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Training generative models is hard!

Figure: Mode collapse in a generative adversarial network (GAN).

DALLE2: 100k-200k GPU hours for training (more than 22 years with
one GPU!).
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Topology + Generative Models: a solution?

Figure: Working principle of a topology-informed variational autoencoder
(TopoVAE).
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Topology + Generative Models: a solution?

Persistent Homology Generative ModelsSome differentiable results
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1 Persistent homology
Definition: abstract simplicial complex
An abstract simplicial complex is a pair (K ,S), where K is a set and S
is a collection of subsets of K , such that for all v ∈ K we have {v} ∈ S ,
and for all σ ∈ S , if τ ⊆ σ then τ ∈ S .

We name each element σ ∈ S a k-simplex, where k := |σ| − 1 is its
dimension, and a simplex of the form {v} is called a vertex.
Given a simplicial complex K and a k-simplex σ = {v0, v1, . . . , vk}, an
orientation of σ is an equivalence class of orderings of the vertices of
σ, where two orderings are equivalent if they differ by an even
permutation. An oriented simplex is denoted as σ = [v0, v1, . . . , vk ].

Geometric simplicial complexes
The geometric simplicial complex KG associated with K is a subspace of
Rd formed by the convex hulls of all sets of points {vi0 , vi1 , . . . , vik} where
[vi0 , vi1 , . . . , vik ] is any k-simplex of K .
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Figure: Example of a geometric simplicial complex.
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Describing point clouds

Definition: point cloud
A point cloud (or (n, d)-point cloud) is an ordered set of n points
{p1, . . . , pn} in Rd (for some positive integers n and d).

Definition: Rips complex
Let M be a metric space with metric d , and let P = {pi}ni=1 ⊆ M be a
point cloud in M. Given ϵ > 0, the Rips complex Kϵ(P) is the abstract
simplicial complex with vertices the points of P , and given any ordered
subset {i0, . . . , ik} ⊆ {1, . . . , n}, the k-simplex [pi0 , . . . , pik ] exists in
Kϵ(P) if d(px , py ) ≤ ϵ for all x , y ∈ {i0, . . . , ik}.

Definition: Rips filtration
The Rips filtration of P is the nested family of simplicial complexes
(Kϵ)ϵ∈[0;+∞) where each Kϵ is the Rips complex obtained from P with
scale value ϵ.
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Figure: Example of simplicial complexes of the Rips filtration of a point cloud in
the plane [1].
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But how we can we trace the emergence and disappearance
of features within the filtration?

Simplicial Complexes

Chain Groups and Boundary Operators

Homology Groups

Filtrations

Persistent Homology Groups

Persistence Modules

Persistence Diagrams

Stability

Point Clouds

Rips Complexes and Rips Filtrations
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But how we can we trace the emergence and disappearance
of features within the filtration?

The persistence diagram is a multi-set of intervals (ϵi , ϵ
′
i ) where

ϵi ∈ [0,+∞) and ϵ′i ∈ [0,+∞], union ∆∞, which can be computed
from any point cloud.
Each (ϵi , ϵ

′
i ) corresponds to a k-hole with birth in Kϵi and death in Kϵ′i

.
The persistence diagram is a representation of the persistent homology
(a family of vector spaces describing the "persistence" of features
along the filtration).

Figure: Example of a persistence diagram.
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Definition
A persistence diagram or barcode is the union B ∪∆∞ ⊆ R× R̄, where
B is a finite multi-set of elements in R× R̄. The space Bar is the space
of all persistence diagrams.

Definition: bottleneck distance

A matching between two barcodes D and D ′ is a bijection between the
two multi-sets γ : D → D ′. The cost of a matching is defined as

c(γ) := sup
x∈D

∥x − γ(x)∥∞,

where ∥·∥∞ is the supremum norm, given by ∥(a, b)∥∞ = max(|a|, |b|).
We denote by Γ(D,D ′) the set of all matchings between D and D ′. The
bottleneck distance between D and D ′ is then

d∞(D,D ′) := inf
γ∈Γ(D,D′)

c(γ).

Jack Benarroch Jedlicki Final Degree Thesis June, 2024 13 / 41



Stability of persistence diagrams

Given n and d , each point cloud {pi}ni=1 ⊆ Rd can be represented as a
single point in Rnd , and we refer to Rnd as the space of point clouds. More
precisely:

{pi}ni=1 ⊆ Rd ⇔ (p1, . . . , pn) ∈ Rnd .

Proposition
If ∥P − P ′∥2 < ϵ, then d∞(Dgmk(f ),Dgmk(f

′)) < 2ϵ, where Dgmk(f ) and
Dgmk(f

′) are the persistence diagrams of degree k of P and P ′ via the
Rips filtration, respectively.
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2 Bridging the gap between persistent homology
and generative models
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Definition: Topological regularizers

A topological regularizer is a function from the space of point clouds, Rnd ,
to R, factoring through Bar.

Gradient descent
Given a loss L(a), where a is the vector of weights of the machine learning
model, and a step size η, the weights are updated according to

a′ = a − η∇L(a),

where ∇L(a) is the gradient of L, and a′ are the updated weights.

(Due to the fact that if F (x) is differentiable in a neighborhood of x0, then
F decreases fastest in the direction of −∇L(x0).)
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Question
How do we know if a topological regularizer is differentiable?
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2.1. Framework of differentiability through Bar

Framework of differentiability developed by Leygonie et al. [2].

Summary: Given F : M F1−→ Bar F2−→ N , study the "differentiability"
of F1 : M → Bar and of F2 : Bar → N , and connect them using the
"barcode chain rule".

Definition

Let Rnd be the space of point clouds. Given p ∈ N, the barcode
generator of degree p (via the Rips filtration) is the map

Bp : Rnd → Bar
P 7→ Bp(P),

where Bp(P) is the persistence diagram of degree p of P obtained via
the Rips filtration.
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2.2. Some differentiability results
2.2.1. Push functions

Definition
The push function of degree p is defined as

P◦
p : Rnd → R

P 7→ −
∑

(b,d)∈Bp(P)

(d − b). (1)

Proposition

The push function P◦
p of degree p is generically C∞ in Rnd .
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2.2.2. Reininghaus dissimilarity

Definition
The persistence scale space kernel kσ is given by [3]:

kσ(F ,G ) =
1

8πσ

∑
p∈F , q∈G

e−
∥p−q∥2

2
8σ − e−

∥p−q̄∥2
2

8σ , (2)

where q̄ = (q2, q1) for q = (q1, q2), and the sum goes over all pairs p ∈ F ,
q ∈ G of off-diagonal bounded points of both diagrams. This kernel
induces a pseudo-distance dσ in Bar, the Reininghaus dissimilarity, given by

dσ(F ,G ) =
√
kσ(F ,F ) + kσ(G ,G )− 2kσ(F ,G ). (3)

Proposition

Let d̃σ,D0 : Rnd → R be the map defined as d̃σ,D0(P) = d2
σ(Bp(P),D0) for

any P ∈ Rnd . Then, d̃σ,D0 is generically C∞ in Rnd .
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2.2.3. Scaled Gaussian density estimators
Definition: 4SGDEs
A 4SGDE, denoted by E4, is a function parametrized by s > 0 and
σ > 0, given by

E4(D, x ;σ, s) = s
∑

(b,d)∈D

(d − b)4e−((d−x)/σ)2 .

Figure: 4SGDE of a 0-dimensional persistence diagram, with s = 0.0001.
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Proposition
Let E4 be a 4SGDE, D0 ∈ Bar, and {x1, . . . , xm} ⊆ [0; +∞). The function
LE : Rnd → R given by

LE4(P) =
1
m

m∑
i=1

[E4(B0(P); xi )− E4(D0; xi )]
2

is generically C∞ in Rnd .
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2.2.4. Persistent entropy

Definition
The persistent entropy of a persistence diagram D is defined as

ϵ(D) = −
∑

(b,d)∈D

|d − b|
L

log

(
|d − b|

L

)
(4)

where L =
∑

(b,d)∈D
|d − b|, and the summation only includes bounded

off-diagonal points.

Problem: it is not differentiable in the diagonal.

Question
What about persistent entropy of diagrams of any degree p? Or more
general classes of functions that are not differentiable in the diagonal, or
that are not zero in the diagonal?
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2.2.5. Selective regularizers
Definition: δ-selective functions

Given δ > 0, a δ-selective function is a function fδ : Bar0 → R of the
form

fδ(D) =
∑

(b,d)∈D : |d−b|>δ

F (b, d) (5)

where F : R2 → R is C∞ in {(x , y) : |x − y | > ϵ} for some ϵ < δ.
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Definition

Given any δ > 0, the δ-selective p-persistent entropy generator Gp,δ is
defined as

Gp,δ : Rnd → R

P 7→ ϵ(Bp(P) \ ∆̄δ/2) = −
∑

(b,d)∈Bp(P) : |d−b|>δ

|d − b|
L

log

(
|d − b|

L

)
,

where L =
∑

(b,d)∈Bp(P) : |d−b|>δ|d − b|, and ∆̄δ/2 is the set of points at
a distance smaller or equal than δ/2 to the diagonal.

→ The map Gp,δ computes the persistent entropy of Bp(P) "only looking
at points in the diagram with persistence larger than δ".

Proposition

For any p ∈ N and δ > 0, the δ-selective p-persistent entropy generator
Gp,δ : Rnd → R is generically C∞ in Rnd .
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Definition

Let Rnd be the space of point clouds, D0 ∈ Bar a fixed barcode, and
p ≥ 0. We have the five following types of topological regularizers, from
Rnd to R:

Lpush,p : P 7→ −
∑

(b,d)∈Bp(P)

(d − b),

LRh,p(σ) : P 7→ d2
σ(Bp(P),D0),

L4SGDE,0(x, σd , s) : P 7→
m∑
i=1

[E4(B0(P); xi , σd , s)− E4(D0; xi , σd , s)]
2,

Lbottleneck,p : P 7→ d∞(Bp(P),D0),

Lentropy,p(δ) : P 7→ (Gp,δ(P)− Gp,δ(D0))
2 .

We refer to these functions, respectively, as the p-push regularizer, the
p-Reininghaus regularizer, the 4SGDE regularizer, the p-bottleneck
regularizer, and the p-entropy regularizer.
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Theorem

Let Rnd be the space of point clouds. Then, the p-push regularizers,
p-Reininghaus regularizers, 4SGDE regularizers, and p-entropy regularizers
are generically differentiable in Rnd . In addition, the p-bottleneck
regularizers are differentiable whenever the point cloud is in a generic
subspace of Rnd , and its persistence diagram satisfies mild computational
conditions.

Next step: testing them
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Topology-informed generative models
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3.1. Topology-informed variational autoencoders
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Four topology-informed total losses

LT1(P;ω0, ω1) = L0 + ω0 · Lbottleneck,0(P;D
0
0 ) + ω1 · Lbottleneck,1(P;D

1
0 ),

LT2(P;ω0, ω1, δ) = L0 + ω0 · Lentropy,0(P;D
0
0 , δ) + ω1 · Lentropy,1(P;D

1
0 , δ),

LT3(P;ω0, ω1, δ, σ) = L0 + ω0 · Lentropy,0(P;D
0
0 , δ) + ω1 · LRh,1(P;D

1
0 , σ),

LT4(P;ω0, ω1, x, σd , s, σ) = L0 + ω0 · L4SGDE,0(P;D
0
0 , x, σd , s)

+ ω1 · LRh,1(P;D
1
0 , σ),

where L0 = KLD + BCE (standard loss of a VAE).
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3.2. Experiments and results

VAE used: 1.68M parameters; latent space dimension: 10.
Dataset: FashionMNIST (60k images, 10 image classes).
Qualitative comparison: quality and diversity of generated images,
changes in the decay of BCE losses (1 epoch training).
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TopoVAE1 (bottleneck regularizers)

Figure: Comparison of TopoVAE1 and VAE0 at iteration 50/469, using
(ω0, ω1) = (5.0, 5.0).

Figure: Comparison of TopoVAE1 and VAE0 at iteration 100/469, using
(ω0, ω1) = (5.0, 5.0).
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Figure: Evolution of the BCE lossses of TopoVAE1 and VAE0 used in the previous
figure.
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TopoVAE2 (entropy regularizers)

Figure: Comparison of TopoVAE2 and VAE0 using initially cloned models.
Iteration 50/469.

Figure: Evolution of the BCE lossses of TopoVAE2 and VAE0.
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TopoVAE3: 0-entropy regularizer + 1-Reininghaus
regularizer

Figure: Comparison of TopoVAE3 and VAE0, iteration 125/469.

Figure: Evolution of the BCE lossses of TopoVAE3 ("Conv-TopoVAE") and VAE0
("Conv-VAE"), used in the previous figure.
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TopoVAE4: 4SGDE + 1-Reininghaus regularizer

Figure: Comparison of TopoVAE4 and VAE0, iteration 50/469.

Figure: Evolution of the BCE lossses of TopoVAE4 and VAE0.
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Quantitative comparison: results

Quantitative comparison: computation of r(s) values, where r(s) is

r(s) = 100 ·
BCEVAE0(s)− BCETopoVAEi (s)

BCEVAE0(s)
,

for s = 25, 50, 75, and computation of the means r̄(s) for each model.

Model Time r̄(25) r̄(50) r̄(75)
VAE0 1.5 sec.
TopoVAE1 7.1 sec. 0.3 % 1.2 % 0.2 %
TopoVAE2 2.1 sec. 0.2 % 1.1 % 0.3 %
TopoVAE3 2.1 sec. 0.2 % 0.7 % 0.2 %
TopoVAE4 17.0 sec. 0.2 % 0.6 % 0.2%

Table 1. Running time of 10 training steps, and r̄ values at training steps
25, 50, and 75, for each TopoVAE.
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3.3. Opening new lines of exploration: regularization of
latent space

TopoVAE-Z1
The total loss of TopoVAE-Z1 is

LT1(P;ω0, ω1) = L0 + ω0 · Lbottleneck,0(P;D
0
0
′) + ω1 · Lbottleneck,1(P;D

1
0
′),

where P is the batch of latent vectors (and not the batch of final outputs
of the model), and D0

0
′ and D1

0
′ are rescaled versions of the persistence

diagrams D0
0 and D1

0 from the input batch of ground truth images.
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Figure: Comparison of VAE0 and TopoVAE-Z1. Top: distribution of 1000 latent
vectors after 1 epoch, middle: images produced at iteration 125; bottom:
comparison of losses during 1 training epoch.
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Conclusions

Development of a new approach for training generative models,
merging them with persistent homology.
New differentiability results, expanding the current knowledge of
differentiability through barcode space to more general classes of
functions.
Experimental results showing that topological regularization can
enhance the learning process of generative models.
Future work: currently working on topology+diffusion (at the
Computer Vision Center).
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Questions
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