points; for a 2-simplex it forms a triangle with vertices
the points of the 2-simplex, and so on. In other words, the set KG is a union of vertices,
line segments, triangles, tetrahedra and so on, each of them representing a simplex of K.
In addition, we can define the underlying topological space |KG| of KG, which is the set
KG with the topology induced by the union of the convex hulls forming it, each being
equipped with the Euclidean topology. Assume now that K admits a representation as a
geometric simplicial complex KG. Then, the dimension of H1 counts the number of linearly
independent loops in KG, and, more in general, the dimension of each k-th homology group
Hk detects k-dimensional geometric features (k-dimensional "holes") of KG [16]. This
inspires the generalized terminology k-hole for referring to a non-zero class of the k-th
homology group of an abstract simplicial complex.

1.2 Point clouds and filtrations

We define a point cloud as an ordered finite set {pi}ni=1 where the elements p1, . . . , pn are
points in a metric space. Note that, while point clouds are typically defined as unordered
sets, for the objectives of our forthcoming discussion on differentiability in the next chapter,
it is advantageous to consider point clouds in an ordered format. The goal of this section is
to define a method to infer a description of the "shape" of point clouds. In order to do so,
the idea is to build a simplicial complex with vertices the elements of the point cloud, and
only allow the existence of simplices when certain conditions related to the point cloud are
met. One construction of this form is the Čech complex, which exhibits several beneficial
properties as highlighted in [16] and [18]. However, its computation can involve checking the
intersection of balls in high-dimensional spaces, which is computationally time-prohibitive.
As a consequence, we employ a simpler construction: the Rips complex. Note that there is
still a close relation between the Rips and the Čech constructions [16].

1.2 Point clouds and filtrations 5

Definition 1.8. Let M be a metric space with metric d, and let P = {pi}ni=1 ⊆ M be a
point cloud in M . Given ϵ > 0, the Rips complex Kϵ(P) is the abstract simplicial complex
with vertices the points of P , and given any ordered subset {i0, . . . , ik} ⊆ {1, . . . , n}, the
k-simplex [pi0 , . . . , pik] exists in Kϵ(P) if d(px, py) ≤ ϵ for all x, y ∈ {i0, . . . , ik}.

Definition 1.9. A filtration or filtered complex is a nested family of simplicial complexes
(Kϵ)ϵ∈I , where I ⊆ R and for all ϵ, ϵ′ ∈ I, if ϵ ≤ ϵ′ then Kϵ ⊆ Kϵ′ .

Definition 1.10. Let M be a metric space with metric d, and let P = {pi}ni=1 be a point
cloud in M . The Rips filtration of P is the filtration (Kϵ)ϵ∈[0;+∞) where each Kϵ is the Rips
complex obtained from P with scale value ϵ.

In the remainder of this work we focus on the Rips filtration due to its convenient compu-
tational and theoretical properties. For instance, it only depends on the pairwise distances
of the points in the point cloud, making its computation fast and efficient. In addition,
the experimental work conducted in Chapter 3 relies on the computation of persistence
diagrams using Rips filtrations, making this type of filtration of special interest.

It is important to note that there is an alternative way of describing Rips filtrations,
which is preferable for the work of Chapter 2, relying on the use of filter functions. A
filter function is a map f : K → R were K is a simplicial complex (and its elements are
its simplices), such that for any σ, τ ∈ K, if σ ⊆ τ , then f(σ) ≤ f(τ). Given a simplicial
complex K, we denote the space of all filter functions with support K by RK .

Definition 1.11. Consider a metric space M with metric d, and let P = {pi}ni=1 be a point
cloud in M . Let K = 2{1,...,n} \ {∅} be the total complex. The Rips filter function of P is
defined as

fP : K → R
σ 7→ max

i,j∈σ
{d(pi, pj)}.

(1.7)

Note that 2{1,...,n} \ {∅} is the set of all possible sets of the form {a1, a2, . . . , an} where
each ai is either 0 or 1. Equivalently, each element of 2{1,...,n} \ {∅} can be associated with
the simplex formed by the points {pi}ai ̸=0 of P , so K represents all possible simplices that
can be formed from points of P .

From Definition 1.11, for any σ = [i0, . . . , ik] ∈ K, fP (σ) is the scale value corresponding
to the appearance of [pi0 , . . . , pik] in the Rips filtration of P . In fact, the Rips filter func-
tion of P completely determines its Rips filtration: the simplicial complex Kϵ of the Rips
filtration of P is determined by f−1

P ([0; ϵ]). Furthermore, there is a key property of Rips fil-
trations that has to be highlighted. Given a point cloud of n points, the number of simplices
contained in the total complex 2{1,...,n} \ {∅} is finite. Therefore, the Rips filter function of
P only outputs a finite number N of strictly positive values 0 = ϵ0 < ϵ1 < . . . < ϵN . As a
consequence, we have a relation between complexes of the filtration of the form:

K0 =Kϵ for all ϵ ∈ [0; ϵ1); K0 ⊊ Kϵ1 ,

Kϵ1 =Kϵ for all ϵ ∈ [ϵ1; ϵ2); Kϵ1 ⊊ Kϵ2 ,

. . .

KϵN−1 =Kϵ for all ϵ ∈ [ϵN−1; ϵN); KϵN−1 ⊊ KϵN ,

KϵN =Kϵ for all ϵ ≥ ϵN .

(1.8)

6 Persistent homology

Therefore, the information encoded by the filtration can be reduced to the N +1 complexes
K0,Kϵ1 , . . . ,KϵN . In other words, from the Rips filter function we obtain a finite filtration
(Ki)Ni=0 where each Ki corresponds to a scale value 0, ϵ1, . . . , ϵN . Due to their underlying
meaning, we may also refer to the scale values corresponding to the appearance of new
simplices as times of appearance.

In addition, if the point cloud is embedded in some Euclidean space Rd, we can visu-
ally interpret the filtration. To do so, we make a correspondence between vertices i ∈ K

and the points {p1, . . . , pn} of P . In particular, we associate the vertex {i} ∈ K, where
i ∈ {1, . . . , n}, with the point pi of P . Similarly, we associate each simplex [i0, . . . , ik] with
the simplex made of the corresponding points of P , [pi0 , . . . , pik]. As a consequence, each
complex Kϵi of (1.8) corresponds to a complex K̃ϵi whose vertices are points of P . Fur-
thermore, we consider the geometric simplicial complexes K̃G,ϵi ⊆ Rd associated with each
K̃ϵi , only allowing the existence of simplices of dimension equal to or lower than d. This
yields a sequence of nested spaces K̃0

G ⊆ K̃1
G ⊆ . . . ⊆ K̃N

G ⊆ Rd. This sequence begins
with the point cloud and, as the filtration index increases, the convex hulls of new simplices
are added to the geometric simplicial complexes, and the geometric simplicial complexes
undergo changes related to the merging of connected components, the birth and death of
loops, of voids, and of higher-dimensional holes. One might wonder how we can effectively
trace the emergence and disappearance of these features within the filtration. The answer
lies in persistent homology.

1.3 Persistent homology

For convenience, in the remaining of this chapter we assume the filtration is of the form
(Ki)i∈N (also denoted as (Ki)i≥0). In particular, finite filtrations K0 ⊆ K1 ⊆ . . . ⊆ Kn can
be extended to a filtration of that form by setting Kj := Kn for all j ≥ n.

Definition 1.12. Let (Ki)i≥0 be a filtration, where each Ki has boundary operators ∂i
k,

and groups Ci
k, Z

i
k = Ker(∂i

k), B
i
k = Im(∂i

k+1), and H i
k for all k ∈ N. Let i, p, k ∈ N. The

p-persistent k-th homology group of Ki is defined as

H i,p
k = Zi

k/(B
i+p
k ∩ Zi

k). (1.9)

The persistent homology of degree k, or k-persistent homology, is the collection of all the
groups (H i,p

k)i,p∈N. We refer to groups of the form (1.9) as persistent homology groups.

In the following, when the homology degree k is clear we may refer to the persistent
homology of degree k simply as persistent homology.

To prove that the persistent homology groups are well-defined, we proceed as follows.
From their definitions, Zi

k is a subgroup of Ci
k and Bi+p

k is a subgroup of Ci+p
k . In addition,

from the inclusions K0 ⊆ K1 ⊆ . . ., we have the inclusions C0
k ⊆ C1

k ⊆ . . . for any k ≥ 0,
so both Zi

k and Bi+p
k are subgroups of Ci+p

k , hence their intersection is a subgroup of Zi
k,

making the quotient of equation (1.9) well-defined. In addition, since the chain groups are
vector spaces, it follows that the persistent homology groups are also vector spaces.

We now briefly illustrate the meaning behind Definition 1.12. Recall that Zi
k are the

k-cycles in Ki, and Bi+p
k are the boundaries of (k + 1)-cycles in Ki+p. The intersection of

Zi
k and Bi+p

k is thus the group of k-cycles from Ki that are boundaries of (k + 1)-cycles in

1.4 Persistence modules 7

Ki+p. Therefore, when taking the quotient of Zi
k with respect to the denominator, we take

the non-zero elements of Zi
k, i.e., the k-cycles that are not boundaries of (k + 1)-cycles in

Ki, and send them to the zero class if they have become boundaries in Ki+p. Hence, the
non-zero classes of H i+p

k are the k-holes of Ki that persist as k-holes until Ki+p. In other
words, the persistent homology groups track the persistence of k-holes along the filtration.

For the following work, we need to express persistent homology in a compact and unified
way. In order to do so, we unify persistent homology into a single algebraic structure,
namely persistence modules.

1.4 Persistence modules

Definition 1.13. A persistence module M is a family of vector spaces {M i}i∈N equipped
with linear maps φi : M i →M i+1.

Assume we have a filtration (Ki)i∈N, a homology degree k, and a field F . Each complex
Ki has its respective chain group Ci

k. Consider the inclusion maps ij : C
j
k → Cj+1

k . We
then have the following relation between chain groups:

C0
k

i0−→ C1
k

i1−→ C2
k −→ . . . (1.10)

Applying k-th homology to this sequence, we obtain a sequence of k-th homology vector
spaces. These spaces are connected by linear maps φj : Hj

k → Hj+1
k , where each φj maps

each homology class to the one that contains it. In other words, we have:

H0
k

φ0

−→ H1
k

φ1

−→ H2
k −→ . . . (1.11)

Hence, the family {H i
k, φ

i}i≥0 is a persistence module, which captures the k-th homology
groups of the filtration into a single algebraic structure. In addition, a particular type of
persistence modules, given by the following definition, exhibit useful properties allowing a
simple and more meaningful description of their structure.

Definition 1.14. A persistence module {M i, φi}i≥0 is of finite type if each component
vector space is of finite dimension, and if the maps φi are isomorphisms for all i ≥ m for
some m ∈ N.

In particular, Rips filtrations of finite point clouds are finite and composed of finite
complexes, and using coefficients in a field, the associated homology groups are of finite
dimension. This directly implies that the resulting persistence modules, for any homology
degree, are of finite type. We now develop an alternative representation of persistence
modules of finite type. To achieve this, we adopt the approach employed in [13]. We begin
by defining a map from persistence modules to polynomial rings as follows. First, assume
we have a persistence moduleM = {M i, φi}i≥0 with coefficients in a field F . We denote by
F [t] the commutative ring formed by the polynomials with coefficients in F , i.e., functions
of the form f(t) =

∑n
i=0 ait

i, where ai ∈ F and t is a variable. We equip F [t] with the

standard grading, using the sum decomposition F [t] ∼=
+∞⊕
i=0

Fti as vector spaces. We then

define a graded module over the graded ring F [t] as

α(M) =
⊕
i≥0

M i, (1.12)

8 Persistent homology

where its F -module structure comes from the sum of the structures over each individual
component, and the action of t is given by

t · (m0,m1,m2, . . .) 7→ (0, φ0(m0), φ1(m1), . . .). (1.13)

In other words, t shifts the F -modules of M up in the gradation. We briefly illustrate the
meaning of this transformation in the case of persistence modules arising from filtrations.
Assume we have a filtration (Ki)i≥0 and the persistence module M = {M i, φi}i≥0 over
a field F obtained from the k-th homology of the filtration. Recall that each M i is the
k-th homology group of the complex Ki. Assume the persistence module is of finite type;
then α maps M to a finitely generated non-negatively graded module over F [t] denoted
by α(M). Take now an arbitrary k-hole with birth in Kb for some b ≥ 0, and (possible)
death in Kd for some d > b (if it does not die, we set d = +∞). The homology class
representing this k-hole appears for the first time in M b, and is mapped to a non-zero class
in the subsequent F -modules M b+1, . . . ,Md−1, followed by being mapped to the zero class
in Md. Alternatively, the first component of α(M) containing the non-zero homology class
representing the selected k-hole is the b-th component. Applying t on α(M) repeatedly, this
class is shifted to a non-zero class on the next component of the gradation until it reaches
the d-th component, where it becomes the zero class. Therefore, α(M) captures the birth
and death times of the selected k-hole. Hence, the map α associates the persistence module
to a single object containing the birth and death times of the k-holes in the underlying
filtration.

Now, using the fact that the graded ring F [t] is a principal ideal domain (PID), we can
use the following result from [13] to describe the structure of F [t]-modules.

Theorem 1.15. Any finitely generated graded module M over a graded PID D decomposes
uniquely into the form (

n⊕
i=1

ΣαiD

)
⊕

 m⊕
j=1

ΣγjD/djD

 , (1.14)

where Σα is an α-shift upward in the grading, and dj ∈ D are homogeneous elements such
that dj | dj+1, and αi, γj are nonnegative integers.

Although the result was given in [13] and it is a standard result in the case of non-graded
PIDs, adjustments have to be made for its proof in the case of a graded PID. A detailed
proof of the theorem was recently provided in [19].

Since the only graded ideals of F [t] are of the form (tn), for n ∈ N, Theorem 1.15 gives
a decomposition of graded modules over F [t]:(

n⊕
i=1

ΣαiF [t]

)
⊕

 m⊕
j=1

ΣγjF [t]/(tnj)

 , (1.15)

where the nj are positive integers. Furthermore, the graded F [t]-module decomposes into
two structures: the free portion (on the left), which has a form of a free module, and the
torsion (on the right), which is a vector space whose dimension is finite. Our next step is
to represent this decomposition with simpler and more meaningful objects. To do so, we
define a P-interval as an ordered pair (i, j) with 0 ≤ i < j ∈ Z∪{∞}, and associate to any

1.4 Persistence modules 9

set S of P-intervals a graded F [t]-module, in the following way. Given a P-interval (i, j),
we define Q(i, j) = ΣiF [t]/(tj−i) —if j = +∞, then Q(i,+∞) = ΣiF [t]. Given a set of
intervals S = {(i1, j1), . . . , (in, jn)} we define

Q(S) :=
n⊕

l=1

Q(il, jl). (1.16)

The correspondence S 7→ Q(S) induces a bjection between the finite sets of P-intervals and
the finitely generated graded modules over the graded ring F [t]. As a consequence, any
persistence module of finite type is represented by a unique finite set of P-intervals.

We summarize the results we have obtained so far in this chapter to our scenario of
interest: analyzing a point cloud embedded in a metric space. Given a point cloud P in
a metric space, a homology degree k ≥ 0 and a field F , we first generate the Rips filter
function of the point cloud, fP , yielding the family of simplicial complexes (Ki)i∈N —where,
after some N ∈ N, all complexes are equal. Each of these complexes has an associated k-th
homology group, which is a vector space over F . In order to connect these spaces using
compatible bases, we construct the persistence module, which is of finite type due to the
nature of the filtration. The map α then connects the persistence module to a finitely
generated non-negatively graded module over F [t], which, roughly speaking, represents a
direct sum of the homology vector spaces. From Theorem 1.15, there exists a basis for this
structure including compatible bases for all the vector spaces, and the bijection induced
by Q ensures that this graded module is represented by a multi-set of P-intervals, denoted
I, where each (i, j) ∈ I corresponds to a basis element for the homology vector spaces
H i

k, . . . ,H
j−1
k . Equivalently, each P-interval (i, j) corresponds to a k-hole with birth in Ki

and death in Kj . In addition, we have seen that each persistent homology group H i,p
k is a

vector space fully described by its dimension, so-called the p-persistent k-th Betti number
and denoted βi,p

k . The following lemma shows that the representation of the persistent
homology based on P-intervals is indeed sufficient for determining the dimensions of all the
k-persistent homology groups.

Lemma 1.16. Consider the multi-set of P-intervals denoted by I representing a persistence
module associated with a k-persistent homology (H l,p

k)l,p≥0. For any (i, j) ∈ I, denote by
T (i, j) the triangle defined as {(x, y) ∈ R2 | x ≥ i, y ≥ 0, x + y < j}. Then, the rank βl,p

k

of H l,p
k is the number of triangles T containing the point (l, p).

Proof. Consider a persistent homology group H l,p
k . Let (i, j) ∈ I, which represents a basis

element ē for Hi, . . . ,Hj−1. If (l, p) ∈ T (i, j), then i ≤ l ≤ l+ p < j, so ē persists as a basis
element from H l

k to H l+p
k (both included). If (l, p) /∈ T (i, j), then either ē is not yet a basis

element in H l
k (case l > i), or ē has become a boundary at H l+p

k (case l+ p ≥ j), so ē is not
a basis element of H l,p

k . Hence a triangle T (i, j) containing (l, p) is equivalent to the basis
element associated to (i, j) being a basis element of H l,p

k .

Therefore, the multi-set of P-intervals representing the persistence module completely
determines the persistent homology of the filtration (in the case that the persistence module
is of finite type and the ground ring is a field). In other words, computing the persistent
homology is equivalent to computing the multi-set of P-intervals describing it.

10 Persistent homology

1.5 Persistence diagrams and barcode space

From the previous section, a k-persistent homology H has an associated persistence
moduleM, which can be represented with a multi-set of P-intervals I. We now provide an
alternative representation of the persistence module (and thus of the persistent homology).
First, for each P-interval (i, j) of I, we replace its endpoints i < j ∈ N ∪ {+∞} with the
respective times in the filtration ϵ(i) < ϵ(j) ∈ R̄, where R̄ := R ∪ {+∞}. The persistence
module is thus mapped to a finite multi-set of intervals of the form (b, d) ⊆ R̄, which we
call the barcode ofM.

We can also view the barcode as a finite multi-set of points in R × R̄: each interval
J ∈ J is represented by the point (inf J, sup J). Adding to this set the diagonal ∆ =

{(b, b) | b ∈ R} with infinite multiplicity, noted ∆∞, we obtain what we call the persistence
diagram ofM (and of H). This representation is more suitable for the work we will pursue
in the following chapters. However, a question that arises is the following: if we slightly
perturb the point cloud, how much will the barcode (or persistence diagram) change? Is the
persistence diagram stable under small perturbations of the point cloud? To answer, we need
to define a concept of distance between persistence diagrams. We first generalize the notion
of persistence diagram to an object independent of concepts of persistent homology and
persistence modules, and then define a metric space that contains all observable persistence
diagrams.

Definition 1.17. A persistence diagram is the union B ∪∆∞ ⊆ R× R̄, where B is a finite
multi-set of elements in R× R̄. The space Bar (so-called barcode space) is the space of all
persistence diagrams.

From now on, we will use the terminology persistence diagram, persistence barcode or
barcode for referring to any element of Bar. We now define a distance in Bar.

Definition 1.18. Let D,D′ ∈ Bar be two barcodes. A matching between D and D′ is a
bijection between the two multi-sets γ : D → D′. The cost of a matching is defined as

c(γ) := sup
x∈D
∥x− γ(x)∥∞, (1.17)

where ∥·∥∞ is the supremum norm, given by ∥(a, b)∥∞ = max(|a|, |b|). We denote by
Γ(D,D′) the set of all matchings between D and D′. The bottleneck distance between D

and D′ is then
d∞(D,D′) := inf

γ∈Γ(D,D′)
c(γ). (1.18)

The bottleneck distance is a metric in Bar. Finally, we equip the barcode space with the
bottleneck topology, i.e., the topology induced by the bottleneck distance —the open sets of
the bottleneck topology in Bar are generated by the open balls of Bar with respect to the
bottleneck distance.

1.6 Stability

We now aim to establish a bound on the distance between persistence diagrams in relation
to the distance between point clouds embedded in a Euclidean space. This is crucial for

1.6 Stability 11

practical applications: in Chapters 2 and 3, we explore the use of persistence diagrams for
comparing a point cloud of true images with a point cloud of generated images. Our goal is
to minimize the distance between persistence diagrams to produce data point clouds with
a similar "shape" to the true data. Hence, we have to prove that persistence diagrams are
stable with respect to the data; in other words, we aim to show that small perturbations in
the data result in small perturbations in the persistence diagrams. If this stability holds,
similar input and output data will imply similar input and output persistence diagrams,
thereby making it possible to minimize both the distance between persistence diagrams
and the distance between point clouds, making topological regularization via persistence
diagrams a possible way to enhance the training process of generative models. Furthermore,
in order to better understand the relation between the distance of point clouds and the
distance between persistence diagrams, we aim to find a specific bound of this stability.

To answer these questions, we will first recall an important property of persistence dia-
grams, the stability theorem given by Cohen et al. in [14]. We use the notion of p-persistent
homology operator Dgmp, which, given an abstract simplicial complex K, maps a filter
function f : K → R to the persistence diagram of degree p induced by f . The stability
theorem from [14] can be re-stated as follows.

Theorem 1.19. Let K be a total abstract simplicial complex, and let f, g : K → R be two
filter functions. We denote by Dgmk(f) and Dgmk(g) the persistence diagrams of degree k

induced by f and g, respectively. Then, we have:

d∞(Dgmk(f),Dgmk(g)) ≤ ∥f − g∥∞, (1.19)

where d∞ is the bottleneck distance, and ∥f − g∥∞ = sup
x∈K
|f(x)− g(x)|.

The proof can be found in [14]. In order to translate this result into the stability of
persistence diagrams (obtained via Rips filtrations) with respect to perturbations of the
point cloud, we proceed as follows. First, fix any homology degree k ∈ N, and assume we
work with point clouds consisting of n points in Rd, for some fixed d, n ∈ N \ {0}. We view
point clouds as individual points in Rnd; if {pi}ni=1 is a point cloud, we represent it as the
point P = (p1, p2, . . . , pn) in Rnd. We equip Rnd with the Euclidean norm, which induces
a distance between point clouds. Now, let P ∈ Rnd be any point cloud, and consider a
second point cloud resulting from a small perturbation of the points of P . Specifically, we
assume there is some ϵ > 0 such that each pi is perturbed into a new point p′i satisfying
∥pi − p′i∥2 < ϵ. We denote the perturbed point cloud by P ′ ∈ Rnd. We will now prove that
the bottleneck distance between their k-persistence diagrams is bounded by 2ϵ.

We denote the Rips filter functions of P and P ′ by f and f ′, respectively. We aim to
show that ∥f − f ′∥∞ < 2ϵ. Let σ be any simplex of the total complex 2{0,1,...,N} \ {∅}. We
have f(σ) = ∥pi − pj∥2 and f ′(σ) = ∥p′k − p′l∥2 for some indices i, j, k, l. In addition, we
have

∥p′i − p′j∥2 ≤ ∥p′i − pi∥2 + ∥pi − pj∥2 + ∥pj − p′j∥2 < ∥pi − pj∥2 + 2ϵ. (1.20)

Analogously, we have ∥pi − pj∥2 < ∥p′i − p′j∥2 + 2ϵ, so∣∣f(σ)− ∥p′i − p′j∥2
∣∣ < 2ϵ. (1.21)

12 Persistent homology

Therefore, if {k, l} = {i, j} (up to a permutation), then |f(σ)− f ′(σ)| < 2ϵ. Assume now
that {k, l} ≠ {i, j}. We have the inequality

∥p′k − p′l∥2 ≤ ∥p′k − pk∥2 + ∥pk − pl∥2 + ∥pl − p′l∥2 < ∥pi − pj∥2 + 2ϵ = f(σ) + 2ϵ. (1.22)

Using the fact that ∥p′i − p′j∥2 ≤ ∥p′k − p′l∥2 (from the definition of f ′; see Definition 1.11),
and combining it with equations (1.21) and (1.22), we obtain

f(σ)− 2ϵ < ∥p′i − p′j∥2 ≤ ∥p′k − p′l∥2 = f ′(σ) < f(σ) + 2ϵ. (1.23)

Therefore, |f(σ)− f ′(σ)| < 2ϵ.
Applying Theorem 1.19 with K = 2{1,...,n} \ {∅} and f and f ′ as the functions f and g

of the theorem, we obtain the bound

d∞(Dgmk(f),Dgmk(f
′)) ≤ ∥f − f ′∥∞ < 2ϵ. (1.24)

Therefore, if the points of the two point clouds are at a distance smaller than ϵ, then the
bottleneck distance between their persistence diagrams is lower than 2ϵ. We can also say
that if ∥P − P ′∥2 < ϵ, then d∞(Dgmk(f),Dgmk(f

′)) < 2ϵ. Hence, the map from point
clouds in Rnd to persistence diagrams is stable with respect to perturbations of the point
cloud. In fact, the map is 1-Lipschitz continuous.

The implications of this result are twofold. First, it ensures that in a generative model
learning to produce data points similar to the true dataset, if the distance between data point
clouds converges to zero, then the distance between persistence diagrams also converges to
zero. Hence, we can implement a regularizer with the goal of minimizing the distance
between persistence diagrams, since these two quantities mutually converge. Second, it is
important to note that real-life datasets come with some degree of noise, and thus a dataset
can include images of say, cats, with varying degrees of noise. But we do not want small
amounts of noise to have a considerable effect on the resulting persistence diagrams. Our
stability bound ensures that the distance between the persistence diagrams is stable with
respect to the degree of noise added (i.e., the perturbation) in the images.

In fact, we can experimentally confirm these two results through the following experi-
ment, with the results presented in Figure B.1. We take a set of 128 random images from
the FashionMNIST dataset (consisting of grayscale images of clothes; the dataset is of par-
ticular interest since it is used in the experiments in Chapter 3). Then, we apply Gaussian
noise at three levels of intensity: using a variance of the Gaussian distribution of 0.1 (left,
low noise level), variance of 0.3 (middle, medium noise level), and of 0.7 (right, high noise
level). We then compute the bottleneck distance between the noise-free ground truth batch
(top right) and each noisy batch. We then repeat the same process for 50 different batches.
The results can be seen on the top left of the image: the solid lines correspond to the values
of the bottleneck distance between the persistence diagrams of degree 0, while dashed lines
correspond to degree 1. Blue lines correspond to low noise ("noise level 1"), green lines to
medium noise ("noise level 2"), and red lines to high noise ("noise level 3"). We confirm
that more noise correlates with a higher bottleneck distance, both for degree 0 and degree
1 —although the correlation is more pronounced for degree 0 1. Hence, we can see that

1We have also measured the δ-selective persistent entropy between persistence diagrams (top middle of
Figure B.1), another measure of properties of the diagram, which we explain in Chapter 2; also in this case,
there is a correlation between noise level and magnitude of the dissimilarity measure.

1.7 Computation of persistent homology 13

point clouds that are closer to each other have persistence diagrams that are also at closer
distance. We repeat the same experiments in a colored dataset, the CIFAR10 dataset (also
widely used for training and evaluating generative models); the results are shown in Figure
B.2. Again, we also observe a correlation between distance between point clouds (i.e., noise
level) and distance between persistence diagrams. It is important to note, however, that dif-
ferent point clouds may have similar persistence diagrams; we have worked here on showing
that similar point clouds have similar persistence diagrams. We are thus slowly bridging the
gap between persistent homology and generative modelling. However, a question that arises
is: is the transformation from point cloud to persistence diagram differentiable with respect
to the coordinates of the point cloud? Or, under what conditions is the bottleneck distance
(or other measures of dissimilarity), between two persistence diagrams, differentiable? We
address these questions in the next chapter.

1.7 Computation of persistent homology

The first algorithm for computing persistent homology was proposed in [12], and more
general and efficient algorithms have been developed since, e.g., [13, 20, 21]. However, the
algorithm providing persistence diagrams is not our focus here; in fact, for our purposes it
can be considered to be a black box. The reason is that we are not interested in the calcula-
tion of persistence diagrams, but rather on the (possible) smoothness of the transformation
from point clouds to persistence diagrams, and, as we will see in the next chapter, we can
prove results about the differentiability of these maps that are independent of the specific
algorithm used.

Chapter 2

Differentiability through barcode
space

Sections 2.1 and 2.2 and Subsection 2.3.5 mainly rely on [10], and Sections 2.3 and 2.4,
excepted Subsection 2.3.5, are original work.

From now on, we refer to an (n, d)-point cloud as an ordered set of n points {p1, . . . , pn}
in Rd (for some positive integers n and d). When we work with (n, d)-point clouds for
some given n and d, we represent each point cloud as a single point in Rnd, and we refer
to Rnd as the space of point clouds. More precisely, an (n, d)-point cloud {pi}ni=1 is viewed
as a point (p1, . . . , pn) ∈ Rnd, and alternatively, a point (x1, x2, . . . , xnd) ∈ Rnd corresponds
to the point cloud where the i-th point is given by the components xd(i−1)+1, . . . , xdi (for
i = 1, . . . , n). For convenience, in the following we will simply say "Assume Rnd is the space
of point clouds" when we work with (n, d)-point clouds for some pair n, d.

2.1 Framework of differentiability through barcode space

We now introduce the framework we will use for working with the differentiation of maps
from and onto the barcode space, i.e., maps of the form B :M→ Bar and maps of the form
V : Bar → M, where M is a smooth manifold. Since Bar is not naturally equipped with
a differential structure [10], we study the smoothness of maps through the barcode space
using a lift of the maps to another space. This alternative space is the Euclidean space
Rx for a suitable integer x, where the concepts of differentiability are well-defined. A more
detailed exposition of this framework is provided in the remaining of this section.

We begin by defining the concept of differentiability of a map V :M→ Bar. The idea
is to view each barcode, composed of m bounded intervals and n infinite intervals (i.e., of
the form (a,+∞), a ∈ R), as points in R2m+n. More specifically, the connection between
these two objects is given by a map Qm,n : R2m+n → Bar, which maps a point in R2m+n to
its corresponding barcode:

Qm,n(b1, d1, . . . , bm, dm, v1, . . . , vn) = {(bi, di)}mi=1 ∪ {(vi,+∞)}ni=1 ∪∆∞, (2.1)

where (bi, di) are the bounded off-diagonal points of the persistence diagram, and (vi,+∞)

are its unbounded off-diagonal points. Recall that ∆∞ is the diagonal with infinite multi-
plicity. Simply put, Qm,n forgets about the order of points in (b1, d1, . . . , bm, dm, v1, . . . , vn):

14

2.1 Framework of differentiability through barcode space 15

points that differ only by permutations of coordinates (bi, di) or of coordinates (vi) yield
the same barcode. An essential property of Qm,n is the following.

Proposition 2.1. For any m,n ∈ N, Qm,n is 1-Lipschitz when Bar has the bottleneck
topology.

Proof. Denote by d∞ the bottleneck distance, and take any P1, P2 ∈ R2m+n. We want to
see that

d∞(Qm,n(P1), Qm,n(P2)) ≤ ∥P1 − P2∥2. (2.2)

From the defintion of bottleneck distance, we have, for any matching γ between the barcodes
Qm,n(P1) and Qm,n(P2):

d∞(Qm,n(P1), Qm,n(P2)) ≤ c(γ), (2.3)

where c(γ) denotes the cost of γ. In particular, consider the matching that sends the i-th
component of P1 to the i-th component of P2 (for i = 1, . . . , 2m + n). This matching has
a corresponding matching γ in the barcode space between Qm,n(P1) and Qm,n(P2) —note
that this matching sends the remaining elements in ∆∞ of P1 to the corresponding points
in P2. Using the notation P1 = (a1, . . . , a2m+n) and P2 = (b1, . . . , b2m+n), the cost of γ is
given by

c(γ) = maxi∥xi − γ(xi)∥∞ ≤ maxi|ai − bi|, (2.4)

where the last equality is given by the fact that maxi∥xi − γ(xi)∥∞ is either equal to
∥(ai, ai+1) − (bi, bi+1)∥∞ for some i = 2k + 1; k < m, which is equal to |ai − bi| or
|ai+1 − bi+1|, or the maximum is obtained at some i > 2m, and in that case the cost is
|ai − bi|. Therefore, in all cases (2.4) holds. Hence, we have:

d∞(Qm,n(P1), Qm,n(P2)) ≤ maxi |ai − bi| ≤
√∑

i

(ai − bi)2 = ∥P1 − P2∥2. (2.5)

In order to define the differentiability of maps M → Bar, there are two alternative
definitions. We first give the two definitions and next formally state their equivalence.

Definition 2.2. Let B :M → Bar, where M is a smooth manifold, and let x ∈ M and
r ∈ N∪{∞}. The map B is said to be r-differentiable if there exists an open neighborhood
U of x, integers m,n ∈ N, and a map B̃ : U → R2m+n of class Cr such that B = Qm,n ◦ B̃
on U . The differential dx,B̃B at x ∈ M with respect to the lift B̃ is then defined as the
differential of B̃ at x:

dx,B̃ ≡ dxB̃ : TxM→ R2m+n. (2.6)

The idea behind Definition 2.2 is to produce a lift B̃ from M to R2m+n and work with
the usual differentiability between those two spaces, and then connect B̃ to the barcode
space via Qm,n. Then, the differential is a map from small perturbations of the point x on
the tangent space toM at x to small variations of the ordered barcodes, seen as vectors in
R2m+n.

The second definition of differentiability is more suitable computationally [10] and is
based on the concept of point tracking. It is also a better concept to work with for the
proof of Proposition 2.16 which we will give later.

16 Differentiability through barcode space

Definition 2.3. Let B : M → Bar, and let x ∈ M and r ∈ N. We define a Cr local
coordinate system for B at x as a collection of maps {bi, di : U → R}i∈I and {vj : U → R}j∈J
defined on an open neighborhood U of x such that the following two conditions hold.

(i) (Smoothness) The maps bi, di, vj are Cr on U .

(ii) (Tracking) For all x′ ∈ U , we have:

B(x′) = {(bi(x′), di(x′))}i∈I ∪ {(vj(x′),+∞)}j∈J ∪∆∞.

Local coordinate systems at some point x track smoothly the endpoints of the intervals
of images of B, on an open neighborhood of x. The equivalence between r-differentiability
(Definition 2.2) and having a Cr local coordinate system (Definition 2.3) is given by the
following proposition.

Proposition 2.4. Let B :M→ Bar, whereM is a smooth manifold, and let x ∈M. Then
B is r-differentiable at x if and only if it admits a Cr local coordinate system at x. More
specifically, post-composing a local lift B̃ :M→ R2m+n with the quotient map Qm,n yields
a Cr local coordinate system, and on the other hand, fixing an order on the functions of a
Cr coordinate system yields a Cr local lift.

The proof can be found in Section 3.1 of [10]. We next define the differentiability of
maps Bar→ N .

Definition 2.5. Let V : Bar → N , where N is a smooth manifold, and let D ∈ Bar and
r ∈ N. The map V is said to be r-differentiable at D if for all m,n ∈ N and D̃ ∈ R2m+n

such that Qm,n(D̃) = D, the map V ◦Qm,n : R2m+n → N is Cr on an open neighborhood
of D̃. In this case, the differential of V at D is defined as

dD,D̃V := dD̃(V ◦Qm,n) : R2m+n → TV (D)N . (2.7)

In this case, the idea is to pre-compose the map V with Qm,n so that the composite
V ◦ Qm,n is a map R2m+n → N , and then check that for any pre-image D̃ of D, the
composite is differentiable. Then, the differential of V at D is seen as the differential of
V ◦Qm,n seen as a map between manifolds, at some pre-image D̃ of D —hence the differential
may depend on the choice of D̃.

To end this section, we end with one of the most essential results about the differentia-
bility framework we have just exposed, which connects both definitions of differentiability.

Proposition 2.6. Let B :M→ Bar be r-differentiable at some x ∈ M and V : Bar → N
be r-differentiable at B(x) ∈ Bar. Then:

(i) V ◦B is Cr at x as a map between manifolds.

(ii) If r ≥ 1 then, for any local C1 lift B̃ : U → R2m+n of B around x, we have:

dx(V ◦B) = dB(x),B̃(x)V ◦ dx,B̃B.

Proof. Proof of (i). It is a direct consequence of the definitions of B and V . On one hand,
B is r-differentiable at x, so there exists an open neighborhood U of x, and a local Cr

2.2 Differentiability of barcode generators 17

lift B̃ : U → R2m+n for some m,n such that B = Qm,n ◦ B̃ in U . On the other hand, V
is r-differentiable at B(x), so V ◦ Qm,n : R2m+n → N is Cr in an open neighborhood W

of B̃(x) (since Qm,n(B̃(x)) = B(x)). We can reduce U if necessary so that B̃(U) ⊆ W .
Therefore we have the following composition:

M B̃−→ R2m+n V ◦Qm,n−→ N
x′ ∈ U 7→ B̃(x′) ∈W 7→ (V ◦Qm,n)(B̃(x′)),

and since B̃ is Cr on U and V ◦ Qm,n is Cr on B̃(U), by the composition of Cr maps
between manifolds, we have that (V ◦Qm,n) ◦ B̃ = V ◦ (Qm,n) ◦ B̃) = V ◦B is Cr as a map
between manifolds on U and in particular at x.

Proof of (ii). Notice that V ◦ B is Cr as a map between manifolds, and dx(V ◦ B)

is independent of B̃ from (i) (since for any x ∈ M, in a neighborhood of x the function
V ◦ B does not depend on the lift). In addition, we have V ◦ B = (V ◦ Qm,n) ◦ B̃ for all
x′ ∈ U ⊆ M, so differentiating, we have dx(V ◦ B) = dB̃(x)(V ◦ Qm,n) ◦ (dxB̃). Using the
notation introduced in this section, we can also write it as dx(V ◦B) = dB(x),B̃(x)V ◦dx,B̃B.
Hence the composition of the differentials is independent of the lift B̃.

This result shows that, although the differential of two functions B : M → Bar and
V : Bar → N depends on the choice of lift B̃, the composition V ◦ B does not depend on
the choice of local lift. In addition, this proposition is a version of the chain rule for maps
factoring through Bar, which will be essential for the proofs of smoothness of the topological
regularizers viewed as maps between manifolds.

2.2 Differentiability of barcode generators

The main result of this section can be stated as the generation of a barcode via the Rips
filtration from a point cloud in Rnd is differentiable in a generic subspace of Rnd. The
section is organized as follows. We first define two main notions needed for stating the main
result. First, we introduce the notion of point clouds in general position, and we prove that
the set of point clouds in general position is generic, i.e., open and dense, in Rnd. Second,
we define the Rips parametrization. Once equipped with these concepts, we formally state
the main result of the section in Theorem 2.11. The rest of the section is dedicated to its
proof, which relies on several intermediate results, mainly Proposition 2.16 and Proposition
2.17.

Definition 2.7. A point cloud P = (p1, . . . , pn) ∈ Rnd is in general position if

(i) for any pair i ̸= j ∈ {1, . . . , n}, we have pi ̸= pj , and

(ii) for any {i, j} ≠ {k, l} with i, j, k, l ∈ {1, . . . , n} and i ̸= j, k ̸= l, we have ∥pi−pj∥2 ̸=
∥pk − pl∥2.

We denote the space of point clouds in Rnd in general position by P̃.

In other words, in a point cloud in general position, no two points are overlapped at the
same position and no two different pairs of points are at equal distance.

Proposition 2.8. The space P̃ is generic in Rnd.

18 Differentiability through barcode space

Proof. Let U and V be the sets of points in Rnd that satisfy (i) and (ii), respectively.
Therefore, P̃ = U ∩ V . We will prove that both U and V are generic and, since the finite
intersection of generic spaces is generic, it will follow that P̃ is generic. The space of points
not satisfying (i) from Definition 2.7, U c, is the finite union of hyperplanes

U c = ∪
1≤i<j≤n

{pi = pj}, (2.8)

therefore its complementary U is generic. We now want to see that V is generic. We first
define the functions fijkl, with {i, j} ≠ {k, l}, i, j, k, l ∈ {1, . . . , n}, i ̸= j and k ̸= l, as

fijkl : Rnd → R
P 7→ ∥pi − pj∥22 − ∥pk − pl∥22.

(2.9)

These functions are C1 in Rnd, and {P : ∇fijkl(P) ̸= 0} is a generic subset of Rnd. Indeed,
differentiating fijkl we obtain {P : ∇fijkl(P) = 0} = {pi = pj} ∩ {pk = pl}, which is a
finite intersection of hyperplanes and therefore its complement is generic 1. We now prove
that the set Gifkl = {P : fijkl(P) ̸= 0} is generic. We have Gifkl = f−1

ijkl(R \ {0}), which
is the pre-image of an open set by a continuous function, so Gifkl is open in Rnd. Now,
assume Gijkl is not dense. Then, there exist P ∈ Rnd and ϵ > 0 such that fijkl(P) = 0 (i.e.,
P /∈ Gijkl) and fijkl(P

′) = 0 for all P ′ ∈ B(P, ϵ). However, the fact that fijkl ≡ 0 in B(P, ϵ)

implies that fijkl is constant in B(P, ϵ), and therefore B(P, ϵ) ⊆ {P ′ : ∇fijkl(P ′) = 0}.
This is in contradiction with the fact that {P ′ : ∇fijkl(P ′) ̸= 0} is generic. Having reached
a contradiction, we conclude that Gijkl is generic. Now, V = ∩

{i,j}≠{k,l};i ̸=j,k ̸=l
Gijkl is a

finite intersection of generic subspaces of Rnd, so V is generic in Rnd, hence P̃ is generic in
Rnd.

In order to show that the generation of a barcode from a point cloud is an∞-differentiable
transformation with respect to the coordinates of the point cloud, we need to work through
the space of filter functions. This is due to the fact that the p-persistent homology operators
Dgmp are only defined on the space of filter functions, and not directly on the space of point
clouds. As a consequence, we define an intermediate function that parametrizes the filter
function of the point cloud with the coordinates of the point cloud as parameters. Since
computationally we will use the Rips filtration, we focus here on the Rips parametrization.

Definition 2.9. Let Rnd be the space of point clouds, and let K = 2{1,...,n} \ {∅} be the
total complex. The Rips parametrization is defined as

F : Rnd → RK

P 7→ F (P) = {f : K → R, f(σ) = max
i,j∈σ
∥pi − pj∥2}.

(2.10)

Hence, F parametrizes the Rips filter function f of P with the parameters being the
coordinates of the points of P .

Definition 2.10. Let Rnd be the space of point clouds. Given p ∈ N, the barcode generator
of degree p (via the Rips filtration) is the map

Bp : Rnd → Bar

P 7→ Bp(P) = Dgmp(F (P)),
(2.11)

1A detailed proof of the expression of the set {P : ∇fijkl(P) = 0} is given in Appendix B.1, Lemma
B.2.

2.2 Differentiability of barcode generators 19

where F is the Rips parametrization and Dgmp is the persistence diagram generator of
degree p.

Theorem 2.11. Let Rnd be the space of point clouds. Given any p ∈ N, the barcode
generator Bp of degree p is ∞-differentiable in P̃ ⊆ Rnd.

The sketch of the proof is the following: we first state several notions related to filter
functions and we prove two important properties about filter functions. Using these proper-
ties, we then prove a result on the local differentiability of Bp in Proposition 2.16. However,
the theorem assumes the differentiability of F , and thus the proof of the differentiability
of F remains. Therefore, we prove the differentiability of F in P̃ in Proposition 2.17. We
conclude by connecting Proposition 2.16 and Proposition 2.17 in the proof of Theorem 2.11.

Definition 2.12. Given a filter function f : K → R, the values it takes in each simplex
induce a pre-ordering on the simplices of K. Two filter functions f, g : K → R are order
equivalent if they induce the same pre-order on K. This is an equivalence relation and is
noted ∼. The equivalence class of each filter function is noted [f] = {g ∈ RK | f ∼ g}. The
space of equivalence classes is noted Ω(RK).

Next, given a simplicial complex K, we define a set of simplices from K that are "enough
to fully describe the persistence diagram". This set is the so-called barcode template, and is
more formally described as follows.

Definition 2.13. Assume Rnd is the space of point clouds and let K = 2{1,...,n} \ {∅} be
the total complex. Given a filter function f ∈ RK and a homology degree 0 ≤ p ≤ d, a
barcode template is a pair (Pp, Up) where Pp is a multi-set of pairs of simplices of K, and
Up is a multi-set of simplices in K, such that

Dgmp(f) = {(f(σ), f(σ′))}(σ,σ′)∈Pp
∪ {(f(σ),+∞}σ∈Up ∪∆∞. (2.12)

In other words, a barcode template is a set of simplices that are associated with the birth
and death of all the p-holes in the p-persistence diagram. In the remaining of this chapter,
we restrict our work to Rips filter functions. In the next two propositions, we prove two
key results about these filter functions: 1) for any Rips filter function there always exists
a barcode template, and 2) order equivalent filter functions have the same set of barcode
templates.

Proposition 2.14. Let K = 2{1,...,n} \ {∅} be the total complex and f ∈ RK its Rips filter
function parametrized by some P ∈ Rnd. Then, for any homology degree 0 ≤ p ≤ d, there
exists a barcode template (Pp, Up) of f .

Proof. We know from the previous chapter that the persistence module of degree p, Hp(f),
can be expressed as an interval decomposition ⊕

J∈J
IJ , where each J is either a bounded

interval with endpoints b < d, or an unbounded interval (b,+∞). The intervals are in
bijective correspondence with the points in the persistence diagram. Note that for any
bounded interval J in J with endpoints b and d, we have f−1(b)× f−1(d) ̸= ∅. The reason
is that J represents the life time of a p-hole, and the birth (or formation) of the p-hole at
time b corresponds to the birth of a simplex σJ . By the definition of f , since σJ is born at
time b, we have f(σJ) = b. Analogously, the death of the p-hole at time d is marked by the

20 Differentiability through barcode space

birth of another simplex τJ that "kills" the hole, and since τJ is born at time d, we have
f(τJ) = d. Therefore, (σJ , τJ) ∈ f−1(b) × f−1(d). Hence, proceeding in this fashion, we
obtain the set

Pp = {(σJ , τJ) | J ∈ J , J = (b, d), b, d ∈ R}. (2.13)

An analogous reasoning can be done for intervals of the form J = (b,+∞) —in that case,
we only need the simplex σJ that marks the birth of the p-hole, satisfying f(σJ) = b. In
this case we obtain the set

Up = {(σJ) | J ∈ J , J = (b,+∞), b ∈ R}. (2.14)

And, by construction, (Pp, Up) is a barcode template.

Proposition 2.15. If f, f ′ ∈ RK are two Rips filter functions parametrized by points P, P ′

in Rnd, and f ∼ f ′, then a barcode template of f is also a barcode template of f ′ and
vice-versa.

Proof. To enhance clarity we use the notation (Ki)i and (K ′
j)j for the filtrations induced by

f and f ′, respectively, where the subscripts are the times (induced by f and f ′ respectively)
of appearance of each new complex. Since f ∼ f ′, the order of appearance of each simplex
is the same under the two filtrations, and therefore we can arrange the simplices of (Ki)i
noted σs and the simplices of (K ′

j)j noted σ′
t into the sets {σs1 , . . . , σsN } and {σ′

t1 , . . . , σ
′
tN
}

respectively, where si and ti are the birth times of each simplex according to the respective
filtration (i.e., f(σs) = s and f ′(σ′

t) = t). In addition, we can choose the arrangement of
these two sets so that σsk = σ′

tk
for all k = 1, . . . , N , and so that si and ti are increasing

sequences. Let g : {si}i → {ti}i be such that g(sk) = tk for k = 1, . . . , N . Therefore g is
an increasing function and maps f(σ) to f ′(σ) for any simplex σ of K. As a consequence,
σsk = σ′

g(sk)
for k = 1, . . . , N . Therefore, the filtrations induced by f and f ′ are shifted;

the only difference is the time associated to each complex; we have Ksk = K ′
g(sk)

for
k = 1, . . . , N .

From the construction of the persistent homology and persistence module (which only
depends on the filtration, see Chapter 1), for any homology degree p, the two filtrations
(Ki)i and (K ′

j)j have the same persistence module and thus the same decomposition into
P-intervals. Therefore, there is a one-to-one correspondence between the barcodes of the
two filtrations.

We can finally show that a barcode template of f is also of f ′. Take any off-diagonal
interval (bi, di) from the barcode of f . It has a corresponding pair (σJ , τJ) in the barcode
template, and a corresponding interval (g(bi), g(di)) in the barcode of f ′ that represents
the life-time of the same p-hole. Since f(σJ) = bi, f(τJ) = di, from the definition of g

we have f ′(σJ) = g(bi), f
′(τJ) = g(di), and therefore (σJ , τJ) can be used as the element

representing the interval (g(bi), g(di)) in a barcode template of f ′. Using the same argument
for all the intervals of the barcode of f (and a similar argument for non-bounded intervals)
we conclude that (Pp, Up) is a barcode template of f ′.

Now we can state and prove the local differentiability of Bp.

Proposition 2.16. Let P ∈ Rnd, and assume that the Rips parametrization F : Rnd → RK

is of class Cr (for some r ≥ 0) on some open neighborhood U of P , such that for all
P ′ ∈ U, F (P) ∼ F (P ′). Then Bp : Rnd → Bar is r-differentiable at P .

2.3 Differentiability of topological regularizers 21

Proof. The space U is an open subset of Rnd. From Proposition 2.14, we can take a barcode
template (Pp, Up) for F (P). From Proposition 2.15, (Pp, Up) is consistent as a barcode
template for all F (P ′), P ′ ∈ U . Therefore for all P ′ ∈ U we have

Bp(P
′) = {(F (P ′)(σ), F (P ′)(τ))}(σ,τ)∈Pp

∪∆∞ (2.15)

which is a local coordinate system for Bp at P , and is Cr since F is Cr over U . Therefore,
by Proposition 2.4, Bp is r-differentiable at P .

Proposition 2.17. The Rips parametrization F : Rnd → RK is C∞ over P̃.

Proof. First, notice that F is continuous in Rnd due to the continuity of the norm and max
functions. If P ∈ P̃, then, from the definition of P̃, the distances ∥pi− pj∥2, 1 ≤ i < j ≤ n

are strictly ordered at P . We define, for each σ ⊆ K,

{i(σ), j(σ)} := argmax
k,l∈σ

∥pk − pl∥2, (2.16)

and we define a new parametrization F̃ as F̃ (P ′)(σ) = ∥p′i(σ) − p′j(σ)∥2 for all σ ∈ K.
Clearly F̃ (P) = F (P). Since the functions P ′ 7→ ∥p′i − p′j∥2 are continuous, it follows that
the pre-order induced by P , ∥pi1 − pj1∥2 < . . . < ∥piN − pjN ∥2, remains the same in an
open neighborhood U ⊆ P̃ of P . If we now take any P ′ ∈ U and σ ∈ K, then F (P ′)(σ)

is the largest element of the ordering ∥p′i1 − p′j1∥2 < . . . < ∥p′iN − p′jN ∥2 that involves a
pair {i, j} ∈ σ. From the definition of {i(σ), j(σ)} and the fact that the strict ordering of
pairwise distances is preserved, F (P ′)(σ) must then be equal to ∥p′i(σ)−p′j(σ)∥2 = F̃ (P ′)(σ).
Therefore, F = F̃ in U . In summary, we have proved that for all P ′ ∈ U, σ ∈ K, we have

F (P ′)(σ) = ∥p′i(σ) − p′j(σ)∥2, (2.17)

with the indices fixed by P . Since U ⊆ P̃, it follows that all the distances in (2.17) are
strictly positive, so F is completely determined by functions P ′ 7→ ∥p′i(σ) − p′j(σ)∥2, which
are C∞ in U , so F is C∞ in U , and in particular in P .

The proof of Theorem 2.11 now follows from Proposition 2.17 and Proposition 2.16.

Proof of Theorem 2.11. Take any P ∈ P̃. Then from Proposition 2.17 there exists an open
neighborhood U of P such that U ⊆ P̃ and F is C∞ in U . In addition, from the proof
of Proposition 2.17, we can choose U such that (i) the strict order of pairwise distances
in P remains constant in U , and (ii) for any P ′ ∈ U and σ ∈ K, we have the equality
F (P ′)(σ) = ∥p′i(σ) − p′j(σ)∥2. Then, (i) and (ii) imply that for any P ′ ∈ U , F (P ′) and F (P)

induce the same pre-order on the simplices of K, i.e., F (P ′) ∼ F (P) for all P ′ ∈ U . Hence,
from Proposition 2.16, Bp is ∞-differentiable at P .

2.3 Differentiability of topological regularizers

We now study the differentiability of several functions from Bar to R. Furthermore, we
expand the work, using the composition with Bp, to maps from the space of point clouds Rnd

to R, factoring through Bar. We refer to these functions as topological regularizers, since they
can be applied in generative modelling problems where the goal is to generate point clouds

22 Differentiability through barcode space

with specific topological features, and thus the use of loss functions extracting information
from their persistence diagrams can be used to enhance the learning process. For instance,
if the goal is to generate batches of data points (seen as point clouds) with similar spatial
distributions to ground truth point clouds (e.g., input batches), the use of additional loss
terms providing a measure of dissimilarity between their persistence diagrams can be used
as a tool for regularizing the training process. In fact, the minimization of such loss terms
through gradient descent can lead to a model that produces data with a distribution with
a similar "shape", i.e., with a similar persistence diagram, to the true data —and, with
similar, we mean with a low value of the topological regularizer used.

Proposition 2.18. Let F : R2 → R be a function such that F (b, b) = 0 for all b ∈ R. If F
is Cr in R2, then the map on barcodes f(D) :=

∑
(b,d)∈D

F (b, d) is r-differentiable in Bar.

Proof. Recall the Definition 2.5 of r-differentiability of a map on barcodes. Let D ∈ Bar,
and take m,n ∈ N and D̃ ∈ R2m+n such that Qm,n(D̃) = D. We want to prove that the
function f ◦ Qm,n : R2m+n → N is Cr on an open neighborhood of D̃. But F is Cr in
each (bi, di) ∈ D, so F̃i : D̃ = (. . . , bi, di, . . .) 7→ F (bi, di) is Cr in D̃. Therefore, the sum∑

i F̃i = f ◦ Qm,n is Cr in D̃. Finally, notice that for any choice of pre-image D̃ we have
(f ◦ Qm,n)(D̃) = f(D). This is due to the fact that F (b, b) = 0 for all b ∈ R, so adding
diagonal points in the pre-image does not change the value of (f ◦Qm,n)(D̃).

2.3.1 Push functions

Definition 2.19. Let Rnd be the space of point clouds, let p be a non-negative integer and
denote by Bp the barcode generator of degree p. The push function of degree p is defined as

P ◦
p : Rnd → R

P 7→ −
∑

(b,d)∈Bp(P)

(d− b). (2.18)

The notation P ◦
p is used for avoiding confusion with the notation of point cloud P . The

push function computes the persistence diagram of degree p, and outputs the sum of all dis-
tances of off-diagonal points to the diagonal, multiplied by a factor of −2, since the distance
of an off-diagonal point to ∆∞ is (d − b)/2 —note that, although we allow the existence
of points below the diagonal, persistence diagrams arising from Rips filtrations only have
points above the diagonal, hence their distance to the diagonal is (d− b)/2. The choice of
multiplying by −2 comes from the computational use of this function. In fact, assume we
use P ◦

p (P) as a loss function and perform backpropagation for updating the coordinates of
the point cloud. Then, gradient descent provides a small perturbation of P that decreases
P ◦
p (D). By the definition of P ◦

p , this means that the computed perturbation of P results
on slightly moving the off-diagonal bounded points of Bp(P) away from the diagonal. In
other words, backpropagation through P ◦

p pushes bounded off-diagonal points of Bp(P)

away from the diagonal. This has several applications. For instance, the application of P ◦
0

can lead to pushing apart the clusters of the point cloud and increasing their life-times, and
the implementation of P ◦

1 can increase the size of loops.

Proposition 2.20. Let Rnd be the space of point clouds, and let p be a non-negative integer.
The push function P ◦

p of degree p is C∞ in P̃, which is generic in Rnd.

2.3 Differentiability of topological regularizers 23

Proof. Let T be the map on barcodes given by T (D) =
∑

(b,d)∈D
(b− d). Then P ◦

p = T ◦ Bp.

Denote by F the function F (b, d) = b − d; in particular F is C∞ for any (b, d) ∈ R2, and
F (b, b) = 0 for all b ∈ R. From Proposition 2.18,

∑
(b,d)∈D

F (b, d) = T is ∞-differentiable

in Bar. Assume now P is any point cloud in P̃. Then from Theorem 2.11, Bp is ∞-
differentiable in P , and T is ∞-differentiable in Bp(P) ∈ Bar, so from Proposition 2.6 the
composition T ◦Bp = P ◦

p is C∞ in P .

2.3.2 Reininghaus dissimilarity

We now focus on a measure of dissimilarity between persistence diagrams that is simple
to compute and shows promising potential in machine learning problems. This measure
is based on the persistence scale space kernel or Reininghaus kernel kσ. We will not go
through the full derivation here, but we refer the reader to [22] for details. The main
conclusions that can be highlighted from the function kσ are: 1) it is stable with respect
to the 1-Wasserstein distance, and 2) it has shown promising capabilities for vision tasks
such as shape classification and texture image classification. A simple expression of the
persistence scale space kernel kσ is the following:

kσ(F,G) =
1

8πσ

∑
p∈F, q∈G

e−
∥p−q∥22

8σ − e−
∥p−q̄∥22

8σ , (2.19)

where q̄ = (q2, q1) for q = (q1, q2), and ∥·∥2 is the Euclidean norm. The sum goes over all
pairs p ∈ F , q ∈ G of off-diagonal bounded points of both diagrams. This kernel induces
a pseudo-distance dσ in Bar, which is equal to the distance between feature maps in the
feature space [22]. The pseudo-distance, which we refer to as Reininghaus dissimilarity, is
given by the following expression:

dσ(F,G) =
√

kσ(F, F) + kσ(G,G)− 2kσ(F,G). (2.20)

Now, assume given a machine learning problem where we want to generate a point cloud
with topological properties similar to those given by a reference persistence diagram D0. If
the coordinates of the point cloud are learnable (i.e., they can be updated through gradient
descent), and D is the persistence diagram of the learnable point cloud, a question that
arises is: can we introduce the Reininghaus dissimilarity in the loss function and minimize
it through gradient descent? In other words, is dσ(D,D0) differentiable with respect to the
coordinates of the learnable point cloud? The answer is given by the following two results.
We define the space Bar0 ⊆ Bar as the space of barcodes with no unbounded intervals.

Proposition 2.21. Let D0 be a barcode in Bar0, and let dσ(·, D0) : Bar0 → R be the map
assigning to a barcode its Reininghaus dissimilarity to D0. Then, the squared Reininghaus
dissimilarity d2σ(·, D0) is ∞-differentiable in Bar0.

Proof. First, note that kσ(D,D0) can be expressed as

kσ(D,D0) =
∑
p∈D

Fσ(p), (2.21)

24 Differentiability through barcode space

where Fσ is defined as:

Fσ(p) =
1

8πσ

∑
q∈D0

e−
∥p−q∥22

8σ − e−
∥p−q̄∥22

8σ . (2.22)

Here p, q are points in R2, so, if p = (p1, p2), q = (q1, q2), then ∥p−q∥22 = (p1−q1)2+(p2−q2)2

and ∥p − q̄∥22 = (p1 − q2)
2 + (p2 − q1)

2. In particular, Fσ is C∞ in R2, and F (p) = 0 for
all p ∈ ∆∞. Therefore, we can apply Proposition 2.18, and as a consequence kσ(·, D0) is
∞-differentiable at any D ∈ Bar with no unbounded intervals. With a similar argument we
can prove that kσ(D,D) is∞-differentiable in D for any D ∈ Bar0. In addition, kσ(D0, D0)

is a constant since it is independent of D.
In summary, the maps kσ(D,D0), kσ(D,D) and kσ(D0, D0) are∞-differentiable with re-

spect to D in Bar0. Using the fact that the sum of∞-differentiable maps is∞-differentiable
—see Lemma B.1—, we have that d2σ(D,D0) = kσ(D,D) + kσ(D0, D0)− 2kσ(D,D0) is ∞-
differentiable at D, for any D ∈ Bar0.

Corollary 2.22. Denote by Rnd the space of point clouds, let p be a non-negative integer,
and let d̃σ,D0 : Rnd → R be the map defined as d̃σ,D0(P) = d2σ(Bp(P), D0) for any P ∈ Rnd.
Then, d̃σ,D0 is C∞ in P̃, which is generic in Rnd.

Proof. From Theorem 2.11, we have that Bp : Rnd → Bar is ∞-differentiable in P̃, which
is generic in Rnd. In addition, Proposition 2.21 states that d2σ(·, D0) : Bar → R is ∞-
differentiable in Bar0. We now have to see that Bp(P) ∈ Bar0 for any P ∈ Rnd. If p > 0, it
is true since all p-holes die at some finite time (when they are filled with higher-dimensional
simplices). If p = 0, we always have a single unbounded point (0,+∞) in the persistence
diagram; however, it does not provide useful information, so it can be neglected. Finally,
using Proposition 2.6, we have that d2σ(·, D0) ◦Bp = d̃σ,D0 is C∞ in P̃.

2.3.3 Scaled Gaussian density estimators

In the case of 0-dimensional persistence diagrams, all points are of the form (0, d), so
the goal is to make a set of points in the y-axis imitate a distribution of reference. Hence,
in this case, there are approaches that may be more efficient and faster (computationally)
than the persistence scale space kernel. For instance, we can approximate the density of
points of the form (0, d) with a continuous function. We propose here a new approximator
of the density of points for persistence diagrams obtained from the barcode generator of
degree 0. The idea is to place a Gaussian function over each point of the diagram, whose
height is scaled by a factor H(d − b), where H(x) is a smooth and increasing function on
x and H(0) = 0. With these restrictions, points near the origin produce Gaussian curves
with low height, while points with higher persistence produce larger Gaussians. This allows
us to give more importance to points away from the origin, which can be associated with
clusters in the original point cloud. The total density estimator is then the sum of all the
Gaussians produced by off-diagonal points of the diagram. We define this type of density
function more generally and formally as follows.

Definition 2.23. A scaled Gaussian density estimator or SGDE is a function of the form

E : Bar× [0; +∞)→ R

(D,x) 7→ E(D,x) =
∑

(b,d)∈D

H(d− b)e((d−x)/σ)2 (2.23)

2.3 Differentiability of topological regularizers 25

where σ > 0, H : R2 → R is C∞ in R2, and H(0) = 0.

Although we are only interested in diagrams of degree 0, the definition applies to any
diagram in order to facilitate the proof of its smoothness. Furthermore, when using the
scaled Gaussian density estimator as a loss function, we will only evaluate it at some fixed
values of x. Hence, we want to see that for a given x, E(D,x) is ∞-differentiable as a map
Bar→ R with D the only variable.

Proposition 2.24. For any fixed x ∈ [0; +∞), and any SGDE E, the map on barcodes
E(·;x) (where we have changed the notation to highlight that x is now a parameter) is
∞-differentiable as a map in Bar.

Proof. Recall that E(D;x) has the form given by Definition 2.23, for some function H and
σ > 0. We define the function

Gx((b, d)) = H(d− b)e((d−x)/σ)2 . (2.24)

Here Gx satisfies the conditions of the function F from Proposition 2.18: it is C∞ in R2

and Gx((b, b)) = 0 for all b ∈ R, since H(0) = 0. In addition, we have

E(D;x) =
∑

(b,d)∈D

Gx((b, d)). (2.25)

Therefore, applying Proposition 2.18, E(D;x) is ∞-differentiable in Bar.

Corollary 2.25. Let Rnd be the space of point clouds. Consider any SGDE E, and let
x ∈ [0; +∞). Then, the composition map

E(·;x) ◦B0 = E(B0(P);x) : Rnd → R (2.26)

is C∞ in P̃ ⊆ Rnd, which is generic in Rnd.

Proof. Let x ∈ [0,+∞). From Theorem 2.11, the map B0 : Rnd → Bar is∞-differentiable in
P̃, and from Proposition 2.24, the map E(·;x) : Bar→ R is ∞-differentiable in Bar. Then,
from Proposition 2.6, the composition E(·;x) ◦B0 : Rnd → R is C∞ in P̃.

For machine learning applications, the function we are interested in is not just the
density at a point x, E(·;x) ◦ B0, but rather the difference between two SGDEs. In order
to compute this difference, we can take m values x1, . . . , xm ∈ [0; +∞) and compute the
mean of the squared difference between the density functions of D and D0 at each xi. The
generic differentiability, in the space of point clouds, of the resulting function is given by
the following proposition.

Proposition 2.26. Let E be a SGDE, D0 ∈ Bar, and {x1, . . . , xm} ⊆ [0; +∞). Assume
that the space of point clouds is Rnd. Then, the function LE : Rnd → R given by

LE(P) =
1

m

m∑
i=1

[E(B0(P);xi)− E(D0;xi)]
2 (2.27)

is C∞ in P̃, which is generic in Rnd.

26 Differentiability through barcode space

Proof. Take any i ∈ {1, . . . ,m}, and define the function LE,i(P) as

LE,i(P) =
1

m
[E(B0(P);xi)− E(D0;xi)]

2. (2.28)

This function corresponds to the composite S ◦ Ai ◦ E(B0(·);xi), where S(z) = z2 and
Ai(z) = z − E(D0;xi). Hence, both Ai and S are C∞ in R. Since E(B0(·);xi) is C∞ in P̃
from the previous proposition, we have that S ◦ Ai ◦ E(B0(·);xi) is C∞ in P̃. This is true

for all i = 1, . . . ,m, so each LE,i(P) is C∞ in P̃. Finally, since LE(P) =
m∑
i=1

LE,i(P) for all

P ∈ Rnd, we have that LE is a sum of C∞ functions in P̃, so LE is C∞ in P̃.

Finally, we define the specific SGDE we use in our experiments.

Definition 2.27. A 4SGDE, denoted by E4, is a SGDE parametrized by s > 0 and σ > 0,
and given by

E4(D,x;σ, s) = s
∑

(b,d)∈D

(d− b)4e((d−x)/σ)2 . (2.29)

An example of a 4SGDE applied to a persistence diagram of degree 0 is given in Figure
A.2. From Corollary 2.25, the composition map E4(·;x;σ, s)◦B0 is∞-differentiable in P̃ for
any x ≥ 0. In addition, from Proposition 2.26, any function of the form 2.27 that compares
the 4SGDE of the persistence diagram obtained from a learnable point cloud to the 4SGDE
of a reference diagram D0 is C∞ in P̃.

2.3.4 Persistent entropy

The concept of persistent entropy is an adaptation of the idea of entropy from the
framework of information theory to the context of persistence diagrams. The persistent
entropy of a persistence diagram D is defined as follows [23]:

ϵ(D) = −
∑

(b,d)∈D

|d− b|
L

log

(
|d− b|

L

)
(2.30)

where L =
∑

(b,d)∈D
|d− b|, and the summation only includes bounded off-diagonal points.

One can see that the smoothness of ϵ in Bar does not seem straightforward to prove
and, in fact, may not be true —due to the non-differentiability of log(|d−b|

L) in the diagonal.
However, using a different approach, we can prove that the function computing the persistent
entropy of persistence diagrams of degree 0 is generically C∞ in the space of point clouds.
To prove it, we first define the following type of maps from the space of point clouds to R.

Definition 2.28. Let Rnd be the space of point clouds and p ≥ 0, and let Bp : Rnd → Bar
be the barcode generator of degree p, as defined in Definition 2.10. The p-persistent entropy
generator Gp is the function

Gp : Rnd → R
P 7→ ϵ(Bp(P)).

(2.31)

Proposition 2.29. Let Rnd be the space of point clouds. The 0-persistent entropy generator
G0 is C∞ in P̃, which is generic in Rnd.

2.3 Differentiability of topological regularizers 27

Proof. Let P ∈ P̃. From the definition of P̃, there is an open neighborhood of U of P ,
U ⊆ P̃, where every point cloud P ′ ∈ U has no overlapped points. As a consequence, for
any P ′ ∈ U , B0(P

′) (without providing it with ∆∞) has no points in the diagonal, and
exactly n off-diagonal points (n− 1 bounded points and one unbounded point). Therefore,
for any P ′ ∈ U , the minimal pre-images of B0(P) lie in R2(n−1) × R1.

From Theorem 2.11, the map B0 is ∞-differentiable in P̃. As a consequence, any lift
B̃′

0 : P̃ → R2(n−1) × R1 is C∞ in P̃. We fix one of these lifts and note it B̃0. This map
fixes an indexation of the points of the diagrams obtained from point clouds in U . As a
consequence, the function

U
B̃0−→ R2(n−1)+1 Q2(n−1),1−→ Bar ϵ−→ R (2.32)

is equal to G0 in U . For any P ′ ∈ U , we use the notation

B̃0(P
′) = (b1(P

′), d1(P
′), . . . , bn−1(P

′), dn−1(P
′), v1(P

′)). (2.33)

Then, for any P ′ ∈ U , and for any i = 1, . . . , n − 1, the sign of di(P ′) − bi(P
′) does not

change (since off-diagonal points remain outside the diagonal and thus stay either above
or below the diagonal, and no points arise from the diagonal), hence |di(P ′) − bi(P

′)| is
differentiable. Therefore, the function

ϵ ◦Q2(n−1)+1 : R2(n−1) × R1 → R

(b1, d1, . . . , bn−1, dn−1, v1) 7→ −
n−1∑
i=1

|di − bi|
L

log

(
|di − bi|

L

) (2.34)

is C∞ in B̃0(P). Finally, since ϵ ◦Q2(n−1)+1 is C∞ in B̃0(P), and B̃0 is C∞ in P , then the
composite ϵ ◦Q2(n−1)+1 ◦ B̃0 is C∞ in P . Since ϵ ◦Q2(n−1)+1 ◦ B̃0 is C∞ is equal to G0 in
U (see (2.32)), we conclude that G0 is also C∞ in P .

We have not proven the smoothness of maps employing lifts to non-minimal pre-images of
B0(P), due to the following reason. Any such lift would use points (bi, bi), which correspond
to points in the diagonal of the persistence diagrams. However, in a neighborhood of P

these points will remain fixed in the diagonal —since, as we have seen, the number of off-
diagonal points of 0-persistence diagrams obtained from point clouds in U remains constant.
Therefore, these points have no effect on the persistent entropy of diagrams obtained from
point clouds in U , and should not have an effect on the gradients of G0. Hence, the only
lift of interest is a lift that maps P to a minimal pre-image of B0(P).

2.3.5 Bottleneck distance to a fixed diagram

We now focus on the bottleneck distance between a fixed barcode D0 and the barcode
resulting from the Rips filtration of a point cloud P ∈ Rkd. In this subsection, and the one
that follows, we denote the number of points as k, and the dimension of each point as d,
while n represents the number of unbounded intervals in D0. Furthermore, the space of
barcodes with n unbounded intervals is referred to as Barn. From now on, we assume that
n is fixed. In practical applications, since the barcodes come from finite complexes, we will
either work on Bar1 when computing barcodes of degree 0, or on Bar0 when the homology
degree is p ≥ 1.

28 Differentiability through barcode space

In this subsection we prove that the map dD0 : Bar→ R defined as dD0(D) = d∞(D,D0)

is generically∞-differentiable in Barn. However, we will see that this result is not sufficient
for showing the differentiability of the full map dD0 ◦Bp from Rkd to R. The next subsection
will provide conditions for knowing whether dD0 ◦Bp is C∞. The main result of this section
is the following.

Theorem 2.30. Let D0 be a barcode in Barn. Then, the map dD0 is ∞-differentiable in a
generic subset of Barn.

The sketch of the proof is as follows. First, from the definition of ∞-differentiability, we
have to prove that for any pre-image D̃ of D, which can be a-priori in any space R2m+n for
m,n ≥ 0, the map dD0 ◦ Qm,n is C∞ at D̃. However, proving simultaneously that all the
possible compositions dD0 ◦Qm,n are C∞ at pre-images is not an easy task. Instead, we use
a trick: we show that there is a space B̂ar ⊆ Barn where, for any D ∈ B̂ar, the smoothness
of all possible lifts at pre-images of D can be inferred from the smoothness of the lift at a
single pre-image, called minimal pre-image. This idea is stated more formally in Lemma
2.34. In addition, for proving it we need another result which, roughly speaking, says: there
is an open ball around D such that for all the barcodes D′ in that open ball, d∞(D′, D0) does
not depend on the points that arise from the diagonal. We prove it in Lemma 2.33. This
result allows us to connect the differentiability of dD0 ◦Qm,n at a minimal pre-image D̃ to
the differentiability of dD0 ◦ Qm′,n at any other pre-image D̃′, using the fact that in open
neighborhoods of D̃ and D̃′, both maps use the same points for the bottleneck distance.
Now, recall that we are interested in the generic smoothness of dD0 in Barn, and not just
at some point. Therefore, we prove:

(1) In Barn, for any given space R2m+n, the maps dD0 ◦Qm,n are generically smooth (in
Lemma 2.31).

(2) The space B̂ar is generic in Barn (in Lemma 2.32).

(3) A (small) open ball around any D ∈ Barn is contained in the image of the union of
open balls of same radius centered at the pre-images of D (in Lemma 2.35).

We finally connect the five aforementioned lemmas in the final proof of Theorem 2.30,
where we show that the space of barcodes in Barn that admit an open neighborhood where
dD0 is smooth, noted W, is generic in Barn. To show it, we take any barcode D in Barn,
and perform two infinitesimal perturbations of the barcode: one for having D in B̂ar, and
a second one for having a minimal pre-image D̃ ∈ R2m+n in the space of smoothness of
dD0 ◦Qm,n. The second perturbation can be kept infinitesimal while keeping D in B̂ar since
B̂ar is open and Qm,n is 1-Lipschitz. Then, we use Lemma 2.31 for proving the smoothness
of dD0◦Qm,n at a minimal pre-image of D, and then Lemma 2.34 for proving the smoothness
of dD0 ◦Qm′,n at any other pre-image. In addition, the statement of Lemma 2.34 provides
an even stronger result: all the maps dD0 ◦Qm′,n at pre-images of D are C∞ on open balls
centered at the pre-images, of same radius ϵ > 0. We use this result and Lemma 2.35 to
show the smoothness of dD0 in an open neighborhood of D. This shows that D ∈ W. The
fact that we only needed two infinitesimal perturbations of D for making it belong to W
makes W generic. We proceed now to the full proof.

Lemma 2.31. For any m ∈ N, the map dD0 ◦Qm,n : R2m+n → R is generically C∞.

2.3 Differentiability of topological regularizers 29

Proof. The proof consists in proving the generic differentiability of a "nicer" function
d̃D0,m : R2m+n → R, and then proving that the function is equal to dD0◦Qm,n in R2m+n. Let
m ∈ N, and we define an ordered matching γ̃ : R2m+n → R2m+n as follows: the first m pairs
of coordinate functions are of the form D̃ 7→ (bi, di) − (b0,i, d0,i), where (b0,i, d0,i) is either
an off-diagonal point of D0 or the orthogonal projection of (bi, di) into the diagonal, i.e.,
(bi+di

2 , bi+di
2). Analogously, the last n coordinate functions are of the form D̃ 7→ vj − v0,j ,

where (v0,j ,+∞) is in D0 —notice that in this case there is directly a matching between
unbounded intervals, since an optimal matching will always match together pairs of un-
bounded intervals. We also impose that the intervals (b0,i, d0,i) are all different elements of
D0. Therefore γ̃ induces a matching between the persistence barcode given by D̃ and D0.
We denote by D0(γ̃) the set of off-diagonal points (b0, d0) ∈ D0 that are not used by γ̃ —by
construction, these are all bounded points. We now define the function c̃(γ̃), corresponding
to the cost of the matching, as follows:

c̃(γ̃) : R2m+n → R

D̃ 7→ max

(
∥γ̃(D̃)∥∞,

{ |d0 − b0|
2

}
(b0,d0)∈D0(γ̃)

)
.

(2.35)

Given m and D0, we denote by Γ̃m the set of all possible functions γ̃ as previously defined.
Then Γ̃m is clearly finite and non-empty. Finally, we can define the map d̃D0,m as

d̃D0,m : R2m+n → R
D̃ 7→ min

γ̃∈Γ̃m

c̃(γ̃)(D̃),
(2.36)

and d̃D0,m is C∞ in a generic subset of R2m+n. This comes from the fact that each function
c̃(γ̃) is the maximum of generically C∞ functions in R2m+n, and the maximum of generically
C∞ functions is generically C∞; therefore each c̃(γ̃) is generically C∞ in R2m+n. Since
the minimum of generically C∞ functions is also generically C∞, it follows that d̃D0,m is
generically C∞ in R2m+n.

Now, we proceed to show that d̃D0,m = dD0 ◦ Qm,n in R2m+n. Fix a point D̃ ∈ R2m+n

and let D := Qm,n(D̃). If γ̃ : R2m+n → R is an ordered matching, then it induces a
matching γ between the barcodes D and D0. In this matching, the m bounded intervals
of D are matched to either off-diagonal points of D0 or to the orthogonal projections onto
the diagonal; this matching is determined by the first m pairs of components of γ̃. The
last n components of γ̃(D̃) induce a matching between the unbounded intervals of D and
D0. In addition, by construction, c̃(γ̃)(D̃) is equal to the cost c(γ) of the matching γ

—recall the definition of cost in the previous chapter and equation (2.35). Finally, we
have to see that the minimum attained by d̃D0,m (recall its definition in equation (2.36))
is the absolute minimum of all possible matchings in barcode space. First, notice that
d̃D0,m(D̃) ≥ dD0 ◦ Qm,n(D̃), since d̃D0,m attains the minimum of the cost for some of the
matchings between D and D0. On the other hand, if we take any optimal matching between
D and D0, the projections of points of D or D0 onto the diagonal (if there are any) must
be orthogonal projections —since this is the projection that minimizes the distance to the
diagonal— and unbounded intervals of D must be matched to unbounded intervals of D0

—otherwise the distance would be infinite, and D,D0 ∈ Barn so the distance is finite.
Therefore, we can find an ordered matching γ̃ satisfying the definition at the beginning of

30 Differentiability through barcode space

the proof, such that the points (b0,i, d0,i) and v0,j are taken in accordance to the matching
defined by γ. Therefore, c̃(γ̃)(D̃) = c(γ). As a consequence, d̃D0,m(D̃) = dD0 ◦ Qm,n(D̃).
Since this is true for any D̃ in R2m+n, we have d̃D0,m = dD0 ◦ Qm,n in R2m+n. Therefore,
dD0 ◦Qm,n is C∞ in R2m+n.

It seems that this lemma could directly prove Theorem 2.30, but it does not: Lemma
2.31 says that for each m, there is a generic subspace of R2m+n where dD0 ◦Qm,n is C∞, but
these generic spaces may not be equal for different values of m. In fact, recall Definition 2.5
on the differentiability of maps Bar → R. The definition imposes that for dD0 being ∞-
differentiable at some D ∈ Barn, we need dD0 ◦ Qm,n to be simultaneously C∞ in open
neighborhoods of all the pre-images of D via Qm,n, for all possible m. Therefore, we would
need to evaluate in some way all the generic spaces of R2m+n for any m that Lemma 2.31
refers to, and check that their intersection is in fact generic. But this is not straightorward:
the intersection of an infinite number of spaces generic in some space S is not necessarily
generic in S. Therefore, we employ a different approach. We first define the space B̂ar
as the set of barcodes D ∈ Barn such that no point of D0 is at distance d∞(D,D0) to its
diagonal projection. This space has two key properties, which are given by the next two
lemmas.

Lemma 2.32. The space B̂ar is generic in Barn.

Proof. First, notice that in this context a space is generic in Barn when it is open with
respect to the bottleneck topology, and dense with respect to the bottleneck distance. Since
D0 has a finite number m of off-diagonal intervals, we have a finite number of values di,
i = 1, . . . ,m that are forbidden for d∞(D,D0). For each di, denote by B̂ari the space of
barcodes D ∈ Barn such that d∞(D,D0) ̸= di. Then, B̂ar = ∩iB̂ari. In addition, we denote
by B(D0, di) the closed ball (with the bottleneck distance) centered at D0 and of radius di,
and by ∂B(D0, di) its boundary. In particular, ∂B(D0, di) is closed, hence its complement
is open. Furthermore, its complement is also dense. In fact, given D ∈ ∂B(D0, di), we can
find a barcode D′ arbitrarily close to D such that d∞(D′, D0) ̸= di. As a consequence,
the complement of ∂B(D0, di) is generic. Since B̂ari = Barn \ ∂B(D0, di), we infer that
B̂ari is generic for each i. Since the finite intersection of generic spaces is generic, B̂ar is
generic.

We introduce now the multi-set ∆ϵ := {(b, d) ∈ R2 | |b−d|
2 < ϵ}, i.e., the space of points

that are ϵ-close to the diagonal {(b, b) ∈ R2 | b ∈ R}, with the bottleneck distance. The
second property of B̂ar is the following.

Lemma 2.33. If D ∈ B̂ar, then there exists ϵ > 0 such that, for all D′ ϵ-close to D,
d∞(D′, D0) > ϵ and there exists an optimal matching between D′ and D0 sending D′ ∩∆ϵ

onto ∆∞.

Proof. The proof can be found in [10]. Due to the page limit, we have not added the proof
here. However, we have included a detailed proof of the lemma, including a sketch of the
demonstration, in Appendix B.1, Lemma B.3.

This lemma is saying that, for the chosen ϵ and for any D′ ∈ B(D, ϵ), d∞(D′, D0) does not
depend on the points of D′ that are in ∆ϵ. We now define the concept of minimal barcode:

2.3 Differentiability of topological regularizers 31

an ordered barcode D̃ = [(bi, di)
m
i=1, (vj)

n
j=1] is minimal if bi ̸= di for all i = 1, . . .m.

The meaning of this concept is that if D := Qm,n(D̃), then any other ordered barcode
representing D is in a space R2m′+n with m′ ≥ m, and D̃ lies in the smallest possible space
for representing D. Using this concept, we will now prove that given a barcode D and
under specific conditions, the differentiability of dD0 ◦Qm,n at a minimal pre-image induces
the differentiability of the maps dD0 ◦ Qm′,n at all other possible pre-images of D. Notice
in addition that a direct consequence of the definition of minimal barcode is that, for each
m ∈ N, the space of minimal barcodes is open.

Lemma 2.34. Let D̃m ∈ R2m+n be a minimal barcode such that D := Qm,n(D̃m) ∈ B̂ar,
and assume that dD0 ◦ Qm,n is C∞ in an open neighborhood U of D̃m. Then there exists
ϵ > 0 such that, for any other pre-image D̃m′ of D, the map dD0 ◦Qm′,n is C∞ in B(D̃m′ , ϵ).

Proof. The proof can be found in [10] and it is not given here due to the page limit.

A direct consequence of Lemma 2.34 is that we can deduce at once the simultaneous
differentiablility of all the maps dD0 ◦Qm′,n over open balls of the same size. However, for
the proof of Theorem 2.30, we need to refer to differentiability in a neighborhood of the
barcode D, hence we need a last result connecting an open neighborhood of D in Barn to
these open balls.

Lemma 2.35. For all D ∈ Barn, there exists ϵ > 0 such that for any m′ ∈ N, we have

Q−1
m′,n(B(D, ϵ)) ⊆

⋃
D̃m′∈R2m′+n;Qm′,n(D̃m′)=D

B(D̃m′ , ϵ). (2.37)

Proof. The proof can be found in [10].

Now that we have all necessary results, we can proceed to prove Theorem 2.30.

Proof of Theorem 2.30. Let W be the set of barcodes in Barn admitting an open neighbor-
hood where dD0 is ∞-differentiable. The goal of this proof is to show that 1) W is open in
Barn, and 2) W is dense. 1) is true by definition of W. One way of showing 2) is taking
any D ∈ Barn and showing that we can perform a finite number of infinitesimal —i.e.,
arbitrarily small— perturbations of D such that the new (after perturbations) D admits an
open neighborhood over which dD0 is ∞-differentiable, i.e., D ∈ W. For showing this, we
proceed as follows.

Let D ∈ Barn. Since B̂ar is generic in Barn, we can perform an infinitesimal perturbation
to D such that D is in B̂ar —more specifically, we can replace D by another D′ ∈ B̂ar with
d∞(D,D′) = ϵ1 with ϵ1 > 0 arbitrarily small, and for convenience we denote D′ as D.

Let now D̃m ∈ R2m+n be a minimal pre-image of D. We have seen that the set of minimal
barcodes is open, and by Lemma 2.31, dD0 ◦Qm,n is C∞ on a generic subset of R2m+n. So
up to an infinitesimal perturbation of D̃m (which induces an infinitesimal perturbation of
D in Barn since Qm,n is 1-Lipschitz) we can assume that D̃m is in that generic space, so
dD0 ◦Qm,n is C∞ on B(D̃m, ϵ) for some ϵ > 0, while keeping D̃m minimal. In addition, since
B̂ar is open and Qm,n is 1-Lipschitz, we can make the perturbation sufficiently small such
that the new D stays in B̂ar. Therefore, we now have D ∈ B̂ar, D̃m minimal, and dD0 ◦Qm,n

is C∞ on B(D̃m, ϵ). Using now Lemma 2.34 and reducing ϵ further if necessary according
to the lemma, we have that all the maps dD0 ◦Qm′,n are C∞ over the balls B(D̃m′ , ϵ), for all

32 Differentiability through barcode space

the pre-images Dm′ of D via the maps Qm′,n (for all m′ ∈ N). Now, reducing ϵ if necessary,
by Lemma 2.35, we have that dD0 is ∞-differentiable over B(D, ϵ).

Although this conclusion comes directly from the definitions of ∞-differentiability and
Lemma 2.35, we can prove it in more detail for clarity. Given any D∗ ∈ B(D, ϵ), we
want to see that dD0 is ∞-differentiable at D∗. Since all the pre-images of D∗ lie in
∪m′∈NQ

−1
m′,n(B(D, ϵ)), they also lie in the union of ϵ-balls given in the right-hand side of

equation (2.37). But from the choice of ϵ, all the maps dD0 ◦Qm′,n are C∞ in the set of the
right-hand side of equation (2.37) (with the values of m′ correctly chosen for each ball). As a
consequence, all the pre-images of D∗ admit open neighborhoods where dD0◦Qm′,n —for the
right m′— is C∞. So by the definition of r-differentiability, dD0 is ∞-differentiable at D∗.
Since the proof holds for any D∗ ∈ B(D, ϵ), dD0 is ∞-differentiable at B(D, ϵ). Therefore
D ∈ W. Recall that this new D only differs from the original D by two infinitesimal
perturbations, hence W is dense in Barn.

2.3.6 Conditions for smoothness of the bottleneck distance

Theorem 2.30 ensures that there is a generic subset of Barn where dD0 is∞-differentiable.
However, in practical applications we do not only compute dD0 from the space of barcodes,
but rather the composition dD0 ◦ Bp that maps a point cloud in Rkd to its Rips filtration,
then to its persistence diagram D, and then to dD0(D). Therefore, for computational
applications we are interested on the smoothness of the composite dD0 ◦ Bp, rather than
only dD0 . This section gives a simple numerical condition that, if satisfied, ensures that
dD0 ◦Bp is C∞. First, we summarize the main conclusions from the previous sections:

1) from Theorem 2.11, the barcode generator Bp : Rkd → Barn is ∞-differentiable in the
space of point clouds in general position P̃, which is generic in Rkd, and

2) from Theorem 2.30, the bottleneck distance to a fixed diagram D0, dD0 : Barn → R,
is ∞-differentiable in W, where W is defined as

W = B̂ar∩{D ∈ Barn | ∃ minimal D̃ ∈ R2m+n such that d̃D0,m is C∞ at D̃}. (2.38)

Remark: Note that when the barcode distance is attained simultaneously by different
pairs of points p ∈ D, p0 ∈ D0, all with same length, then it may not be differentiable.
For instance, if d∞(D,D0) is given by ∥p − p0∥∞ and also by ∥p′ − p′0∥∞ using two dif-
ferent optimal matchings, then locally around D, we do not have a well defined gradient.
The reason is that if we keep p constant and move p′ away from p′0, then d∞ is given by
∥p− p0∥∞. However, if we move p away from p0 and make p′ closer to p′0, then d∞ is given
by ∥p′ − p′0∥∞. Therefore, if we approach D by different paths/directions, we get differ-
ent functions d∞ that are only equal at D, but different in a neighborhood. So it seems
that d∞ is not differentiable in D. The solution we propose is showing that if all optimal
matchings use a unique pair p ∈ D, p0 ∈ D0, then d∞ is locally a smooth function around D.

If we could computationally check whether a barcode D is inW, then we would be done.
However, W is a-priori a very complex space and it is not straightforward to know if a
barcode belongs to it. Hence, we will take a simpler space X ⊆ Barn, defined such that it is
easy to check, for any barcode D, if D is in X . In addition, we will see that the conditions

2.3 Differentiability of topological regularizers 33

of a barcode D to be in X are computationally mild and likely to be almost always satisfied.
The main result of this section is Lemma 2.37, where we show that X ⊆ W. This is then
used in Corollary 2.38 for proving that dD0 ◦Bp is C∞ when P ∈ P̃ and D ∈ X .

Definition 2.36. Given D ∈ Barn, let Γ be the set of optimal matchings between D and
D0. Then, the space X ⊆ Barn is defined as follows

X :=B̂ar ∩ {D ∈ Barn | ∃ p ∈ D, p0 ∈ D0 : ∀γ ∈ Γ, c(γ) = ∥p− p0∥∞
∧ ∥p− p0∥∞ > ∥p′ − γ(p′)∥∞∀p′ ∈ D \ {p} ∧ (p− p0) ∦ (1, 1)}.

(2.39)

Although the expression of X in Definition 2.36 is seemingly complex, this space is quite
simple: X is the set of barcodes in B̂ar such that all optimal matchings have a cost uniquely
given by a single pair p ∈ D, p0 ∈ D0, and such that these two points are not aligned parallel
to the diagonal. Note that this second condition is given by the condition (p− p0) ∦ (1, 1),
and is needed for the differentiability of the supremum norm, as we will at the end of the
proof of the next lemma. Therefore, it is easy to know if a barcode belongs to X . In
addition, the definition of X implies that for all D ∈ X , and for all optimal matchings γ

between D and D0, there is an ordering of the lengths of all the matches made by γ of the
following form:

∥p− γ(p)∥∞ > ∥p1 − γ(p1)∥∞ ≥ ∥p2 − γ(p2)∥∞ ≥ . . . (2.40)

where p, p1, p2, . . . are different points of D.

Lemma 2.37. The space X is contained in W.

Proof. Let D ∈ X , and let D̃ ∈ R2m+n be a minimal pre-image of D. Recall the definition of
d̃D0,m in Lemma 2.31 using equations (2.35) and (2.36). We want to show that d̃D0,m is C∞

in D̃ using these definitions. First, notice that we only have to look at the optimal matchings
between D̃ and D0 for computing d̃D0,m(D). From the definition of X , the minimum
computed in (2.36) is attained by a unique pair p ∈ D, p0 ∈ D0 for all optimal matchings.
Therefore, d̃D0,m(D) = ∥p − p0∥∞ > 0. The strict positivity comes because D ∈ B̂ar, so
D ̸= D0. In addition, since D ∈ B̂ar, p /∈ ∆∞. Now, using D̃ = (x1, x2, . . . , x2m, y1, . . . , yn),
we infer that p is given by some components x2i+1, x2i+2 of D̃ (with 0 ≤ i ≤ m− 1).

Recall that Γ̃m is the finite and non-empty set of ordered matchings as defined in
Lemma 2.31. Take any matching with minimal cost γ̃ ∈ Γ̃m. Then its cost is given by
∥(x2i+1, x2i+2)−p0∥∞. In addition, from the definition of X , this cost is strictly larger than
all the other lengths of matches made by γ̃ (which are the lengths inside the max in (2.35)).
More formally, the lengths of all the matches induced by γ̃ are a finite set of N elements of
the form

{Cj(x2j+1, x2j+2); j = 1, . . . ,m− 1} ∪
{
|d0 − b0|

2

}
(b0,d0)∈D0(γ̃)

, (2.41)

where each Cj is equal to either ∥(x2j+1, x2j+2) − (aj , bj)∥∞ for some (aj , bj) ∈ D0 \∆∞,
or |x2j+1−x2j+2|/2 when γ̃ maps it to the diagonal. Recall that D0(γ̃) are the off-diagonal
points of D0 that are not mapped to off-diagonal points of D̃, and thus they are mapped to
the diagonal. For convenience, we generalize the elements of (2.41) to maps Cj : R2m → R,
j = 1, . . . , N that take the coordinates of ordered barcodes as inputs. In addition, these
maps are continuous on R2m. From the definition of X , in D̃ we have a strict ordering

Ci1(D̃) > Ci2(D̃) ≥ Ci3(D̃) ≥ 0 ≥ CiN (D̃), (2.42)

34 Differentiability through barcode space

where the indexes i1, i2, . . . , iN are a re-ordering of {1, . . . , N}. From the definition of X ,
i1 is the same function for all optimal ordered matchings, but the order of the remaining
N−1 functions depends on each matching. From the continuity of these maps, and recalling
that D is a point in R2m+n, there is some ϵ > 0 such that for any D̃′ ∈ Bϵ(D̃), Ci1(D̃

′)

is strictly larger than the other N − 1 functions Cj(D̃
′), j ̸= i1. As a consequence, for all

D̃′ ∈ Bϵ(D̃), c̃(γ̃)(D̃′) = Ci1(D̃
′).

Using the same argument with all the other optimal ordered matchings, and using the
fact that there is a finite number, we obtain an ϵ > 0 such that for all optimal ordered
matchings γ̃, its cost is the function Ci1(D̃

′) for all D̃′ ∈ Bϵ(D̃). In addition, from the
definition of X , the function Ci1 is the same for all optimal matchings. We thus denote
it by C for convenience, and it can take the two following forms, depending on where the
point p0 in D0 that is used for d∞(D,D0) lies (recall the definition of X).

(i) If p0 is the projection of p ∈ D onto the diagonal, then Cγ̃ = |x2i+1 − x2i+2|/2 for
some 0 ≤ i ≤ m− 1 independent of the optimal ordered matching.

(ii) If p0 = (p0,1, p0,2) is an off-diagonal point, then C = ∥(x2i+1, x2i+2) − (p0,1, p0,2)∥∞
for all optimal ordered matchings.

In summary, we have proved that for any optimal ordered matching γ̃ ∈ Γ̃m, and for any
D̃′ ∈ Bϵ(D̃), we have c̃(γ)(D̃′) = C(x2i+1, x2i+2), a continuous function that is the same
for all optimal ordered matchings. In addition, we have shown that C is either of type (i)
or (ii) in all Bϵ(D̃). What remains now to prove is that an optimal ordered matching in D̃

remains an optimal ordered matching in an open neighborhood of D̃.
The proof is simple but requires some formalism with the notation. We have a finite

number of non-optimal ordered matchings in Γ̃m. Take one of these non-optimal matchings
γ̃′. It has a cost that is given by the length of some of the pairings it creates. Let k be the
number of different pairings that yield the same equal maximal length that gives the cost
c̃(γ̃′). In particular k is finite. Each of these k lengths is a function of a pair of coordinates
x2jk , x2jk+1, and we denote it as Qk(x2jk , x2jk+1). In particular, these k functions Qk are
equal on D̃, and strictly larger than the length of the other pairings induced by γ̃′. Therefore,
in a sufficiently small neighborhood of D̃, the cost of γ̃k is given by the maximum of these
k functions. In addition, because γ̃k is non-optimal, at D̃ we have C(D̃) < Qk(D̃) for all k.
Hence, we have an open neighborhood U of D̃ where C(D̃′) < Qk(D̃

′) ≤ c̃(γ̃′)(D̃′), for all
D̃′ ∈ U . We repeat the same argument for all non-optimal ordered matchings in Γ̃m, and
we obtain an ϵ′ > 0 with ϵ′ < ϵ such that, for all D̃′ ∈ Bϵ′(D̃) and for all non-optimal γ̃′, we
have C(D̃′) < c̃(γ̃′)(D̃′). As a consequence, for all D̃′ ∈ Bϵ′(D̃), the minimum of the cost
of ordered matchings is C(D̃′). Hence, d̃D0,m(D̃′) = C(D̃′) for all Bϵ′(D̃). Finally, recall
that D̃ ̸= D0 so C(D̃) > 0. Therefore, if C is of type (i), then in an open neighborhood
of D̃, d̃D0,m = α · (x2i+1 − x2i+2)/2 where α = 1 or −1, hence it is C∞ on D̃. If C is of
type (ii), then d̃D0,m = max(|x2i+1 − p0,1|, |x2i+2 − p0,2|). But from the definition of X , we
have that (p− p0) ∦ (1, 1), or, equivalently, |x2i+1 − p0,1| > |x2i+2 − p0,2| (or vice-versa) in
D̃. Thus, there is an open neighborhood of D̃ where d̃D0,m only depends on one of the two
terms, so it is C∞ in D̃. In conclusion, we have proved that if D ∈ X , then d̃D0,m is C∞ at
all minimal pre-images of D, so D ∈ W.

Corollary 2.38. Let P ∈ P̃ ⊆ Rkd and D = Dgmp(F (P)), where F is the Rips filtration.
If D ∈ X , then dD0 ◦Bp is C∞ in P .

2.4 Selective regularizers 35

Proof. From Lemma 2.37, D ∈ W, so dD0 is ∞-differentiable at D = Bp(P). Since P ∈ P̃,
from Theorem 2.11 we infer that Bp is ∞-differentiable at P . From Proposition 2.6, the
composite of two∞-differentiable functions is C∞ as a map between manifolds, so dD0 ◦Bp

is C∞ at P .

2.4 Selective regularizers

The persistence of a point (b, d) in a persistence diagram is defined as the value |d− b|.
In many cases it can be useful to work with maps on barcodes that only take into account
points with persistence larger than some threshold δ > 0. For instance, when the function
is not differentiable in the diagonal, or when the function is not zero in the diagonal, but
also in cases where one wants to avoid computational costs and noise. In this section, we
study these functions and prove a new result, given in Proposition 2.41, related to the
differentiability of this type of functions. We only work in this section with Bar0, i.e., the
diagrams with no unbounded points —if the diagrams are of degree 0, we can neglect the
point (0,+∞).

Definition 2.39. Given δ > 0, a δ-selective function is a function fδ : Bar0 → R of the
form

fδ(D) =
∑

(b,d)∈D : |d−b|>δ

F (b, d) (2.43)

where F : R2 → R is C∞ in {(x, y) : |x− y| > ϵ} for some ϵ < δ.

Proposition 2.40. Any δ-selective function is generically ∞-differentiable in Bar0.

Proof. Denote by ∆∗
δ the set of points in R2 with persistence δ, or equivalently, at a distance

δ/2 to the diagonal (i.e., ∆∗
δ = {(x, x+δ) | x ∈ R}∪{(x, x−δ) | x ∈ R}), and let Cδ ⊆ Bar0

be the set of barcodes with no points in ∆∗
δ , which is generic in Bar0 (it is open and

dense). Now, let fδ be any δ-selective function, which uses some function F : R2 → R in
the summation. We define the function

act(b, d) :=

{
1: |d− b| > δ

0: |d− b| ≤ δ
(2.44)

and we define the function G(b, d) := F (b, d) · act(b, d), which is C∞ in R2 \∆∗
δ and equal

to 0 in the diagonal. The function fδ can be re-written as:

fδ(D) =
∑

(b,d)∈D

G(b, d). (2.45)

Let now D be any barcode in Cδ and D̃ be any pre-image of D, with Qm,0(D̃) = D for
some m. Then the linear representation f̃δ of fδ in an open neighborhood of D̃, given by

(b1, d1, . . . , bm, dm) ∈ R2m 7→ f̃δ(b1, d1, . . . , bm, dm) =
∑
i

G(bi, di) (2.46)

is C∞ in D̃, since all the points (bi, di) are in R2\∆∗
δ . As a consequence fδ is∞-differentiable

in Cδ, which is generic in Bar0.

36 Differentiability through barcode space

Proposition 2.41. Let fδ be a δ-selective function, Rnd the space of point clouds, and
let Bp be the barcode generator of degree p (via the Rips filtration) for any p ≥ 0. Then,
the composition fδ ◦ Bp is generically C∞ in Rnd. More specifically, fδ ◦ Bp is C∞ in the
subspace of Rnd

Y := P̃ ∩ {P ∈ Rnd : |∥pi − pj∥2 − ∥pk − pl∥2| ≠ δ for all 1 ≤ i, j, k, l ≤ n}, (2.47)

where we use the notation P = (p1, . . . , pn). In addition, Y is generic in Rnd.

Proof. Let P = (p1, . . . , pn) be a point cloud in Y. If its barcode Bp(P) had a point
in ∆∗

δ , then it would have a point of the form (x, x ± δ). However, the points of the
barcode are of the form (∥pi − pj∥2, ∥pk − pl∥2) for some i, j, k, l, which would imply that
|∥pi− pj∥2−∥pk − pl∥2| = δ, a contradiction. As a consequence, the barcode of P does not
have points in ∆∗

δ , so from Proposition 2.40, fδ is∞-differentiable in Bp(P). Using the fact
that Bp is ∞-differentiable in P (since Y ⊆ P̃), and applying Proposition 2.6, it follows
that fδ ◦Bp is C∞ in P . To prove that Y is generic in Rnd, we re-express the set as

Y = P̃ ∩
⋂

i,j,k,l

Zijkl (2.48)

where Zijkl := {P ∈ Rnd : |∥pi − pj∥2 − ∥pk − pl∥2| ̸= δ}, and the values i, j, k, l are taken
over all possible 4-vectors (i, j, k, l) ∈ {1, . . . , n}4. We will now prove that each Zijkl is
generic in Rnd. Fix a 4-vector (i, j, k, l) ∈ {1, . . . , n}4 and consider Zijkl. We define the
function fijkl(P) := |∥pi − pj∥2 − ∥pk − pl∥2| − δ, which is continuous in Rnd. Since R \ {0}
is open, the pre-image f−1

ijkl(R \ {0}) is open in Rnd, so Zijkl = f−1
ijkl(R \ {0}) is open in Rnd.

To show that Zijkl is dense, take any P /∈ Zijkl, and consider any value ϵ > 0. We have
fijkl(P) = 0, which implies that in (i, j, k, l) there is one index that is not repeated. In fact,
if we assume that all indices in (i, j, k, l) are repeated, we either have i = j = k = l, or i = j

and k = l ̸= i, or i = k and j = l (and i ̸= j) (up to permutation of the indices, these are
all possible cases). In all these cases, we have fijkl(P) = −δ ̸= 0, which is a contradiction.
As a consequence, there is one index, say i, that is different from the other three indexes
j, k, l. In particular, we can transform pi into some p′i ̸= pi with ∥pi−p′i∥2 < ϵ and such that
∥p′i − pj∥2 ̸= ∥pi − pj∥2. From the choice of index, this change does not affect the second
term ∥pj−pk∥2, so, denoting by P ′ the new point (p1, . . . , p′i, . . . , pn), we have fijkl(P

′) ̸= 0.
In other words, we have a point P ′ ∈ Zijkl with ∥P −P ′∥2 < ϵ, so Zijkl is dense in Rnd, and
in particular generic. Since a finite intersection of generic spaces is generic, we have that Y
is generic in Rnd.

In other words, Proposition 2.41 states that any regularizer that "only looks at points
in the diagram with persistence larger than some δ" is C∞ in an open and dense subset of
the space of point clouds. This has many applications, such as allowing us to use gradient
descent optimization on functions through barcode space even when they take zero values in
the diagonal or when they are not differentiable in the diagonal. One important implication
of this result is related to regularizers based on persistent entropy.

Definition 2.42. Let Rnd be the space of point clouds. Consider the persistent entropy ϵ

as defined in Definition 2.30, and let Bp be the barcode generator of degree p via the Rips

2.4 Selective regularizers 37

parametrization. Given any (arbitrarily small) δ > 0, the δ-selective p-persistent entropy
generator Gp,δ is defined as

Gp,δ : Rnd → R

P 7→ ϵ(Bp(P) \ ∆̄δ/2) = −
∑

(b,d)∈Bp(P) : |d−b|>δ

|d− b|
L

log

(
|d− b|

L

)
,

(2.49)

where L =
∑

(b,d)∈Bp(P) : |d−b|>δ|d − b|, and ∆̄δ/2 = {(b, d) ∈ R2 | |d − b| ≤ δ} is the set of
points with persistence smaller or equal than δ. Equivalently, it is the set of points that
are at a distance smaller or equal than δ/2 to the diagonal. Therefore, Gp,δ computes the
persistent entropy of Bp(P) without considering the points with persistence lower than δ.

Proposition 2.43. Let Rnd be the space of point clouds. For any p ∈ N and δ > 0, the
δ-selective p-persistent entropy generator Gp,δ : Rnd → R is generically C∞ in Rnd. In
particular, Gp,δ is C∞ in Y, which is generic in Rnd.

Proof. The map Gp,δ can be written as fδ ◦Bp, where

fδ(D) = −
∑

(b,d)∈D : |d−b|>δ

|d− b|
L(D)

log

(
|d− b|
L(D)

)
, (2.50)

where L(D) =
∑

(b,d)∈D : |d−b|>δ |d − b|. Assume D is a barcode in Cδ, and let D̃ be any
pre-image of D with Qm,0(D̃) = D for some m. Then, the linear representation of fδ in an
open neighborhood of D̃ is given by

(b1, . . . , dm) ∈ R2m 7→ f̃δ((b1, . . . , dm)) = H ◦G(b1, . . . , dm), (2.51)

where the functions G and H are defined as follows. The map G is given by

G : (b1, . . . , dm) 7→ (b1, . . . , dm,

m∑
i=1

|di − bi| · act(bi, di)), (2.52)

and we denote the last element returned by G as L(D̃). Since D is in Cδ, for all points of
D̃ we have |di − bi| ≠ δ, so on an open neighborhood U of D̃, all inequalities |di − bi| > δ

(or |di − bi| < δ) do not change. As a consequence, the act function is locally 0 or 1 for
each (bi, di) in U , and the absolute value |di − bi| becomes either di − bi or bi − di in U , so
G becomes a linear function in U , so G is C∞ in an open neighborhood of D̃. Then, we
compose G with the map

H(b1, . . . , dm, L) = −
m∑
i=1

|di − bi|
L

log

(
|di − bi|

L

)
· act(bi, di), (2.53)

which is C∞ in an open neighborhood of (b1, . . . , dm, L) whenever L > 0 and |di − bi| ≠ δ

for all i. If L = 0, then there are no points in U that satisfy |di − bi| > δ, so f̃δ = 0 in U ,
hence the map is C∞ in D̃. If L ̸= 0 (and as a consequence L > 0), then by the composition
of C∞ maps, we have that fδ is C∞ in D̃. This holds for an arbitrary pre-image of D,
so fδ is ∞-differentiable in Cδ. Now, assume P is a point cloud in Y ⊆ Rnd. Then, Bp

is ∞-differentiable in P and Bp(P) ∈ Cδ (by definition of Y), so fδ is ∞-differentiable
in Bp(P). From the chain rule through barcode space (Proposition 2.6), the composition
fδ ◦Bp = Gp,δ is C∞ in P . Hence, Gp,δ is C∞ in Y, which by Proposition 2.41 is generic in
Rnd.

Chapter 3

Topology-informed generative models

The construction of the variational autoencoder and the explanation of its working prin-
ciple in Subsection 3.4.2 rely on the paper that first proposed variational autoencoders [24]
and the lecture notes [25]. The rest of the chapter is original work.

3.1 Topological regularizers

In Chapter 2, we have obtained several results related to the differentiability of different
classes of functions from the space of point clouds to R, factoring through barcode space.
We will now define five types of topological regularizers from the space of point clouds Rnd

to R —four of them comparing the persistence diagram of a point cloud to a reference
persistence diagram—, which we will use in the following experiments. In order to define
these functions, it is important to recall the functions introduced in the previous chapters;
notably, if p is a homology degree, the map Bp is the barcode generator of degree p via
the Rips parametrization (Definition 2.10); d∞ is the bottleneck distance (Definition 1.18);
dσ is the Reininghaus dissimilarity for some σ > 0 (see equation (2.20)); E4 is the 4SGDE
parametrized by some σd > 0 and s > 0 (Definition 2.27); and Gp,δ is the δ-selective
p-persistent entropy generator, for some δ > 0 (Definition 2.42).

Definition 3.1. Let Rnd be the space of point clouds, D0 ∈ Bar a fixed reference barcode,
and p ≥ 0 an homology degree. We have the four following types of topological regularizers:

LRh,p(σ) : P ∈ Rnd 7→ d2σ(Bp(P), D0) ∈ R,

L4SGDE,0(x, σd, s) : P ∈ Rnd 7→
m∑
i=1

[E4(B0(P);xi, σd, s)− E4(D0;xi, σd, s)]
2 ∈ R,

Lbottleneck,p : P ∈ Rnd 7→ d∞(Bp(P), D0) ∈ R,
Lentropy,p(δ) : P ∈ Rnd 7→ (Gp,δ(P)−Gp,δ(D0))

2 ∈ R.

(3.1)

We refer to these functions, respectively, as the p-Reininghaus regularizer, the 4SGDE regu-
larizer (only used with degree 0), the p-bottleneck regularizer, and the p-entropy regularizer.
We have also added in parentheses, when needed, their hyperparameters; σ, σd, s and δ are
strictly positive real values, and x := {xi}mi=1 is a finite set of evaluation points in [0,+∞).
We also define the p-push regularizer as

Lpush,p : P ∈ Rnd 7→ −
∑

(b,d)∈Bp(P)

(d− b) ∈ R, (3.2)

38

3.2 Environment for the experiments 39

which, although it does not compare the persistence diagram to another diagram, it can
also be used as a regularizer.

The differentiability of these regularizers follows directly from the previous results, and
can be summarized as follows.

Theorem 3.2. Let Rnd be the space of point clouds. Then, the p-push regularizers, p-
Reininghaus regularizers, 4SGDE regularizers, and p-entropy regularizers are generically
differentiable in Rnd. In addition, the p-bottleneck regularizers are differentiable whenever
the point cloud is in the space of point clouds in general position P̃, which is generic in Rnd,
and its persistence diagram is in the subspace X of Bar as defined in Definition 2.36.

Proof. The generic differentiability of p-push regularizers has been proven in Proposition
2.20; for p-Reininghaus regularizers, it has been proven in Corollary 2.22; and for 4SGDE
regularizers, it has been proven in Proposition 2.26 —the result is more general, and includes
the particular case of 4SGDEs. In the case of p-entropy regularizers parametrized by some
δ > 0, recall that, from Proposition 2.43, the δ-selective p-persistent entropy generator Gp,δ

from Rnd to R is generically differentiable in Rnd. As a consequence, if we consider the
map φ : R→ R given by φ(x) = (x−Gp,δ(D0))

2 (where Gp,δ(D0) is a constant), then φ is
differentiable in R, and thus the composition φ ◦Gp is generically differentiable in Rnd, and
φ ◦ Gp is equal to the p-entropy regularizer, hence the p-entropy regularizer is generically
differentiable in Rnd. The result for the p-bottleneck regularizer follows from Corollary
2.38.

3.2 Environment for the experiments

The code has been implemented using Python version 3.10.12, with PyTorch and Persim
as the main libraries. In our machine learning problems, automatic differentiation is em-
ployed to compute gradients. This approach allows us to directly express the loss in terms
of the point cloud coordinates, eliminating the need for explicit gradient calculations.

For computing the persistence diagrams, we use the function ripser_parallel from
the library Persim, which, given a point cloud, returns the persistence diagram of any
homology degree, using coefficients in the field Z/2Z and the Euclidean metric for the
distance between points. The method combines optimization techniques and ideas from
[20, 26, 27], achieving state-of-the-art performance. More details about the algorithm can
be found in [21]. Furthermore, although the computation of the persistence diagrams is
done without backpropagation, the final loss depends on the coordinates of the point cloud
allowing the backpropagation. This is due to the fact that the coordinates of each off-
diagonal point of the persistence diagram D0 and D1 correspond to pairwise distances of
points of the point cloud. In particular, in D0 each point (0, di) is given by di = ∥X̂i1−X̂i2∥2
for two points of the generated batch (X̂i)

N
i=1. Similarly, in D1 each point (bi, di) is given

by bi = ∥X̂i1 − X̂i2∥2 and di = ∥X̂i3 − X̂i4∥2 for four points (which may be repeated) of
the generated batch. We have access to these relations between points of the diagrams and
points of the point clouds through the "generators" part of the object computed by the
ripser_parallel function, allowing us to trace back the points of a persistence diagram to
the original points of the point clouds, making backpropagation through gradient descent
affect the coordinates of the point cloud. Furthermore, if the point cloud is the output of

40 Topology-informed generative models

a neural network (which is the case in generative models) the gradients trace back again,
using the chain rule, to the weights of the neural network. More details about the algorithms
developed can be found in the code; see Appendix A.6.

3.3 Synthetic experiments

We provide three examples of the use of topological losses for controlling the shape of
arbitrary point clouds. We begin in each case with a point cloud P of 64 points at random
initial positions in R2, and set a reference persistence diagram D0 associated to some ground
truth topological features. The goal is to make P learn, via backpropagation, to rearrange
itself to produce the topological features described by D0. We will not perform experiments
for all functions of Definition 3.1 but rather give three proof-of-concept examples using
regularizers Lpush,0 and Lbottleneck,p. More precisely, we define the loss function

L1 =

{
Lbottleneck,0 + Lbottleneck,1 if dependent on points of P,

Lpush,0 otherwise.
(3.3)

Note that separation between these two cases is necessary since, whenever the function
Lbottleneck,0 + Lbottleneck,1 only depends on points of D0, differentiation with respect to
coordinates of points of P results in vanishing gradients, and as a consequence stagnation
of the state of P . To avoid this issue, whenever L1 does not depend on coordinates of P ,
we have to replace the total loss by a term that slightly perturbs the point cloud. The
choice of Lpush,0 comes from the fact that this term perturbs points of P in such a way that
points in its persistence diagram are pushed away from the diagonal. Experimentally, this
phenomenon does take place and results in the appearance of new points in the diagrams of
degree 0 and 1. These effects cause in general the dependence of Lbottleneck,0 and Lbottleneck,1

on coordinates of P in the next steps. Note that this is only an empirical observation and
we do not provide a theoretical justification. The three experiments performed are the
following. All figures and results are given in Appendix A.3.

Experiment A: Collapse of clusters. We begin with a point cloud P consisting of 5
clusters. The reference persistence diagram describes a point cloud with 3 clusters. Hence,
the goal is to make P understand from the topological loss that it has to decrease the
number of clusters from 5 to 3. Results are given in Figure A.5, and an animation of the
evolution of P can be found in synthetic1_video.mov. We can see that the point cloud does
learn to deform itself achieving the desired number of clusters.

Experiment B: Creation of clusters. We begin with the point cloud P consisting of
3 clusters, and the reference persistence diagram represents a point cloud with 5 clusters.
Hence, the goal is to make the point cloud expand itself to appropriately increase the number
of clusters. This example is an illustration of one of the possible applications of topological
regularizers in generative models: avoiding an under-representation of the real space where
the data lies, generating only a subset of the real data. With this example we show that
the point cloud learns, through the topological loss, to expand the points and generate new
clusters at distances given by the reference barcode. Results are given in Figure A.6, and
an animation of the point cloud evolution can be found in synthetic2_video.mov.

https://github.com/JackBJ23/TopoGEN/blob/main/synthetic1_video.mov
https://github.com/JackBJ23/TopoGEN/blob/main/synthetic2_video.mov

3.4 Topology-informed generative models 41

Experiment C: From lines to circles. We begin with a point cloud P arranged for
forming two non-intersecting line segments. The reference persistence diagram is the dia-
gram obtained from a circle. The goal is thus to make P deform itself for forming a circle.
Results are given in Figure A.7, and an animation can be found in synthetic3_video.mov,
showing that the loss does efficiently teach the point cloud to generate the circle.

These experiments confirm the capability of topological loss functions to continuously
deform a point cloud into a new object with the desired topological features. Having ob-
served these positive results, we now apply these functions to a real-life problem: enhancing
the training process of generative models.

3.4 Topology-informed generative models

3.4.1 Generative models

Assume we have a dataset D (e.g., images, songs), where the data points lie in a high-
dimensional space X. For instance, RGB 64 × 64 images are points in R3·64·64. Assume
there is a probability distribution Pt(X) associated to the data points in X, assigning to
regions of the space their likelihood to belong the dataset. However, in general we do not
know the true probability distribution Pt, and rather we have only access to a collection
of points (Xi)i sampled from Pt. The goal of a generative model is to learn a probability
distribution P as close as possible to Pt so that we can sample new data points using P ,
producing data that had never been fed to them.

There is a wide variety of generative models, such as variational autoencoders (VAEs),
generative adversarial networks (GANs), or diffusion models. We focus in this section on
VAEs, since their training process allows to compare topological features of the input batch
and the output batch (a comparison that loses meaning in GANs, for instance), and the
training process is not as time-expensive as in diffusion models. The goal of this section is
to analyze changes in the behaviour of VAEs when we integrate topological loss terms in
the training process. To do so, we first describe the working principle of a VAE. Then, we
propose the new training algorithm when using a topological regularizer, and in the next
section we evaluate experimentally the performance of these new models.

3.4.2 Variational autoencoders

A VAE is an unsupervised machine learning model that maps high-dimensional data
to a lower-dimensional latent space using an encoder, and reconstructs the data from this
latent space using a decoder. We denote the latent space by Z, and refer to its elements as
latent vectors, noted z. Both the encoder and the decoder of the VAE are neural networks,
parametrized by their respective sets of parameters ϕ and θ. The encoder maps an input X
to a pair of vectors µ(X;ϕ),Σ(X;ϕ), both with dimension equal to that of the latent space,
and the decoder maps a latent vector z to a data point f(z; θ) ∈ X. If θ is fixed and z is
sampled according to a probability density function P (z) on Z, then f(z; θ) is a random
vector in X. The objective of the VAE is to optimize θ such that the f(z; θ)’s are points
from the data distribution. In other words, θ has to be optimized in order to maximize, for

https://github.com/JackBJ23/TopoGEN/blob/main/synthetic3_video.mov

42 Topology-informed generative models

every X in the dataset, the following quantity:

P (X) =

∫
Z
P (X | z; θ)P (z) dz, (3.4)

where P (X) is the probability that the data point X is produced by the generative process
z 7→ f(z; θ) for all possible z in Z following the distribution P (z). In VAEs, P (z) is
defined as a standard distribution N (z | 0, Id) [25]. The term P (X | z; θ) represents the
probability that f(z; θ) looks like X. This function is often defined as a Gaussian distribution
N (X | f(z; θ), σ · Id), where σ is a hyperparameter, although other distributions can be
used as long as they are continuous on θ and can be numerically computed [25]. Hence,
if the decoder maximizes P (X), it will create data points that look like those from the
dataset. Due to spatial limitations we will not explain here how to approximate P (X) in a
differential (i.e., allowing gradient descent) and efficient manner. A detailed derivation can
be found in Appendix B.2, and we provide here directly the main results. To summarize,
in the case of an individual data point X, and with a latent space dimension J and an
arbitrary positive number L, one can obtain the following approximation of a lower bound
of logP (X):

L̃(ϕ, θ;X,L) =
1

2

J∑
j=1

(1 + log((Σj)
2)− (µj)

2 − (Σj)
2) +

1

L

L∑
l=1

log(P (X | zl))

where zl = µ(X;ϕ) + Σ(X;ϕ)⊙ ϵl; ϵl ∼ N (0, Id).

(3.5)

Here ⊙ is the element-wise product, and Σj and µj are the components of the vectors Σ

and µ, respectively. Each zl corresponds to a random latent vector obtained from the noise
vector ϵl —this technique, known as the reparametrization trick, is explained in more detail
in Appendix B.2. Furthermore, the function (3.5) is continuous on ϕ and θ, and −L̃ can
be computed and minimized via stochastic gradient descent [25]. The term logP (X | zl)
corresponds to a Bernoulli or Gaussian distribution whose parameters are given by f(z; θ),
and the choice depends on the type of data. In our experiments, we have modeled the term
logP (X | zl) as a Bernoulli distribution; see the code (Appendix A.6) for details.

When training a VAE, the input consists of batches of N data points X1, . . . , XN ran-
domly sampled from the full dataset D, and the total loss is calculated for these N inputs.
Furthermore, when N is larger than 100 (which holds in our experiments), we can take a
single sample ϵi for each Xi [24]. As a consequence, the total loss in each training iteration
of the standard variational autoencoder is given by

Loss
(
ϕ, θ; {Xi}Ni=1

)
= −

N∑
i=1

L̃(ϕ, θ;Xi, 1), (3.6)

where the −1 factor comes from the fact that the gradient descent process aims to minimize
the loss, and our goal is to maximize each L̃. A summary of the process computed during
each training iteration is illustrated in the following diagram:

Xi
Encoder(Xi;ϕ)7→ µ(Xi),Σ(Xi)

&ϵi7→ zi
Decoder(zi;θ)7→ f(zi; θ) 7→ L̃(ϕ, θ;Xi, 1) 7→ Loss. (3.7)

The final loss employs µ(Xi), Σ(Xi) for calculating the first term of (3.5), and f(zi; θ) for
the second term of (3.5). A summary of the loss calculation for a standard VAE is given

3.4 Topology-informed generative models 43

in Algorithm 1. Note that the first term in equation (3.5) is the opposite of the Kullback-
Leibler divergence KLD, and the second term in (3.5) is, in our code, the opposite of the
Binary Cross-Entropy loss BCE. As a consequence, we use in Algorithm 1 the notation
−L̃ = KLD+BCE. Furthermore, for convenience we refer to the total loss of the standard
VAE given in (3.6) as L0. It is important to note that the BCE loss at an individual pixel of
an image, where xi is the ground truth value of the pixel intensity, and x̂i is the predicted
value in the reconstructed pixel (both values between 0 and 1), is given by

−xi log(x̂i)− (1− xi) · log(1− x̂i). (3.8)

This function has a unique minimum when x̂i = xi, and its value increases with the absolute
difference |xi − x̂i|. The BCE loss of the entire image is then the sum of the BCE loss in
each pixel, and represents a measure of how accurate the reconstruction of the image is;
minimizing its value corresponds to making the model produce an image more similar to
the original image.

3.4.3 TopoVAEs

The topologically-regularized VAEs or topology-informed VAEs, abbreviated TopoVAEs,
are the combination of the standard VAE with a new term in the loss function that acts as
a regularizer. The goal of the regularizer is to make the model produce batches of images
with a distribution similar to the batch of real images. These regularizers represent ways of
"teaching" the model information from the persistence diagrams, such as how many clusters
the clouds of generated data have to form, how far apart these clusters have to be, or how
many loops have to be formed and how large they have to be. This can avoid early mode
collapse and enhance a faster imitation of the true data distribution. In order to implement
these regularizers, in each iteration a batch of N true datapoints is taken, and we view the
true batch as a point cloud, and the generated batch (i.e., the N datapoints generated by
the VAE) as a second point cloud. We then compute their persistence diagrams of degree
0 and/or 1 and compute some measure of dissimilarity between these two diagrams, which
can be one (or a combination) of the regularizers in equation (3.1). This "distance" is taken
as a new loss term and added to the total loss. This working principle is illustrated in
Figure A.1 and more formally described in Algorithm 2, where we have used the notation
Dp for the persistence diagram of degree p obtained from the generated batch, and Dp

0 for
the diagram of degree p obtained from the true batch. The training process then follows
the main idea of Section 3.3. However, instead of points in the plane we now work with
points in higher-dimensional spaces, and the coordinates of these points are the outputs of
neural networks. Using the training procedure defined in Algorithm 2 and the topological
regularizers of equation (3.1), we construct the following four topology-informed total losses:

LT1(P ;ω0, ω1) = L0 + ω0 · Lbottleneck,0(P ;D0
0) + ω1 · Lbottleneck,1(P ;D1

0),

LT2(P ;ω0, ω1, δ) = L0 + ω0 · Lentropy,0(P ;D0
0, δ) + ω1 · Lentropy,1(P ;D1

0, δ),

LT3(P ;ω0, ω1, δ, σ) = L0 + ω0 · Lentropy,0(P ;D0
0, δ) + ω1 · LRh,1(P ;D1

0, σ),

LT4(P ;ω0, ω1,x, σd, s, σ) = L0 + ω0 · L4SGDE,0(P ;D0
0,x, σd, s) + ω1 · LRh,1(P ;D1

0, σ).

(3.9)

The topological losses are only added to the total loss if they involve points of the learnable
point cloud P —otherwise, the gradients are zero and do not modify the point cloud.

44 Topology-informed generative models

3.5 Experiments and results

We now fix a VAE model structure, which is described in the next subsection. Using this
structure, we define VAE0 as the VAE employing the standard loss L0, and we refer to the
VAE model employing one of the topology-informed losses of equation (3.9) as a TopoVAE.
In particular, the model using loss LT i is referred to as TopoVAEi.

We test the resulting four topology-informed VAEs in the FashionMNIST dataset, which
consists of 60000 grayscale images of 28×28 pixels, with labels from 10 classes (T-shirt/top,
Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot). We first find
optimal hyperparameters for each topological regularizer by a grid search approach, in order
to systematically explore a range of values for key hyperparameters (a detailed explanation
of the final choices is given in Appendix A.4.1). Using these fine-tuned regularizers, we
compare each TopoVAE to VAE0 in a set of qualitative and quantitative experiments in
Subsections 3.5.2 and 3.5.3, respectively. The promising results lead us to further explore
the diverse properties of these regularizers, as detailed in Subsections 3.5.4 and 3.5.5, where
we address interesting new lines of applications. In addition, in all experiments we use a
batch size of 128; this choice comes from the fact that it ensures a large enough point cloud
for providing rich structural information through the topological regularizer, while being
sufficiently small for ensuring a computation process that is not too time-consuming —larger
batch sizes result in a more time-expensive computation of the persistence diagrams and the
losses, while not bringing an improved training performance. The optimal hyperparameters,
training times and summary of performance measurements are summarized in Table A.1.

3.5.1 VAE structure

The VAE used is a convolutional VAE whose detailed structure is given in the code; see
topovae_tests.py. Unless stated otherwise, in all experiments the latent space dimension
is 10. We briefly describe the transformations using latent dimension 10. The input has
shape (128, 1, 28, 28) (i.e., a batch of 128 grayscale 28×28 images), and the encoder realizes
the following shape transformations:

(128, 1, 28, 28) 7→ (128, 32, 14, 14) 7→ (128, 64, 7, 7) 7→ (128, 3136) 7→ (128, 256)

7→ (128, 10), (128, 10).
(3.10)

The first two maps are done via convolutional layers, the third map is a re-shaping operation
of the data, the fourth map occurs via a fully-connected layer, and the last map occurs by
applying in parallel two fully-connected layers. The output corresponds to two batches of
µ and Σ vectors. Applying the reparametrization trick, these values are then transformed
into 128 latent vectors with total shape (128, 10). The latent vectors are then fed into the
decoder, and the resulting shape transformations are

(128, 10) 7→ (128, 256) 7→ (128, 3136) 7→ (128, 64, 7, 7) 7→ (128, 32, 14, 14)

7→ (128, 10), (128, 1, 28, 28).
(3.11)

The maps correspond, respectively, to a fully-connected layer, a second fully-connected
layer, a re-shaping operation, and two transposed convolutional layers. A description of
the fully-connected layer, the convolutional layer, and the transposed convolutional layer,
which are the building blocks of the convolutional VAE, are given in Appendix B.3.

3.5 Experiments and results 45

3.5.2 Qualitative comparison

We first qualitatively compare the images generated by TopoVAE models and VAE0
during early training. We also show qualitative differences in the decay of the BCE losses.
More precisely, for each TopoVAE, we train VAE0 and TopoVAE simultaneously using
initially cloned models, i.e., the two models have initially the same weights. In addition,
the batches fed into both models are exactly the same, thus, the only difference between
the two models is the absence or presence of the topological regularizer. Both models are
trained for exactly one epoch 1. From their training processes, we generate two types of
figures:

(i) A figure showing

– a set of 32 new real images (which the models have not been trained with) (on
the left of the figure);

– the corresponding 32 images generated by VAE0 (on the middle of the figure);

– the 32 images produced by TopoVAE (on the right of the figure).

The training step used for plotting these images is chosen among the training steps
50, 75, 100, 125 and 150. One epoch consists of 469 training steps.

(ii) A comparison of the evolution of the BCE losses of VAE0 and TopoVAE during the
initial steps of training. The amount of iterations pictured in each figure has been
selected in each case in order to showcase relevant differences between the two models.
In each case, after the iterations shown, the performance of the two models is roughly
similar and the BCE losses are approximately equal.

All figures corresponding to these experiments can be found in Appendix A.4.2. In each
figure, and unless specified otherwise, the hyperparameters of the model used are those
presented in Table A.1. The figures corresponding to each TopoVAE are Figures A.8, A.9,
A.10, A.11, and A.12 for TopoVAE1; Figures A.13, A.14, A.15, A.16, A.17, and A.18 for
TopoVAE2; Figures A.19 and A.20 for TopoVAE3, and Figures A.21 and A.22 for Topo-
VAE4. In all cases, the figures show that TopoVAEs produce images with, in general, a
higher quality, pointing towards an outperformance of the topologically regularized mod-
els compared to VAE0. This outperformance, from a qualitative point of view, is more
pronounced in TopoVAE1, followed by TopoVAE2, and then TopoVAE3 and TopoVAE4.

3.5.3 Quantitative comparison

We have seen that TopoVAEs seem to produce images with better quality; however,
we want to quantify this possible outperformance. To do so, we study how the regularizer
affects the evolution of the BCE loss —which is a measure of how accurately the model
reconstructs input images. Note that, although there are other metrics for evaluating the

1The choice of one epoch comes from the fact that the learning process in the FashionMNIST dataset
is relatively fast: using batches of 128 images, after 300 training steps the standard VAE has, in general,
already learned to generate high quality images and the BCE loss stagnates. Thus, we know that the
stagnation of the losses will occur before the end of the first epoch (which corresponds to 469 training
steps). Hence, instead of doing tests with early stopping, for simplicity we train all models for one epoch.

46 Topology-informed generative models

performance of a model, such as the Inception Score or the Fréchet Inception Distance
(FID), what they measure is not completely clear [28], and the FID relies on an Inception
v3 model trained on the ImageNet dataset, and not on FashionMNIST, which can lead to
results that may not be meaningful. Hence, we have chosen to study the magnitude of
the BCE loss, which describes the accuracy and the quality of the images produced by the
VAEs. To study the effect of the topological regularizer on the BCE loss, for each TopoVAE
we proceed as follows.

1) We run fifty times, using different random seeds, the chosen TopoVAEi and VAE0
being initially cloned models. At training steps 25, 50 and 75 of the first epoch, we
save the BCE losses of both models, denoted by BCEVAE0(s) for the standard VAE
and BCETopoVAEi(s) for TopoVAEi. We focus only on the cases s = 25, 50, 75 since
in the previous qualitative analysis we have observed that the difference between the
BCE losses of the regularized and the non-regularized models is more pronounced in
the first 20 to 100 training steps. On the other hand, after 100 iterations the BCE
losses are almost equal. Note that, since we are in the first epoch, the batches of
images are being fed into the models for the first time, so the BCE loss also describes
the capability of the models to generalize and adapt to new data.

2) For each test j, and for each each number of training steps s = 25, 50 and 75, we
compute the relative variation of the loss, r(s), defined as

r(s) = 100 ·
BCEVAE0(s)− BCETopoVAEi(s)

BCEVAE0(s)
. (3.12)

In other words, r(s) gives a percentage measure of the relative change of the BCE
loss when the regularizer is added, at training step s. It is positive if the loss of the
regularized model converges faster. We denote by rj(s) the value of r measured in
test j at step s. Then, for each s = 25, 50, 75, we compute the mean of the rj values
over the fifty tests:

r̄(s) =
1

50

50∑
j=1

rj(s), (3.13)

hence, these values are a mean of the relative change in the decay of the BCE loss
when adding the topological regularizer, expressed as a percentage.

This process is performed for each TopoVAEi, where i = 1, 2, 3, 4, and the resulting r̄ values
for each TopoVAE are given in Table A.1. It is important to note that the r̄ values are
consistently positive in all models TopoVAE1, 2, 3 and 4, showing that the BCE loss decays
consistently faster in regularized models compared to their non-regularized counterparts.
Furthermore, it is noteworthy to highlight that there seems to be a correlation between the
qualitative performance ranking of the TopoVAE models (with TopoVAE1 exhibiting the
highest performance, followed by TopoVAE2, then TopoVAE3, and ultimately TopoVAE4)
and the magnitude of the r̄ values presented in Table A.1. Specifically, a higher r̄ value
would seem to indicate the model’s enhanced ability to generate realistic and high quality
images. Note that this observation is speculative and based solely on the obtained results.
We also see that the r̄ value is maximal at step 50 in all cases; this may be due to the fact
that initially the TopoVAE and VAE0 models are cloned, so their behaviour is similar, and

3.5 Experiments and results 47

their difference increases with the number of training steps, but, at the same time, they end
up converging to the same behaviour after around 80-100 iterations.

3.5.4 Consistency across different VAE structures

We now explore how topological regularization performs across different VAE structures.
In particular, we want to see if a topological regularizer with hyperparameters optimized
in a certain VAE structure consistently ensures an improved performance in other VAE
structures. We focus on total losses LT1 and LT2 from equation (3.9), since these have
yielded the best results in the previous section.

We replace the first VAE we used, which we now refer to as VAE.A, by a simpler VAE,
which we refer to as VAE.B, which has 48781 parameters while VAE.A has 1683669 param-
eters. Hence VAE.B represents a simpler model, less prone to overfitting. The structure of
VAE.B is described in more detail in Appendix A.5. We denote by VAE0(A) and VAE0(B)
the models VAE.A and VAE.B using the standard VAE loss L0, respectively, and by Topo-
VAE1(A) and TopoVAE1(B) the models VAE.A and VAE.B employing the total loss LT1.
Similarly, TopoVAE2(A) and TopoVAE2(B) are models VAE.A and VAE.B using the loss
LT2. We use for both losses the same hyperpameters used in the previous section.

We compare the performance of TopoVAE1(B) and TopoVAE2(B) with model VAE0(B),
in order to see if there is an improved training performance when applying the regularization
on structure VAE.B. We also compare their evolutions to those obtained in the original
structure VAE.A (for which the hyperparameters were originally fine-tuned).

The results for the loss LT1 are shown in Figures A.24 and A.25. In particular, Figure
A.24 shows the performance of TopoVAE1(A) and VAE0(A) while Figure A.25 shows the
performance of TopoVAE1(B) and VAE0(B). Note that, while Lbottleneck,0 and Lbottleneck,1

decrease during the training process of VAE.A, the situation changes for VAE.B. In that
case (Figure A.25) the topological losses decrease more slowly, or even do not decrease in
the case of Lbottleneck,1. In addition, the BCE losses of TopoVAE1(B) and VAE0(B) are
almost identical, see the left graph of Figure A.25.

The analogous results for LT2 are given in Figures A.26 and A.27. We observe a similar
behaviour with the losses: while the BCE loss decreases faster in TopoVAE2(A) compared
to VAE0(A), in the case of TopoVAE2(B) and VAE0(B) the BCE losses are almost identical.
In addition, while the topological loss of degree 0 clearly decays in TopoVAE2(A), the decay
is much less marked in TopoVAE2(B).

In summary, these two experiments seem to suggest that topological regularizers may
have to be fine-tuned for each specific model structure. However, we have to note that after
trial and error tests we did not obtain an improved performance of TopoVAE1(B) compared
to VAE0(B), pointing to the fact that it may be possible that topological regularizers are
more useful, and have a stronger effect, under the presence of more parameters in the
generative model.

It is important to note that, from these tests, we have seen that the topological losses
are minimized during the training process in VAE.A (the model for which the regularizers
have been fine-tuned). Not only that, but the decay is clearly marked during the first epoch
(i.e., the first 469 iterations) —see Figures A.24 (right) and A.26 (right). In particular,
during this stage, each training iteration consists of completely new images, and therefore
the model learns to minimize the topological losses even on batches of unseen images. In

48 Topology-informed generative models

other words, the model learns to produce topological features in the generated data that
matches with topological features in the ground truth batches, an effect that is justified by
the decay of the topological losses in the aforementioned figures. Note also that the decay
is more marked for losses corresponding to diagrams of degree 0 while not so marked for
homology degree 1. This may indicate that the homology degree 0 can be more meaningful
in the context of learning to produce images rather than the homology degree 1.

3.5.5 Topogical regularizers in latent space

As we previously commented, VAEs sometimes learn a distribution of latent vectors
in the latent space incompatible with the true data distribution, making them unable to
generate realistic new data [1]. To address this problem, we now explore the use of a topo-
logical regularizer controlling the latent distribution. In fact, an advantage of the developed
regularizers is that they can be applied at any inner layer of the model. In particular, since
each topological regularizer in Definition 3.1 does not depend on the dimension of the point
cloud P , we can use the batch of N latent vectors {zi}Ni=1 produced in each training itera-
tion as point cloud P . In that case, the topological regularizers, comparing the persistence
diagrams of {zi}Ni=1 and the of the batch of true images {Xi}Ni=1, result in a new way of
controlling the spacial distribution of the latent vectors.

Note, however, that in the FashionMNIST dataset the data points Xi lie in R784, and
each component has a value between 0 and 1. On the other hand, each latent vector zi
lies in in RnZ , where nZ is the latent space dimension and is often smaller than 784, and
has unbounded components. Hence, in order to allow a more meaningful comparison of
persistence diagrams we can normalize the ground truth diagrams (i.e., those obtained
from the true images) such that both diagrams have points with similar magnitudes. In
fact, assume we did not normalize properly the diagrams. Then, if initially the diagrams
from latent vectors have all points with death value lower than 0.1, and the ground truth
diagrams have points with deaths of magnitude up to 20, then their bottleneck distance
(e.g., for diagrams of degree 0) will only depend in most cases on the ground truth diagram,
leading to vanishing gradients. Hence, we choose to apply an appropriate renormalization
of the ground truth diagrams. In order to do so, we first train VAE0 with latent space
dimension nZ = 10 and plot persistence diagrams of latent batches {zi}128i=1 produced during
the training process; see for instance Figure A.28. From these diagrams, we can infer
the magnitudes of coordinates of points in the diagrams of batches of latent vectors. In
particular, the maximal death of points is in general between 3 and 4. We then compare
these diagrams to the diagrams of batches of 128 true images of the FashionMNIST dataset;
see for instance Figure A.4. In that case the maximal death magnitude is around 10. We
thus choose to multiply the coordinates of points in the diagrams of true data by a factor
of 0.35. This choice makes the initial diagrams produced by the VAE and the diagrams
of true batches have similar magnitudes, which could potentially allow a more meaningful
comparison of these objects through the topological regularizers.

After rescaling the persistence diagrams of the true data, we train VAE.A with the
standard loss (i.e., model VAE0) and VAE.A with the loss LT1, with P corresponding to
the batch of latent vectors instead of the final outputs. We refer to the latter model as
TopoVAE-Z1. It is important to note that, since we have only modified the ground truth
persistence diagrams, the topological regularizers remain differentiable. We perform two

3.5 Experiments and results 49

different tests.

Test 1: We use nZ = 10 for both VAE0 and TopoVAE-Z1, i.e., the same latent dimension
as in all previous experiments. The hyperparameters of TopoVAE-Z1 are finetuned for this
specific example; we have found an optimal performance at (ω0, ω1) = (15.0, 15.0). Figure
A.29 shows images produced by both models during early training, and we can see that
TopoVAE-Z1 presents a higher image quality than VAE0. In Figure A.30 (left) we can see
that the BCE loss decays faster in TopoVAE-Z1 than in VAE0, supporting the improved
image quality. Furthermore, Figure A.30 (middle and right) shows that the model does
learn to minimize the topological losses during the first five training epochs (a minimization
more marked for the loss of degree 0).

Test 2: We use nZ = 2 for both VAE0 and TopoVAE-Z1 in order to give a proof-of-
concept example illustrating the differences in the spatial distribution of latent vectors. We
keep (ω0, ω1) = (15.0, 15.0) for TopoVAE-Z1, and train both models during one epoch.
In Figure A.31 we show 500 latent vectors in latent space produced by VAE0 (left) and
TopoVAE-Z1 (right), at two different training stages. These vectors are obtained from
randomly sampling 500 images of the true dataset, feeding them as inputs to both models,
and plotting the resulting latent vectors. The colors of points correlate with image labels.
In Figure A.32 we show the distribution of 1000 latent vectors in both models, at the end
of the first training epoch. We can see an improved spatial distribution of latent vectors in
TopoVAE-Z1 in all three cases. In fact, it seems that the regularized model has learnt to
classify in an unsupervised manner the latent vectors, arranging them spatially in clusters
corresponding to the types of images they arise from, an effect much more marked than in
VAE0. In addition, Figure A.33 shows a comparison of images produced by TopoVAE-Z1
and by VAE0 in early training. We can observe a higher quality in the images generated
by TopoVAE-Z1. Finally, Figure A.34 confirms that the BCE losses of TopoVAE-Z1 are
consistently smaller than those of VAE0. Furthermore, the bottleneck losses (more clearly
marked for the loss of degree 0) clearly decrease during the training process, showing that
these terms are minimized by the model, even though each iteration introduces completely
new batches of images.

Given the improved results in TopoVAE-Z1, we may also wonder if there is also an im-
proved redistribution of latent vectors in latent space when the regularizer is applied on
the final outputs, i.e., in the TopoVAE models. We thus test this effect in an individual
example: in Figure A.23 we show 500 latent vectors produced by VAE0 and TopoVAE1
with (ω0, ω1) =(15.,15.) after one training epoch, both models having dimension of the
latent space nZ = 2. The latent vectors also arise from randomly sampling 500 true im-
ages. We can observe an improved distribution of latent vectors in the regularized model.
Given these promising results, we expect further investigation on this aspect of topological
regularization, for instance for improving unsupervised classification tasks.

Conclusions and future work

Future work

The methods we have developed open a wide variety of applications and extensions to
other machine learning problems; some possible extensions are the following.

Regularization of inner layers of generative models Contrarily to regularizers that
directly compare distances between true and generated data, the functions we have pro-
posed can be applied at any layer of the generative model. This property opens new ways
of controlling the distribution of the latent vectors and of regularizing inner layers of the
model, which can be useful for enhancing both the diversity and fidelity of images obtained
through direct latent vector sampling. For instance, we have shown that applying topolog-
ical regularizers on the latent vectors causes striking redistributions of the latent vectors
related to the types of images they produce via the generator. Hence, we believe that
further work in this area should be conducted, for instance comparing topology-informed
VAEs with VAEs specifically trained for achieving a good latent distribution.

Application in diffusion models Since VAEs have a relatively fast training process in
the FashionMNIST dataset, the outperformances we have obtained are not significant, and
we can still train in an effective way a VAE without a topological regularizer. In fact, while
we have observed a higher diversity of the generated images in early training in TopoVAEs,
this does not reduce considerably the learning time since standard VAEs already require
short training times for achieving image diversity —less than one epoch and less than two
minutes. However, diffusion models can have highly time-expensive training procedures,
requiring many more iterations and longer training times for achieving image diversity and
high image quality, and thus topological regularization could potentially avoid minutes or
hours of training. The interest in this line of application was confirmed by the publication,
by the time of writing this, of [29], where the authors used persistent homology to regularize
diffusion models —however, their method relied on constructing persistence diagrams of
individual images, which can be time-consuming, and thus our approach, viewing image
batches as point clouds, should also be studied in diffusion models.

Extension to other machine learning tasks The regularizers developed in this work
can be applied to many other generative modelling problems. For instance, they could be
used in cases where images have to be generated with specific topological and geometric
features; such as in the scenario exposed in [5]. To do so, the simplicial complexes could
be replaced by cubical complexes —which are better-suited for individual image analysis—,

50

3.5 Experiments and results 51

and the Rips filtration could be replaced by a lower-star filtration. Topological regularizers
could also be used for mesh generation tasks, i.e., for training generative models that produce
point clouds representing meshes of 3D objects. The regularizers could be directly applied
on the generated point clouds with the goal of forcing the models to generate point clouds
with specific topological features (and thus helping the model close loops or voids, generate
the appropriate number of clusters, and so on). Lastly, as we have seen in Chapter 3,
topological regularizers may be useful for conducting unsupervised classification tasks. A
reason may be the fact that they can help identifying clusters in high dimensional spaces,
even under the presence of noise.

Further analysis of the advantages provided by topological regularization Al-
though the results obtained in this work are promising, more thorough comparisons between
standard VAEs and TopoVAEs should be done in the future, for instance, through tests
in diverse datasets, with different VAE structures, and using multiple performance metrics
(e.g., FID or Geometry Score). It would be also interesting to explore the relation between
magnitude of the outputs from the topological regularizers and properties of the generated
data, such as image quality and diversity. This could bring a deeper understanding of the
meaning of each function, allowing to use combinations of topological regularizers in a more
informed way. In fact, we have conducted such an analysis for bottleneck and entropy
regularizers, which has been done as a supplementary exploration, in Appendix B.4. The
results confirm that the value of the bottleneck and entropy regularizers is related with
image quality and image diversity; higher noise (in both grayscale and colored datasets)
leads to a larger value of the bottleneck and entropy regularizers, and higher differences in
image diversity seem to also produce larger outputs.

On the theoretical side, we also expect further research in the differentiability of loss
functions employing multidimensional persistence diagrams. In fact, multidimensional per-
sistent homology has recently been gaining attention [30], since it can lead to more useful
descriptors of the data compared to single-dimensional persistent homology. Thus, if applied
in generative models, regularizers based on multi-parameter persistence diagrams could pro-
vide more insightful descriptions of the data, including information related to the spatial
density of points, the scale, and other parameters.

Conclusion

In this work, we have developed new topological regularizers and have provided new
theoretical results ensuring their generic differentiability, making our regularizers amenable
to gradient descent optimization. We have applied these regularizers in VAEs and showed
that they can enhance their learning processes, achieving a higher diversity of images in
early training, an improved image quality and a faster decay of the BCE loss. We have
also discussed possible new lines of application, such as controlling the latent distribution,
improving classification tasks or mesh generation tasks, or applying them in diffusion mod-
els. In summary, this work has reviewed and expanded topological regularization with
persistence diagrams, and given the promising results, we expect further advances in this
field.

Bibliography

[1] Yaniv Yacoby, Weiwei Pan, and Finale Doshi-Velez. “Characterizing and avoiding
problematic global optima of variational autoencoders”. In: Symposium on Advances
in Approximate Bayesian Inference. PMLR. 2020, pp. 1–17.

[2] Valentin Khrulkov and Ivan Oseledets. “Geometry score: A method for comparing
generative adversarial networks”. In: International conference on machine learning.
PMLR. 2018, pp. 2621–2629.

[3] Jeremy Charlier, Radu State, and Jean Hilger. “PHom-GeM: Persistent homology for
generative models”. In: 2019 6th Swiss Conference on Data Science (SDS). IEEE.
2019, pp. 87–92.

[4] Yair Schiff et al. “Characterizing the latent space of molecular deep generative models
with persistent homology metrics”. In: arXiv:2010.08548 (2020).

[5] Fan Wang et al. “Topogan: A topology-aware generative adversarial network”. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part III 16. Springer. 2020, pp. 118–136.

[6] Michael Moor et al. “Topological autoencoders”. In: International conference on ma-
chine learning. PMLR. 2020, pp. 7045–7054.

[7] Nikita Balabin et al. “Disentanglement Learning via Topology”. In: arXiv:2308.12696
(2023).

[8] Mariem Mezghanni et al. “Physically-aware generative network for 3d shape model-
ing”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 9330–9341.

[9] Serguei Barannikov et al. “Representation topology divergence: A method for com-
paring neural network representations”. In: arXiv:2201.00058 (2021).

[10] Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A framework for differential cal-
culus on persistence barcodes”. In: Foundations of Computational Mathematics (2021),
pp. 1–63.

[11] Afra Joze Zomorodian. Computing and comprehending topology: Persistence and hi-
erarchical Morse complexes. University of Illinois at Urbana-Champaign, 2001.

[12] Edelsbrunner, Letscher, and Zomorodian. “Topological persistence and simplification”.
In: Discrete & Computational Geometry 28 (2002), pp. 511–533.

[13] Afra Zomorodian and Gunnar Carlsson. “Computing persistent homology”. In: Pro-
ceedings of the Twentieth Annual Symposium on Computational Geometry. 2004,
pp. 347–356.

52

BIBLIOGRAPHY 53

[14] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. “Stability of persistence
diagrams”. In: Proceedings of the Twenty-first Annual Symposium on Computational
Geometry. 2005, pp. 263–271.

[15] James R Munkres. Elements of algebraic topology. Advanced Book Program. Redwood
City, California etc. 1984.

[16] Raúl Rabadán and Andrew J Blumberg. Topological data analysis for genomics and
evolution: Topology in biology. Cambridge University Press, 2019.

[17] Carles Casacuberta. Topological Data Analysis. 2020.

[18] Gunnar Carlsson. “Topology and data”. In: Bulletin of the American Mathematical
Society 46.2 (2009), pp. 255–308.

[19] Clara Loeh. “A comment on the structure of graded modules over graded principal
ideal domains in the context of persistent homology”. In: arXiv:2301.11756 (2023).

[20] Ulrich Bauer. “Ripser: efficient computation of Vietoris–Rips persistence barcodes”.
In: Journal of Applied and Computational Topology 5.3 (2021), pp. 391–423.

[21] Julián Burella Pérez et al. “giotto-ph: A Python library for high-performance com-
putation of persistent homology of Vietoris-Rips filtrations”. In: arXiv:2107.05412
(2021).

[22] Jan Reininghaus et al. “A stable multi-scale kernel for topological machine learning”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, pp. 4741–4748.

[23] Rubén Ballester et al. “Predicting the generalization gap in neural networks using
topological data analysis”. In: Neurocomputing 596 (2024), p. 127787.

[24] Diederik P Kingma and Max Welling. “Auto-encoding variational Bayes”. In: arXiv:
1312.6114 (2013).

[25] Carl Doersch. “Tutorial on variational autoencoders”. In: arXiv:1606.05908 (2016).

[26] Christopher Tralie, Nathaniel Saul, and Rann Bar-On. “Ripser.py: A lean persistent
homology library for Python”. In: Journal of Open Source Software 3.29 (2018), p. 925.

[27] Dmitriy Morozov and Arnur Nigmetov. “Towards lockfree persistent homology”. In:
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architec-
tures. 2020, pp. 555–557.

[28] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A note on the evaluation
of generative models”. In: arXiv:1511.01844 (2015).

[29] Chen Song et al. “Topo-Diffusion: Topological diffusion model for image and point
cloud generation”. In: Under review as a conference paper at ICLR 2024 (2023).

[30] David Loiseaux, Mathieu Carrière, and Andrew J Blumberg. “Efficient approximation
of multiparameter persistence modules”. In: arXiv:2206.02026 (2022).

[31] Jonas Teuwen and Nikita Moriakov. “Convolutional neural networks”. In: Handbook of
medical image computing and computer assisted intervention. Elsevier, 2020, pp. 481–
501.

Appendix A

Experiments and results

A.1 Working principle of topology-informed VAEs

Figure A.1: Working principle of VAE0, TopoVAE and TopoVAE-Z. Persistence diagrams
D0, D, Dz and D′

0 arise, respectively, from the input batch; the output batch; the batch of
latent vectors, and a rescaling operation on D0, and d0 is a measure of dissimilarity
between persistence diagrams. The method can be used for persistence diagrams of degree
0, 1, or both degrees simultaneously.

54

A.2 Scaled Gaussian density functions 55

A.2 Scaled Gaussian density functions

Using the FashionMNIST dataset, the parameters of the density function have been
adapted to the properties of the dataset. We choose σ = 0.1, a scale factor of 0.0005, and
the sampled points to be 30 equally spaced points distributed in [0, 15.0]. The choice of 30
points, although leading to some inaccuracy (see Figures A.2 and A.3) is done for achieving
a faster calculation of the loss.

Figure A.2: 4-scaled Gaussian density function applied to a 0-dimensional persistence
diagram, for three different values of σ. The function is given in equation (2.29), with
s = 0.0001. The points near the origin (considered noise) are roughly neglected by the
density function.

56 Experiments and results

Figure A.3: 4-scaled Gaussian density function applied to a 0-dimensional persistence
diagram of a batch of 128 images from the FashionMNIST dataset, for three different
values of σ, and 500 sampled points in [0, 15.0]. The function is given in equation (2.29),
with s = 0.0005.

Figure A.4: 4-scaled Gaussian density function applied to a 0-dimensional persistence
diagram of a batch of 128 images from the FashionMNIST dataset, for three different
values of σ, and 30 sampled points in [0, 15.0]. The function is given in equation (2.29),
with s = 0.0005.

A.3 Synthetic experiments 57

A.3 Synthetic experiments

In each figure, the six images represent, from left to right and from top to bottom: (a)
the initial point cloud; (b) its persistence diagram; (c) the reference persistence diagram D0;
(d) the point cloud after finalizing the learning process; (e) its persistence diagram, and (f)
the evolution of L1 during the training process. The code for running the three synthetic ex-
periments and generating the figures and animations can be found in synthetic_tests.py.

Figure A.5: Synthetic experiment 1: Cluster collapse. The full evolution of the point
cloud is given in synthetic1_video.mov.

https://github.com/JackBJ23/TopoGEN/blob/main/synthetic1_video.mov

58 Experiments and results

Figure A.6: Synthetic experiment 2: Cluster creation. In this case, L1 begins with values
corresponding to the Lpush,0 term. As a consequence, to enhance clarity we have chosen to
scatter the points in the representation of the loss evolution. The full evolution of the
point cloud is given in synthetic2_video.mov.

Figure A.7: Synthetic experiment 3: From lines to circles. The full evolution of the point
cloud is given in synthetic3_video.mov.

https://github.com/JackBJ23/TopoGEN/blob/main/synthetic2_video.mov
https://github.com/JackBJ23/TopoGEN/blob/main/synthetic3_video.mov

A.4 TopoVAE experiments 59

A.4 TopoVAE experiments

A.4.1 Hyperparameters

The optimal hyperparameters for each TopoVAE are given in Table A.1, and have mostly
been found in a grid search procedure. However, in the case of TopoVAE4, the set {15i29 }

29
i=0

has been chosen due to the nature of the FashionMNIST images; in fact, this set of points
has been selected for efficiently capturing properties of the persistence diagrams of batches
of FashionMNIST images while keeping a low computation time.

To see how this choice affects the representation of the persistence diagram, see Fig-
ures A.3 and A.4. These two images show two persistence diagrams computed from 128-
image batches of the FashionMNIST dataset, and the corresponding 4SGDEs when sampling
points from [0, 15] at different number of sampled points. Although the choice of 500 sam-
pling points in Figure A.3 may provide a more detailed representation of the density of
points in the diagram, we used only 30 sampled points in the experiments in order to en-
sure a faster computation of the 4SGDE. Furthermore, the value σd = 0.1 seems to properly
capture density variations in the diagrams, justifying its choice.

A.4.2 TopoVAEs and VAE0: qualitative comparison

The figures of this subsection, excepted the last figure, are obtained from the program
topovae_tests.py. In order to train each different TopoVAE, a single line of code has
to be changed in order to use the desired topological regularizer. The hyperparameters
of each regularizer are, unless mentioned otherwise, those indicated in Table A.1. In the
figures representing the evolution of losses, we label the loss corresponding to VAE0 and
TopoVAE as "Conv-VAE" and "Conv-TopoVAE", respectively, where "Conv" stands for
Convolutional.

Figure A.8: Comparison of TopoVAE1 and VAE0 in early training (iteration 50/469).
TopoVAE1 is used with (ω0, ω1) = (5.0, 5.0).

Figure A.9: Comparison of performance between TopoVAE1 and VAE0, in a more
advanced stage of training (iteration 100/469).

60 Experiments and results

Figure A.10: Evolution of the BCE lossses of TopoVAE1 ("Conv-TopoVAE") and VAE0
("Conv-VAE").

Figure A.11: Comparison of TopoVAE1 and VAE0, using initially cloned models.
TopoVAE1 is used with (ω0, ω1) = (15.0, 15.0). Iteration 50/469.

Figure A.12: Evolution of the BCE lossses of TopoVAE1 ("Conv-TopoVAE") and VAE0
("Conv-VAE") used to the previous figure.

A.4 TopoVAE experiments 61

Figure A.13: Comparison of TopoVAE2 and VAE0 using initially cloned models. Iteration
50/469.

Figure A.14: Evolution of the BCE lossses of TopoVAE2 ("Conv-TopoVAE") and VAE0
("Conv-VAE"), used in the previous figure.

Figure A.15: Comparison of TopoVAE2 and VAE0, using initially cloned models (a
different pair from the previous figure using a different seed). Iteration 125/469.

Figure A.16: Evolution of the BCE lossses of TopoVAE2 ("Conv-TopoVAE") and VAE0
("Conv-VAE"), used in the previous figure.

62 Experiments and results

Figure A.17: Comparison of TopoVAE2 and VAE0, using initially cloned models (a
different pair from the previous figure using a different seed). Iteration 125/469.

Figure A.18: Evolution of the BCE lossses of TopoVAE2 ("Conv-TopoVAE") and VAE0
("Conv-VAE"), used in the previous figure.

Figure A.19: Comparison of TopoVAE3 and VAE0, using initially cloned models.
Iteration 125/469.

A.4 TopoVAE experiments 63

Figure A.20: Evolution of the BCE lossses of TopoVAE3 ("Conv-TopoVAE") and VAE0
("Conv-VAE"), used in the previous figure.

Figure A.21: Comparison of TopoVAE4 and VAE0, using initially cloned models.
Iteration 50/469.

Figure A.22: Evolution of the BCE lossses of TopoVAE4 ("Conv-TopoVAE") and VAE0
("Conv-VAE"), used in the previous figure.

64 Experiments and results

Figure A.23: Visualization of the spatial distributions of latent vectors in latent space.
Left: VAE0; right: TopoVAE1(15.,15.), both with nZ = 2. Image is taken after finishing
epoch 1 of training.

A.4.3 Comparison across different VAE structures

We compare here the difference of performance between two VAEs. We only work with
the case of TopoVAE1 and TopoVAE2 due to their more marked effects on the training
process, compared to TopoVAE3 and 4. The code used to obtain the figures can be found
in topovae_simplevae.py.

Figure A.24: Evolution of the losses during the first 5 epochs of training VAE0(A) and
TopoVAE1(A). Left: BCE losses; right: topological losses. Weights:
(ω0, ω1) = (15.0, 15.0).

A.4 TopoVAE experiments 65

Figure A.25: Evolution of the losses during the first 5 epochs of training VAE0(B) and
TopoVAE1(B). Left: BCE losses; right: topological losses. Weights:
(ω0, ω1) = (15.0, 15.0).

Figure A.26: Evolution of the losses during the first 5 epochs of training VAE0(A) and
TopoVAE2(A). Left: BCE losses; right: topological losses. Weights:
(ω0, ω1, δ) = (3.5, 3.5, 0.1). The entropy loss of degree 0 has been rescaled by a factor of
1000.

Figure A.27: Evolution of the losses during the first 5 epochs of training VAE0(B) and
TopoVAE2(B). Left: BCE losses; right: topological losses. Weights:
(ω0, ω1, δ) = (3.5, 3.5, 0.1). The entropy loss of degree 0 has been rescaled by a factor of
1000.

66 Experiments and results

A.4.4 Topological regularization in latent space

The code used in these experiments, which involve using the batch of latent vectors in
the topological regularizer, can be found in topovae_z_tests.py.

Test 1: nZ = 10

Figure A.28: Example of the persistence diagram (degrees 0 and 1) of a batch of 128
latent vectors produced by VAE0 during training, at iteration 300/469 (corresponding to
an advanced stage of training, producing good quality images). The coordinates of points
in the diagrams stay in the same areas during the entire training process (for instance, the
largest value of death of points stays around 3.0-4.0).

Figure A.29: Comparison of TopoVAE-Z1 and VAE0 in early training (iteration 125/469).
TopoVAE-Z1 is used with (ω0, ω1) = (15.0, 15.0), and the loss applied in the batch of
latent vectors.

A.4 TopoVAE experiments 67

Figure A.30: Evolution of the lossses of TopoVAE-Z1 ("Conv-TopoVAE") and VAE0
("Conv-VAE") during the first 5 training epochs. Left: BCE losses; middle: bottleneck
loss of degree 0, right: bottleneck loss of degree 1.

Test 2: nZ = 2; visualization of the latent distribution

Figure A.31: Distribution of latent vectors of TopoVAE-Z1 and VAE0 during the training
process. Left: VAE0; right: TopoVAE-Z1; top: iteration 50; bottom: iteration 100.
TopoVAE-Z1 is used with (ω0, ω1) = (15.0, 15.0), and the loss applied in the batch of
latent vectors. The latent vectors come from 500 randomly sampled images from the
FashionMNIST dataset. The scale factor of diagrams of the FashionMNIST dataset is
kept the same as in Test 1.

68 Experiments and results

Figure A.32: Distribution of latent vectors of VAE0 (left) and TopoVAE-Z1 (right) after
completing epoch 1 of training. Same conditions as previous figure; using 1000 latent
vectors.

Figure A.33: Images generated by VAE0 and TopoVAE-Z1 at iteration 125. Left: input of
real images; middle: VAE0; right: TopoVAE-Z1.

Figure A.34: Corresponding losses of TopoVAE-Z1 and VAE0 during one training epoch.

A.4 TopoVAE experiments 69

A.4.5 Summary of results

The following table summarizes the main results related to the TopoVAEs; namely,
hyperparameters yielding optimal performance, running time of 10 training steps, and r̄

values at training steps 25, 50, and 75.

Model Optimal hyperameters Time
(10
steps)

r̄(25) r̄(50) r̄(75)

VAE0 1.5 sec.
TopoVAE1 (ω0, ω1) = (5.0, 5.0) 7.1 sec. 0.3 % 1.2 % 0.2 %
TopoVAE2 (ω0, ω1, δ) = (3.5, 3.5, 0.1) 2.1 sec. 0.2 % 1.1 % 0.3 %
TopoVAE3 (ω0, ω1, δ, σ) =

(5.0, 10.0, 0.1, 0.1)

2.1 sec. 0.2 % 0.7 % 0.2 %

TopoVAE4 (ω0, ω1,x, σd, s, σ) =

(10., 5., { 15i29 }
29
i=0, 0.1, 0.0005, 0.1)

17.0 sec. 0.2 % 0.6 % 0.2%

Table A.1: Relevant characteristics of each TopoVAE, including hyperparameters yielding
optimal performance, running time of 10 training steps, and r̄ values at training steps 25,
50, and 75.

70 Experiments and results

A.5 Structure of VAE.B

The structure of the second VAE, VAE.B, is similar to that of VAE.A. Using latent di-
mension 10, the encoder realizes a series of transformations of the input, which has an initial
shape (128, 1, 28, 28) (i.e., a batch of 128 grayscale 28×28 images). These transformations
result in a series of shape transformations of the data that can be expressed as follows:

(128, 1, 28, 28) 7→ (128, 8, 14, 14) 7→ (128, 1568) 7→ (128, 10), (128, 10).

The first map is done via a convolutional layer, the second map is a re-shaping operation
of the data, the fourth map occurs via a fully-connected layer, and the last map occurs by
applying in parallel two fully-connected layers. The output corresponds to two batches of µ
and Σ vectors. Applying the reparametrization trick, these values are transformed into 128
latent vectors with total shape (128, 10). The latent vectors are then fed into the decoder,
and the resulting shape transformations are:

(128, 10) 7→ (128, 1568) 7→ (128, 8, 14, 14) 7→ (128, 1, 28, 28).

The maps correspond, respectively, to a fully-connected layer, a re-shaping operation, and
a transposed convolutional layer. For more details, see topovae_simplevae.py.

A.6 Algorithms and code 71

A.6 Algorithms and code

A.6.1 Main algorithms

Algorithm 1: Total loss calculation in a standard VAE
Input: Training batch (Xi)

N
i=1

Output: Loss
1 for i← 1 to N do
2 Obtain µ(Xi) and Σ(Xi) from the encoder Enc using Xi;
3 Generate random vector ϵi;
4 Compute zi = µ(Xi) + Σ(Xi)⊙ ϵi;
5 Reconstruct data point X̂i using the decoder, X̂i = f(zi);
6 Lossi = KLD(µ(Xi),Σ(Xi)) + BCE(X̂i, Xi)

7 return
∑N

i=1 Lossi;

Algorithm 2: Total loss calculation in a TopoVAE
Input: Training batch (Xi)

N
i=1

Output: Total loss
1 for i← 1 to N do
2 Obtain µ(Xi) and Σ(Xi) from the encoder Enc using Xi;
3 Generate random vector ϵi;
4 Compute zi = µ(Xi) + Σ(Xi)⊙ ϵi;
5 Reconstruct data point X̂i using the decoder f(zi);
6 Lossi = KLD(µ(Xi),Σ(Xi)) + BCE(X̂i, Xi)

7 L =
∑N

i=1 Lossi;
8 Without backpropagation: Compute, via the Rips filtration, the persistence

diagrams D0 and D1 (of degrees 0 and 1, respectively) of the generated batch
(X̂i)

N
i=1, and D0

0 and D1
0 for the true batch (Xi)

N
i=1.;

9 Compute the loss terms Ltopo,0(D
0, D0

0) and Ltopo,1(D
1, D1

0) using backpropagation
;

10 if Ltopo,0(D
0, D0

0) depends on off-diagonal points of D0 then
11 L = L+ ω0 · Ltopo,0(D

0, D0
0)

12 if Ltopo,1(D
1, D1

0) depends on off-diagonal points of D1 then
13 L = L+ ω1 · Ltopo,1(D

1, D1
0)

14 return L;

A.6.2 Code

The entire code used in this work can be found in the repository TopoGEN. In particular,
the following files have been used for generating the figures in the Appendix and experiments
described in Chapter 3:

• synthetic_tests.py: for the synthetic tests of Appendix A.3.

https://github.com/JackBJ23/TopoGEN

72 Experiments and results

• densityfctn.py: for plotting the 4SGDE function, used for plotting Figure A.2 in
Appendix A.2.

• topovae_fashionmnist_tune.py: provides the full code for training all the TopoVAE
models in the FashionMNIST dataset, but also includes a code at the end that allows
to finetune the hyperparameters of the density estimator according to the shape of the
persistence diagrams obtained from batches of the FashionMNIST dataset. Figures
A.3 and A.4 in Appendix A.2 come from this finetuning extension.

• topovae_tests.py: provides the full code for training all the TopoVAE models in the
FashionMNIST dataset, providing figures of produced images of the TopoVAE model
trained and the VAE0 model, and the curves of evolution of the BCE and KLD losses.
By changing a single one of code, any TopoVAE model can be trained.

• topovae_plot_latent.py: same tests as previous but done with nZ = 2 and includes
plots of the distribution of latent vectors. Used to produce Figure A.23.

• tests_losses.py: realizes the tests for obtaining the r̄ values as described in Sub-
section 3.5.3.

• topovae_simplevae.py: used in Appendix A.4.3. Uses two structures of VAE model
(normal VAE, and simpler VAE (fewer parameters)), and compares the performance
of TopoVAE models and VAE0 on both VAE structures.

• topovae_z_tests.py: applies the topological regularizer of TopoVAE1 on batches of
generated latent vectors instead of generated images. Also provides plots of curves of
the evolution of losses. Used in Appendix A.4.4.

• tests_fashionmnist.ipynb, tests_cifar.ipynb, and diversity_fashionmnist.i-
pynb: used in Appendix B.4 for studying the relation between image quality and di-
versity and the magnitude of topological regularizers.

Note that the programs topovae_tests.py, topovae_plot_latent.py and topovae_-si-
mplevae.py can be modified to use any topological regularizer. In particular, each of the
following lines calls the full loss function of each TopoVAE:

1. TopoVAE1: loss = loss_fctn2(recon_batch, data, mean, log_var, dgm, dgm2, 5., 5.)

2. TopoVAE2: loss = loss_fctn3(recon_batch, data, mean, log_var, dgm, dgm2, 3.5,
3.5, 0.1)

3. TopoVAE3: loss = loss_fctn4(recon_batch, data, mean, log_var, dgm, dgm2, 5., 10.,
0.1)

4. TopoVAE4: loss = loss_fctn5(recon_batch, data, mean, log_var, dgm, dgm2, 10.,
5.).

Appendix B

Supplementary material

B.1 Additional proofs

Lemma B.1. Let D ∈ Bar, r ∈ N̄, and let Vi : Bar → R be maps on barcodes, with
i = 1, . . . , N . Assume the maps V1, . . . , VN are r-differentiable in D. Then, the map(

N∑
i=1

Vi

)
: Bar→ R is r-differentiable in D.

Proof. We prove the result for the case N = 2, and by applying iterative reasoning it
follows that the lemma is true for any N ≥ 2. Recall the Definition 2.5 of r-differentiability
of maps on barcodes, and take a pair m,n and a barcode D̃ ∈ R2m+n such that Qm,n(D̃) =

D. We want to see that there exists an open neighborhood U of D̃ such that the map
(V1 + V2) ◦ Qm,n : R2m+n → R is Cr in U . Since V1 is r-differentiable in D, there is an
open neighborhood U1 of D̃ such that V1 ◦ Qm,n is Cr in U1. Analogously, since V2 is
r-differentiable in D, there is another open neighborhood U2 of D̃ such that V2 ◦ Qm,n is
Cr in U2. Therefore, the map (V1 + V2) ◦Qm,n : R2m+n is Cr in U1 ∩ U2, which is an open
neighborhood of D̃. Since this argument holds for any m,n and D̃ ∈ R2m+n such that
Qm,n(D̃) = D, we conclude that the map on barcodes V1 + V2 is r-differentiable in D.

Lemma B.2. Let i, j, k, l ∈ {1, . . . , n} be four numbers such that i ̸= j, k ̸= l, and {i, j} ≠
{k, l}. We define the function

fijkl : Rnd → R
P 7→ ∥pi − pj∥22 − ∥pk − pl∥22.

Then, {P ∈ Rnd : ∇fijkl(P) = 0} = {pi = pj} ∩ {pi = pj}.

Proof. From the hypothesis, we can assume i < l; i ̸= j, k, l and l ̸= i, j, k without loss
of generality. Take an arbitrary point P = (p1, . . . , pn) = (p11, . . . , p

d
1, . . . , p

1
n, . . . , p

d
n); then,

the gradient of fijkl at P is given by:

∇fijkl(P) =

[
2

n∑
α=1

(pαi − pαj)e
α
i − 2

n∑
α=1

(pαk − pαl)e
α
l

]

+

[
−2

n∑
α=1

(pαi − pαj)e
α
j + 2

n∑
α=1

(pαk − pαl)e
α
k

]
,

73

74 Supplementary material

where eαq is the unitary vector corresponding to the α-th coordinate of the q-th point, i.e.,
the ((q − 1) · d+ α)-th coordinate in Rnd. In order to have ∇fijkl(P) = 0, we need to have
the first term equal to zero, which implies (pαi − pαj) = 0 and (pαk − pαl) = 0 for α = 1, . . . , d.
In other words, we need pi = pj and pk = pl. Conversely, if pi = pj and pk = pl, then
∇fijkl(P) = 0.

Lemma B.3. If D ∈ B̂ar, then there exists ϵ > 0 such that, for all D′ ϵ-close to D,
d∞(D′, D0) > ϵ and there exists an optimal matching between D′ and D0 sending D′ ∩∆ϵ

onto ∆∞.

Proof. The proof is based on the proof given in [10]. We first give a sketch of the proof:
the idea is to first find a specific ϵ with specific properties that are used in the remainder
of the proof. Next, we assume that the conclusion of the lemma is false in order to reach
a contradiction. In particular, we take any D′ ϵ-close to D and assume that any optimal
matching γ from D′ to D0 maps some interval in D′ ∩∆ϵ to some off-diagonal interval of
D. In addition, we impose γ to have a maximal number of off-diagonal intervals from D

or D0 matched to the diagonal. The key step of this proof is showing that if we take these
two matched off-diagonal intervals and match them instead to their diagonal projections,
we always obtain another optimal matching —this is mainly proved with equations (B.3)
and (B.4). But this is a contradiction with the definition of γ, since the new matching has
two more off-diagonal intervals sent to the diagonal than γ. We now proceed to the full
proof.

Let D ∈ B̂arn, then we define α as

α ≡ min
(b0,d0)∈D0

∣∣∣∣ |d0 − b0|
2

− d∞(D,D0)

∣∣∣∣ (B.1)

i.e., it is the minimal difference between the distances of off-diagonal intervals of D0 to the
diagonal, and d∞(D,D0). Since D ∈ B̂ar and by definition of B̂ar, α > 0. In addition,
d∞(D,D0) > 0, because for any point of D0 in the diagonal the distance to its diagonal
projection is 0, therefore by definition of B̂ar, d∞(D,D0) cannot be zero. As a consequence,
there exists ϵ > 0 such that ϵ < 1

2 min(d∞(D,D0), α) —since both values are strictly
positive.

We now prove that the conclusion of the lemma "d∞(D′, D0) > ϵ and there exists an
optimal matching between D′ and D0 sending D′∩∆ϵ onto ∆∞" holds for any D′ ∈ B(D, ϵ).

Let D′ ∈ B(D, ϵ). Since ϵ < d∞(D,D0)
2 , then d∞(D′, D0) > ϵ. This is a consequence of the

triangular inequality: we have 2ϵ < d∞(D,D0) ≤ d∞(D,D′)+d∞(D′, D0) < ϵ+d∞(D′, D0),
so ϵ < d∞(D′, D0).

Now, we assume for the sake of contradiction that there is no optimal matching between
D′ and D0 sending D′ ∩∆ϵ to ∆∞. For simplicity, we restrict the matchings to the set of
optimal matchings that can send off-diagonal points of D′ and D0 to ∆∞ only by orthogonal
projections. We note this set Γ∗(D′, D0), and it is finite and non-empty. Notice that
Γ∗(D′, D0) contains all optimal matchings: if an optimal matching sends an off-diagonal
interval p to the diagonal not by orthogonal projection, then a matching that only differs by
sending p to the diagonal by orthogonal projection would have a strictly lower cost, which
is a contradiction.

We also define the ∆-degree of a matching γ ∈ Γ∗(D′, D0) as the number of off-diagonal
points of D′ and D0 that are sent to ∆∞. We take γ with maximal ∆-degree. By the

B.1 Additional proofs 75

assumption (that there is no optimal matching between D′ and D0 sending D′ ∩ ∆ϵ to
∆∞) there is an off-diagonal interval (b′, d′) ∈ D′ ∩∆ϵ sent by γ to an off-diagonal interval
(b0, d0) ∈ D0. We will next to prove that in any possible situation, we always have the
inequality |b′−d′|

2 < d∞(D′, D0) and |b0−d0|
2 < d∞(D′, D0). Proving these two inequalities is

essential, since they show that if we replace the matching (b′, d′) to (b0, d0) by their diagonal
orthogonal projections, we obtain a new optimal matching but with ∆-degree larger than
γ, which is a contradiction.

From the definition of α, it follows that for the given (b0, d0), we have the inequality∣∣∣ |d0−b0|
2 − d∞(D,D0)

∣∣∣ ≥ α. Therefore, we have two cases:

(i) |d0−b0|
2 ≥ d∞(D,D0) + α, or

(ii) |d0−b0|
2 ≤ d∞(D,D0)− α.

In case (i), we have:

∥(b0, d0)− (b′,d′)∥∞ = ∥(b0, d0)− (
b′ + d′

2
,
b′ + d′

2
) + (

b′ + d′

2
,
b′ + d′

2
)− (b′, d′)∥∞

(a)

≥ ∥(b0, d0)− (
b′ + d′

2
,
b′ + d′

2
)∥∞ − ∥(

b′ + d′

2
,
b′ + d′

2
)− (b′, d′)∥∞

(b)

≥ |d0 − b0|
2

− |d
′ − b′|
2

(c)

≥ d∞(D,D0) + α− ϵ

(d)

≥ d∞(D′, D0)− ϵ+ α− ϵ
(e)
> d∞(D′, D0).

(B.2)

The first inequality (a) comes directly from the triangle inequality, and the second inequality
(b) comes from the fact that the distance of (b0, d0) to any diagonal projection is greater
or equal than the distance to its orthogonal projection into the diagonal, |d0−b0|

2 , in other
words ∥(b0, d0) − (b

′+d′

2)∥∞ ≥ |d0−b0|
2 . The second term after (b) comes from rewriting the

second term of the line above. We next justify inequality (c): the term d∞(D,D0) + α

comes because we are in case (i), so |d0−b0|
2 ≥ d∞(D,D0) + α, and the term −ϵ appears

because (b′, d′) ∈ ∆ϵ, so |d′−b′|
2 < ϵ, i.e., − |d′−b′|

2 > −ϵ. (d) is justified as follows: we have
d∞(D,D′) < ϵ, so d∞(D0, D

′) ≤ d∞(D0, D)+ϵ from the triangle inequality, and rearranging
we have d∞(D,D0) ≥ d∞(D′, D0) − ϵ. Finally, (e) is true since by definition ϵ < α/2, so
α− 2ϵ > 0.

Now, notice that (B.2) leads to a contradiction, since γ is an optimal matching so its
cost should be lower or equal to d∞(D′, D0). Therefore, scenario (i) cannot happen.

On the other hand, in case (ii) we have:

|d0 − b0|
2

≤ d∞(D,D0)− α ≤ d∞(D′, D0) + ϵ− α < d∞(D′, D0). (B.3)

The first inequality is the definition of case (ii), the second inequality comes from the triangle
inequality, and the third inequality from the fact that ϵ < α. In addition, we also have:

|d′ − b′|
2

≤ ϵ < d∞(D,D0) ≤
d∞(D′, D0) + ϵ

2
< d∞(D′, D0). (B.4)

The first inequality comes from the fact that (b′, d′) ∈ ∆ϵ, the second one from the definition
of ϵ, the third one from the triangle inequality and the last one is proved as follows: from

76 Supplementary material

previous inequalities of (B.4) we have ϵ ≤ d∞(D′,D0)
2 + ϵ

2 , so ϵ ≤ d∞(D′, D0). So from (B.3)
and (B.4) we have that both |d0−b0|

2 and |d′−b′|
2 are strictly smaller than d∞(D′, D0), and

this always happens since we have seen that (i) cannot happen. Therefore, modifying γ

by sending (b0, d0) and (b′, d′) to their diagonal orthogonal projections, we obtain a new
matching γ̃ that is also in Γ∗(D′, D0) —which is true since (B.3) and (B.4) show that γ̃ is
still an optimal matching— with ∆-degree strictly larger than the ∆-degree of γ. This is a
contradiction since we had taken γ with maximal ∆-degree. Having reached a contradiction,
we have proven that for any D′ in B(D, ϵ), there is an optimal matching between D′ and
D0 that sends D′ ∩∆ϵ onto the diagonal.

B.2 Variational autoencoders: full derivation of the loss

A VAE is an unsupervised machine learning model that maps high-dimensional data
to a lower-dimensional latent space using an encoder, and reconstructs the data from this
latent space using a decoder. We denote to the latent space as Z, and refer to its elements
as latent vectors, noted z.

Both the encoder and the decoder of the VAE are neural networks, parametrized by their
respective sets of parameters ϕ and θ. The decoder maps a latent vector to a data point
in f(z; θ) ∈ X. If θ is fixed and z is sampled according to a probability density function
P (z) on Z, then f(z; θ) is a random vector in X. The objective of the VAE is to optimize
θ such that the f(z; θ)’s are points from the data distribution. In other words, θ has to be
optimized in order to maximize, for every X in the dataset, the following quantity:

P (X) =

∫
Z
P (X | z; θ)P (z) dz, (B.5)

where P (X) is the probability that the data point X is produced by the generative process
z 7→ f(z; θ) for all possible z in Z following the distribution P (z) [25]. In VAEs, P (z)

is defined as a standard distribution N (z | 0, Id) [25]. The term P (X | z; θ) represents
the probability that f(z; θ) looks like X. This function is often defined as a Gaussian
distribution N (X | f(z; θ), σ · Id), where σ is a hyperparameter. The intuition is that with
this definition, P (X | z; θ) is 1 when X = f(z; θ), and is close to 1 when X is a point close to
f(z; θ). The larger the distance between X and f(z; θ), the closer P (X | z; θ) is to 0. Note
that other distributions can be used as long as they are continuous on θ and can they be
numerically computed. The continuity θ is key for optimizing the model: in fact, initially
the generated data points do not match the points from the dataset, and gradients are
computed in order to increase the outputted probabilities. If we had, for instance, a Dirac
delta distribution being only 1 at f(z; θ) = X and 0 elsewhere, the gradients of P (X | z; θ)
in these erroneous points would be 0 and we would not be able to improve θ via gradient
descent. On the other hand, a Gaussian or another continuous (on θ) distribution allows
non-zero gradients that improve the parameters of the decoder.

In summary, the idea behind equation (B.5) is that if the decoder maximizes P (X), it
will then create data points that look like those from the dataset.

The question is now: how can a VAE compute (B.5) while allowing backpropagation?
A straightforward answer would be to sample a large number n of z’s and compute a
discrete sum that would approximate (B.5). However, this approach is excessively time-
consuming from a computational perspective [25]. Instead, the key idea of the VAE is to

B.2 Variational autoencoders: full derivation of the loss 77

only look at values z that may yield a large value of P (X | z; θ), since the other z’s almost
do not contribute to the integral (B.5), so they can be neglected. To that aim, we use
another probability distribution, Q(z | X) which, given a data point X, tries to provide
the distribution of latent vectors z that are likely to output X through the decoder. We
then approximate P (X) with Ez∼QP (X | z), which is in fact equivalent to (B.5) but with
z following the distribution Q(z | X) instead of P (z). The advantage of this alternative
quantity is that when calculating Ez∼QP (X | z), we only take into account the space of
z’s likely under Q(z | X), which is smaller than the region of z’s likely under P (z). This
makes the computation of Ez∼QP (X | z) easier and faster compared to P (X). The form of
Q(z | X) could be arbitrary, however in VAEs Q(z | X) is often restricted to be a Gaussian
N (z | µ(X),Σ(X)) where Σ is a diagonal matrix [25]. The encoder of the VAE plays
then the role of Q(z | X): given an input X, the encoder outputs µ(X;ϕ) and Σ(X;ϕ),
establishing the distribution Q(z | X), N (µ(X;ϕ),Σ(X;ϕ)). Therefore, the role of the
encoder is to provide the distribution that tells what are the latent vectors in Z more likely
to reproduce X via the decoder. Note that this leads to Q(z | X) being parametrized by
ϕ, however we do not explicitly specify the dependence to avoid unnecessarily complex
notation.

There is, however, a fundamental a problem with the approach we have just described:
using Q(z | X) instead of P (z), we are computing Ez∼QP (X | z), and not P (X). We thus
need to obtain P (X) from Ez∼QP (X | z). The answer lies in the following equation [24]:

logP (X)−DKL[Q(z | X) || P (z | X)] = Ez∼Q(logP (X | z))−DKL[Q(z | X) || P (z)],

(B.6)
where DKL is the Kullback-Leibler (KL) divergence, and provides a measure of the dissim-
ilarity between two probability distributions. It is defined as follows: given two probability
distributions F (z) and G(z) over Z, DKL[F (z) || G(z)] := Ez∼F (logF (z) − logG(z)). In
the left-hand side of equation (B.6), the KL-divergence represents how well Q is selecting
the region we take into account for approximating P (X), or how well Q is choosing z’s that
output data points similar to X. It is important to note that equation (B.6) holds for any
distribution Q, independently of how well it matches the distribution P (z | X). This makes
it applicable at any stage of the training process.

In addition, the KL divergence is non-negative [24] and only 0 if both distributions are
equal. As a consequence, the right-hand side of (B.6) is a lower bound of logP (X). We
thus have the inequality:

logP (X) ≥ L(ϕ, θ;X) := −DKL[Q(z | X) || P (z)] + Ez∼Q(logP (X | z)). (B.7)

We next explain how to compute this lower bound and optimize it via stochastic gradient
descent.

First, recall that Q has been restricted to be a Gaussian distribution. This particular
choice has an essential advantage: since both distributions Q(z | X) and P (z) are Gaussian,
their KL-divergence is given in closed form. In fact, viewing µ and Σ as vectors of dimension
J , the KL-divergence of Q(z | X) and P (z) can be expressed as [24]:

−DKL[Q(z | X) || P (z)] =
1

2

J∑
j=1

(1 + log((Σj)
2)− (µj)

2 − (Σj)
2). (B.8)

78 Supplementary material

For the second term of (B.7), we use an approximation via Monte Carlo estimates. This
requires taking samples zl according to the distribution Q(z | X). However, this is a-priori
a non-differentiable operation with respect to the parameters of Q(z | X), ϕ. A solution to
this problem is the reparametrization trick [24, 25]: we first sample another noise variable
ϵ ∼ N (0, Id), and then obtain z using a differentiable transformation:

z = µ(X;ϕ) + Σ(X;ϕ)⊙ ϵ, (B.9)

where ⊙ is the element-wise product. Using this approach, z becomes continuous on ϕ and
backpropagation can be effectively performed [24]. After taking L samples ϵl (l = 1, . . . , L)
of the auxiliary noise variable, we calculate the Monte Carlo estimate of Ez∼Q(logP (X | z)):

Ez∼Q(logP (X | z)) ≃ 1

L

L∑
l=1

log(P (X | zl); zl = µ(X;ϕ) + Σ(X;ϕ)⊙ ϵl. (B.10)

Combining equations (B.8) and (B.10), we obtain an approximation of the lower bound
from equation (B.7):

L(ϕ, θ;X) ≃ 1

2

J∑
j=1

(1 + log((Σj)
2)− (µj)

2 − (Σj)
2) +

1

L

L∑
l=1

log(P (X | zl))

where zl = µ(X;ϕ) + Σ(X;ϕ)⊙ ϵl; ϵl ∼ N (0, Id).

(B.11)

We denote the function in the right-hand side of equation (B.11) as L̃(ϕ, θ;X,L). This
function is continuous on ϕ and θ, and can be computed and optimized via stochastic
gradient descent [25]. The term logP (X | zl) corresponds to a Bernoulli or Gaussian
distribution whose parameters are given by f(z; θ), and the choice depends on the type of
data. In our experiments, we have modeled logP (X | zl) as a Bernoulli distribution, see
Appendix A.6 for details.

Up to now we have discussed about the function we want to optimize given a single data
point X used as input, however in practical applications we do not use a single data point
at each training iteration. Rather, we take a batch of N data points X1, . . . , XN randomly
sampled from the full dataset D, and calculate the total loss. In addition, the batches we
use consist of more than 100 data points. Such a quantity of points allows, according to [24],
to take only one sample ϵi for each Xi. As a consequence, the total loss for each training
iteration of the (standard) variational autoencoder is

Loss
(
ϕ, θ; {Xi}Ni=1

)
= −

N∑
i=1

L̃(ϕ, θ;Xi, 1), (B.12)

where the −1 factor comes from the fact that the gradient descent process aims to minimize
the loss, and our goal is to maximize each L̃. A summary of the process computed during
each training iteration is illustrated in the following diagram:

Xi
Encoder(Xi;ϕ)7→ µ(Xi),Σ(Xi)

&ϵi7→ zi
Decoder(zi;θ)7→ f(zi; θ) 7→ L̃(ϕ, θ;Xi, 1) 7→ Loss. (B.13)

The final loss L̃ employs µ(Xi), Σ(Xi) for calculating the first term of (B.11), and f(zi; θ)

for the second term of (B.11). A summary of the loss calculation for a standard VAE is
given in Algorithm 1. For convenience, we refer to the total loss of the standard VAE as
L0.

B.3 Neural networks 79

B.3 Neural networks

Due to the page limit, we have not defined in detail the working principle of the trans-
formations computed in a variational autoencoder. We thus describe here in detail the
computation of the three main components of a VAE: the fully-connected layer, the con-
volutional layer, and the transposed convolutional layer. We also conclude with a remark
about the full transformation computed by the VAE, from input images to topological loss,
showing its differentiability under mild computational assumptions.

The simplest neural network, the fully-connected layer, is a map of the input x =

(x1, . . . , xn) into an output y, of the form [31]:

x 7→W · x+ b = y, (B.14)

where W is a m × n matrix of weights, b is a bias vector, and m is the dimension of the
output. In other words, we have:

yi =

n∑
j=1

Wijyj + bi, for i = 1, . . . ,m. (B.15)

Using weight matrices and biases, one can then create more complex transformations. In
particular, we use the convolutional layer (corresponding to the conv2d function in Py-
torch). This function maps an input X of shape (Cin, H,W) to an output Y of shape
(Cout, Hout,Wout), where C is the number of channels, H the height of the input planar
image in pixels, and W is its width in pixels. The transformation is given by:

Y(Coutj) = b(Coutj) +

Cin−1∑
k=0

W(Coutj , k) ⋆X(k), (B.16)

where each b(Coutj) is a bias matrix, each W(Coutj , k) is a weight matrix, k represents the
output channel, and ⋆ is the cross-correlation operator. This operation is given by:

(W(Coutj , k) ⋆X(k))ij =
∑
m

∑
n

Wi+m,j+n ·Xm,n, (B.17)

where Wa,b are the elements of W(Coutj , k) and Xm,n are the elements of X(k). The exact
implementation details of the convolutional layer can be found in Conv2d.

The transposed convolutional layer (the ConvTranspose2d function in the code) trans-
forms the input of shape (Cin, Hin,Win) into an output of shape (Cout, Hout,Wout). More
details about this transformation can be found in ConvTranspose2d.

In general, a VAE relies on the sequential application of the three aformentioned trans-
formations. In addition, between some of these transformations, we also employ activation
functions such as the ReLU activation function (given by ReLU(x) = max{0, x}), the sig-
moid function, and so on. In our case, we use the ReLU function. It is important to
note that the fully-connected, convolutional and transposed layers are all differential op-
erations with respect to the parameters of the weight matrices and the bias matrices, and
non-differentiability issues can only arise due to the ReLU function. However, its non-
differentiability, corresponding to a zero-valued input, can be assumed to be a computa-
tionally unlikely situation.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

80 Supplementary material

We can connect this neural network structure with the topological loss: recall that Topo-
VAEs use the output of the VAE, producing a persistence diagram from it and computing
the loss via a topological regularizer from Definition 3.1. We know that for most of the
regularizers, the maps from point cloud to loss are generically differentiable in the space of
point clouds. Combining this with the fact that the map from input to output (i.e., point
cloud used by the loss) is computationally almost always also differentiable, we deduce,
through the chain rule, that the full loss of a TopoVAE is a differentiable map under com-
putationally mild conditions. This ensures that gradient descent can be performed, allowing
the training process of TopoVAEs.

B.4 Information about image quality and diversity

As explained in the main text, the idea behind topological regularizers is to provide the
generative model with information about the structure, shape or distribution of the batch
of images in the high-dimensional space they lie in. This may enhance a faster way of
optimizing the weights of the model such that the generated images have a similar distri-
bution to the real data, and a higher quality and diversity. In particular, in a variational
autoencoder, these additional loss terms penalize the difference between the persistence
diagrams of the true and the generated data, leading to an update of the weights towards
an updated model that produces data with a distribution with similar "shape", i.e., with
a similar persistence diagram, to the true data —and with "similar", we mean with a low
value of the topological regularizer used, which which can be bottleneck distance, squared
difference between persistent entropies, and so on.

In the previous experiments, we have seen that topology-informed VAEs perform seem-
ingly better than standard VAEs in terms of image quality and decay of the BCE loss. In
addition, in some cases we observe a higher diversity of shapes in early training. In this
section, we delve into the meaning behind the values outputted by topological regularizers.
In particular, we explore the relation between the quality and the diversity of the images
and the magnitude of the values returned by the topological regularizers. To do so, we per-
form two analyses, showing: 1) the magnitude of topological regularizers seems to correlate
with image quality, and 2) the magnitude of topological regularizers seems to correlate with
image diversity. Note that we present the following results as insightful behaviours of the
regularizers, and not as formal proofs of any sort. We perform the tests with the bottleneck
regularizers of degrees 0 and 1, and the δ-selective persistent entropy regularizers of degrees
0 and 1.

B.4.1 Analysis 1: image quality

We select 50 random batches, of 128 images each, from the FashionMNIST dataset. For
each of these batches, we generate 3 new batches where we add different levels of Gaussian
noise to the images. To do so, given a real batch Bi, we generate three new batches B′

i(vj),
where vj is the variance of the Gaussian noise added to the images of the original batch
Bi. We choose v1 = 0.1, v2 = 0.3 and v3 = 0.7 since it leads to three clearly different levels
of noise. Then, we compute the dissimilarity between the persistence diagrams of Bi and
B′

i(vj), via a regularizer d̃. In particular, given a regularizer d̃, we compute d̃(Bi, B
′
i(v1)),

d̃(Bi, B
′
i(v2)), and d̃(Bi, B

′
i(v3)). In other words, we track how the dissimilarity between

B.4 Information about image quality and diversity 81

persistent diagrams evolves as the noise in the batch of images increases. A good regularizer
will thus present an increase of the magnitude of d̃ as the noise increases, and this is in fact
what we observe in the experiments, which we show in Figure B.1. The dissimilarity metrics
we use are the bottleneck distance of degree 0 (i.e., the bottleneck regularizer of degree 0),
the bottleneck distance of degree 1 (i.e., the bottleneck regularizer of degree 1), and the
values of the δ-selective persistent entropy regularizers of degree 0 and 1, with δ = 0.1.
(We do not use the other regularizers here for 1) avoiding a large amount of repetitive
experiments, and 2) our main goal in this section is to see if dissimilarities in persistence
diagrams can be related to image quality and noise levels, and not to check if each specific
regularizer is a good measure of the level of noise.) The results can be seen on the top
left and middle of Figure B.1: the solid lines correspond to the values of the regularizer for
diagrams of degree 0, while dashed lines correspond to degree 1. Blue lines correspond to
low noise ("noise level 1"), green lines to medium noise ("noise level 2"), and red lines to
high noise ("noise level 3").

Figure B.1: Analysis 1: Correlation between regularizer magnitude and image quality.
Top left: value of the bottleneck distance of persistence diagrams of degrees 0 and 1 for 50
random batches of the FashionMNIST dataset, corresponding to the bottleneck
regularizers. Top middle: values of the δ-selective entropy regularizers of degres 0 and 1;
δ = 0.1. Top right: example of 32 images from an original batch of the dataset. Bottom:
addition of Gaussian noise to the original batch, with increasing variance of the Gaussian
distribution (0.1 (left), 0.3 (middle), and 0.7 (right)).

We confirm in Figure B.1 that the value of these regularizers increases with the level of noise
in the batches. This correlation is clear for the bottleneck regularizer of degree 0 and the
entropy regularizer of degree 1. The correlation still seems to be present in the bottleneck
regularizer of degree 1 (its mean value is 0.40 for low noise, 0.54 for medium noise, and
0.59 for high noise), and the entropy regularizer of degree 0 (mean value of 0.00009 for low
noise, 0.00050 for medium noise, and 0.00060 for high noise). However, for the latter two,
the correlation seems to be less pronouced.

82 Supplementary material

In summary, there is a clear correlation between noise level and the value of the bottle-
neck regularizer of degree 0 and the value of the δ-selective persistent entropy regularizer
of degree 1. More analysis should be done on the bottleneck regularizer of degree 1 and
persistent entropy regularizer of degree 0, but, at least, they do not seem uncorrelated to
the noise level.

To explore if this behaviour is also present in colored datasets —which is a key aspect of
topological regularizers for expanding their use to more real-life applications—, we repeat
the same experiment in the CIFAR10 dataset, see Figure B.2. We observe again a correlation
between regularizer magnitude and the amount of noise added, for both the bottleneck
regularizer of degree 0 and the persistent entropy regularizer of degree 1. Furthermore, we
also see, analogously to the FashionMNIST dataset, that while the entropy regularizer of
degree 0 takes values orders of magnitude smaller, it also showcases an increase of its value
with noise level (0.0001 for low noise, 0.0003 for medium noise, and 0.0003 for high noise).
However, the values of the bottleneck regularizer of degree 1 do not seem to correlate with
noise level.

Hence, in all experiments we have seen that the δ-selective persistent regularizer of
degree 1 and the bottleneck regularizer of degree 0 seem to capture the concept of noise
level and image quality. We can thus say that minimizing the value of these regularizers
could be correlated with removing noise and enhancing the generation of more realistic
images. More research should be done with the other regularizers, which we leave as future
work. However, we have validated the main question we wanted to answer: dissimilarities
in persistence diagrams can be related to image quality and noise level.

Figure B.2: Analysis 1: Correlation between regularizer magnitude and image quality.
The experiments are analogous to Figure B.1, but they are performed in the CIFAR10
dataset instead of the FashionMNIST dataset.

B.4 Information about image quality and diversity 83

B.4.2 Analysis 2: image diversity

To see if the difference between persistence diagrams is correlated with image diversity,
we perform the following test in the FashionMNIST dataset. We select a class, such as
class 0 of the dataset (corresponding to images of T-shirts/tops), and put all the images
of this class in batches of 128 images, leaving us with 47 batches of T-shirts/tops. For
each of these, denoted Bi, we generate three new batches B′

i(nj), where nj is the number
of new images from random classes inserted. We select n1 = 25, n2 = 65, and n3 =

105. In other words, we generate three new batches with increasing amounts of image
diversity. Then, for each true batch Bi, we select another random batch Bk T-shirts/tops,
and compute the dissimilarities, via some regularizer d̃, of the persistence diagram of Bi

and the persistence diagrams of Bk and B′
k(nj). In other words, we compute d̃(Bi, Bk),

d̃(Bi, B
′
k(n1)), d̃(Bi, B

′
k(n2)), and d̃(Bi, B

′
k(n3)). Hence, we track how the value d̃ evolves

as the diversity in the batch increases.
We perform this test with two classes: first, with class 0 (T-shirts/tops); the result is

given in Figure B.3, and second, with class 7 (sneakers); the result is given in Figure B.4.

Figure B.3: Analysis 2: Correlation between regularizer magnitude and image diversity.
Using class 0 (T-shirts/tops) of the FashionMNIST dataset. Top: values of the
regularizers for the 47 different batches. Bottom: example of three levels of diversity (left:
no noise, middle: 65 random images inserted, right: 105 random images inserted).

84 Supplementary material

Figure B.4: Analysis 2: Correlation between regularizer magnitude and image diversity.
Using class 7 (sneakers) of the FashionMNIST dataset.

In the first case, there seems to be a correlation between bottleneck distance of degree
0 and diversity. In fact, its mean value over the 47 tests for increasing diversity levels
1, 2, 3, and 4 is 2.39, 3.15, 3.61, and 3.81, repectively, increasing with diversity level.
This is probably due to the fact that more diversity is related to more difference between
pixel values and thus pairwise distances between points (images) of the point cloud (batch)
that are perturbed, yielding persistence diagrams different from the original one, with a
difference that increases with the diversity of shapes in the images. On the other hand,
there does not seem to be a correlation for the other three regularizers. However, in the
case of sneakers, i.e., in Figure B.4, the δ-selective persistent entropy generator of degree 1
seems to be related to image quality; its mean value for each diversity level is 7.41, 7.53,
8.87, and 10.79, increasing with diversity level. This, again, is possibly due to specific
pixel intensity variations caused by the insertion of random images from other classes in
the batch. Furthermore, we see again some degree of correlation between the value of the
bottleneck regularizer of degree 0 and image diversity (mean values 2.13, 5.19, 5.03, and
5.21 for each diversity level).

The code used for conducting the quality tests is in tests_fashionmnist.ipynb for
the FashionMNIST dataset, and in tests_cifar.ipynb for the CIFAR10 dataset. For the
diversity tests, the code is in diversity_fashionmnist.ipynb. In summary, the results
obtained in this section indicate that topological regularizers encode some information about
the data, related to the quality, the noise, and the shape and diversity of the images, that
can lead to enhanced training processes in generative models.

	Introduction
	Structure of the thesis
	Contributions

	Persistent homology
	Simplicial homology
	Point clouds and filtrations
	Persistent homology
	Persistence modules
	Persistence diagrams and barcode space
	Stability
	Computation of persistent homology

	Differentiability through barcode space
	Framework of differentiability through barcode space
	Differentiability of barcode generators
	Differentiability of topological regularizers
	Push functions
	Reininghaus dissimilarity
	Scaled Gaussian density estimators
	Persistent entropy
	Bottleneck distance to a fixed diagram
	Conditions for smoothness of the bottleneck distance

	Selective regularizers

	Topology-informed generative models
	Topological regularizers
	Environment for the experiments
	Synthetic experiments
	Topology-informed generative models
	Generative models
	Variational autoencoders
	TopoVAEs

	Experiments and results
	VAE structure
	Qualitative comparison
	Quantitative comparison
	Consistency across different VAE structures
	Topogical regularizers in latent space

	Conclusions and future work
	Future work
	Conclusion

	Bibliography
	Experiments and results
	Working principle of topology-informed VAEs
	Scaled Gaussian density functions
	Synthetic experiments
	TopoVAE experiments
	Hyperparameters
	TopoVAEs and VAE0: qualitative comparison
	Comparison across different VAE structures
	Topological regularization in latent space
	Summary of results

	Structure of VAE.B
	Algorithms and code
	Main algorithms
	Code

	Supplementary material
	Additional proofs
	Variational autoencoders: full derivation of the loss
	Neural networks
	Information about image quality and diversity
	Analysis 1: image quality
	Analysis 2: image diversity

